151
|
A Preliminary Study Showing the Impact of Genetic and Dietary Factors on GC-MS-Based Plasma Metabolome of Patients with and without PROX1-Genetic Predisposition to T2DM up to 5 Years Prior to Prediabetes Appearance. Curr Issues Mol Biol 2021; 43:513-528. [PMID: 34209638 PMCID: PMC8929026 DOI: 10.3390/cimb43020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Risk factors for type 2 diabetes mellitus (T2DM) consist of a combination of an unhealthy, imbalanced diet and genetic factors that may interact with each other. Single nucleotide polymorphism (SNP) in the prospero homeobox 1 (PROX1) gene is a strong genetic susceptibility factor for this metabolic disorder and impaired β-cell function. As the role of this gene in T2DM development remains unclear, novel approaches are needed to advance the understanding of the mechanisms of T2DM development. Therefore, in this study, for the first time, postprandial changes in plasma metabolites were analysed by GC–MS in nondiabetic men with different PROX1 genotypes up to 5 years prior to prediabetes appearance. Eighteen contestants (12 with high risk (HR) and 6 with low risk (LR) genotype) participated in high-carbohydrate (HC) and normo-carbohydrate (NC) meal-challenge tests. Our study concluded that both meal-challenge tests provoked changes in 15 plasma metabolites (amino acids, carbohydrates, fatty acids and others) in HR, but not LR genotype carriers. Postprandial changes in the levels of some of the detected metabolites may be a source of potential specific early disturbances possibly associated with the future development of T2DM. Thus, accurate determination of these metabolites can be important for the early diagnosis of this metabolic disease.
Collapse
|
152
|
Rahmadi M, Nurhan AD, Pratiwi ED, Prameswari DA, Panggono SM, Nisak K, Khotib J. The effect of various high-fat diet on liver histology in the development of NAFLD models in mice. J Basic Clin Physiol Pharmacol 2021; 32:547-553. [PMID: 34214382 DOI: 10.1515/jbcpp-2020-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Nonalcoholic fatty liver disease (NAFLD) is exceptionally common around the world. The development of NAFLD is increasing rapidly in the world, along with changes in lifestyle. Excess lipid intake is one of the risk factors for NAFLD. The NAFLD model is induced by a high-fat diet contains SFA, MUFA, and ῳ-6 PUFA. This study aims to assess the effect of high-fat diet variation on liver histology in developing NAFLD models in mice. METHODS Thirty-six male mice (Balb/c) were divided into six groups fed a high-fat diet containing beef tallow 60%, beef tallow 45%, vegetable ghee, animal ghee + corn oil, vegetable ghee + corn oil for 28 days and compared to a control group fed a chow diet. All of the mice were fed with a high-fat diet in the form of pellets ad libitum for 28 days. Bodyweight and food intake were measured every day. At the last day of treatment, animals were sacrificed and the Liver were taken for histological analysis. RESULTS This study showed that NAFLD model development was achieved in all group mice fed a high-fat diet with different degrees of NAFLD. Beef tallow 60% had the worst liver histology. CONCLUSIONS Thus, based on this study, we found that high-fat diet variations influenced the development of NAFLD models in mice, particularly concerning liver histology.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Ahmad Dzulfikri Nurhan
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Eka Dewi Pratiwi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Devita Ardina Prameswari
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Sisca Melani Panggono
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Khoirotin Nisak
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
153
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021; 26:molecules26123506. [PMID: 34207498 PMCID: PMC8227493 DOI: 10.3390/molecules26123506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a global health burden that greatly impact patient quality of life and account for a huge number of deaths worldwide. Despite current therapies, several side effects have been reported that compromise patient adherence; thus, affecting therapeutic benefits. In this context, plant metabolites, namely volatile extracts and compounds, have emerged as promising therapeutic agents. Indeed, these compounds, in addition to having beneficial bioactivities, are generally more amenable and present less side effects, allowing better patient tolerance. The present review is an updated compilation of the studies carried out in the last 20 years on the beneficial potential of essential oils, and their compounds, against major risk factors of CVDs. Overall, these metabolites show beneficial potential through a direct effect on these risk factors, namely hypertension, dyslipidemia and diabetes, or by acting on related targets, or exerting general cellular protection. In general, monoterpenic compounds are the most studied regarding hypotensive and anti-dyslipidemic/antidiabetic properties, whereas phenylpropanoids are very effective at avoiding platelet aggregation. Despite the number of studies performed, clinical trials are sparse and several aspects related to essential oil’s features, namely volatility and chemical variability, need to be considered in order to guarantee their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
154
|
Guleken Z, Depciuch J, Ege H, İlbay G, Kalkandelen C, Ozbeyli D, Bulut H, Sener G, Tarhan N, Erdem Kuruca S. Spectrochemical and biochemical assay comparison study of the healing effect of the Aloe vera and Hypericum perforatum loaded nanofiber dressings on diabetic wound. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119639. [PMID: 33743307 DOI: 10.1016/j.saa.2021.119639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Diabetic wounds have a slow healing process and easy to be infected. In addition to current drug treatments, supportive approaches are needed for diabetic wound treatment. In this study, we aimed to load Aloe Vera (AV) and Hypericum perforatum oil (HPO) with PCL/Ge (Poly (ɛ-caprolactone)/Gelatine) polymeric biodegradable by electrospinning method into nanofiber dressings on an experimental diabetic wound model to compare the diabetic wound healing effect. Changes in the amount and chemical structure of phospholipids, proteins, and lipids were investigated in the blood and serum samples of the animals using Fourier transform infrared (FTIR) analysis. To evaluate biological events associated with the wound repair process in inflammatory phase we used oxidant and antioxidant status to determine the healing status of wounds such as Total antioxidant status (TAS), Total oxidant level (TOS) and tumor necrosis factor alpha (TNF-α) levels. TOS level increased in DM groups and decreased in the AV and HPO group. Oxidative stress index decreased and TNF-α level increased in the HPO group. FTIR spectra showed changes in the phospholipids, proteins, and carbon chain of lipids in the whole blood as well as serum of DM rats. FTIR spectra combined with Principal component analysis (PCA) showed, that treated DM rats by AV and HPO caused return chemical structure of blood and serum to this observed in control group. Higher similarity with control group for HPO rats was observed. HPO is better than AV in the alternative for healing on diabetic wound. Thus, we have demonstrated that IR spectroscopy and multivariate data analysis and biochemical assays are consistent and correlative with each other.
Collapse
Affiliation(s)
- Zozan Guleken
- Department of Physiology, Uskudar University Faculty of Medicine, Istanbul, Turkey.
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Science, 31-342 Krakow, Poland.
| | - Hasan Ege
- Institute of Health Sciences, Department of Physiology Istanbul University Cerrahpaşa, Turkey
| | - Gül İlbay
- Department of Physiology, Faculty of Medicine, Kocaeli University 41380 Kocaeli, Turkey
| | - Cevriye Kalkandelen
- Istanbul University Cerrahpaşa, Vocational School Technical Science Istanbul, Turkey
| | - Dilek Ozbeyli
- Department of Medical Pathology Techniques, Vocational School of Health Services, Marmara University, Istanbul, Turkey
| | - Huri Bulut
- Department of Medical Biochemistry, Faculty of Medicine Istinye University, Istanbul, Turkey
| | - Goksel Sener
- Marmara University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Nevzat Tarhan
- Uskudar University, Department of Psychiatry, Istanbul, Turkey NP Brain Hospital, İstanbul, Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Istanbul University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
155
|
Paavola T, Bergmann U, Kuusisto S, Kakko S, Savolainen MJ, Salonurmi T. Distinct Fatty Acid Compositions of HDL Phospholipids Are Characteristic of Metabolic Syndrome and Premature Coronary Heart Disease-Family Study. Int J Mol Sci 2021; 22:ijms22094908. [PMID: 34066314 PMCID: PMC8124224 DOI: 10.3390/ijms22094908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
HDL particles can be structurally modified in atherosclerotic disorders associated with low HDL cholesterol level (HDL-C). We studied whether the lipidome of the main phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) species of HDL2 and HDL3 subfractions is associated with premature coronary heart disease (CHD) or metabolic syndrome (MetS) in families where common low HDL-C predisposes to premature CHD. The lipidome was analyzed by LC-MS. Lysophosphatidylcholines were depleted of linoleic acid relative to more saturated and shorter-chained acids containing species in MetS compared with non-affected subjects: the ratio of palmitic to linoleic acid was elevated by more than 30%. A minor PC (16:0/16:1) was elevated (28–40%) in MetS. The contents of oleic acid containing PCs were elevated relative to linoleic acid containing PCs in MetS; the ratio of PC (16:0/18:1) to PC (16:0/18:2) was elevated by 11–16%. Certain PC and SM ratios, e.g., PC (18:0/20:3) to PC (16:0/18:2) and a minor SM 36:2 to an abundant SM 34:1, were higher (11–36%) in MetS and CHD. The fatty acid composition of certain LPCs and PCs displayed a characteristic pattern in MetS, enriched with palmitic, palmitoleic or oleic acids relative to linoleic acid. Certain PC and SM ratios related consistently to CHD and MetS.
Collapse
Affiliation(s)
- Timo Paavola
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Sanna Kuusisto
- Computational Medicine, Faculty of Medicine, Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Sakari Kakko
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| | - Markku J Savolainen
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| | - Tuire Salonurmi
- Research Center for Internal Medicine, Department of Internal Medicine, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90200 Oulu, Finland
| |
Collapse
|
156
|
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8 + T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33:1001-1012.e5. [PMID: 33691090 PMCID: PMC8102368 DOI: 10.1016/j.cmet.2021.02.015] [Citation(s) in RCA: 550] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms underlying how T cells become dysfunctional in a tumor microenvironment (TME) will greatly benefit cancer immunotherapy. We found that increased CD36 expression in tumor-infiltrating CD8+ T cells, which was induced by TME cholesterol, was associated with tumor progression and poor survival in human and murine cancers. Genetic ablation of Cd36 in effector CD8+ T cells exhibited increased cytotoxic cytokine production and enhanced tumor eradication. CD36 mediated uptake of fatty acids by tumor-infiltrating CD8+ T cells in TME, induced lipid peroxidation and ferroptosis, and led to reduced cytotoxic cytokine production and impaired antitumor ability. Blocking CD36 or inhibiting ferroptosis in CD8+ T cells effectively restored their antitumor activity and, more importantly, possessed greater antitumor efficacy in combination with anti-PD-1 antibodies. This study reveals a new mechanism of CD36 regulating the function of CD8+ effector T cells and therapeutic potential of targeting CD36 or inhibiting ferroptosis to restore T cell function.
Collapse
Affiliation(s)
- Xingzhe Ma
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Lintao Liu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Pan Su
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Enguang Bi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Maojie Yang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA.
| |
Collapse
|
157
|
Bekhite M, González-Delgado A, Hübner S, Haxhikadrija P, Kretzschmar T, Müller T, Wu JMF, Bekfani T, Franz M, Wartenberg M, Gräler M, Greber B, Schulze PC. The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radic Biol Med 2021; 167:66-80. [PMID: 33705961 DOI: 10.1016/j.freeradbiomed.2021.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Oversupply of fatty acids (FAs) to cardiomyocytes (CMs) is associated with increased ceramide content and elevated the risk of lipotoxic cardiomyopathy. Here we investigate the role of ceramide accumulation on mitochondrial function and mitophagy in cardiac lipotoxicity using CMs derived from human induced pluripotent stem cell (hiPSC). Mature CMs derived from hiPSC exposed to the diabetic-like environment or transfected with plasmids overexpressing serine-palmitoyltransferase long chain base subunit 1 (SPTLC1), a subunit of the serine-palmitoyltransferase (SPT) complex, resulted in increased intracellular ceramide levels. Accumulation of ceramides impaired insulin-dependent phosphorylation of Akt through activating protein phosphatase 2A (PP2A) and disturbed gene and protein levels of key metabolic enzymes including GLUT4, AMPK, PGC-1α, PPARα, CD36, PDK4, and PPARγ compared to controls. Analysis of CMs oxidative metabolism using a Seahorse analyzer showed a significant reduction in ATP synthesis-related O2 consumption, mitochondrial β-oxidation and respiratory capacity, indicating an impaired mitochondrial function under diabetic-like conditions or SPTLC1-overexpression. Further, ceramide accumulation increased mitochondrial fission regulators such as dynamin-related protein 1 (DRP1) and mitochondrial fission factor (MFF) as well as auto/mitophagic proteins LC3B and PINK-1 compared to control. Incubation of CMs with the specific SPT inhibitor (myriocin) showed a significant increase in mitochondrial fusion regulators the mitofusin 2 (MFN2) and optic atrophy 1 (OPA1) as well as p-Akt, PGC-1 α, GLUT-4, and ATP production. In addition, a significant decrease in auto/mitophagy and apoptosis was found in CMs treated with myriocin. Our results suggest that ceramide accumulation has important implications in driving insulin resistance, oxidative stress, increased auto/mitophagy, and mitochondrial dysfunction in the setting of lipotoxic cardiomyopathy. Therefore, modulation of the de novo ceramide synthesis pathway may serve as a novel therapeutic target to treat metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Mohamed Bekhite
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany.
| | - Andres González-Delgado
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Sascha Hübner
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Pëllumb Haxhikadrija
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Tom Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Tina Müller
- Clinic for Anesthesiology and Intensive Care Medicine, University Hospital Jena, FSU, Jena, Germany
| | - Jasmine M F Wu
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Tarek Bekfani
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Marcus Franz
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Maria Wartenberg
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| | - Markus Gräler
- Clinic for Anesthesiology and Intensive Care Medicine, University Hospital Jena, FSU, Jena, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, University Hospital Jena, FSU, Jena, Germany
| |
Collapse
|
158
|
Qian F, Ardisson Korat AV, Imamura F, Marklund M, Tintle N, Virtanen JK, Zhou X, Bassett JK, Lai H, Hirakawa Y, Chien KL, Wood AC, Lankinen M, Murphy RA, Samieri C, Pertiwi K, de Mello VD, Guan W, Forouhi NG, Wareham N, Hu ICFB, Riserus U, Lind L, Harris WS, Shadyab AH, Robinson JG, Steffen LM, Hodge A, Giles GG, Ninomiya T, Uusitupa M, Tuomilehto J, Lindström J, Laakso M, Siscovick DS, Helmer C, Geleijnse JM, Wu JH, Fretts A, Lemaitre RN, Micha R, Mozaffarian D, Sun Q. n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies. Diabetes Care 2021; 44:1133-1142. [PMID: 33658295 PMCID: PMC8132316 DOI: 10.2337/dc20-2426] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Prospective associations between n-3 fatty acid biomarkers and type 2 diabetes (T2D) risk are not consistent in individual studies. We aimed to summarize the prospective associations of biomarkers of α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with T2D risk through an individual participant-level pooled analysis. RESEARCH DESIGN AND METHODS For our analysis we incorporated data from a global consortium of 20 prospective studies from 14 countries. We included 65,147 participants who had blood measurements of ALA, EPA, DPA, or DHA and were free of diabetes at baseline. De novo harmonized analyses were performed in each cohort following a prespecified protocol, and cohort-specific associations were pooled using inverse variance-weighted meta-analysis. RESULTS A total of 16,693 incident T2D cases were identified during follow-up (median follow-up ranging from 2.5 to 21.2 years). In pooled multivariable analysis, per interquintile range (difference between the 90th and 10th percentiles for each fatty acid), EPA, DPA, DHA, and their sum were associated with lower T2D incidence, with hazard ratios (HRs) and 95% CIs of 0.92 (0.87, 0.96), 0.79 (0.73, 0.85), 0.82 (0.76, 0.89), and 0.81 (0.75, 0.88), respectively (all P < 0.001). ALA was not associated with T2D (HR 0.97 [95% CI 0.92, 1.02]) per interquintile range. Associations were robust across prespecified subgroups as well as in sensitivity analyses. CONCLUSIONS Higher circulating biomarkers of seafood-derived n-3 fatty acids, including EPA, DPA, DHA, and their sum, were associated with lower risk of T2D in a global consortium of prospective studies. The biomarker of plant-derived ALA was not significantly associated with T2D risk.
Collapse
Affiliation(s)
- Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Andres V. Ardisson Korat
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Matti Marklund
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Nathan Tintle
- Department of Mathematics and Statistics, Dordt University, Sioux Center, IA
- Fatty Acid Research Institute, Sioux Falls, SD
| | - Jyrki K. Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Xia Zhou
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Heidi Lai
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- Imperial College London, London, U.K
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Alexis C. Wood
- Children’s Nutrition Research Center, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Rachel A. Murphy
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Cecilia Samieri
- INSERM, UMR 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Kamalita Pertiwi
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Vanessa D. de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, U.K
| | - InterAct Consortium, Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Ulf Riserus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - William S. Harris
- Fatty Acid Research Institute, Sioux Falls, SD
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - Aladdin H. Shadyab
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA
| | | | - Lyn M. Steffen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Allison Hodge
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Australia
| | - Graham G. Giles
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jaana Lindström
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Catherine Helmer
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Johanna M. Geleijnse
- INSERM, UMR 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Jason H.Y. Wu
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Fretts
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Renata Micha
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- Division of Cardiology, Tufts Medical Center, Boston, MA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
159
|
Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M, Alonge KM, den Hartigh LJ, Gomes Kjerulf D, Goodspeed L, Subramanian S, Wang S, Kim F, Birk DE, Wight TN, Chait A. Adipocyte-Derived Versican and Macrophage-Derived Biglycan Control Adipose Tissue Inflammation in Obesity. Cell Rep 2021; 31:107818. [PMID: 32610121 DOI: 10.1016/j.celrep.2020.107818] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is characterized by adipose tissue inflammation. Because proteoglycans regulate inflammation, here we investigate their role in adipose tissue inflammation in obesity. We find that adipose tissue versican and biglycan increase in obesity. Versican is produced mainly by adipocytes and biglycan by adipose tissue macrophages. Both proteoglycans are also present in adipose tissue from obese human subjects undergoing gastric bypass surgery. Deletion of adipocyte-specific versican or macrophage-specific biglycan in mice reduces macrophage accumulation and chemokine and cytokine expression, although only adipocyte-specific versican deletion leads to sustained improvement in glucose tolerance. Macrophage-derived biglycan activates inflammatory genes in adipocytes. Versican expression increases in cultured adipocytes exposed to excess glucose, and adipocyte-conditioned medium stimulates inflammation in resident peritoneal macrophages, in part because of a versican breakdown product, versikine. These findings provide insights into the role of adipocyte- and macrophage-derived proteoglycans in adipose tissue inflammation in obesity.
Collapse
Affiliation(s)
- Chang Yeop Han
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - John A Gebe
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Kimberly M Alonge
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Diego Gomes Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA
| | - Francis Kim
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, USA.
| |
Collapse
|
160
|
Marmitt DJ, Shahrajabian MH, Goettert MI, Rempel C. Clinical trials with plants in diabetes mellitus therapy: a systematic review. Expert Rev Clin Pharmacol 2021; 14:735-747. [PMID: 33884948 DOI: 10.1080/17512433.2021.1917380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The chronic metabolic disorder diabetes mellitus is a fast-growing global problem with huge social, health, and economic consequences, having one of the highest morbidities and mortality rates. Prolonged use of many available medications can produce undesirable side effects. Thus, plants appear as an important source of bioactive resources for the discovery of new treatments for diabetes. AREAS COVERED In this sense, this systematic review focused on clinical trials involving plants of National List of Medicinal Plants of Interest to the Unified Health System (RENISUS) (or compounds) with antidiabetic properties. We analyzed indexed studies in PubMed following the reporting guidelines of PRISMA. EXPERT OPINION Of the 51 clinical trials found, Curcuma longa, Glycine max, Zingiber officinale, Punica granatum, Aloe vera, Momordica charantia are the species with the greatest amount of clinical trials and the attenuation of insulin resistance, decreased fasting blood glucose and glycosylated hemoglobin levels are some of the main mechanisms by which these plants exert hypoglycemic effects. Thus, we speculate that the Clinical Pharmacology should explore the field of plant-based compounds that will keep concentrating the attention of researchers, and therefore, we gathered studies in advanced stages that highlight the role of plants in the diabetes therapy.
Collapse
Affiliation(s)
- Diorge Jonatas Marmitt
- Programa De Pós-graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brasil
| | | | - Márcia Inês Goettert
- Programa De Pós-graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brasil
| | - Claudete Rempel
- Programa De Pós-graduação Em Ambiente E Desenvolvimento/Programa De Pós-graduação Em Sistemas Ambientais Sustentáveis, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brasil
| |
Collapse
|
161
|
Naharci MI, Tasci I. Comment on: Nonesterified fatty acids and risks of frailty, disability, and mobility limitation in older adults: The cardiovascular health study. J Am Geriatr Soc 2021; 69:1407-1408. [PMID: 33856046 DOI: 10.1111/jgs.17129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Mehmet Ilkin Naharci
- Division of Geriatrics, Gulhane Faculty of Medicine & Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ilker Tasci
- Division of Geriatrics, Gulhane Faculty of Medicine & Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.,Department of Internal Medicine, Gulhane Faculty of Medicine & Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
162
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
163
|
Kumagai H, Coelho AR, Wan J, Mehta HH, Yen K, Huang A, Zempo H, Fuku N, Maeda S, Oliveira PJ, Cohen P, Kim SJ. MOTS-c reduces myostatin and muscle atrophy signaling. Am J Physiol Endocrinol Metab 2021; 320:E680-E690. [PMID: 33554779 PMCID: PMC8238132 DOI: 10.1152/ajpendo.00275.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity and type 2 diabetes are metabolic diseases, often associated with sarcopenia and muscle dysfunction. MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and has been implicated in metabolic homeostasis. Although MOTS-c improves insulin sensitivity in skeletal muscle, whether MOTS-c impacts muscle atrophy is not known. Myostatin is a negative regulator of skeletal muscle mass and also one of the possible mediators of insulin resistance-induced skeletal muscle wasting. Interestingly, we found that plasma MOTS-c levels are inversely correlated with myostatin levels in human subjects. We further demonstrated that MOTS-c prevents palmitic acid-induced atrophy in differentiated C2C12 myotubes, whereas MOTS-c administration decreased myostatin levels in plasma in diet-induced obese mice. By elevating AKT phosphorylation, MOTS-c inhibits the activity of an upstream transcription factor for myostatin and other muscle wasting genes, FOXO1. MOTS-c increases mTORC2 and inhibits PTEN activity, which modulates AKT phosphorylation. Further upstream, MOTS-c increases CK2 activity, which leads to PTEN inhibition. These results suggest that through inhibition of myostatin, MOTS-c could be a potential therapy for insulin resistance-induced skeletal muscle atrophy as well as other muscle wasting phenotypes including sarcopenia.NEW & NOTEWORTHY MOTS-c, a mitochondrial-derived peptide reduces high-fat-diet-induced muscle atrophy signaling by reducing myostatin expression. The CK2-PTEN-mTORC2-AKT-FOXO1 pathways play key roles in MOTS-c action on myostatin expression.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Ana Raquel Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Junxiang Wan
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hemal H Mehta
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Amy Huang
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Administrative Nutrition, Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| |
Collapse
|
164
|
Nikooei P, Hosseinzadeh-Attar MJ, Asghari S, Norouzy A, Yaseri M, Vasheghani-Farahani A. Effects of virgin coconut oil consumption on metabolic syndrome components and asymmetric dimethylarginine: A randomized controlled clinical trial. Nutr Metab Cardiovasc Dis 2021; 31:939-949. [PMID: 33549429 DOI: 10.1016/j.numecd.2020.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS There is some promising evidence regarding the beneficial effect of coconut oil on cardiometabolic risk factors. This study aimed to assess the effects of virgin coconut oil (VCO) consumption on metabolic syndrome (MetS) components, as well as, asymmetric dimethylarginine (ADMA) in adults with MetS. METHODS AND RESULTS In this randomized controlled trial, 48 subjects, aged 20-50 years, with MetS were allocated into two groups; the intervention group was given 30 ml of VCO per day to substitute the same amounts of fat in their usual diet for four weeks. The control group was advised to follow their usual diet. VCO consumption significantly reduced serum levels of triglyceride (TG) (P = 0.001), very low-density lipoprotein (VLDL) (P = 0.001), and fasting blood sugar (FBS) (P = 0.015) compared to the control group. The levels of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) were significantly increased in the VCO group when compared to the control group (P = 0.001). Circulatory ADMA also increased in the VCO group compared to the control group (P = 0.003). No significant differences were observed in the LDL-C/HDL-C ratio, anthropometric parameters, and blood pressure measurements between the two groups at the end of the study (P > 0.05). CONCLUSION VCO consumption increased the values of HDL-C while reduced TG and FBS levels. Blood pressure and waist circumference did not change. However, levels of TC, LDL-C, and ADMA elevated by VCO consumption. Caution is warranted until the results of further studies become available to explain the long-term effects of VCO consumption. REGISTRATION NUMBER IRCT20131125015536N11.
Collapse
Affiliation(s)
- Parinaz Nikooei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad J Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Norouzy
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
165
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
166
|
Sobczak AIS, Katundu KGH, Phoenix FA, Khazaipoul S, Yu R, Lampiao F, Stefanowicz F, Blindauer CA, Pitt SJ, Smith TK, Ajjan RA, Stewart AJ. Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes. Chem Sci 2021; 12:4079-4093. [PMID: 34163679 PMCID: PMC8179462 DOI: 10.1039/d0sc06605b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Zn2+ is an essential regulator of coagulation and is released from activated platelets. In plasma, the free Zn2+ concentration is fine-tuned through buffering by human serum albumin (HSA). Importantly, the ability of HSA to bind/buffer Zn2+ is compromised by co-transported non-esterified fatty acids (NEFAs). Given the role of Zn2+ in blood clot formation, we hypothesise that Zn2+ displacement from HSA by NEFAs in certain conditions (such as type 2 diabetes mellitus, T2DM) impacts on the cellular and protein arms of coagulation. To test this hypothesis, we assessed the extent to which increasing concentrations of a range of medium- and long-chain NEFAs reduced Zn2+-binding ability of HSA. Amongst the NEFAs tested, palmitate (16 : 0) and stearate (18 : 0) were the most effective at suppressing zinc-binding, whilst the mono-unsaturated palmitoleate (16 : 1c9) was markedly less effective. Assessment of platelet aggregation and fibrin clotting parameters in purified systems and in pooled plasma suggested that the HSA-mediated impact of the model NEFA myristate on zinc speciation intensified the effects of Zn2+ alone. The effects of elevated Zn2+ alone on fibrin clot density and fibre thickness in a purified protein system were mirrored in samples from T2DM patients, who have derranged NEFA metabolism. Crucially, T2DM individuals had increased total plasma NEFAs compared to controls, with the concentrations of key saturated (myristate, palmitate, stearate) and mono-unsaturated (oleate, cis-vaccenate) NEFAs positively correlating with clot density. Collectively, these data strongly support the concept that elevated NEFA levels contribute to altered coagulation in T2DM through dysregulation of plasma zinc speciation.
Collapse
Affiliation(s)
- Amélie I S Sobczak
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Kondwani G H Katundu
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
- College of Medicine, University of Malawi Blantyre Malawi
| | - Fladia A Phoenix
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds UK
| | - Siavash Khazaipoul
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Ruitao Yu
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences 23 Xinning Road Xining Qinghai 810001 China
| | - Fanuel Lampiao
- College of Medicine, University of Malawi Blantyre Malawi
| | - Fiona Stefanowicz
- Scottish Trace Element and Micronutrient Diagnostic and Research Laboratory, Department of Biochemistry NHS Greater Glasgow and Clyde Glasgow UK
| | | | - Samantha J Pitt
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Terry K Smith
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews St Andrews UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| |
Collapse
|
167
|
Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G. Metabolic and Energy Imbalance in Dysglycemia-Based Chronic Disease. Diabetes Metab Syndr Obes 2021; 14:165-184. [PMID: 33488105 PMCID: PMC7816219 DOI: 10.2147/dmso.s286888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is the ability to efficiently adapt metabolism based on nutrient availability and requirement that is essential to maintain homeostasis in times of either caloric excess or restriction and during the energy-demanding state. This regulation is orchestrated in multiple organ systems by the alliance of numerous metabolic pathways under the master control of the insulin-glucagon-sympathetic neuro-endocrine axis. This, in turn, regulates key metabolic enzymes and transcription factors, many of which interact closely with and culminate in the mitochondrial energy generation machinery. Metabolic flexibility is compromised due to the continuous mismatch between availability and intake of calorie-dense foods and reduced metabolic demand due to sedentary lifestyle and age-related metabolic slowdown. The resultant nutrient overload leads to mitochondrial trafficking of substrates manifesting as mitochondrial dysfunction characterized by ineffective substrate switching and incomplete substrate utilization. At the systemic level, the manifestation of metabolic inflexibility comprises reduced skeletal muscle glucose disposal rate, impaired suppression of hepatic gluconeogenesis and adipose tissue lipolysis manifesting as insulin resistance. This is compounded by impaired β-cell function and progressively reduced β-cell mass. A consequence of insulin resistance is the upregulation of the mitogen-activated protein kinase pathway leading to a pro-hypertensive, atherogenic, and thrombogenic environment. This is further aggravated by oxidative stress, advanced glycation end products, and inflammation, which potentiates the risk of micro- and macro-vascular complications. This review aims to elucidate underlying mechanisms mediating the onset of metabolic inflexibility operating at the main target organs and to understand the progression of metabolic diseases. This could potentially translate into a pharmacological tool that can manage multiple interlinked conditions of dysglycemia, hypertension, and dyslipidemia by restoring metabolic flexibility. We discuss the breadth and depth of metabolic flexibility and its impact on health and disease.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- Department of Endocrinology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | | | - Manash P Baruah
- Department of Endocrinology, Excel Hospitals, Guwahati, India
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Ganapathi Bantwal
- Department of Endocrinology, St. John’s Medical College and Hospital, Bangalore, Karnataka, India
| |
Collapse
|
168
|
Li Q, Zhao M, Wang Y, Zhong F, Liu J, Gao L, Zhao J. Associations Between Serum Free Fatty Acid Levels and Incident Diabetes in a 3-Year Cohort Study. Diabetes Metab Syndr Obes 2021; 14:2743-2751. [PMID: 34168474 PMCID: PMC8216696 DOI: 10.2147/dmso.s302681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE High circulating free fatty acid (FFA) is associated with the development of diabetes. This study was designed to evaluate longitudinal associations between FFA levels, changes in FFA levels, and mean FFA levels and incident diabetes. PARTICIPANTS AND METHODS This 3-year cohort study was conducted in Ningyang between 2011 and 2014. Serum FFA, fasting blood glucose (FPG), 2-hour postprandial blood glucose (2hPG), and glycosylated hemoglobin (HbA1c) levels were measured at baseline and at the end of follow-up. A multivariate stepwise logistic regression model was used to evaluate associations between serum FFA levels in various groups and the risk of incident diabetes. RESULTS Of the 2905 individuals without baseline diabetes, 290 developed diabetes by the 3-year follow-up. With increasing baseline FFA levels, the mean FPG, 2hPG, and HbA1c levels, and the prevalence of diabetes at the end of follow-up increased. The trend of FPG and HbA1c increase was not statistically significant. Higher baseline FFA levels were not significantly associated with greater risk of incident diabetes. However, longitudinal changes in serum FFA levels showed that individuals with serum FFA levels from normal to high (OR = 2.956, 95% CI: 2.089-4.184) or from high to high (OR = 3.343, 95% CI: 2.300-4.857) had greater risk of incident diabetes compared with those with normal to normal FFA levels. Similarly, individuals with ΔFFA ≥ 0 mmol/L (OR = 1.762, 95% CI: 1.373-2.262) or high mean serum FFA levels (OR = 2.120, 95% CI: 1.620-2.775) were at higher risk of incident diabetes than those with ΔFFA < 0 mmol/L or normal mean serum FFA levels. CONCLUSION The longitudinal status of serum FFA levels, including chronic increases and sustained high levels, was more closely associated with high risk of incident diabetes than was high baseline FFA levels.
Collapse
Affiliation(s)
- Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Meng Zhao
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Yupeng Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Fang Zhong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Liu
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Jiajun Zhao Tel +86 15168889899 Email
| |
Collapse
|
169
|
Haas de Mello A, Ferreira GK, Rezin GT. Abnormal mitochondrial metabolism in obesity and insulin resistance. CLINICAL BIOENERGETICS 2021:83-92. [DOI: 10.1016/b978-0-12-819621-2.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
170
|
Eriksen F, Carlsson ER, Munk JK, Madsbad S, Fenger M. Fractionated free fatty acids and their relation to diabetes status after Roux-en-Y gastric bypass: A cohort study. Physiol Rep 2021; 9:e14708. [PMID: 33463892 PMCID: PMC7814490 DOI: 10.14814/phy2.14708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/15/2023] Open
Abstract
Bariatric surgery is associated with near-immediate remission of type 2 diabetes and recently suggested as a treatment for type 2 diabetes. Specifically, Roux-en-Y gastric bypass has been a focus of much research, but still, the mechanisms of action are only partly elucidated. We aim to investigate whether some mechanisms might be mediated by free fatty acids (FFAs). We measured eight fractionated FFAs before and up to 2 years after Roux-en-Y gastric bypass surgery in 207 patients, divided into three groups. One non-diabetic group, one diabetic group with post-operative remission and one diabetic group with persistent diabetes after surgery. Pre- and postoperative levels of fractionated FFAs were compared within and between groups. The sum of the measured FFAs were lower in the group with persistent diabetes, compared to the other groups. The pre-surgery level of linoleic acid in the group with persistent diabetes was significantly lower compared to the other two groups. The levels of fractionated FFAs decreased from pre-surgery to three months after surgery, except for oleic acid and arachidonic acid and for Docosahexaenoic acid (DHA) in the non-diabetic group. The FFAs with decreasing levels from pre-surgery to three months post-surgery are all precursors to oleic acid, arachidonic acid, and DHA, respectively, which may imply a drift, indicating that they need to be sustained at an acceptable level for optimal metabolic function. The fact that the sum of the measured FFAs is lower in the group with persistent diabetes may suggest that this group and the group with diabetes remission represent two distinct types of type 2 diabetes. It is proposed that linoleic acid could be used as a biomarker to determine the plausibility for type 2 diabetes remission after Roux-en-Y gastric bypass surgery.
Collapse
Affiliation(s)
- Freja Eriksen
- Department of Clinical BiochemistryCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Elin R. Carlsson
- Department of Clinical BiochemistryCopenhagen University Hospital HvidovreHvidovreDenmark
- Department of Clinical BiochemistryNordsjaellands HospitalUniversity of CopenhagenHillerodDenmark
| | - Jens K. Munk
- Department of Clinical BiochemistryCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Sten Madsbad
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Mogens Fenger
- Department of Clinical BiochemistryCopenhagen University Hospital HvidovreHvidovreDenmark
| |
Collapse
|
171
|
Wang N, Ma H, Li J, Meng C, Zou J, Wang H, Liu K, Liu M, Xiao X, Zhang H, Wang K. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol 2021; 150:65-76. [PMID: 33098823 DOI: 10.1016/j.yjmcc.2020.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/30/2022]
Abstract
Palmitic acid (PA)-induced myocardial injury is considered a critical contributor to the development of obesity and type 2 diabetes mellitus (T2DM)-related cardiomyopathy. However, the underlying mechanism has not been fully understood. Here, we demonstrated that PA induced the cell death of H9c2 cardiomyoblasts in a dose- and time-dependent manner, while different ferroptosis inhibitors significantly abrogated the cell death of H9c2 cardiomyoblasts and primary neonatal rat cardiomyocytes exposed to PA. Mechanistically, PA decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Overexpression of HSF1 not only alleviated PA-induced cell death and lipid peroxidation but also improved disturbed iron homeostasis by regulating the transcription of iron metabolism-related genes (e.g., Fth1, Tfrc, Slc40a1). Additionally, PA-blocked GPX4 protein expression was evidently restored by HSF1 overexpression. Inhibition of endoplasmic reticulum (ER) stress rather than autophagy contributed to HSF1-mediated GPX4 expression. Moreover, GPX4 overexpression protected against PA-induced ferroptosis, whereas knockdown of GPX4 reversed the anti-ferroptotic effect of HSF1. Consistent with the in vitro findings, PA-challenged Hsf1-/- mice exhibited more serious ferroptosis, increased Slc40a1 and Fth1 mRNA expression, decreased GPX4 and TFRC expression and enhanced ER stress in the heart compared with Hsf1+/+ mice. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression.
Collapse
Affiliation(s)
- Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China; Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Jing Li
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - ChaoYang Meng
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Hao Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Xianzhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China.
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
172
|
Wei Q, Qi L, Lin H, Liu D, Zhu X, Dai Y, Waldron RT, Lugea A, Goodarzi MO, Pandol SJ, Li L. Pathological Mechanisms in Diabetes of the Exocrine Pancreas: What's Known and What's to Know. Front Physiol 2020; 11:570276. [PMID: 33250773 PMCID: PMC7673428 DOI: 10.3389/fphys.2020.570276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
The clinical significance of diabetes arising in the setting of pancreatic disease (also known as diabetes of the exocrine pancreas, DEP) has drawn more attention in recent years. However, significant improvements still need to be made in the recognition, diagnosis and treatment of the disorder, and in the knowledge of the pathological mechanisms. The clinical course of DEP is different from type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). DEP develops in patients with previous existing exocrine pancreatic disorders which damage both exocrine and endocrine parts of pancreas, and lead to pancreas exocrine insufficiency (PEI) and malnutrition. Therefore, damage in various exocrine and endocrine cell types participating in glucose metabolism regulation likely contribute to the development of DEP. Due to the limited amount of clinical and experimental studies, the pathological mechanism of DEP is poorly defined. In fact, it still not entirely clear whether DEP represents a distinct pathologic entity or is a form of T2DM arising when β cell failure is accelerated by pancreatic disease. In this review, we include findings from related studies in T1DM and T2DM to highlight potential pathological mechanisms involved in initiation and progression of DEP, and to provide directions for future research studies.
Collapse
Affiliation(s)
- Qiong Wei
- Department of Endocrinology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Pancreas, Southeast University, Nanjing, China
| | - Liang Qi
- Department of Endocrinology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Lin
- Institute of Pancreas, Southeast University, Nanjing, China.,Department of Clinical Science and Research, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Dechen Liu
- Institute of Pancreas, Southeast University, Nanjing, China.,Department of Clinical Science and Research, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Xiangyun Zhu
- Department of Endocrinology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Pancreas, Southeast University, Nanjing, China
| | - Yu Dai
- Nanjing Foreign Language School, Nanjing, China
| | - Richard T Waldron
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Aurelia Lugea
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ling Li
- Department of Endocrinology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Pancreas, Southeast University, Nanjing, China
| |
Collapse
|
173
|
Ciucanu CI, Olariu S, Vlad DC, Dumitraşcu V. Effect of rosuvastatin on the concentration of each fatty acid in the fraction of free fatty acids and total lipids in human plasma: The role of cholesterol homeostasis. Biochem Biophys Rep 2020; 24:100822. [PMID: 33072892 PMCID: PMC7549052 DOI: 10.1016/j.bbrep.2020.100822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/05/2022] Open
Abstract
Each fatty acid (FA) or class of FAs has a different behavior in the pathologies of atherosclerosis. The aim of this study was to investigate changes in the concentration of each fatty acid in the fraction of free fatty acids (FFAs) and total lipids in human plasma after short-term therapy with rosuvastatin as a cholesterol-lowering statin drug. Six hypercholesterolemic men on a habitual diet were studied in a randomized, double-blind, and crossover process. They received 20 mg rosuvastatin or placebo in random order, each for 4 weeks and after 2 weeks of washout period, they received another medication (placebo or rosuvastatin) for another period of 4 weeks. Rosuvastatin treatment significantly decreased the absolute concentrations of saturated and monounsaturated FAs in the total FAs as well as in FFAs. Long chain polyunsaturated fatty acids with 20 and 22 carbon atoms in the molecule had no significant change in the fraction of FFAs. Rosuvastatin is directly involved in cholesterol biosynthesis and indirectly through cholesterol homeostasis in the biosynthesis of other plasma lipids. In conclusion, our findings show that rosuvastatin treatment leads to significant changes in the concentration of each fatty acid, except for long-chain polyunsaturated fatty acids in FFAs. Our observations indicate that cholesterol homeostasis through its regulatory mechanisms appears to be the main cause of changes in the concentration of each plasma fatty acid during rosuvastatin treatment. These changes can be a source of beneficial consequences, in addition to lowering low-density lipoprotein cholesterol in cardiovascular diseases. Rosuvastatin decreased the concentration of total fatty acids and free fatty acids. The change in the concentration of each fatty acid was analyzed. Changes in fatty acid concentrations are part of cholesterol homeostasis. These changes bring beneficial consequences in cardiovascular diseases.
Collapse
Affiliation(s)
- Cristian I Ciucanu
- Pharmacology and Biochemistry Department, Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes" of Timişoara, Piaţa Eftimie Murgu 2, RO-300041, Timişoara, Romania
| | - Sonia Olariu
- Pharmacology and Biochemistry Department, Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes" of Timişoara, Piaţa Eftimie Murgu 2, RO-300041, Timişoara, Romania
| | - Daliborca C Vlad
- Pharmacology and Biochemistry Department, Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes" of Timişoara, Piaţa Eftimie Murgu 2, RO-300041, Timişoara, Romania
| | - Victor Dumitraşcu
- Pharmacology and Biochemistry Department, Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes" of Timişoara, Piaţa Eftimie Murgu 2, RO-300041, Timişoara, Romania
| |
Collapse
|
174
|
Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158823. [PMID: 33010452 PMCID: PMC7695620 DOI: 10.1016/j.bbalip.2020.158823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes mellitus (T1DM) is associated with metabolic changes leading to alterations in glucose and lipid handling. While T1DM-associated effects on many major plasma lipids have been characterised, such effects on plasma free fatty acids (FFA) have not been fully examined. Using gas chromatography–mass spectrometry, we measured the plasma concentrations of FFA species in individuals with T1DM (n = 44) and age/sex-matched healthy controls (n = 44). Relationships between FFA species and various parameters were evaluated. Plasma concentrations of myristate (14:0), palmitoleate (16:1), palmitate (16:0), linoleate (18:2), oleate (18:1c9), cis-vaccenate (18:1c11), eicosapentaenoate (20:5), arachidonate (20:4) and docosahexanoate (22:6) were reduced in the T1DM group (p < 0.0001 for all, except p = 0.0020 for eicosapentaenoate and p = 0.0068 for arachidonate); α-linolenate (18:3) and dihomo-γ-linolenate (20:3) concentrations were unchanged. The saturated/unsaturated FFA ratio, n-3/n-6 ratio, de novo lipogenesis index (palmitate (main lipogenesis product)/linoleate (only found in diet)) and elongase index (oleate/palmitoleate) were increased in the T1DM group (p = 0.0166, p = 0.0089, p < 0.0001 and p = 0.0008 respectively). The stearoyl-CoA desaturase 1 (SCD1) index 1 (palmitoleate/palmitate) and index 2 (oleate/stearate) were reduced in T1DM (p < 0.0001 for both). The delta-(5)-desaturase (D5D) index (arachidonate/dihomo-γ-linolenate) was unchanged. Age and sex had no effect on plasma FFA concentrations in T1DM, while SCD1 index 1 was positively correlated (p = 0.098) and elongase index negatively correlated with age (p = 0.0363). HbA1c was negatively correlated with all plasma FFA concentrations measured except α-linolenate and dihomo-γ-linolenate. Correlations were observed between plasma FFA concentrations and cholesterol and HDL concentrations, but not LDL concentration or diabetes duration. Collectively, these results aid our understanding of T1DM and its effects on lipid metabolism. Plasma concentrations of major FFA species are lower in T1DM compared to controls. Plasma FFA concentrations negatively correlates with HbA1c in T1DM. The SCD1 index is reduced in T1DM. Lipogenesis, elongase, n3/n6, saturated/unsaturated indices are increased in T1DM. Collectively, the data highlight specific changes in lipid metabolism in T1DM
Collapse
|
175
|
Vizioli C, Jaime-Lara RB, Franks AT, Ortiz R, Joseph PV. Untargeted Metabolomic Approach Shows No Differences in Subcutaneous Adipose Tissue of Diabetic and Non-Diabetic Subjects Undergoing Bariatric Surgery: An Exploratory Study. Biol Res Nurs 2020; 23:109-118. [PMID: 32762338 DOI: 10.1177/1099800420942900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity plays a major role in the development of insulin resistance (IR) and diabetes (T2DM). Increased adipose tissue (AT) is particularly of interest because it activates a chronic inflammatory response in adipocytes and other tissues. AT plays key endocrine and metabolic functions, acting in the regulation of insulin sensitivity and energy homeostasis. Additionally, it can be easily collected during bariatric surgery. The purpose of this pilot study was to explore the potential differences in AT metabolism, through comparing the untargeted metabolomic profiles of diabetic and non-diabetic obese patients undergoing bariatric surgery. METHODS For this exploratory study, samples were collected from 17 subjects. Subcutaneous AT (SAT) samples from obese-diabetic (n = 8) and Obese-non-Diabetic (n = 9) subjects were obtained from the Human Metabolic Tissue Bank. Untargeted metabolomic profiling was performed by Metabolon® Inc. Statistical analysis was performed using the MetaboAnalyst 4.0 platform. RESULTS Among the 421 metabolites identified and analyzed there were no significant differences between the Obese-Diabetics and the Obese-non-Diabetics. Small changes were observed by fold change analysis mainly in lipid (n = 12; e.g. NEFAs) and amino acid (n = 8; e.g. BCAAs) metabolic pathways. Dysregulation of these metabolites has been associated with IR and other T2DM-related pathophysiological processes. CONCLUSION Obesity may influence SAT metabolism masking T2DM-dependent dysregulation. Better understanding the metabolic differences within SAT in diabetic populations may help identify potential biomarkers for diagnosis and monitoring of T2DM in patients undergoing bariatric surgery.
Collapse
Affiliation(s)
- Carlotta Vizioli
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research, 2511National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Rosario B Jaime-Lara
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research, 2511National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Alexis T Franks
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research, 2511National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Rodrigo Ortiz
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research, 2511National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Paule V Joseph
- Sensory Science & Metabolism Unit, Biobehavioral Branch, Division of Intramural Research, National Institute of Nursing Research, 2511National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
176
|
Li G, Chan YL, Wang B, Saad S, Oliver BG, Chen H. Replacing smoking with vaping during pregnancy: Impacts on metabolic health in mice. Reprod Toxicol 2020; 96:293-299. [PMID: 32750443 DOI: 10.1016/j.reprotox.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
Smoking is a significant risk factor for the development of metabolic diseases. Due to social pressures to quit smoking, many pregnant women are vaping as an alternative nicotine source. However, the metabolic consequences of replacing tobacco cigarettes with e-cigarettes during pregnancy are unknown. Therefore, in the mothers and their offspring, we investigated the metabolic and hepatic impacts of replacing cigarette smoke with e-vapour during pregnancy. Female BALB/c mice were either air-exposed or cigarette smoke-exposed (SE) from six weeks before pregnancy until lactation. At mating, a subset of the SE mice were instead exposed to e-vapour. Markers of glucose and lipid metabolism were measured in the livers and plasma, from the mothers and their male offspring (13 weeks). In the SE mothers, plasma insulin levels were reduced, leading to downstream increases in hepatic gluconeogenesis and plasma non-esterified fatty acids (NEFA). In the e-vapour replacement mothers, these changes were not as significant. In the SE offspring, there was impaired glucose tolerance, and increased plasma NEFA and liver triglyceride concentrations. E-vapour replacement restored lipid homeostasis but did not improve glucose tolerance. Therefore, in a murine model, low dose e-cigarette replacement during pregnancy is less toxic than cigarette smoke.
Collapse
Affiliation(s)
- Gerard Li
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Yik L Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, New South Wales 2065, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
177
|
Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond) 2020; 134:657-676. [PMID: 32219347 DOI: 10.1042/cs20200128] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Metabolic dysfunction is a fundamental core mechanism underlying CVDs. Previous studies generally focused on the roles of long-chain fatty acids (LCFAs) in CVDs. However, a growing body of study has implied that short-chain fatty acids (SCFAs: namely propionate, malonate, butyrate, 2-hydroxyisobutyrate (2-HIBA), β-hydroxybutyrate, crotonate, succinate, and glutarate) and their cognate acylations (propionylation, malonylation, butyrylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, crotonylation, succinylation, and glutarylation) participate in CVDs. Here, we attempt to provide an overview landscape of the metabolic pattern of SCFAs in CVDs. Especially, we would focus on the SCFAs and newly identified acylations and their roles in CVDs, including atherosclerosis, hypertension, and heart failure.
Collapse
|
178
|
Molonia MS, Occhiuto C, Muscarà C, Speciale A, Bashllari R, Villarroya F, Saija A, Cimino F, Cristani M. Cyanidin-3-O-glucoside restores insulin signaling and reduces inflammation in hypertrophic adipocytes. Arch Biochem Biophys 2020; 691:108488. [PMID: 32692982 DOI: 10.1016/j.abb.2020.108488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Obesity is a metabolic disorder characterized by excess adipose tissue, macrophages infiltration, and inflammation which in turn lead to insulin-resistance. Epidemiological evidences reported that anthocyanins possess not only high antioxidant and antiinflammatory activities, but also improve metabolic complications associated with obesity. The aim of this work was to evaluate the in vitro beneficial effects of cyanidin-3-O-glucoside (C3G) in counteracting inflammation and insulin-resistance in 3T3-L1 hypertrophic adipocytes exposed to palmitic acid (PA). In the present study murine 3T3-L1 adipocytes were pretreated with C3G for 24 h and then exposed to palmitic acid (PA) for 24 h. Real-time PCR, western blotting analysis and Oil Red O staining were applied for investigating the mechanism involved in adipocytes dysfunction. C3G pretreatment reduced lipid accumulation, PPARγ pathway and NF-κB pathway induced by PA in murine adipocytes. In addition, our data demonstrated that PA reduced insulin signaling via IRS-1 Ser307phosphorylation while C3G dose-dependently improved insulin sensitivity restoring IRS-1/PI3K/Akt pathway. Furthermore, C3G improved adiponectin mRNA levels altered by PA in 3T3-L1 murine and SGBS human adipocytes. Herein reported data demonstrate that C3G ameliorated adipose tissue dysfunction, thus suggesting new potential roles for this compound of nutritional interest in the prevention of pathological conditions linked to obesity.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; "Prof. Antonio Imbesi" Foundation, Messina, Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Romina Bashllari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain; CIBER "Fisiopatologia de La Obesidad y Nutrición", Spain
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
179
|
Kim YJ, Tu TH, Yang S, Kim JK, Kim JG. Characterization of Fatty Acid Composition Underlying Hypothalamic Inflammation in Aged Mice. Molecules 2020; 25:molecules25143170. [PMID: 32664475 PMCID: PMC7397167 DOI: 10.3390/molecules25143170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Degenerative diseases, which can develop during aging, are underlined by inflammatory processes. Hypothalamic inflammation triggered by elevation in circulating fatty acid levels is directly coupled to metabolic disorders. The present study aimed to investigate and characterize the hypothalamic inflammation and composition of fatty acids in the hypothalami of aged mice. We verified that inflammation and microglial activation occur in the hypothalami of aged mice by performing quantitative real-time PCR and using immunohistochemistry methods. In addition, we observed increased levels of various saturated fatty acids in the hypothalami of aged mice, whereas no major changes in the levels of circulating fatty acids were detected using gas chromatography with a flame ionization detector. Collectively, our current findings suggest that increases in saturated fatty acid levels are coupled to hypothalamic inflammation and thereby cause perturbations in energy metabolism during the aging process.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
| | - Thai Hien Tu
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon 406–772, Korea;
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406–772, Korea
- Correspondence: (J.K.K.); (J.G.K.); Tel.: +82-32-835-8241 (J.K.K.); +82-32-835-8256 (J.G.K.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406–772, Korea; (Y.J.K.); (T.H.T.)
- Correspondence: (J.K.K.); (J.G.K.); Tel.: +82-32-835-8241 (J.K.K.); +82-32-835-8256 (J.G.K.)
| |
Collapse
|
180
|
Liu T, Gou L, Yan S, Huang T. Inhibition of acetyl-CoA carboxylase by PP-7a exerts beneficial effects on metabolic dysregulation in a mouse model of diet-induced obesity. Exp Ther Med 2020; 20:521-529. [PMID: 32550887 PMCID: PMC7296295 DOI: 10.3892/etm.2020.8700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Acetyl-coenzyme A carboxylase (ACC) is a critical regulator of fatty acid metabolism and represents a promising therapeutic target for metabolic diseases, including obesity, type 2 diabetes and non-alcoholic fatty liver disease. Recently, a novel ACC inhibitor, PP-7a, was developed by our group by utilizing a structure-based drug design. In the present study, the pharmacological effects of PP-7a on the metabolic dysregulation in mice with high-fat diet (HFD)-induced obesity and the underlying mechanisms were investigated. The inhibitory effect on ACC activities was confirmed by assessing the level of malonyl-CoA, a product synthesized by the catalyzation of ACC. Following 16 weeks of being fed an HFD, the mice were administered PP-7a (15, 45 or 75 mg/kg) for 4 weeks. The effects of PP-7a on weight gain, glucose intolerance, hepatic lipid accumulation and the increase of serum triglyceride (TG), total cholesterol (TC) and free fatty acids (FFA) in mice were assessed. CP-640186 was used as a positive control drug and administered in the same manner as PP-7a. Chronic administration of PP-7a lowered the malonyl-CoA levels in liver and heart tissues of mice in the HFD group. In addition, HFD-induced weight gain and glucose intolerance were improved by PP-7a treatment in the mice fed the HFD. Furthermore, PP-7a suppressed hepatic lipid accumulation and the increase in TG, TC and FFA levels. Taken together, these results suggest that ACC inhibition by PP-7a may have a beneficial effect on metabolic dysregulation in obese mice.
Collapse
Affiliation(s)
- Tianya Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lingshan Gou
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shirong Yan
- Jiangsu Province Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Tonghui Huang
- Jiangsu Province Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
181
|
Kilany OE, Abdelrazek HMA, Aldayel TS, Abdo S, Mahmoud MMA. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J Biol Sci 2020; 27:2733-2746. [PMID: 32994733 PMCID: PMC7499387 DOI: 10.1016/j.sjbs.2020.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/17/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Present research explored the anti-obesity effect of Moringa olifera seed oil extract and lycopene (LYC). Forty eight male Sprauge Dawely rats were divided equally into 6 groups. Group Ι (C) served as control, group ΙΙ (MC) was given Moringa olifera seed oil extract (800 mg/kg b.wt) for 8 weeks, group ΙΙΙ (LC) was given (20 mg/kg b.wt) LYC for 8 weeks, group ΙV (O) received high fat diet (HFD) for 20 weeks, group Ѵ (MO), was given HFD for 20 weeks and received (800 mg/kg b.wt) Moringa olifera seed oil extract for last 8 weeks and group ѴΙ (LO), received HFD for 20 weeks and was given (20 mg/kg b.wt) LYC for last 8 weeks. Hematology, lipid peroxidation and antioxidants, non-esterified fatty acids (NEFA), glucose, lipid profile, serum liver and kidney biomarkers, inflammatory markers, leptin, resistin and heart fatty acid binding protein (HFABP) were determined. Also histopathology for liver, kidney and aorta were performed besides immunohistochemistry (IHC) for aortic inducible nitric oxide synthase (iNOS). Administration of Moringa olifera seed oil extract and LYC significantly ameliorated the HFD induced hematological and metabolic perturbations as well as reduced leptin and resistin. Both treatments exerted these effects through promotion of antioxidant enzymes and reducing lipid peroxidation as well as inflammatory cytokines along with reduced iNOS protein expression. Administration of Moringa olifera seed oil extract and LYC have anti-obesity potential in HFD induced obesity in male Sprauge Dawely rats.
Collapse
Affiliation(s)
- Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shimaa Abdo
- Suez Canal Authority Hospital, Ismailia, Egypt
| | - Manal M A Mahmoud
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
182
|
Predictive anthropometric models of total and truncal body fat in Chilean children. Nutrition 2020; 77:110803. [PMID: 32442830 DOI: 10.1016/j.nut.2020.110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This study aimed to develop predictive anthropometric models for total and truncal body fat in Chilean children using the following anthropometric measurements: weight, height, skinfold thickness, and circumference. METHODS This cross-sectional study included 669 Chilean children (12.0 y ± 1.3) in Tanner stage IV from the Growth and Obesity Chilean Cohort Study. Anthropometric measurements and dual-energy X-ray absorptiometry were determined to calculate total and truncal body fat. Prediction models were fitted by linear regression analysis. RESULTS The predictive equation for log total body fat (kg) was 0.449 + 0.049 (body mass index in kg/m2) + 0.018 (triceps skinfold in mm) + 0.012 (biceps skinfold in mm) + 0.019 (brachial circumference in cm) + 0.091 (sex: 1 = boy, 2 = girl) + 0.018 (age in y). The predictive equation for log truncal fat (kg) was -2.107 + 0.046 (waist circumference in cm) + 0.010 (subscapular skinfold in mm) + 0.259 (sex: 1 = boy, 2 = girl) + 0.006 (age in y). The test of concordance between the predictive equations of total and truncal body fat with gold standard was r = 0.85 and 0.91, respectively. CONCLUSIONS In Chilean children, the high correlation between observed and predicted values enabled us to develop predictive equations for total and truncal body fat for children.
Collapse
|
183
|
Hernandez-Baixauli J, Quesada-Vázquez S, Mariné-Casadó R, Gil Cardoso K, Caimari A, Del Bas JM, Escoté X, Baselga-Escudero L. Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients 2020; 12:E806. [PMID: 32197513 PMCID: PMC7146483 DOI: 10.3390/nu12030806] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The metabolic syndrome is a multifactorial disease developed due to accumulation and chronification of several risk factors associated with disrupted metabolism. The early detection of the biomarkers by NMR spectroscopy could be helpful to prevent multifactorial diseases. The exposure of each risk factor can be detected by traditional molecular markers but the current biomarkers have not been enough precise to detect the primary stages of disease. Thus, there is a need to obtain novel molecular markers of pre-disease stages. A promising source of new molecular markers are metabolomics standing out the research of biomarkers in NMR approaches. An increasing number of nutritionists integrate metabolomics into their study design, making nutrimetabolomics one of the most promising avenues for improving personalized nutrition. This review highlight the major five risk factors associated with metabolic syndrome and related diseases including carbohydrate dysfunction, dyslipidemia, oxidative stress, inflammation, and gut microbiota dysbiosis. Together, it is proposed a profile of metabolites of each risk factor obtained from NMR approaches to target them using personalized nutrition, which will improve the quality of life for these patients.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Katherine Gil Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| |
Collapse
|
184
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
185
|
Sobczak AIS, Stewart AJ. Coagulatory Defects in Type-1 and Type-2 Diabetes. Int J Mol Sci 2019; 20:E6345. [PMID: 31888259 PMCID: PMC6940903 DOI: 10.3390/ijms20246345] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes (both type-1 and type-2) affects millions of individuals worldwide. A major cause of death for individuals with diabetes is cardiovascular diseases, in part since both types of diabetes lead to physiological changes that affect haemostasis. Those changes include altered concentrations of coagulatory proteins, hyper-activation of platelets, changes in metal ion homeostasis, alterations in lipid metabolism (leading to lipotoxicity in the heart and atherosclerosis), the presence of pro-coagulatory microparticles and endothelial dysfunction. In this review, we explore the different mechanisms by which diabetes leads to an increased risk of developing coagulatory disorders and how this differs between type-1 and type-2 diabetes.
Collapse
Affiliation(s)
| | - Alan J. Stewart
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK;
| |
Collapse
|
186
|
Han J, Lu C, Meng Q, Halim A, Yean TJ, Wu G. Plasma concentration of interleukin-6 was upregulated in cancer cachexia patients and was positively correlated with plasma free fatty acid in female patients. Nutr Metab (Lond) 2019; 16:80. [PMID: 31788012 PMCID: PMC6858650 DOI: 10.1186/s12986-019-0409-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Background Cancer cachexia is a clinical manifestation in various advanced cancers that characterized by muscle atrophy and fat loss as its main features; it is frequently associated with systemic inflammatory response. However, the differences in inflammatory response and lipid metabolism of different genders remain unclear. This study explores the difference between cachexic and non-cachexic patients in different genders and cancer types and focus on the plasma inflammation factors levels and lipid metabolism parameters in different genders. Methods We first analyzed the general characteristics in 311 cancer patients between cachexic and non-cachexic patients, with an emphasis on expression levels related to inflammatory factors and lipid metabolism parameters. We then further analyzed these characteristics in different genders and cancer types. Lastly, the correlations between plasma interleukin-6 (IL-6) and lipid metabolism parameters in cachexia patients of different genders were analyzed. Results Among 311 patients, there were 74 cancer cachexia patients (50 males and 24 females) and 237non-cachexia patients (150 males and 87 females). Body mass index (BMI), TNM stage, plasma concentration of hemoglobin, platelet, lymphocyte count, total protein, albumin, prealbumin, total cholesterol, apolipoprotein E (ApoE), free fatty acid (FFA) and IL-6 were significantly different between cachexic and non-cachexic patients (all p < 0.05). In addition, these characteristics were different in different cancer types. When compared to male non-cachexic patients, male cachexic patients showed a significant increase in plasma levels of IL-6 and platelet, later TNM stage, with marked decrease in their plasma total protein, albumin, prealbumin, ApoE as well as their lymphocyte counts and hemoglobin levels (all p < 0.05). In comparison with female non-cachexic patients, female cachexic patients' IL-6 levels and FFA were significantly elevated with noticeable decrease in their BMI, total cholesterol, ApoE and prealbumin, as well as later TNM stage (all p < 0.05). Correlation analysis revealed that IL-6 levels in female cachexic patients had a significant positive correlation with FFA expression, but this correlation not reflected in male patients. Conclusion This study demonstrates the different metabolic characteristics of male and female cancer cachexia patients. Future study about cancer cachexia should pay attention to different genders and cancer types.
Collapse
Affiliation(s)
- Jun Han
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Chaocheng Lu
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Qingyang Meng
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Alice Halim
- 2Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Thong Jia Yean
- 2Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032 China
| | - Guohao Wu
- 1Department of General Surgery, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|