151
|
Soto-Burgos J, Bassham DC. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLoS One 2017; 12:e0182591. [PMID: 28783755 PMCID: PMC5544219 DOI: 10.1371/journal.pone.0182591] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.
Collapse
Affiliation(s)
- Junmarie Soto-Burgos
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Plant Sciences Institute, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
152
|
Chan A, Carianopol C, Tsai AYL, Varatharajah K, Chiu RS, Gazzarrini S. SnRK1 phosphorylation of FUSCA3 positively regulates embryogenesis, seed yield, and plant growth at high temperature in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4219-4231. [PMID: 28922765 PMCID: PMC5853833 DOI: 10.1093/jxb/erx233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/09/2017] [Indexed: 05/19/2023]
Abstract
The transcription factor FUSCA3 (FUS3) acts as a major regulator of seed maturation in Arabidopsis. FUS3 is phosphorylated by the SnRK1 catalytic subunit AKIN10/SnRK1α1, which belongs to a conserved eukaryotic kinase complex involved in energy homeostasis. Here we show that AKIN10 and FUS3 share overlapping expression patterns during embryogenesis, and that FUS3 is phosphorylated by AKIN10 in embryo cell extracts. To understand the role of FUS3 phosphorylation, we generated fus3-3 plants carrying FUS3 phosphorylation-null (FUS3S>A) and phosphorylation-mimic (FUS3S>D) variants. While FUS3S>A and FUS3S>D rescued all the fus3-3 seed maturation defects, FUS3S>A showed reduced transcriptional activity and enhanced fus3-3 previously uncharacterized phenotypes. FUS3S>A embryos displayed increased seed abortion due to maternal FUS3S>A and delayed embryo development, which correlated with a strong decrease in seed yield (~50%). Accordingly, the akin10 and akin11 mutants displayed a frequency of seed abortion similar to fus3-3. When plants were grown at elevated temperature, most phenotypes were exaggerated in FUS3S>A plants, and progeny seedlings overall grew poorly, suggesting that phosphorylation of FUS3 plays an important role during early embryogenesis and under heat stress. Collectively, these results suggest that FUS3 phosphorylation and SnRK1 are required for embryogenesis and integration of environmental cues to ensure the survival of the progeny.
Collapse
Affiliation(s)
- Aaron Chan
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Carina Carianopol
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Allen Yi-Lun Tsai
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Kresanth Varatharajah
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
| | - Rex Shun Chiu
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Sonia Gazzarrini
- Department of Biological Sciences, University of Toronto Scarborough, Military Trail, Toronto, ON Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
- Correspondence:
| |
Collapse
|
153
|
Simon NML, Dodd AN. A new link between plant metabolism and circadian rhythms? PLANT, CELL & ENVIRONMENT 2017; 40:995-996. [PMID: 28240779 DOI: 10.1111/pce.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/08/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Affiliation(s)
- Noriane M L Simon
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
154
|
Castro PH, Lilay GH, Muñoz-Mérida A, Schjoerring JK, Azevedo H, Assunção AGL. Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Sci Rep 2017. [PMID: 28630437 PMCID: PMC5476651 DOI: 10.1038/s41598-017-03903-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basic leucine zipper (bZIP) transcription factors control important developmental and physiological processes in plants. In Arabidopsis thaliana, the three gene F-bZIP subfamily has been associated with zinc deficiency and salt stress response. Benefiting from the present abundance of plant genomic data, we performed an evolutionary and structural characterization of plant F-bZIPs. We observed divergence during seed plant evolution, into two groups and inferred different selective pressures for each. Group 1 contains AtbZIP19 and AtbZIP23 and appears more conserved, whereas Group 2, containing AtbZIP24, is more prone to gene loss and expansion events. Transcriptomic and experimental data reinforced AtbZIP19/23 as pivotal regulators of the zinc deficiency response, mostly via the activation of genes from the ZIP metal transporter family, and revealed that they are the main regulatory switch of AtZIP4. A survey of AtZIP4 orthologs promoters across different plant taxa revealed an enrichment of the Zinc Deficiency Response Element (ZDRE) to which both AtbZIP19/23 bind. Overall, our results indicate that while the AtbZIP24 function in the regulation of the salt stress response may be the result of neo-functionalization, the AtbZIP19/23 function in the regulation of the zinc deficiency response may be conserved in land plants (Embryophytes).
Collapse
Affiliation(s)
- Pedro Humberto Castro
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
| | - Grmay H Lilay
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
| | - Antonio Muñoz-Mérida
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Jan K Schjoerring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark
| | - Herlânder Azevedo
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Copenhagen, Denmark. .,CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
155
|
Wang L, Cao H, Qian W, Yao L, Hao X, Li N, Yang Y, Wang X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. ANNALS OF BOTANY 2017; 119:1195-1209. [PMID: 28334275 PMCID: PMC5604549 DOI: 10.1093/aob/mcx011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/20/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Basic region/leucine zipper (bZIP) transcription factors play vital roles in the abiotic stress response of plants. However, little is known about the function of bZIP genes in Camellia sinensis . METHODS CsbZIP6 was overexpressed in Arabidopsis thaliana . Effects of CsbZIP6 overexpression on abscisic acid (ABA) sensitivity, freezing tolerance and the expression of cold-responsive genes in arabidopsis were studied. KEY RESULTS CsbZIP6 was induced during cold acclimation in tea plant. Constitutive overexpression of CsbZIP6 in arabidopsis lowered the plants' tolerance to freezing stress and ABA exposure during seedling growth. Compared with wild-type (WT) plants, CsbZIP6 overexpression (OE) lines exhibited increased levels of electrolyte leakage (EL) and malondialdehyde (MDA) contents, and reduced levels of total soluble sugars (TSS) under cold stress conditions. Microarray analysis of transgenic arabidopsis revealed that many differentially expressed genes (DEGs) between OE lines and WT plants could be mapped to 'response to cold' and 'response to water deprivation' terms based on Gene Ontology analysis. Interestingly, CsbZIP6 overexpression repressed most of the cold- and drought-responsive genes as well as starch metabolism under cold stress conditions. CONCLUSIONS The data suggest that CsbZIP6 functions as a negative regulator of the cold stress response in A. thaliana , potentially by down-regulating cold-responsive genes.
Collapse
Affiliation(s)
- Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- These authors contributed equally to this work
| | - Hongli Cao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- These authors contributed equally to this work
| | - Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- For correspondence. E-mail or
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
- For correspondence. E-mail or
| |
Collapse
|
156
|
Weiste C, Pedrotti L, Selvanayagam J, Muralidhara P, Fröschel C, Novák O, Ljung K, Hanson J, Dröge-Laser W. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genet 2017; 13:e1006607. [PMID: 28158182 PMCID: PMC5315408 DOI: 10.1371/journal.pgen.1006607] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/17/2017] [Accepted: 01/26/2017] [Indexed: 01/02/2023] Open
Abstract
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. Being in competition for reproductive success, plants use most of their photosynthetically produced energy resources to promote growth. However, under unfavourable environmental conditions plants also need to finance adaptive responses to ensure their survival. For this purpose a growth regulatory system is required to dynamically tune plant growth according to the plants’ prevailing energy status. Here, we characterize crucial components of this system that link plants’ energy management with root growth control. In detail, we demonstrate that a highly homologous group of energy-controlled regulators of the basic leucine zipper (bZIP) transcription factor family redundantly operate under energy deprivation to control expression of a determinant of hormonally-controlled meristematic root growth. By these means these regulators constitute a central hub to integrate detrimental environmental stress conditions, which converge on energy limitation, into plant growth. Understanding the interplay between the plants’ energy homeostasis and growth control are of major importance for future strategies to engineer efficient crop plants.
Collapse
Affiliation(s)
- Christoph Weiste
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lorenzo Pedrotti
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Prathibha Muralidhara
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Fröschel
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Johannes Hanson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
157
|
Baena-González E, Hanson J. Shaping plant development through the SnRK1-TOR metabolic regulators. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:152-157. [PMID: 28027512 DOI: 10.1016/j.pbi.2016.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
SnRK1 (Snf1-related protein kinase 1) and TOR (target of rapamycin) are evolutionarily conserved protein kinases that lie at the heart of energy sensing, playing central and antagonistic roles in the regulation of metabolism and gene expression. Increasing evidence links these metabolic regulators to numerous aspects of plant development, from germination to flowering and senescence. This prompts the hypothesis that SnRK1 and TOR modify developmental programs according to the metabolic status to adjust plant growth to a specific environment. The aim of this review is to provide support to this hypothesis and to incentivize further studies on this topic by summarizing the work that establishes a genetic connection between SnRK1-TOR and plant development.
Collapse
Affiliation(s)
- Elena Baena-González
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
158
|
Broeckx T, Hulsmans S, Rolland F. The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6215-6252. [PMID: 27856705 DOI: 10.1093/jxb/erw416] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory β and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid βγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.
Collapse
Affiliation(s)
- Tom Broeckx
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Sander Hulsmans
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| |
Collapse
|
159
|
Grandellis C, Fantino E, Muñiz García MN, Bialer MG, Santin F, Capiati DA, Ulloa RM. StCDPK3 Phosphorylates In Vitro Two Transcription Factors Involved in GA and ABA Signaling in Potato: StRSG1 and StABF1. PLoS One 2016; 11:e0167389. [PMID: 27907086 PMCID: PMC5131985 DOI: 10.1371/journal.pone.0167389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Calcium-dependent protein kinases, CDPKs, decode calcium (Ca2+) transients and initiate downstream responses in plants. In order to understand how CDPKs affect plant physiology, their specific target proteins must be identified. In tobacco, the bZIP transcription factor Repression of Shoot Growth (NtRSG) that modulates gibberellin (GA) content is a specific target of NtCDPK1. StCDPK3 from potato is homologous (88% identical) to NtCDPK1 even in its N-terminal variable domain. In this work, we observe that NtRSG is also phosphorylated by StCDPK3. The potato RSG family of transcription factors is composed of three members that share similar features. The closest homologue to NtRSG, which was named StRSG1, was amplified and sequenced. qRT-PCR data indicate that StRSG1 is mainly expressed in petioles, stems, lateral buds, and roots. In addition, GA treatment affected StRSG1 expression. StCDPK3 transcripts were detected in leaves, petioles, stolons, roots, and dormant tubers, and transcript levels were modified in response to GA. The recombinant StRSG1-GST protein was produced and tested as a substrate for StCDPK3 and StCDPK1. 6xHisStCDPK3 was able to phosphorylate the potato StRSG1 in a Ca2+-dependent way, while 6xHisStCDPK1 could not. StCDPK3 also interacts and phosphorylates the transcription factor StABF1 (ABRE binding factor 1) involved in ABA signaling, as shown by EMSA and phosphorylation assays. StABF1 transcripts were mainly detected in roots, stems, and stolons. Our data suggest that StCDPK3 could be involved in the cross-talk between ABA and GA signaling at the onset of tuber development.
Collapse
Affiliation(s)
- Carolina Grandellis
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Elisa Fantino
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Magalí Graciela Bialer
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Franco Santin
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Rita María Ulloa
- Institute of Genetic Engineering and Molecular Biology (INGEBI), National Research Council (CONICET) Vuelta de Obligado, 2 piso, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
160
|
Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S, Lee HC, Obermüller DM, Kahles A, Behr J, Sinz FH, Rätsch G, Wachter A. Alternative Splicing Substantially Diversifies the Transcriptome during Early Photomorphogenesis and Correlates with the Energy Availability in Arabidopsis. THE PLANT CELL 2016; 28:2715-2734. [PMID: 27803310 PMCID: PMC5155347 DOI: 10.1105/tpc.16.00508] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Abstract
Plants use light as source of energy and information to detect diurnal rhythms and seasonal changes. Sensing changing light conditions is critical to adjust plant metabolism and to initiate developmental transitions. Here, we analyzed transcriptome-wide alterations in gene expression and alternative splicing (AS) of etiolated seedlings undergoing photomorphogenesis upon exposure to blue, red, or white light. Our analysis revealed massive transcriptome reprogramming as reflected by differential expression of ∼20% of all genes and changes in several hundred AS events. For more than 60% of all regulated AS events, light promoted the production of a presumably protein-coding variant at the expense of an mRNA with nonsense-mediated decay-triggering features. Accordingly, AS of the putative splicing factor REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 BACKGROUND1, previously identified as a red light signaling component, was shifted to the functional variant under light. Downstream analyses of candidate AS events pointed at a role of photoreceptor signaling only in monochromatic but not in white light. Furthermore, we demonstrated similar AS changes upon light exposure and exogenous sugar supply, with a critical involvement of kinase signaling. We propose that AS is an integration point of signaling pathways that sense and transmit information regarding the energy availability in plants.
Collapse
Affiliation(s)
- Lisa Hartmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Philipp Drewe-Boß
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Theresa Wießner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Sascha Geue
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Dominik M Obermüller
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - André Kahles
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Jonas Behr
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Fabian H Sinz
- Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Gunnar Rätsch
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Computer Science, ETH Zürich, 8006 Zürich, Switzerland
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
161
|
Liebsch D, Keech O. Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. THE NEW PHYTOLOGIST 2016; 212:563-570. [PMID: 27716940 DOI: 10.1111/nph.14217] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/19/2016] [Indexed: 05/06/2023]
Abstract
563 I. 563 II. 564 III. 564 IV. 565 V. 565 VI. 567 VII. 567 568 References 568 SUMMARY: Leaf senescence - the coordinated, active process leading to the organized dismantling of cellular components to remobilize resources - is a fundamental aspect of plant life. Its tight regulation is essential for plant fitness and has crucial implications for the optimization of plant productivity and storage properties. Various investigations have shown light deprivation and light perception via phytochromes as key elements modulating senescence. However, the signalling pathways linking light deprivation and actual senescence processes have long remained obscure. Recent analyses have demonstrated that PHYTOCHROME-INTERACTING FACTORS (PIFs) are major transcription factors orchestrating dark-induced senescence (DIS) by targeting chloroplast maintenance, chlorophyll metabolism, hormone signalling and production, and the expression of senescence master regulators, uncovering potential molecular links to the energy deprivation signalling pathway. PIF-dependent feed-forward regulatory modules might be of critical importance for the highly complex and initially light-reversible DIS induction.
Collapse
Affiliation(s)
- Daniela Liebsch
- Department of Plant Physiology, UPSC, Umeå University, Umeå, S-90187, Sweden
| | - Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, Umeå, S-90187, Sweden.
| |
Collapse
|
162
|
Li L, Sheen J. Dynamic and diverse sugar signaling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:116-125. [PMID: 27423125 PMCID: PMC5050104 DOI: 10.1016/j.pbi.2016.06.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 05/18/2023]
Abstract
Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar 'perception and signal transduction' in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA.
| |
Collapse
|
163
|
Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx KS, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D, De Jaeger G. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5825-5840. [PMID: 27660483 PMCID: PMC5066499 DOI: 10.1093/jxb/erw347] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bernard Cannoot
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nancy De Winne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Leen Vercruysse
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Gent, Belgium Department of Biochemistry, Ghent University, B-9000 Gent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
164
|
Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 2016; 6:31697. [PMID: 27545962 PMCID: PMC4992866 DOI: 10.1038/srep31697] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 01/11/2023] Open
Abstract
Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.
Collapse
|
165
|
Hulsmans S, Rodriguez M, De Coninck B, Rolland F. The SnRK1 Energy Sensor in Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:648-661. [PMID: 27156455 DOI: 10.1016/j.tplants.2016.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 05/20/2023]
Abstract
Our understanding of plant biotic interactions has grown significantly in recent years with the identification of the mechanisms involved in innate immunity, hormone signaling, and secondary metabolism. The impact of such interactions on primary metabolism and the role of metabolic signals in the response of the plants, however, remain far less explored. The SnRK1 (SNF1-related kinase 1) kinases act as metabolic sensors, integrating very diverse stress conditions, and are key in maintaining energy homeostasis for growth and survival. Consistently, an important role is emerging for these kinases as regulators of biotic stress responses triggered by viral, bacterial, fungal, and oomycete infections as well as by herbivory. While this identifies SnRK1 as a promising target for directed modification or selection for more quantitative and sustainable resistance, its central function also increases the chances of unwanted side effects on growth and fitness, stressing the need for identification and in-depth characterization of the mechanisms and target processes involved. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras km 5.5 X5020ICA, Córdoba, Argentina
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Microbial and Molecular Systems Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee-Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), Department of Plant Systems Biology, Technologiepark 927, 9052 Gent, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
166
|
Carvalho RF, Szakonyi D, Simpson CG, Barbosa ICR, Brown JWS, Baena-González E, Duque P. The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability. THE PLANT CELL 2016; 28:1910-25. [PMID: 27436712 PMCID: PMC5006706 DOI: 10.1105/tpc.16.00301] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 05/19/2023]
Abstract
The ability to sense and respond to sugar signals allows plants to cope with environmental and metabolic changes by adjusting growth and development accordingly. We previously reported that the SR45 splicing factor negatively regulates glucose signaling during early seedling development in Arabidopsis thaliana Here, we show that under glucose-fed conditions, the Arabidopsis sr45-1 loss-of-function mutant contains higher amounts of the energy-sensing SNF1-Related Protein Kinase 1 (SnRK1) despite unaffected SnRK1 transcript levels. In agreement, marker genes for SnRK1 activity are upregulated in sr45-1 plants, and the glucose hypersensitivity of sr45-1 is attenuated by disruption of the SnRK1 gene. Using a high-resolution RT-PCR panel, we found that the sr45-1 mutation broadly targets alternative splicing in vivo, including that of the SR45 pre-mRNA itself. Importantly, the enhanced SnRK1 levels in sr45-1 are suppressed by a proteasome inhibitor, indicating that SR45 promotes targeting of the SnRK1 protein for proteasomal destruction. Finally, we demonstrate that SR45 regulates alternative splicing of the Arabidopsis 5PTase13 gene, which encodes an inositol polyphosphate 5-phosphatase previously shown to interact with and regulate the stability of SnRK1 in vitro, thus providing a mechanistic link between SR45 function and the modulation of degradation of the SnRK1 energy sensor in response to sugars.
Collapse
Affiliation(s)
| | - Dóra Szakonyi
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Craig G Simpson
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | - John W S Brown
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
167
|
Gao XQ, Liu CZ, Li DD, Zhao TT, Li F, Jia XN, Zhao XY, Zhang XS. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen. PLoS Genet 2016; 12:e1006228. [PMID: 27472382 PMCID: PMC4966946 DOI: 10.1371/journal.pgen.1006228] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Pollen–stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen–stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen–stigma interactions during pollination. After landing on the stigma, pollen grains germinate and create pollen tubes following adhesion and hydration processes, during which pollen–stigma interactions determine whether the pollen grains can germinate on the stigma. In recent years, the interaction mechanisms between the pollen and stigma have been studied extensively at the cellular and molecular level in self-incompatibility systems. However, few studies have focused on pollen–stigma interactions during self-compatible pollination. Arabidopsis thaliana provides an excellent system to study the interaction mechanisms between the pollen and stigma during self-compatible pollination. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex. In this study, we identified an Arabidopsis kinβγ mutant showing defective pollen germination on the surface of the stigma but not on the culture medium, which resulted from the compromised hydration of pollen on the stigma. Further analysis revealed that the biogenesis of mitochondria and peroxisomes was impaired in this mutant, which reduced the levels of reactive oxygen species (ROS) in pollen. Application of H2O2 recovered the capability of pollen to undergo hydration in vitro. These results suggest that ROS signaling is involved in the regulation of pollen–stigma interactions during pollination. This study provides new insights into the mechanism underlying pollen–stigma interactions in self-compatible plant species.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Dan Dan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ting Ting Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Fei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xiao Na Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xin-Ying Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail:
| |
Collapse
|
168
|
The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts. Sci Rep 2016; 6:30444. [PMID: 27457880 PMCID: PMC4960570 DOI: 10.1038/srep30444] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/30/2016] [Indexed: 12/14/2022] Open
Abstract
Basic leucine zippers (bZIPs) form a large plant transcription factor family. C and S1 bZIP groups can heterodimerize, fulfilling crucial roles in seed development and stress response. S1 sequences also harbor a unique regulatory mechanism, termed Sucrose-Induced Repression of Translation (SIRT). The conservation of both C/S1 bZIP interactions and SIRT remains poorly characterized in non-model species, leaving their evolutionary origin uncertain and limiting crop research. In this work, we explored recently published plant sequencing data to establish a detailed phylogeny of C and S1 bZIPs, investigating their intertwined role in plant evolution, and the origin of SIRT. Our analyses clarified C and S1 bZIP orthology relationships in angiosperms, and identified S1 sequences in gymnosperms. We experimentally showed that the gymnosperm orthologs are regulated by SIRT, tracing back the origin of this unique regulatory mechanism to the ancestor of seed plants. Additionally, we discovered an earlier S ortholog in the charophyte algae Klebsormidium flaccidum, together with a C ortholog. This suggests that C and S groups originated by duplication from a single algal proto-C/S ancestor. Based on our observations, we propose a model wherein the C/S1 bZIP dimer network evolved in seed plants from pre-existing C/S bZIP interactions.
Collapse
|
169
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
170
|
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3793-807. [PMID: 27053718 DOI: 10.1093/jxb/erw136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.
Collapse
Affiliation(s)
- Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Manuela Leonardelli
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
171
|
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C. TOR Signaling and Nutrient Sensing. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:261-85. [PMID: 26905651 DOI: 10.1146/annurev-arplant-043014-114648] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.
Collapse
Affiliation(s)
- Thomas Dobrenel
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, ERL CNRS 3559, Saclay Plant Sciences, Versailles 78026, France;
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Camila Caldana
- Molecular Physiology of Plant Biomass Production Group, Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, CEP 13083-100 Campinas, São Paulo, Brazil
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå 90187, Sweden
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, DSV, IBEB, SBVME, CEA, CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, Marseille 13009, France
| | - Michel Vincentz
- Laboratório de Genética de Plantas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875 Campinas, São Paulo, Brazil
| | - Bruce Veit
- Forage Improvement, AgResearch, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, ERL CNRS 3559, Saclay Plant Sciences, Versailles 78026, France;
| |
Collapse
|
172
|
Walper E, Weiste C, Mueller MJ, Hamberg M, Dröge-Laser W. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins. PLoS One 2016; 11:e0153216. [PMID: 27073862 PMCID: PMC4830619 DOI: 10.1371/journal.pone.0153216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/27/2016] [Indexed: 11/29/2022] Open
Abstract
13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (ArabidopsisthalianaTranscription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins.
Collapse
Affiliation(s)
- Elisabeth Walper
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Martin J. Mueller
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
- * E-mail:
| |
Collapse
|
173
|
Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Lin W, Wang R, Yu H, Mou S, Hussain A, Cheng W, Cai H, He L, Guan D, Wu Y, He S. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2439-51. [PMID: 26936828 PMCID: PMC4809298 DOI: 10.1093/jxb/erw069] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.
Collapse
Affiliation(s)
- Lei Shen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tong Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiaqi Liang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiayu Wen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanyan Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiazhi Li
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lanping Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Tang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Lin
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rongzhang Wang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Huanxin Yu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Cheng
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanyang Cai
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Li He
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Deyi Guan
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yang Wu
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
174
|
Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR. Molecular Insights into the Enigmatic Metabolic Regulator, SnRK1. TRENDS IN PLANT SCIENCE 2016; 21:341-353. [PMID: 26642889 DOI: 10.1016/j.tplants.2015.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 05/20/2023]
Abstract
Sucrose non-fermenting-1 (SNF1)-related kinase 1 (SnRK1) lies at the heart of metabolic homeostasis in plants and is crucial for normal development and response to stress. Evolutionarily related to SNF1 in yeast and AMP-activated kinase (AMPK) in mammals, SnRK1 acts protectively to maintain homeostasis in the face of fluctuations in energy status. Despite a conserved function, the structure and regulation of the plant kinase differ considerably from its relatively well-understood opisthokont orthologues. In this review, we highlight the known plant-specific modes of regulation involving SnRK1 together with new insights based on a 3D molecular model of the kinase. We also summarise how these differences from other orthologues may be specific adaptations to plant metabolism, and offer insights into possible avenues of future inquiry into this enigmatic enzyme.
Collapse
Affiliation(s)
- Shane Emanuelle
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David I Stapleton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Paul R Gooley
- Department of Biochemistry & Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
175
|
Plant SnRK1 Kinases: Structure, Regulation, and Function. EXPERIENTIA SUPPLEMENTUM 2016; 107:403-438. [DOI: 10.1007/978-3-319-43589-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|