151
|
Fritsch SD, Weichhart T. Metabolic and immunologic control of intestinal cell function by mTOR. Int Immunol 2020; 32:455-465. [PMID: 32140726 PMCID: PMC7617511 DOI: 10.1093/intimm/dxaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium is one of the most quickly dividing tissues in our body, combining the absorptive advantages of a single layer with the protection of a constantly renewing barrier. It is continuously exposed to nutrients and commensal bacteria as well as microbial and host-derived metabolites, but also to hazards such as pathogenic bacteria and toxins. These environmental cues are sensed by the mucosa and a vast repertory of immune cells, especially macrophages. A disruption of intestinal homeostasis in terms of barrier interruption can lead to inflammatory bowel diseases and colorectal cancer, and macrophages have an important role in restoring epithelial function following injury. The mammalian/mechanistic target of rapamycin (mTOR) signalling pathway senses environmental cues and integrates metabolic responses. It has emerged as an important regulator of intestinal functions in homeostasis and disease. In this review, we are going to discuss intestinal mTOR signalling and metabolic regulation in different intestinal cell populations with a special focus on immune cells and their actions on intestinal function.
Collapse
Affiliation(s)
- Stephanie D Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Straße, Vienna, Austria
| |
Collapse
|
152
|
Nagai MH, Xavier VPS, Gutiyama LM, Machado CF, Reis AH, Donnard ER, Galante PAF, Abreu JG, Festuccia WT, Malnic B. Depletion of Ric-8B leads to reduced mTORC2 activity. PLoS Genet 2020; 16:e1008255. [PMID: 32392211 PMCID: PMC7252638 DOI: 10.1371/journal.pgen.1008255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 05/27/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022] Open
Abstract
mTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway. Phosphorylation of Akt at Ser473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. Knockdown of the endogenous Ric-8B gene in cultured cell lines leads to reduced phosphorylation levels of Akt (Ser473), further supporting the involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2. Gene inactivation in mice can be used to identify genes that are involved in important biological processes and that may contribute to disease. We used this approach to study the Ric-8B gene, which is highly conserved in mammals, including humans. We found that Ric-8B is essential for embryogenesis and for the proper development of the nervous system. Ric-8B mutant mouse embryos are smaller than their wild type littermates and show neural tube defects at the cranial region. This approach also allowed us to identify the biological pathways that potentially contribute to the observed phenotypes, and uncover a novel role for Ric-8B in the mTORC2 signaling pathway. mTORC2 plays particular important roles in the adult brain, and has been implicated in neurological disorders. Our mutant mice provide a model to study the complex molecular and cellular processes underlying the interplay between Ric-8B and mTORC2 in neuronal function.
Collapse
Affiliation(s)
- Maíra H. Nagai
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alice H. Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa R. Donnard
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Jose G. Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - William T. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
153
|
Activation of the PI3K-AKT Pathway by Old World Alphaviruses. Cells 2020; 9:cells9040970. [PMID: 32326388 PMCID: PMC7226951 DOI: 10.3390/cells9040970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses can infect a broad range of vertebrate hosts, including birds, horses, primates, and humans, in which infection can lead to rash, fever, encephalitis, and arthralgia or arthritis. They are most often transmitted by mosquitoes in which they establish persistent, asymptomatic infections. Currently, there are no vaccines or antiviral therapies for any alphavirus. Several Old World alphaviruses, including Semliki Forest virus, Ross River virus and chikungunya virus, activate or hyperactivate the phosphatidylinositol-3-kinase (PI3K)-AKT pathway in vertebrate cells, potentially influencing many cellular processes, including survival, proliferation, metabolism and autophagy. Inhibition of PI3K or AKT inhibits replication of several alphaviruses either in vitro or in vivo, indicating the importance for viral replication. In this review, we discuss what is known about the mechanism(s) of activation of the pathway during infection and describe those effects of PI3K-AKT activation which could be of advantage to the alphaviruses. Such knowledge may be useful for the identification and development of therapies.
Collapse
|
154
|
Zhuo F, Xiong F, Deng K, Li Z, Ren M. Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis. Int J Mol Sci 2020; 21:E2680. [PMID: 32290539 PMCID: PMC7215648 DOI: 10.3390/ijms21082680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZD8055 upregulated senescence- and ethylene-related genes expression. Furthermore, ethylene insensitive mutants like etr1-1, ein2-5 and ein3 eil1, showed more hyposensitivity to AZD8055 than that of WT in hypocotyl growth inhibition. Similarly, blocking ethylene signals by ethylene action inhibitor Ag+ or biosynthesis inhibitor aminoethoxyvinylglycine (AVG) largely rescued hypocotyl growth even in presence of AZD8055. In addition, we also demonstrated that Type 2A phosphatase-associated protein of 46 kDa (TAP46), a downstream component of TOR signaling, physically interacts with 1-aminocy-clopropane-1-carboxylate (ACC) synthase ACS2 and ACS6. Arabidopsis overexpressing ACS2 or ACS6 showed more hypersensitivity to AZD8055 than WT in hypocotyl growth inhibition. Moreover, ACS2/ACS6 protein was accumulated under TOR suppression, implying TOR modulates ACC synthase protein levels. Taken together, our results indicate that TOR participates in negatively modulating ethylene signals and the molecular mechanism is likely involved in the regulation of ethylene biosynthesis by affecting ACSs in transcription and protein levels.
Collapse
Affiliation(s)
- Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fangjie Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Kexuan Deng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (F.Z.); (F.X.); (K.D.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 455001, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
155
|
Yang T, Yang WX. The dynamics and regulation of microfilament during spermatogenesis. Gene 2020; 744:144635. [PMID: 32244053 DOI: 10.1016/j.gene.2020.144635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is a highly complex physiological process which contains spermatogonia proliferation, spermatocyte meiosis and spermatid morphogenesis. In the past decade, actin binding proteins and signaling pathways which are critical for regulating the actin cytoskeleton in testis had been found. In this review, we summarized 5 actin-binding proteins that have been proven to play important roles in the seminiferous epithelium. Lack of them perturbs spermatids polarity and the transport of spermatids. The loss of Arp2/3 complex, Formin1, Eps8, Palladin and Plastin3 cause sperm release failure suggesting their irreplaceable role in spermatogenesis. Actin regulation relies on multiple signal pathways. The PI3K/Akt signaling pathway positively regulate the mTOR pathway to promote actin reorganization in seminiferous epithelium. Conversely, TSC1/TSC2 complex, the upstream of mTOR, is activated by the LKB1/AMPK pathway to inhibit cell proliferation, differentiation and migration. The increasing researches focus on the function of actin binding proteins (ABPs), however, their collaborative regulation of actin patterns and potential regulatory signaling networks remains unclear. We reviewed ABPs that play important roles in mammalian spermatogenesis and signal pathways involved in the regulation of microfilaments. We suggest that more relevant studies should be performed in the future.
Collapse
Affiliation(s)
- Tong Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
156
|
de Martín Garrido N, Aylett CHS. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. Front Cell Dev Biol 2020; 8:108. [PMID: 32195250 PMCID: PMC7063858 DOI: 10.3389/fcell.2020.00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
FLCN was identified as the gene responsible for Birt-Hogg-Dubé (BHD) syndrome, a hereditary syndrome associated with the appearance of familiar renal oncocytomas. Most mutations affecting FLCN result in the truncation of the protein, and therefore loss of its associated functions, as typical for a tumor suppressor. FLCN encodes the protein folliculin (FLCN), which is involved in numerous biological processes; mutations affecting this protein thus lead to different phenotypes depending on the cellular context. FLCN forms complexes with two large interacting proteins, FNIP1 and FNIP2. Structural studies have shown that both FLCN and FNIPs contain longin and differentially expressed in normal versus neoplastic cells (DENN) domains, typically involved in the regulation of small GTPases. Accordingly, functional studies show that FLCN regulates both the Rag and the Rab GTPases depending on nutrient availability, which are respectively involved in the mTORC1 pathway and lysosomal positioning. Although recent structural studies shed light on the precise mechanism by which FLCN regulates the Rag GTPases, which in turn regulate mTORC1, how FLCN regulates membrane trafficking through the Rab GTPases or the significance of the intriguing FLCN-FNIP-AMPK complex formation are questions that still remain unanswered. We discuss the recent progress in our understanding of FLCN regulation of both growth signaling and lysosomal positioning, as well as future approaches to establish detailed mechanisms to explain the disparate phenotypes caused by the loss of FLCN function and the development of BHD-associated and other tumors.
Collapse
Affiliation(s)
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
157
|
Geicu OI, Stanca L, Voicu SN, Dinischiotu A, Bilteanu L, Serban AI, Calu V. Dietary AGEs involvement in colonic inflammation and cancer: insights from an in vitro enterocyte model. Sci Rep 2020; 10:2754. [PMID: 32066788 PMCID: PMC7026081 DOI: 10.1038/s41598-020-59623-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023] Open
Abstract
The number of colon cancer cases is increasing worldwide, and type II diabetes patients have an increased risk of developing colon cancer. Diet-borne advanced glycation end-products (AGEs) may promote neoplastic transformation; however, the mechanisms involved remain elusive. The present study helped to define the relationship between dietary AGEs and cancer progression. C2BBe1 adenocarcinoma enterocytes were exposed to 200 µg/mL glycated casein (AGEs-Csn) for up to 24 h. AGEs-Csn exposure resulted in increased cell proliferation, maladaptative changes in SOD and CAT activity and moderate levels of hydrogen peroxide (H2O2) intracellular accumulation. AGEs-Csn activated pro-survival and proliferation signalling, such as the phosphorylation of mTOR (Ser2448) and Akt (Ser473). GSK-3β phosphorylation also increased, potentially inducing extracellular matrix remodelling and thus enabling metastasis. Moreover, AGEs-Csn induced MMP-1, -3, -7, -9 and -10 expression and activated MMP-2 and MMP-9, which are regulators of the extracellular matrix and cytokine functions. AGEs-Csn induced inflammatory responses that included extracellular IL-1β at 6 h; time-dependent increases in IL-8; RAGE and NF-κB p65 upregulation; and IκB inhibition. Co-treatment with anti-RAGE or anti-TNF-α blocking antibodies and AGEs-Csn partially counteracted these changes; however, IL-8, MMP-1 and -10 expression and MMP-9 activation were difficult to prevent. AGEs-Csn perpetuated signalling that led to cell proliferation and matrix remodelling, strengthening the link between AGEs and colorectal cancer aggressiveness.
Collapse
Affiliation(s)
- Ovidiu I Geicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania.,Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea I Serban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania. .,Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.
| | - Valentin Calu
- Department of General Surgery, University of Medicine and Pharmacy "Carol Davila" Bucharest, 8 Blvd., Eroii Sanitari, 050474, Bucharest, Romania
| |
Collapse
|
158
|
Kim K, Choi S, Cha M, Lee BH. Effects of mTOR inhibitors on neuropathic pain revealed by optical imaging of the insular cortex in rats. Brain Res 2020; 1733:146720. [PMID: 32061737 DOI: 10.1016/j.brainres.2020.146720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 11/24/2022]
Abstract
In the pain matrix, the insular cortex (IC) is mainly involved in discriminative sensory and motivative emotion. Abnormal signal transmission from injury site causes neuropathic pain, which generates enhanced synaptic plasticity. The mammalian target of rapamycin (mTOR) complex is the key regulator of protein synthesis; it is involved in the modulation of synaptic plasticity. To date, there has been no report on the changes in optical signals in the IC under neuropathic condition after treatment with mTOR inhibitors, such as Torin1 and XL388. Therefore, we aimed to determine the pain-relieving effect of mTOR inhibitors (Torin1 and XL388) and observe the changes in optical signals in the IC after treatment. Mechanical threshold was measured in adult male Sprague-Dawley rats after neuropathic surgery, and therapeutic effect of inhibitors was assessed on post-operative day 7 following the microinjection of Torin1 or XL388 into the IC. Optical signals were acquired to observe the neuronal activity of the IC in response to peripheral stimulation before and after treatment with mTOR inhibitors. Consequently, the inhibitors showed the most effective alleviation 4 h after microinjection into the IC. In optical imaging, peak amplitudes of optical signals and areas of activated regions were reduced after treatment with Torin1 and XL388. However, there were no significant optical signal changes in the IC before and after vehicle application. These findings suggested that Torin1 and XL388 are associated with the alleviation of neuronal activity that is excessively manifested in the IC, and is assumed to diminish synaptic plasticity.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
159
|
Zhao D, Jiang M, Zhang X, Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Mol Med 2020; 26:20. [PMID: 32041519 PMCID: PMC7011243 DOI: 10.1186/s10020-020-0146-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of tyrosine kinase inhibitors (TKIs) has changed the current treatment paradigm and achieved good results in recent decades. However, an increasing number of studies have indicated that the complex network of receptor tyrosine kinase (RTK) co-activation could influence the characteristic phenotypes of cancer and the tumor response to targeted treatments. One of strategies to blocking RTK co-activation is targeting the downstream factors of RTK, such as PI3K-AKT-mTOR pathway. RICTOR, a core component of mTORC2, acts as a key effector molecule of the PI3K-AKT pathway; its amplification is often associated with poor clinical outcomes and resistance to TKIs. Here, we discuss the biology of RICTOR in tumor and the prospects of targeting RICTOR as a complementary therapy to inhibit RTK co-activation.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Man Jiang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China.
| |
Collapse
|
160
|
The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2179-2193. [DOI: 10.1007/s12035-020-01881-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
|
161
|
Choi S, Kim K, Cha M, Kim M, Lee BH. mTOR signaling intervention by Torin1 and XL388 in the insular cortex alleviates neuropathic pain. Neurosci Lett 2020; 718:134742. [PMID: 31917234 DOI: 10.1016/j.neulet.2020.134742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Signaling by mammalian target of rapamycin (mTOR), a kinase regulator of protein synthesis, has been implicated in the development of chronic pain. The mTOR comprises two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Although effective inhibitors of mTORC1 and C2 have been developed, studies on the effect of these inhibitors related to pain modulation are still lacking. This study was conducted to determine the inhibitory effects of Torin1 and XL388 in an animal model of neuropathic pain. Seven days after neuropathic surgery, Torin1 or XL388 were microinjected into the insular cortex (IC) of nerve-injured animals and behavioral changes were assessed. Administration of Torin1 or XL388 into the IC significantly increased mechanical thresholds and reduced mechanical allodynia. At the immunoblotting results, Torin1 and XL388 significantly reduced phosphorylation of mTOR, 4E-BP1, p70S6K, and PKCα, without affecting Akt. These results strongly suggest that Torin1 and XL388 may attenuate neuropathic pain via inhibition of mTORC1 and mTORC2 in the IC.
Collapse
Affiliation(s)
- Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minjee Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
162
|
Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:69-80. [PMID: 32030685 DOI: 10.1007/978-3-030-35582-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.
Collapse
|
163
|
Chang K, Kang P, Liu Y, Huang K, Miao T, Sagona AP, Nezis IP, Bodmer R, Ocorr K, Bai H. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 2019; 16:1807-1822. [PMID: 31884871 PMCID: PMC8386626 DOI: 10.1080/15548627.2019.1704117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Age-related impairment of macroautophagy/autophagy and loss of cardiac tissue homeostasis contribute significantly to cardiovascular diseases later in life. MTOR (mechanistic target of rapamycin kinase) signaling is the most well-known regulator of autophagy, cellular homeostasis, and longevity. The MTOR signaling consists of two structurally and functionally distinct multiprotein complexes, MTORC1 and MTORC2. While MTORC1 is well characterized but the role of MTORC2 in aging and autophagy remains poorly understood. Here we identified TGFB-INHB/activin signaling as a novel upstream regulator of MTORC2 to control autophagy and cardiac health during aging. Using Drosophila heart as a model system, we show that cardiac-specific knockdown of TGFB-INHB/activin-like protein daw induces autophagy and alleviates age-related heart dysfunction, including cardiac arrhythmias and bradycardia. Interestingly, the downregulation of daw activates TORC2 signaling to regulate cardiac autophagy. Activation of TORC2 alone through overexpressing its subunit protein rictor promotes autophagic flux and preserves cardiac function with aging. In contrast, activation of TORC1 does not block autophagy induction in daw knockdown flies. Lastly, either daw knockdown or rictor overexpression in fly hearts prolongs lifespan, suggesting that manipulation of these pathways in the heart has systemic effects on longevity control. Thus, our studies discover the TGFB-INHB/activin-mediated inhibition of TORC2 as a novel mechanism for age-dependent decreases in autophagic activity and cardiac health. Abbreviations: AI: arrhythmia index; BafA1: bafilomycin A1; BMP: bone morphogenetic protein; CQ: chloroquine; CVD: cardiovascular diseases; DI: diastolic interval; ER: endoplasmic reticulum; HP: heart period; HR: heart rate; MTOR: mechanistic target of rapamycin kinase; NGS: normal goat serum; PBST: PBS with 0.1% Triton X-100; PDPK1: 3-phosphoinositide dependent protein kinase 1; RICTOR: RPTOR independent companion of MTOR complex 2; ROI: region of interest; ROUT: robust regression and outlier removal; ROS: reactive oxygen species; R-SMAD: receptor-activated SMAD; SI: systolic interval; SOHA: semi-automatic optical heartbeat analysis; TGFB: transformation growth factor beta; TSC1: TSC complex subunit 1.
Collapse
Affiliation(s)
- Kai Chang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ying Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | | | - Ioannis P Nezis
- School of Life Sciences, University of Warwick , Coventry, UK
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Karen Ocorr
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| |
Collapse
|
164
|
Zhang J, Zhao L, Wang J, Cheng Z, Sun M, Zhao J, Liu B, Liu X, Wen Z, Li Z. Targeting Mechanistic Target of Rapamycin Complex 1 Restricts Proinflammatory T Cell Differentiation and Ameliorates Takayasu Arteritis. Arthritis Rheumatol 2019; 72:303-315. [PMID: 31430047 DOI: 10.1002/art.41084] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jifeng Zhang
- Jilin University School of Pharmaceutical Sciences Changchun China
| | - Lei Zhao
- Second Hospital of Jilin University Changchun China
| | - Jing Wang
- Changchun Central Hospital Changchun China
| | - Zhihua Cheng
- First Hospital of Jilin University Changchun China
| | - Mengyao Sun
- First Hospital of Jilin University Changchun China
| | - Jiayi Zhao
- General Hospital of Jilin Chemical Group Corporation Jilin China
| | - Bin Liu
- Second Hospital of Jilin University Changchun China
| | - Xiyu Liu
- China‐Japan Union Hospital of Jilin University Changchun China
| | | | - Zhibo Li
- Second Hospital of Jilin University Changchun China
| |
Collapse
|
165
|
Layoun A, Goldberg AA, Baig A, Eng M, Attias O, Nelson K, Carella A, Amberber N, Fielhaber JA, Joung KB, Schmeing TM, Han Y, Downey J, Divangahi M, Roux PP, Kristof AS. Regulation of protein kinase Cδ Nuclear Import and Apoptosis by Mechanistic Target of Rapamycin Complex-1. Sci Rep 2019; 9:17620. [PMID: 31772273 PMCID: PMC6879585 DOI: 10.1038/s41598-019-53909-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Inactivation of the protein complex ‘mechanistic target of rapamycin complex 1’ (mTORC1) can increase the nuclear content of transcriptional regulators of metabolism and apoptosis. Previous studies established that nuclear import of signal transducer and activator of transcription-1 (STAT1) requires the mTORC1-associated adaptor karyopherin-α1 (KPNA1) when mTORC1 activity is reduced. However, the role of other mTORC1-interacting proteins in the complex, including ‘protein kinase C delta’ (PKCδ), have not been well characterized. In this study, we demonstrate that PKCδ, a STAT1 kinase, contains a functional ‘target of rapamycin signaling’ (TOS) motif that directs its interaction with mTORC1. Depletion of KPNA1 by RNAi prevented the nuclear import of PKCδ in cells exposed to the mTORC1 inhibitor rapamycin or amino acid restriction. Mutation of the TOS motif in PKCδ led to its loss of regulation by mTORC1 or karyopherin-α1, resulting in increased constitutive nuclear content. In cells expressing wild-type PKCδ, STAT1 activity and apoptosis were increased by rapamycin or interferon-β. Those expressing the PKCδ TOS mutant exhibited increased STAT1 activity and apoptosis; further enhancement by rapamycin or interferon-β, however, was lost. Therefore, the TOS motif in PKCδ is a novel structural mechanism by which mTORC1 prevents PKCδ and STAT1 nuclear import, and apoptosis.
Collapse
Affiliation(s)
- Antonio Layoun
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Alexander A Goldberg
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Ayesha Baig
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Mikaela Eng
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Ortal Attias
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Kristoff Nelson
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Alexandra Carella
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Nahomi Amberber
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Jill A Fielhaber
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Kwang-Bo Joung
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Québec, H3G 0B1, Canada
| | - Yingshan Han
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada
| | - Jeffrey Downey
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, EM3.2219, Montréal, Québec, H4A 3J1, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, EM3.2219, Montréal, Québec, H4A 3J1, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Faculty of Medicine, University of Montreal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec, H3C 2J7, Canada
| | - Arnold S Kristof
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Faculty of Medicine, Departments of Medicine and Critical Care, 1001 Décarie Boulevard, EM3.2219, Montreal, Québec, H4A 3J1, Canada.
| |
Collapse
|
166
|
Howarth A, Madureira PA, Lockwood G, Storer LCD, Grundy R, Rahman R, Pilkington GJ, Hill R. Modulating autophagy as a therapeutic strategy for the treatment of paediatric high-grade glioma. Brain Pathol 2019; 29:707-725. [PMID: 31012506 PMCID: PMC8028648 DOI: 10.1111/bpa.12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Paediatric high-grade gliomas (pHGG) represent a therapeutically challenging group of tumors. Despite decades of research, there has been minimal improvement in treatment and the clinical prognosis remains poor. Autophagy, a highly conserved process for recycling metabolic substrates is upregulated in pHGG, promoting tumor progression and evading cell death. There is significant crosstalk between autophagy and a plethora of critical cellular pathways, many of which are dysregulated in pHGG. The following article will discuss our current understanding of autophagy signaling in pHGG and the potential modulation of this network as a therapeutic target.
Collapse
Affiliation(s)
- Alison Howarth
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Patricia A. Madureira
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
- Centre for Biomedical Research (CBMR)University of AlgarveFaroPortugal
| | - George Lockwood
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Lisa C. D. Storer
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Richard Grundy
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Richard Hill
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
167
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
168
|
Katholnig K, Schütz B, Fritsch SD, Schörghofer D, Linke M, Sukhbaatar N, Matschinger JM, Unterleuthner D, Hirtl M, Lang M, Herac M, Spittler A, Bergthaler A, Schabbauer G, Bergmann M, Dolznig H, Hengstschläger M, Magnuson MA, Mikula M, Weichhart T. Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight 2019; 4:124164. [PMID: 31619583 PMCID: PMC6824305 DOI: 10.1172/jci.insight.124164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
The mechanistic target of rapamycin complex 2 (mTORC2) is a potentially novel and promising anticancer target due to its critical roles in proliferation, apoptosis, and metabolic reprogramming of cancer cells. However, the activity and function of mTORC2 in distinct cells within malignant tissue in vivo is insufficiently explored. Surprisingly, in primary human and mouse colorectal cancer (CRC) samples, mTORC2 signaling could not be detected in tumor cells. In contrast, only macrophages in tumor-adjacent areas showed mTORC2 activity, which was downregulated in stromal macrophages residing within human and mouse tumor tissues. Functionally, inhibition of mTORC2 by specific deletion of Rictor in macrophages stimulated tumorigenesis in a colitis-associated CRC mouse model. This phenotype was driven by a proinflammatory reprogramming of mTORC2-deficient macrophages that promoted colitis via the cytokine SPP1/osteopontin to stimulate tumor growth. In human CRC patients, high SPP1 levels and low mTORC2 activity in tumor-associated macrophages correlated with a worsened clinical prognosis. Treatment of mice with a second-generation mTOR inhibitor that inhibits mTORC2 and mTORC1 exacerbated experimental colorectal tumorigenesis in vivo. In conclusion, mTORC2 activity is confined to macrophages in CRC and limits tumorigenesis. These results suggest activation but not inhibition of mTORC2 as a therapeutic strategy for colitis-associated CRC.
Collapse
Affiliation(s)
- Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Birgit Schütz
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | - David Schörghofer
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | | | | | - Martin Hirtl
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Michaela Lang
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology
| | | | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, and
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | | | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mario Mikula
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics
| |
Collapse
|
169
|
Ruicci KM, Plantinga P, Pinto N, Khan MI, Stecho W, Dhaliwal SS, Yoo J, Fung K, MacNeil D, Mymryk JS, Barrett JW, Howlett CJ, Nichols AC. Disruption of the RICTOR/mTORC2 complex enhances the response of head and neck squamous cell carcinoma cells to PI3K inhibition. Mol Oncol 2019; 13:2160-2177. [PMID: 31393061 PMCID: PMC6763779 DOI: 10.1002/1878-0261.12558] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/28/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is aberrantly activated in head and neck squamous cell carcinomas (HNSCC) and plays a pivotal role in tumorigenesis by driving Akt signaling, leading to cell survival and proliferation. Phosphorylation of Akt Thr308 by PI3K-PDK1 and Akt Ser473 by mammalian target of rapamycin complex 2 (mTORC2) activates Akt. Targeted inhibition of PI3K is a major area of preclinical and clinical investigation as it reduces Akt Thr308 phosphorylation, suppressing downstream mTORC1 activity. However, inhibition of mTORC1 releases feedback inhibition of mTORC2, resulting in a resurgence of Akt activation mediated by mTORC2. While the role of PI3K-activated Akt signaling is well established in HNSCC, the significance of mTORC2-driven Akt signaling has not been thoroughly examined. Here we explore the expression and function of mTORC2 and its obligate subunit RICTOR in HNSCC primary tumors and cell lines. We find RICTOR to be overexpressed in a subset of HNSCC tumors, including those with PIK3CA or EGFR gene amplifications. Whereas overexpression of RICTOR reduced susceptibility of HNSCC tumor cells to PI3K inhibition, genetic ablation of RICTOR using CRISPR/Cas9 sensitized cells to PI3K inhibition, as well as to EGFR inhibition and cisplatin treatment. Further, mTORC2 disruption led to reduced viability and colony forming abilities of HNSCC cells relative to their parental lines and induced loss of both activating Akt phosphorylation modifications (Thr308 and Ser473). Taken together, our findings establish RICTOR/mTORC2 as a critical oncogenic complex in HNSCC and rationalize the development of an mTORC2-specific inhibitor for use in HNSCC, either combined with agents already under investigation, or as an independent therapy.
Collapse
Affiliation(s)
- Kara M. Ruicci
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Paul Plantinga
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Nicole Pinto
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Mohammed I. Khan
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - William Stecho
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Sandeep S. Dhaliwal
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Oncology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - John Yoo
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Oncology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Kevin Fung
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Oncology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Danielle MacNeil
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Oncology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Joe S. Mymryk
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Oncology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Microbiology and Immunology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - John W. Barrett
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Christopher J. Howlett
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| | - Anthony C. Nichols
- Department of Otolaryngology – Head and Neck Surgery, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
- Department of Oncology, Schulich School of Medicine & DentistryWestern UniversityLondonCanada
| |
Collapse
|
170
|
Dong Q, Majumdar G, O’Meally RN, Cole RN, Elam MB, Raghow R. Insulin-induced de novo lipid synthesis occurs mainly via mTOR-dependent regulation of proteostasis of SREBP-1c. Mol Cell Biochem 2019; 463:13-31. [DOI: 10.1007/s11010-019-03625-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
|
171
|
Wei X, Luo L, Chen J. Roles of mTOR Signaling in Tissue Regeneration. Cells 2019; 8:cells8091075. [PMID: 31547370 PMCID: PMC6769890 DOI: 10.3390/cells8091075] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The mammalian target of rapamycin (mTOR), is a serine/threonine protein kinase and belongs to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family. mTOR interacts with other subunits to form two distinct complexes, mTORC1 and mTORC2. mTORC1 coordinates cell growth and metabolism in response to environmental input, including growth factors, amino acid, energy and stress. mTORC2 mainly controls cell survival and migration through phosphorylating glucocorticoid-regulated kinase (SGK), protein kinase B (Akt), and protein kinase C (PKC) kinase families. The dysregulation of mTOR is involved in human diseases including cancer, cardiovascular diseases, neurodegenerative diseases, and epilepsy. Tissue damage caused by trauma, diseases or aging disrupt the tissue functions. Tissue regeneration after injuries is of significance for recovering the tissue homeostasis and functions. Mammals have very limited regenerative capacity in multiple tissues and organs, such as the heart and central nervous system (CNS). Thereby, understanding the mechanisms underlying tissue regeneration is crucial for tissue repair and regenerative medicine. mTOR is activated in multiple tissue injuries. In this review, we summarize the roles of mTOR signaling in tissue regeneration such as neurons, muscles, the liver and the intestine.
Collapse
Affiliation(s)
- Xiangyong Wei
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Lingfei Luo
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jinzi Chen
- Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
172
|
Hu X, Zhang H, Li X, Li Y, Chen Z. Activation of mTORC1 in fibroblasts accelerates wound healing and induces fibrosis in mice. Wound Repair Regen 2019; 28:6-15. [DOI: 10.1111/wrr.12759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao Hu
- Department of Plastic and Burn Surgery, Guangzhou Red Cross HospitalMedical College of Jinan University Guangzhou 510220 People's Republic of China
| | - Hanbin Zhang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical University Guangzhou 510515 People's Republic of China
| | - Xiaojian Li
- Department of Plastic and Burn Surgery, Guangzhou Red Cross HospitalMedical College of Jinan University Guangzhou 510220 People's Republic of China
| | - Yeyang Li
- Department of Plastic and Burn Surgery, Guangzhou Red Cross HospitalMedical College of Jinan University Guangzhou 510220 People's Republic of China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical University Guangzhou 510515 People's Republic of China
| |
Collapse
|
173
|
Zang L, Shimada Y, Nakayama H, Chen W, Okamoto A, Koide H, Oku N, Dewa T, Shiota M, Nishimura N. Therapeutic Silencing of Centromere Protein X Ameliorates Hyperglycemia in Zebrafish and Mouse Models of Type 2 Diabetes Mellitus. Front Genet 2019; 10:693. [PMID: 31417608 PMCID: PMC6681619 DOI: 10.3389/fgene.2019.00693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/02/2019] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia and is influenced by genetic and environmental factors. Optimum T2DM management involves early diagnosis and effective glucose-lowering therapies. Further research is warranted to improve our understanding of T2DM pathophysiology and reveal potential roles of genetic predisposition. We have previously developed an obesity-induced diabetic zebrafish model that shares common pathological pathways with humans and may be used to identify putative pharmacological targets of diabetes. Additionally, we have previously identified several candidate genes with altered expression in T2DM zebrafish. Here, we performed a small-scale zebrafish screening for these genes and discovered a new therapeutic target, centromere protein X (CENPX), which was further validated in a T2DM mouse model. In zebrafish, cenpx knockdown by morpholino or knockout by CRISPR/Cas9 system ameliorated overfeeding-induced hyperglycemia and upregulated insulin level. In T2DM mice, small-interfering RNA-mediated Cenpx knockdown decreased hyperglycemia and upregulated insulin synthesis in the pancreas. Gene expression analysis revealed insulin, mechanistic target of rapamycin, leptin, and insulin-like growth factor 1 pathway activation following Cenpx silencing in pancreas tissues. Thus, CENPX inhibition exerted antidiabetic effects via increased insulin expression and related pathways. Therefore, T2DM zebrafish may serve as a powerful tool in the discovery of new therapeutic gene targets.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Japan.,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Bioinformatics, University Advanced Science Research Promotion Centre, Tsu, Mie, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Ayaka Okamoto
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takehisa Dewa
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masayuki Shiota
- Department of Research Support Platform, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| |
Collapse
|
174
|
Boppart MD, Mahmassani ZS. Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am J Physiol Cell Physiol 2019; 317:C629-C641. [PMID: 31314586 DOI: 10.1152/ajpcell.00009.2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The α7β1-integrin is a transmembrane adhesion protein that connects laminin in the extracellular matrix (ECM) with actin in skeletal muscle fibers. The α7β1-integrin is highly expressed in skeletal muscle and is concentrated at costameres and myotendious junctions, providing the opportunity to transmit longitudinal and lateral forces across the membrane. Studies have demonstrated that α7-integrin subunit mRNA and protein are upregulated following eccentric contractions as a mechanism to reinforce load-bearing structures and resist injury with repeated bouts of exercise. It has been hypothesized for many years that the integrin can also promote protein turnover in a manner that can promote beneficial adaptations with resistance exercise training, including hypertrophy. This review provides basic information about integrin structure and activation and then explores its potential to serve as a critical mechanosensor and activator of muscle protein synthesis and growth. Overall, the hypothesis is proposed that the α7β1-integrin can contribute to mechanical-load induced skeletal muscle growth via an mammalian target of rapamycin complex 1-independent mechanism.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah
| |
Collapse
|
175
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|
176
|
Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette FA, Topisirovic I, Hulea L. mTOR as a central regulator of lifespan and aging. F1000Res 2019; 8:F1000 Faculty Rev-998. [PMID: 31316753 PMCID: PMC6611156 DOI: 10.12688/f1000research.17196.1] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a key component of cellular metabolism that integrates nutrient sensing with cellular processes that fuel cell growth and proliferation. Although the involvement of the mTOR pathway in regulating life span and aging has been studied extensively in the last decade, the underpinning mechanisms remain elusive. In this review, we highlight the emerging insights that link mTOR to various processes related to aging, such as nutrient sensing, maintenance of proteostasis, autophagy, mitochondrial dysfunction, cellular senescence, and decline in stem cell function.
Collapse
Affiliation(s)
- David Papadopoli
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Karine Boulay
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Lawrence Kazak
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
| | - Michael Pollak
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Frédérick A. Mallette
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
177
|
Miyake K, Saitoh S, Sato R, Shibata T, Fukui R, Murakami Y. Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. J Leukoc Biol 2019; 106:853-862. [DOI: 10.1002/jlb.mr0119-020r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Shin‐ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Yusuke Murakami
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| |
Collapse
|
178
|
Wright KD, Miller BS, El-Meanawy S, Tsaih SW, Banerjee A, Geurts AM, Sheinin Y, Sun Y, Kalyanaraman B, Rui H, Flister MJ, Sorokin A. The p52 isoform of SHC1 is a key driver of breast cancer initiation. Breast Cancer Res 2019; 21:74. [PMID: 31202267 PMCID: PMC6570928 DOI: 10.1186/s13058-019-1155-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background SHC1 proteins (also called SHCA) exist in three functionally distinct isoforms (p46SHC, p52SHC, and p66SHC) that serve as intracellular adaptors for several key signaling pathways in breast cancer. Despite the broad evidence implicating SHC1 gene products as a central mediator of breast cancer, testing the isoform-specific roles of SHC1 proteins have been inaccessible due to the lack of isoform-specific inhibitors or gene knockout models. Methods Here, we addressed this issue by generating the first isoform-specific gene knockout models for p52SHC and p66SHC, using germline gene editing in the salt-sensitive rat strain. Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. Rats were dosed with 7,12-dimethylbenz(a)anthracene (DMBA) by oral gavage to induce mammary tumors, and progression of tumor development was followed for 15 weeks. At 15 weeks, tumors were excised and analyzed by RNA-seq to determine differences between tumors lacking p66SHC or p52SHC. Results Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. These data, combined with p52SHC being the predominant isoform that is upregulated in human and rat tumors, provide the first evidence that p52SHC is the oncogenic isoform of Shc1 gene products in breast cancer. Compared with WT tumors, 893 differentially expressed (DE; FDR < 0.05) genes were detected in p52SHC KO tumors compared with only 18 DE genes in the p66SHC KO tumors, further highlighting that p52SHC is the relevant SHC1 isoform in breast cancer. Finally, gene network analysis revealed that p52SHC KO disrupted multiple key pathways that have been previously implicated in breast cancer initiation and progression, including ESR1 and mTORC2/RICTOR. Conclusion Collectively, these data demonstrate the p52SHC isoform is the key driver of DMBA-induced breast cancer while the expression of p66SHC and p46SHC are not enough to compensate. Electronic supplementary material The online version of this article (doi:10.1186/s13058-019-1155-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin D Wright
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Bradley S Miller
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sarah El-Meanawy
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shirng-Wern Tsaih
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Anjishnu Banerjee
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aron M Geurts
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yuri Sheinin
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael J Flister
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Andrey Sorokin
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
179
|
Dynamic Regulation of Caveolin-1 Phosphorylation and Caveolae Formation by Mammalian Target of Rapamycin Complex 2 in Bladder Cancer Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1846-1862. [PMID: 31199921 DOI: 10.1016/j.ajpath.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
The mammalian target of rapamycin (mTOR) and associated phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway is commonly up-regulated in cancer, including bladder cancer. mTOR complex 2 (mTORC2) is a major regulator of bladder cancer cell migration and invasion, but the mechanisms by which mTORC2 regulates these processes are unclear. A discovery mass spectrometry and reverse-phase protein array-based proteomics dual approach was used to identify novel mTORC2 phosphoprotein targets in actively invading cancer cells. mTORC2 targets included focal adhesion kinase, proto-oncogene tyrosine-protein kinase Src, and caveolin-1 (Cav-1), among others. Functional testing shows that mTORC2 regulates Cav-1 localization and dynamic phosphorylation of Cav-1 on Y14. Regulation of Cav-1 activity by mTORC2 also alters the abundance of caveolae, which are specialized lipid raft invaginations of the plasma membrane associated with cell signaling and membrane compartmentalization. Our results demonstrate a unique role for mTORC2-mediated regulation of caveolae formation in actively migrating cancer cells.
Collapse
|
180
|
mTOR and Aging: An Old Fashioned Dress. Int J Mol Sci 2019; 20:ijms20112774. [PMID: 31174250 PMCID: PMC6600378 DOI: 10.3390/ijms20112774] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a physiologic/pathologic process characterized by a progressive impairment of cellular functions, supported by the alterations of several molecular pathways, leading to an increased cell susceptibility to injury. This deterioration is the primary risk factor for several major human pathologies. Numerous cellular processes, including genomic instability, telomere erosion, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, stem cell exhaustion, and altered intercellular signal transduction represent common denominators of aging in different organisms. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved nutrient sensing protein kinase that regulates growth and metabolism in all eukaryotic cells. Studies in flies, worms, yeast, and mice support the hypothesis that the mTOR signalling network plays a pivotal role in modulating aging. mTOR is emerging as the most robust mediator of the protective effects of various forms of dietary restriction, which has been shown to extend lifespan and slow the onset of age-related diseases across species. Herein we discuss the role of mTor signalling network in the development of classic age-related diseases, focused on cardiovascular system, immune response, and cancer.
Collapse
|
181
|
Rodriguez-Vargas JM, Nguekeu-Zebaze L, Dantzer F. PARP3 comes to light as a prime target in cancer therapy. Cell Cycle 2019; 18:1295-1301. [PMID: 31095444 DOI: 10.1080/15384101.2019.1617454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poly(ADP-ribose) polymerase 3 (PARP3) is the third member of the PARP family that catalyze a post-translational modification of proteins to promote, control or adjust numerous cellular events including genome integrity, transcription, differentiation, cell metabolism or cell death. In the late years, PARP3 has been specified for its primary functions in programmed and stress-induced double-strand break repair, chromosomal rearrangements, transcriptional regulation in the zebrafish and mitotic segregation. Still, deciphering the therapeutic value of its inhibition awaits additional investigations. In this review, we discuss the newest advancements on the specific functions of PARP3 in cancer aggressiveness exemplifying the relevance of its selective inhibition for cancer therapy.
Collapse
Affiliation(s)
- José Manuel Rodriguez-Vargas
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| | - Léonel Nguekeu-Zebaze
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| | - Françoise Dantzer
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| |
Collapse
|
182
|
SHAO Y, WANG J, ZHU D. [Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:65-74. [PMID: 31102360 PMCID: PMC8800653 DOI: 10.3785/j.issn.1008-9292.2019.02.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To explore the expression, localization and regulatory effect on mitochondrial calcium signaling of Rictor in embryonic stem cell-derived cardiomyocytes (ESC-CMs). METHODS Classical embryonic stem cell cardiomyogenesis model was used for differentiation of mouse embryonic stem cells into cardiomyocytes. The location of Rictor in ESC-CMs was investigated by immunofluorescence and Western blot. The expression of Rictor in mouse embryonic stem cells was interfered with lentiviral technology, then the superposition of mitochondria and endoplasmic reticulum (ER) in ESC-CMs was detected with immunofluorescence method; the cellular ultrastructure of ESC-CMs was observed by transmission electron microscope; the mitochondrial calcium transients of ESC-CMs was detected by living cell workstation;immunoprecipitation was used to detect the interaction between 1,5,5-trisphosphate receptor (IP3 receptor, IP3R), glucose-regulated protein 75 (Grp75) and voltage-dependent anion channel 1 (VDAC1) in mitochondrial outer membrane; the expression of mitochondrial fusion protein (mitonusin-2, Mfn2) was detected by Western blot. RESULTS Rictor was mainly localized in the endoplasmic reticulum and mitochondrial-endoplasmic reticulum membrane (MAM) in ESC-CMs. Immunofluorescence results showed that Rictor was highly overlapped with ER and mitochondria in ESC-CMs. After mitochondrial and ER were labeled with Mito-Tracker Red and ER-Tracker Green, it was demonstrated that the mitochondria of the myocardial cells in the Rictor group were scattered, and the superimposition rate of mitochondria and ER was lower than that of the negative control group (P<0.01). The MAM structures were decreased in ESC-CMs after knockdown of Rictor. The results of the living cell workstation showed that the amplitude of mitochondrial calcium transients by ATP stimulation in ESC-CMs was decreased after knockdown of Rictor (P<0.01). The results of co-immunoprecipitation showed that the interaction between IP3R, Grp75 and VDAC1 in the MAM structure of the cardiomyocytes in the Rictor group was significantly attenuated (P<0.01); the results of Western blot showed that the expression of Mfn2 protein was significantly decreased (P<0.01). CONCLUSIONS Using lentiviral technology to interfere Rictor expression in mouse embryonic stem cells, the release of calcium from the endoplasmic reticulum to mitochondria in ESC-CMs decreases, which may be affected by reducing the interaction of IP3R, Grp75, VDAC1 and decreasing the expression of Mfn2, leading to the damage of MAM structure.
Collapse
|
183
|
Cao Z, Liao Q, Su M, Huang K, Jin J, Cao D. AKT and ERK dual inhibitors: The way forward? Cancer Lett 2019; 459:30-40. [PMID: 31128213 DOI: 10.1016/j.canlet.2019.05.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K)/AKT pathway regulates cell growth, proliferation, survival, mobility and invasion. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is also an important mitogenic signaling pathway involved in various cellular progresses. AKT, also named protein kinase B (PKB), is a primary mediator of the PI3K signaling pathway; and ERK at the end of MAPK signaling is the unique substrate and downstream effector of mitogen-activated protein/extracellular signal-regulated kinase (MEK). The AKT and ERK signaling are both aberrantly activated in a wide range of human cancers and have long been targeted for cancer therapy, but the clinical benefits of these targeted therapies have been limited due to complex cross-talk. Novel strategies, such as AKT/ERK dual inhibitors, may be needed.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Kai Huang
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, Guangxi, China
| | - Deliang Cao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University. 283 Tongzipo Road, Changsha, 410013, Hunan, China; Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL, 62794, USA.
| |
Collapse
|
184
|
Smith PK, Sen MG, Fisher PR, Annesley SJ. Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in Dictyostelium discoideum Suggests That Cytopathological Outcomes Result from Altered TOR Signalling. Cells 2019; 8:cells8050469. [PMID: 31100984 PMCID: PMC6562681 DOI: 10.3390/cells8050469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative disorders with similar clinical manifestations whose precise mechanisms of disease are presently unknown. We created multiple cell lines each with different levels of reduction of expression of the gene coding for the type 2 variant of the disease, Tripeptidyl peptidase (Tpp1), in the cellular slime mould Dictyostelium discoideum. Knocking down Tpp1 in Dictyostelium resulted in the accumulation of autofluorescent material, a characteristic trait of Batten disease. Phenotypic characterisation of the mutants revealed phenotypic deficiencies in growth and development, whilst endocytic uptake of nutrients was enhanced. Furthermore, the severity of the phenotypes correlated with the expression levels of Tpp1. We propose that the phenotypic defects are due to altered Target of Rapamycin (TOR) signalling. We show that treatment of wild type Dictyostelium cells with rapamycin (a specific TOR complex inhibitor) or antisense inhibition of expression of Rheb (Ras homologue enriched in the brain) (an upstream TOR complex activator) phenocopied the Tpp1 mutants. We also show that overexpression of Rheb rescued the defects caused by antisense inhibition of Tpp1. These results suggest that the TOR signalling pathway is responsible for the cytopathological outcomes in the Dictyostelium Tpp1 model of Batten disease.
Collapse
Affiliation(s)
- Paige K Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia.
| | - Melodi G Sen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia.
| | - Paul R Fisher
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia.
| | - Sarah J Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora 3086, Melbourne, Australia.
| |
Collapse
|
185
|
Liao GY, Lee MT, Fan JJ, Hsiao PW, Lee CS, Su SY, Hwang JJ, Ke FC. Blockage of glutamine-dependent anaplerosis affects mTORC1/2 activity and ultimately leads to cellular senescence-like response. Biol Open 2019; 8:bio.038257. [PMID: 31097446 PMCID: PMC6550068 DOI: 10.1242/bio.038257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of study was to explore the role of glutamine-dependent anaplerosis in cell fate determination (proliferation and senescence) and the potential associated mechanism by employing a pharmacological inhibitor of glutamine-dependent anaplerosis, amino-oxyacetate (AOA). Using the WI38 normal human embryonic fibroblast cell line, we found that exposure to AOA induced mTORC1 inactivation−mTORC2 activation (within day 1), cell cycle arrest (day 2–6) and cellular senescence (day 4–6). These AOA effects were blocked by concomitantly providing anaplerotic factors [α-ketoglutarate (αKG), pyruvate or oxaloacetate], and not affected by ROS scavenger N-acetyl-cysteine (NAC). Moreover, AOA-induced cellular senescence in WI38 cells is associated with elevated protein levels of p53, p21CIP1 and p16INK4A and decreased Rb protein level, which was blocked by αKG supplementation. In p16INK4A-deficient U2OS human osteosarcoma cells and p16INK4A-knockdown WI38 cells, AOA exposure also induced similar effects on cell proliferation, and protein level of P-Rb-S807/811 and Rb. Interestingly, no AOA induction of cellular senescence was observed in U2OS cells, yet was still seen in p16INK4A-knockdown WI38 cells accompanied by the presence of p16 antibody-reactive p12. In summary, we disclose that glutamine-dependent anaplerosis is essential to cell growth and closely associated with mTORC1 activation and mTORC2 inactivation, and impedes cellular senescence particularly associated with p16INK4A. Summary: Glutamine-dependent anaplerosis is essential to cell growth and closely associated with mTORC1 activation and mTORC2 inactivation, and impedes cellular senescence particularly associated with p16INK4A.
Collapse
Affiliation(s)
- Geng-You Liao
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.,Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ming-Ting Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jhen-Jia Fan
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Sheng Lee
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shou-Yi Su
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jiuan-Jiuan Hwang
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ferng-Chun Ke
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
186
|
mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro. Cells 2019; 8:cells8050431. [PMID: 31075885 PMCID: PMC6563036 DOI: 10.3390/cells8050431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Mechanistic or Mammalian Target of Rapamycin (mTOR) is a major signaling pathway in eukaryotic cells belonging to the P13K-related kinase family of the serine/threonine protein kinase. It has been established that mTOR plays a central role in cellular processes and implicated in various cancers, diabetes, and in the aging process with very poor prognosis. Inhibition of the mTOR pathway in the cells may improve the therapeutic index in cancer treatment. Photodynamic therapy (PDT) has been established to selectively eradicate neoplasia at clearly delineated malignant lesions. This review highlights recent advances in understanding the role or regulation of mTOR in cancer therapy. It also discusses how mTOR currently contributes to cancer as well as future perspectives on targeting mTOR therapeutically in cancer in vitro.
Collapse
|
187
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
188
|
Kim JK, Lee JH. Mechanistic Target of Rapamycin Pathway in Epileptic Disorders. J Korean Neurosurg Soc 2019; 62:272-287. [PMID: 31085953 PMCID: PMC6514310 DOI: 10.3340/jkns.2019.0027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
189
|
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, Tobias ME, Murali R, Gandhi CD, Schmidt MH. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul 2019; 72:51-62. [PMID: 31010692 DOI: 10.1016/j.jbior.2019.03.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Activation of Mechanistic target of rapamycin (mTOR) signaling plays a crucial role in tumorigenesis of numerous malignancies including glioblastoma (GB). The Canonical PI3K/Akt/mTOR signaling cascade is commonly upregulated due to loss of the tumor suppressorm PTEN, a phosphatase that acts antagonistically to the kinase (PI3K) in conversion of PIP2 to PIP3. mTOR forms two multiprotein complexes, mTORC1 and mTORC2 which are composed of discrete protein binding partners to regulate cell growth, motility, and metabolism. These complexes are sensitive to distinct stimuli, as mTORC1 is sensitive to nutrients while mTORC2 is regulated via PI3K and growth factor signaling. The main function of mTORC1 is to regulate protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. On the other hand, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK and it also plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. mTORC1 and mTORC2 regulate each other, as shown by the fact that Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Allosteric inhibitors of mTOR, rapamycin and rapalogs, remained ineffective in clinical trials of Glioblastoma (GB) patients, in part due to their incomplete inhibition of mTORC1 as well as unexpected activation of mTOR via the loss of negative feedback loops. In recent years, novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore by these novel combined mTORC1/mTORC2 inhibitors reduced the proliferation and self-renewal of GB cancer stem cells. However, a search of more effective way to target mTOR has generated a third generation inhibitor of mTOR, "Rapalink", that bivalently combines rapamycin with an ATP-binding inhibitor, which effectively abolishes the mTORC1 activity. All in all, the effectiveness of inhibitors of mTOR complexes can be judged by their ability to suppress both mTORC1/mTORC2 and their ability to impede both cell proliferation and migration along with aberrant metabolic pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA.
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Raj Murali
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Meic H Schmidt
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
190
|
Brooks DL, Garza AE, Katayama IA, Romero JR, Adler GK, Pojoga LH, Williams GH. Aldosterone Modulates the Mechanistic Target of Rapamycin Signaling in Male Mice. Endocrinology 2019; 160:716-728. [PMID: 30726893 PMCID: PMC6397424 DOI: 10.1210/en.2018-00989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Both mechanistic target of rapamycin (mTOR) pathway and aldosterone are implicated in the development of cardiovascular and renal disease. However, the interaction between aldosterone and the mTOR pathway is unknown. We hypothesized the following: that (i) increased aldosterone will modulate the activity of the mTORC1 and mTORC2 molecular pathways in the heart and kidney; (ii) a physiologic increase in aldosterone will affect these pathways differently than a pathophysiologic one; and (iii) the changes in the mTOR level/activity will differ between the heart and kidney. In both kidney and heart tissues, phosphorylation of mTOR is significantly decreased when aldosterone levels are physiologically increased (by dietary sodium restriction), followed by a decrease in phosphorylated p70S6K1 in cardiac, but not renal, tissue. Sirtuin 1, an epigenetic modulator, is decreased in the heart but increased in the kidney. Conversely, pathophysiologic aldosterone levels (an infusion for 3 weeks) had divergent effects on phosphorylated mTOR and the downstream substrates of mTORC1 and mTORC2 in cardiac and renal tissues. Increased aldosterone levels significantly alter mTOR activity in the heart and kidney. In the kidney, substantial differences were noted if the increase was produced physiologically vs pathophysiologically, suggesting that mTOR activity, in part, may mediate aldosterone-induced renal damage. Thus, modulating mTOR activity may reduce aldosterone-dependent renal damage similar to mineralocorticoid receptor blockade but potentially with less adverse side effects.
Collapse
Affiliation(s)
- Danielle L Brooks
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
- Correspondence: Danielle L. Brooks, PhD, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston, Massachusetts 02115. E-mail:
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Isis A Katayama
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
191
|
Kou X, Chen D, Chen N. Physical Activity Alleviates Cognitive Dysfunction of Alzheimer's Disease through Regulating the mTOR Signaling Pathway. Int J Mol Sci 2019; 20:ijms20071591. [PMID: 30934958 PMCID: PMC6479697 DOI: 10.3390/ijms20071591] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common aging-related progressive neurodegenerative disorders, and can result in great suffering for a large portion of the aged population. Although the pathogenesis of AD is being elucidated, the exact mechanisms are still unclear, thereby impeding the development of effective drugs, supplements, and other interventional strategies for AD. In recent years, impaired autophagy associated with microRNA (miRNA) dysfunction has been reported to be involved in aging and aging-related neurodegenerative diseases. Therefore, miRNA-mediated regulation for the functional status of autophagy may become one of the potent interventional strategies for AD. Mounting evidence from in vivo AD models has demonstrated that physical activity can exert a neuroprotective role in AD. In addition, autophagy is strictly regulated by the mTOR signaling pathway. In this article, the regulation of the functional status of autophagy through the mTOR signaling pathway during physical activity is systematically discussed for the prevention and treatment of AD. This concept will be beneficial to developing novel and effective targets that can create a direct link between pharmacological intervention and AD in the future.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Dandan Chen
- Graduate School, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
192
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
193
|
Li L, Zhu T, Song Y, Luo X, Feng L, Zhuo F, Li F, Ren M. Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae. Front Microbiol 2019; 10:501. [PMID: 30918504 PMCID: PMC6424901 DOI: 10.3389/fmicb.2019.00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
More than 200 plants have been suffering from Verticillium wilt caused by Verticillium dahliae (V. dahliae) across the world. The target of rapamycin (TOR) is a lethal gene and controls cell growth and development in various eukaryotes, but little is known about TOR signaling in V. dahliae. Here, we found that V. dahliae strain is hypersensitive to rapamycin in the presence of rapamycin binding protein VdFKBP12 while the deletion mutant aaavdfkbp12 is insensitive to rapamycin. Heterologous expressing VdFKBP12 in Arabidopsis conferred rapamycin sensitivity, indicating that VdFKBP12 can bridge the interaction between rapamycin and TOR across species. The key across species of TOR complex 1 (TORC1) and TORC2 have been identified in V. dahliae, suggesting that TOR signaling pathway is evolutionarily conserved in eukaryotic species. Furthermore, the RNA-seq analysis showed that ribosomal biogenesis, RNA polymerase II transcription factors and many metabolic processes were significantly suppressed in rapamycin treated cells of V. dahliae. Importantly, transcript levels of genes associated with cell wall degrading enzymes (CWEDs) were dramatically down-regulated in TOR-inhibited cells. Further infection assay showed that the pathogenicity of V. dahliae and occurrence of Verticillium wilt can be blocked in the presence of rapamycin. These observations suggested that VdTOR is a key target of V. dahliae for controlling and preventing Verticillium wilt in plants.
Collapse
Affiliation(s)
- Linxuan Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Tingting Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fengping Zhuo
- School of Life Sciences, Chongqing University, Chongqing, China.,School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
194
|
Sangüesa G, Roglans N, Baena M, Velázquez AM, Laguna JC, Alegret M. mTOR is a Key Protein Involved in the Metabolic Effects of Simple Sugars. Int J Mol Sci 2019; 20:ijms20051117. [PMID: 30841536 PMCID: PMC6429387 DOI: 10.3390/ijms20051117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most important threats to global human health is the increasing incidences of metabolic pathologies (including obesity, type 2 diabetes and non-alcoholic fatty liver disease), which is paralleled by increasing consumptions of hypercaloric diets enriched in simple sugars. The challenge is to identify the metabolic pathways affected by the excessive consumption of these dietary components when they are consumed in excess, to unravel the molecular mechanisms leading to metabolic pathologies and identify novel therapeutic targets to manage them. Mechanistic (mammalian) target of rapamycin (mTOR) has emerged as one of the key molecular nodes that integrate extracellular signals, such as energy status and nutrient availability, to trigger cell responses that could lead to the above-mentioned diseases through the regulation of lipid and glucose metabolism. By activating mTOR signalling, excessive consumption of simple sugars (such as fructose and glucose), could modulate hepatic gluconeogenesis, lipogenesis and fatty acid uptake and catabolism and thus lipid deposition in the liver. In the present review we will discuss some of the most recent studies showing the central role of mTOR in the metabolic effects of excessive simple sugar consumption.
Collapse
Affiliation(s)
- Gemma Sangüesa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain.
| | - Miguel Baena
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
| | - Ana Magdalena Velázquez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain.
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), 28029 Madrid, Spain.
| |
Collapse
|
195
|
Cellular Metabolic Regulation in the Differentiation and Function of Regulatory T Cells. Cells 2019; 8:cells8020188. [PMID: 30795546 PMCID: PMC6407031 DOI: 10.3390/cells8020188] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune and inflammatory diseases. The activity and function of Tregs are in large part determined by various intracellular metabolic processes. Recent findings have focused on how intracellular metabolism can shape the development, trafficking, and function of Tregs. In this review, we summarize and discuss current research that reveals how distinct metabolic pathways modulate Tregs differentiation, phenotype stabilization, and function. These advances highlight numerous opportunities to alter Tregs frequency and function in physiopathologic conditions via metabolic manipulation and have important translational implications.
Collapse
|
196
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
197
|
Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, Levy S, Robitaille AM, Ferreccio A, Bottorff T, McAlister A, Somasundaram L, Artoni F, Battle S, Hawkins RD, Moon RT, Ware CB, Paddison PJ, Ruohola-Baker H. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun 2019; 10:632. [PMID: 30733432 PMCID: PMC6367455 DOI: 10.1038/s41467-018-08020-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/05/2018] [Indexed: 01/05/2023] Open
Abstract
To reveal how cells exit human pluripotency, we designed a CRISPR-Cas9 screen exploiting the metabolic and epigenetic differences between naïve and primed pluripotent cells. We identify the tumor suppressor, Folliculin(FLCN) as a critical gene required for the exit from human pluripotency. Here we show that FLCN Knock-out (KO) hESCs maintain the naïve pluripotent state but cannot exit the state since the critical transcription factor TFE3 remains active in the nucleus. TFE3 targets up-regulated in FLCN KO exit assay are members of Wnt pathway and ESRRB. Treatment of FLCN KO hESC with a Wnt inhibitor, but not ESRRB/FLCN double mutant, rescues the cells, allowing the exit from the naïve state. Using co-immunoprecipitation and mass spectrometry analysis we identify unique FLCN binding partners. The interactions of FLCN with components of the mTOR pathway (mTORC1 and mTORC2) reveal a mechanism of FLCN function during exit from naïve pluripotency. The pathways involved in exit from pluripotency in human embryonic stem cells are poorly understood. Here, the authors performed a CRISPR-based screen to identify genes that promote exit from naïve pluripotency and find a role for folliculin (FLCN) by regulating the mTOR and Wnt pathways.
Collapse
Affiliation(s)
- J Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - D Detraux
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Laboratory of Cellular Biochemistry and Biology (URBC), University of Namur, Namur, 5000, Belgium
| | - D Kuppers
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Y Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, 98109, USA
| | - C Cavanaugh
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - S Sidhu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - S Levy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - A M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - A Ferreccio
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - T Bottorff
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - A McAlister
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - L Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - F Artoni
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - S Battle
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Medical Genetics & Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - R D Hawkins
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Medical Genetics & Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - R T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - C B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - P J Paddison
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA. .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
198
|
Uchenunu O, Pollak M, Topisirovic I, Hulea L. Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. J Mol Endocrinol 2019; 62:R83-R103. [PMID: 30072418 PMCID: PMC6347283 DOI: 10.1530/jme-18-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Abstract
Notwithstanding that metabolic perturbations and dysregulated protein synthesis are salient features of cancer, the mechanism underlying coordination of cellular energy balance with mRNA translation (which is the most energy consuming process in the cell) is poorly understood. In this review, we focus on recently emerging insights in the molecular underpinnings of the cross-talk between oncogenic kinases, translational apparatus and cellular energy metabolism. In particular, we focus on the central signaling nodes that regulate these processes (e.g. the mechanistic/mammalian target of rapamycin MTOR) and the potential implications of these findings on improving the anti-neoplastic efficacy of oncogenic kinase inhibitors.
Collapse
Affiliation(s)
- Oro Uchenunu
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
| | - Michael Pollak
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
| | - Laura Hulea
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Correspondence should be addressed to L Hulea:
| |
Collapse
|
199
|
Kovalski JR, Bhaduri A, Zehnder AM, Neela PH, Che Y, Wozniak GG, Khavari PA. The Functional Proximal Proteome of Oncogenic Ras Includes mTORC2. Mol Cell 2019; 73:830-844.e12. [PMID: 30639242 DOI: 10.1016/j.molcel.2018.12.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022]
Abstract
Proximity-dependent biotin labeling (BioID) may identify new targets for cancers driven by difficult-to-drug oncogenes such as Ras. Therefore, BioID was used with wild-type (WT) and oncogenic mutant (MT) H-, K-, and N-Ras, identifying known interactors, including Raf and PI3K, as well as a common set of 130 novel proteins proximal to all Ras isoforms. A CRISPR screen of these proteins for Ras dependence identified mTOR, which was also found proximal to MT Ras in human tumors. Oncogenic Ras directly bound two mTOR complex 2 (mTORC2) components, mTOR and MAPKAP1, to promote mTORC2 kinase activity at the plasma membrane. mTORC2 enabled the Ras pro-proliferative cell cycle transcriptional program, and perturbing the Ras-mTORC2 interaction impaired Ras-dependent neoplasia in vivo. Combining proximity-dependent proteomics with CRISPR screening identified a new set of functional Ras-associated proteins, defined mTORC2 as a new direct Ras effector, and offers a strategy for finding new proteins that cooperate with dominant oncogenes.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Aparna Bhaduri
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Ashley M Zehnder
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Poornima H Neela
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Yonglu Che
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Glenn G Wozniak
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; VA Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
200
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|