2001
|
New E-beam-initiated hyaluronan acrylate cryogels support growth and matrix deposition by dermal fibroblasts. Int J Biol Macromol 2017; 94:611-620. [DOI: 10.1016/j.ijbiomac.2016.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022]
|
2002
|
Yang HL, Tsai YC, Korivi M, Chang CT, Hseu YC. Lucidone Promotes the Cutaneous Wound Healing Process via Activation of the PI 3 K/AKT, Wnt/β-catenin and NF-κB Signaling Pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:151-168. [DOI: 10.1016/j.bbamcr.2016.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 01/29/2023]
|
2003
|
ULTRASTRUCTURAL BASE OF THE CONNECTIVE TISSUE SKIN’ CELLS INTERACTIONS AT BURN INJURY IN THE HYPERGLYCEMIC WHITE RATS. WORLD OF MEDICINE AND BIOLOGY 2017. [DOI: 10.26724/2079-8334-2017-4-62-157-162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2004
|
Mei L, Fan R, Li X, Wang Y, Han B, Gu Y, Zhou L, Zheng Y, Tong A, Guo G. Nanofibers for improving the wound repair process: the combination of a grafted chitosan and an antioxidant agent. Polym Chem 2017. [DOI: 10.1039/c7py00038c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound healing, a complex process involving several important biomolecules and pathways, requires efficient dressings to enhance the therapy effects.
Collapse
|
2005
|
Mescher AL, Neff AW, King MW. Inflammation and immunity in organ regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:98-110. [PMID: 26891614 DOI: 10.1016/j.dci.2016.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The ability of vertebrates to regenerate amputated appendages is increasingly well-understood at the cellular level. Cells mediating an innate immune response and inflammation in the injured tissues are a prominent feature of the limb prior to formation of a regeneration blastema, with macrophage activity necessary for blastema growth and successful development of the new limb. Studies involving either anti-inflammatory or pro-inflammatory agents suggest that the local inflammation produced by injury and its timely resolution are both important for regeneration, with blastema patterning inhibited in the presence of unresolved inflammation. Various experiments with Xenopus larvae at stages where regenerative competence is declining show improved digit formation after treatment with certain immunosuppressive, anti-inflammatory, or antioxidant agents. Similar work with the larval Xenopus tail has implicated adaptive immunity with regenerative competence and suggests a requirement for regulatory T cells in regeneration, which also occurs in many systems of tissue regeneration. Recent analyses of the human nail organ indicate a capacity for local immune tolerance, suggesting roles for adaptive immunity in the capacity for mammalian appendage regeneration. New information and better understanding regarding the neuroendocrine-immune axis in the response to stressors, including amputation, suggest additional approaches useful for investigating effects of the immune system during repair and regeneration.
Collapse
Affiliation(s)
- Anthony L Mescher
- Center for Developmental and Regenerative Biology; Indiana University School of Medicine - Bloomington, USA.
| | - Anton W Neff
- Center for Developmental and Regenerative Biology; Indiana University School of Medicine - Bloomington, USA.
| | - Michael W King
- Center for Developmental and Regenerative Biology; Indiana University School of Medicine - Terre Haute, USA.
| |
Collapse
|
2006
|
Jozic I, Vukelic S, Stojadinovic O, Liang L, Ramirez HA, Pastar I, Tomic Canic M. Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway to Inhibit Wound Closure. J Invest Dermatol 2016; 137:1144-1154. [PMID: 28017831 DOI: 10.1016/j.jid.2016.11.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023]
Abstract
Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, β-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sasa Vukelic
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Immunology, Infection and Inflammation Graduate Program, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Liang Liang
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Horacio A Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Human Genomics and Genetics Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Human Genomics and Genetics Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA; Cellular and Molecular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
2007
|
Abey SK, Yuana Y, Joseph PV, Kenea ND, Fourie NH, Sherwin LB, Gonye GE, Smyser PA, Stempinski ES, Boulineaux CM, Weaver KR, Bleck CK, Henderson WA. Lysozyme association with circulating RNA, extracellular vesicles, and chronic stress. BBA CLINICAL 2016; 7:23-35. [PMID: 28053879 PMCID: PMC5200883 DOI: 10.1016/j.bbacli.2016.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Stress has demonstrated effects on inflammation though underlying cell-cell communication mechanisms remain unclear. We hypothesize that circulating RNAs and extracellular vesicles (EVs) in patients with chronic stress contain signals with functional roles in cell repair. METHODS Blood transcriptome from patients with Irritable Bowel Syndrome versus controls were compared to identify signaling pathways and effectors. Plasma EVs were isolated (size-exclusion chromatography) and characterized for effectors' presence (immunogold labelling-electron microscopy). Based on transcriptome pathways and EV-labelling, lysozyme's effects on cell migration were tested in human colon epithelial CRL-1790 cells and compared to the effects of CXCL12, a migration inducer (wound assay). The effect of lysozyme on immune-linked mRNA and protein levels in cells which survived following serum starvation and scratch wound were investigated (NanoString). RESULTS Blood transcriptomes revealed pyridoxal 5'phosphate salvage, pyrimidine ribonucleotides salvage pathways, atherosclerosis, and cell movement signaling with membrane CD9 and extracellular lysozyme as effectors. Plasma EVs showed labelling with CD9, mucins, and lysozyme. This is the first identification of lysozyme on plasma EVs. In CRL-1790 cells, lysozyme induced migration and repaired scratch wound as well as CXCL12. Immune mRNA and protein expressions were altered in cells which survived following serum starvation and scratch wound, with or without lysozyme in serum-free media post-wounding: CD9, IL8, IL6 mRNAs and CD9, NT5E, PD-L1 proteins. CONCLUSIONS Repair and inflammatory signals are identified in plasma EVs and circulating RNAs in chronic stress. Registered clinicaltrials.gov #NCT00824941. GENERAL SIGNIFICANCE This study highlights the role of circulating RNAs and EVs in stress.
Collapse
Affiliation(s)
- Sarah K. Abey
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Yuana Yuana
- Image Sciences Institute, Division of Imaging, University Medical Centre Utrecht, Netherlands
| | - Paule V. Joseph
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Natnael D. Kenea
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Nicolaas H. Fourie
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - LeeAnne B. Sherwin
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Paul A. Smyser
- The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Erin S. Stempinski
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Christina M. Boulineaux
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kristen R. Weaver
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Christopher K.E. Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Wendy A. Henderson
- Digestive Disorders Unit, Division of Intramural Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Corresponding author at: Digestive Disorder Unit, 10 Center Drive, 2-1341, Division of Intramural Research, NINR, NIH, DHHS, Bethesda, MD 20892, United States.Digestive Disorder UnitDivision of Intramural ResearchNINR, NIH, DHHS10 Center Drive, 2-1341BethesdaMD 20892United States
| |
Collapse
|
2008
|
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res 2016; 58:81-94. [PMID: 27974711 DOI: 10.1159/000454919] [Citation(s) in RCA: 707] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. METHODS For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. RESULTS The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. CONCLUSION Although wound healing mechanisms and specific cell functions in wound repair have been delineated in part, many underlying pathophysiological processes are still unknown. The purpose of the following update on skin wound healing is to focus on the different phases and to brief the reader on the current knowledge and new insights. Skin wound healing is a complex process, which is dependent on many cell types and mediators interacting in a highly sophisticated temporal sequence. Although some interactions during the healing process are crucial, redundancy is high and other cells or mediators can adopt functions or signaling without major complications.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
2009
|
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in Chronic Wounds. Int J Mol Sci 2016; 17:ijms17122085. [PMID: 27973441 PMCID: PMC5187885 DOI: 10.3390/ijms17122085] [Citation(s) in RCA: 651] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research.
Collapse
Affiliation(s)
- Ruilong Zhao
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Helena Liang
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Elizabeth Clarke
- Murray Maxwell Biomechanics Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia.
| |
Collapse
|
2010
|
Erickson JR, Gearhart MD, Honson DD, Reid TA, Gardner MK, Moriarity BS, Echeverri K. A novel role for SALL4 during scar-free wound healing in axolotl. NPJ Regen Med 2016; 1. [PMID: 28955504 PMCID: PMC5612448 DOI: 10.1038/npjregenmed.2016.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human response to serious cutaneous damage is limited to relatively primitive wound healing, whereby collagenous scar tissue fills the wound bed. Scars assure structural integrity at the expense of functional regeneration. In contrast, axolotls have the remarkable capacity to functionally regenerate full thickness wounds. Here, we identified a novel role for SALL4 in regulating collagen transcription after injury that is essential for perfect skin regeneration in axolotl. Furthermore, we identify miR-219 as a molecular regulator of Sall4 during wound healing. Taken together, our work highlights one molecular mechanism that allows for efficient cutaneous wound healing in the axolotl.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Drew D Honson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Taylor A Reid
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Center for Genome Engineering, University of Minnesota, Masonic Cancer Center, University of Minnesota, Minnesota, MN USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| |
Collapse
|
2011
|
Jain N, Kalailingam P, Tan KW, Tan HB, Sng MK, Chan JSK, Tan NS, Thanabalu T. Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure. Sci Rep 2016; 6:38109. [PMID: 27909303 PMCID: PMC5133560 DOI: 10.1038/srep38109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice.
Collapse
Affiliation(s)
- Neeraj Jain
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Pazhanichamy Kalailingam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Kai Wei Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Hui Bing Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology &Research, 138673, Singapore.,KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
2012
|
Zhu Y, Li Z, Wang Y, Li L, Wang D, Zhang W, Liu L, Jiang H, Yang J, Cheng J. Overexpression of miR-29b reduces collagen biosynthesis by inhibiting heat shock protein 47 during skin wound healing. Transl Res 2016; 178:38-53.e6. [PMID: 27477081 DOI: 10.1016/j.trsl.2016.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/26/2022]
Abstract
Skin scar formation is characterized by excessive synthesis and aberrant deposition of collagens during wound healing. MicroRNAs are endogenous gene regulators critically involved in diverse biological events including skin scar formation and hold considerable promise as therapeutic targets. However, the detailed molecular mechanisms responsible for collagen production during skin wound repair and scar formation remain incompletely known. Here our data revealed that significant downregulation of miR-29b and upregulation of heat shock protein 47 (HSP47) were observed during wound healing in both excisional and burn wound models and also detected in facial skin scar as compared to adjacent healthy skin. HSP47, a specific chaperon for collagen production and secretion, was identified as a novel and direct post-transcriptional target of miR-29b in skin fibroblasts via bioinformatics prediction and experimental validation. Moreover, the regulatory functions of miR-29b in collagen biosynthesis are partially achieved through modulating HSP47 expression in skin fibroblasts. Furthermore, the profibrotic growth factor TGF-β1 inhibited miR-29b transcription by activating TGF-β/Smads signaling and in turn depressed HSP47 and enhanced collagen 1 production. In contrast, the proinflammatory cytokines IL-1β and TNF-α significantly induced miR-29b transcription via activating NF-κB signaling but had no significant effect on HSP47 and collagen production in skin fibroblasts. Importantly, local delivery of miR-29b lentiviral particles inhibited HSP47 expression and collagen biosynthesis as well as suppressed angiogenesis, thus reducing scar formation in an excisional wound splinting model. Collectively, our data reveal that miR-29b can reduce collagen biosynthesis during skin wound healing likely via post-transcriptional inhibition of HSP47 expression. These findings also suggest that therapeutic targeting of miR-29b/HSP47 might be a viable alternative strategy to prevent or reduce scar formation.
Collapse
Affiliation(s)
- Yumin Zhu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China PRC
| | - Zhongwu Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China PRC
| | - Lin Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Tongji University, Shanghai, China PRC
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Wei Zhang
- Department of Oral Pathology School of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China PRC; Department of Oral Pathology School of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China PRC; Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing, China PRC
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing, China PRC.
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China PRC; Department of Oral and Maxillofacial Surgery, School of Stomatology, Nanjing Medical University, Nanjing, China PRC.
| |
Collapse
|
2013
|
Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS, Teixeira L, Thompson B, Dionne MS, Wood W, Reis e Sousa C. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. eLife 2016; 5:e19662. [PMID: 27871362 PMCID: PMC5138034 DOI: 10.7554/elife.19662] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are molecules released by dead cells that trigger sterile inflammation and, in vertebrates, adaptive immunity. Actin is a DAMP detected in mammals by the receptor, DNGR-1, expressed by dendritic cells (DCs). DNGR-1 is phosphorylated by Src-family kinases and recruits the tyrosine kinase Syk to promote DC cross-presentation of dead cell-associated antigens. Here we report that actin is also a DAMP in invertebrates that lack DCs and adaptive immunity. Administration of actin to Drosophila melanogaster triggers a response characterised by selective induction of STAT target genes in the fat body through the cytokine Upd3 and its JAK/STAT-coupled receptor, Domeless. Notably, this response requires signalling via Shark, the Drosophila orthologue of Syk, and Src42A, a Drosophila Src-family kinase, and is dependent on Nox activity. Thus, extracellular actin detection via a Src-family kinase-dependent cascade is an ancient means of detecting cell injury that precedes the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Naren Srinivasan
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Oliver Gordon
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Susan Ahrens
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anna Franz
- Department of Biochemistry, Biomedical Sciences, University Walk, University of Bristol, Bristol, United Kingdom
| | - Safia Deddouche
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - David Phillips
- Genomics-Equipment Park, The Francis Crick Institute, London, United Kingdom
| | - Ali A Yunus
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael K Rosen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | | | | | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marc S Dionne
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
2014
|
Wang H, Chen L, Liu Y, Luo B, Xie N, Tan T, Song L, Erli P, Luo M. Implantation of placenta-derived mesenchymal stem cells accelerates murine dermal wound closure through immunomodulation. Am J Transl Res 2016; 8:4912-4921. [PMID: 27904691 PMCID: PMC5126333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a major complication of diabetes mellitus. Although previous studies have established that inflammation, ischemia and neuropathy contribute to the development of DFU, it is still an unmet medical need due to lack knowledge of cellular and molecular mechanisms associated with DFU. In the present study, we tested our hypothesis that subcutaneous application of human placental mesenchymal stem cells (PMSCs) can accelerate diabetic dermal wound healing by modulating immunoresponse. METHODS AND RESULTS By using an in vivo excisional wound healing model in Goto-Kakizaki (GK) rats, we found that injection of PMSCs accelerates wound closure. Further studies revealed that application of PMSCs can regulate inflammation associated with wound healing by controlling secretion of pro- and anti-inflammatory factors, the beneficial effects can be partially blocked by application of antibodies against interleukin-10 (IL-10). Furthermore, in vitro experiments suggested that co-culture of PMSCs with human dermal fibroblasts can significantly inhibit activation of NF-ĸB induced by lipopolysaccharides (LPS), indicating the molecular mechanism of PMSCs mediated immunomodulation. CONCLUSION Taken together, our study suggested that the immunomodulation of PMSCs play an important role on diabetic dermal wound healing process, thus PMSCs might represent an attractive choice for treatment of diabetes dermal wound and DFU.
Collapse
Affiliation(s)
- Haifeng Wang
- Division of Geriatrics, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Yang Liu
- Division of Geriatrics, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Bangzhen Luo
- Division of Geriatrics, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Nanzi Xie
- Division of Geriatrics, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| | - Lige Song
- Department of Endocrinology, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Pei Erli
- Department of General Surgery, Tongji University Yangpu Hospital, Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of MedicineShanghai 200065, China
| | - Ming Luo
- Division of Geriatrics, Tongji Hospital, School of Medicine, Tongji UniversityShanghai 200065, China
| |
Collapse
|
2015
|
Banerjee A, McNish S, Shanmugam VK. Interferon-gamma (IFN-γ) is Elevated in Wound Exudate from Hidradenitis Suppurativa. Immunol Invest 2016; 46:149-158. [PMID: 27819528 DOI: 10.1080/08820139.2016.1230867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic recurrent inflammatory disease of apocrine glands which affects 1-4% of young adults. The purpose of this study was to investigate inflammatory cytokines in effluent from HS lesions and to identify potential local drivers of inflammation in HS. Wound fluid specimens from HS patients (n = 8) and age-matched chronic wound patients (n = 8) were selected for analysis. The hidradenitis suppurativa score (HSS) was used to determine the extent of HS activity. Cytokine analysis was conducted using Meso Scale Discovery cytokine and proinflammatory panels. Interferon-gamma (IFN-γ) was significantly elevated in the HS effluent compared to chronic wounds (1418 ± 1501 pg/ml compared to 102.5 ± 138 pg/ml, p = 0.027). HS effluent also had significantly higher levels of tumor necrosis factor-β (TNF-β) (9.24 ± 7.22 pg/ml compared to 1.65 ± 2.14 pg/ml, p = 0.03). There was no significant difference in any other cytokines. There was no significant difference in demographics in the HS compared to chronic wound cohorts. Mean HSS in the HS cohort was 68.88 (SD ± 41.45). In this proof-of-concept pilot study, IFN-γ was significantly elevated in HS effluent. TNF-β/LT-α levels were also elevated in HS, although the levels were more modest. Further studies should focus on molecular drivers of tissue injury in HS and the relationship between HS effluent cytokine profile and disease activity.
Collapse
Affiliation(s)
- Anirban Banerjee
- a Division of Rheumatology , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Sean McNish
- a Division of Rheumatology , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Victoria K Shanmugam
- a Division of Rheumatology , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| |
Collapse
|
2016
|
Skin fibrosis: Models and mechanisms. Curr Res Transl Med 2016; 64:185-193. [PMID: 27939457 DOI: 10.1016/j.retram.2016.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023]
Abstract
Matrix synthesis, deposition and remodeling are complex biological processes that are critical in development, maintenance of tissue homeostasis and repair of injured tissues. Disturbances in the regulation of these processes can result in severe pathological conditions which are associated with tissue fibrosis as e.g. in Scleroderma, cutaneous Graft-versus-Host-Disease, excessive scarring after trauma or carcinogenesis. Therefore, finding efficient treatments to limit skin fibrosis is of major clinical importance. However the pathogenesis underlying the development of tissue fibrosis is still not entirely resolved. In recent years progress has been made unraveling the complex cellular and molecular mechanisms that determine fibrosis. Here we provide an overview of established and more recently developed mouse models that can be used to investigate the mechanisms of skin fibrosis and to test potential therapeutic approaches.
Collapse
|
2017
|
Politis C, Schoenaers J, Jacobs R, Agbaje JO. Wound Healing Problems in the Mouth. Front Physiol 2016; 7:507. [PMID: 27853435 PMCID: PMC5089986 DOI: 10.3389/fphys.2016.00507] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 12/23/2022] Open
Abstract
Wound healing is a primary survival mechanism that is largely taken for granted. The literature includes relatively little information about disturbed wound healing, and there is no acceptable classification describing wound healing process in the oral region. Wound healing comprises a sequence of complex biological processes. All tissues follow an essentially identical pattern to complete the healing process with minimal scar formation. The oral cavity is a remarkable environment in which wound healing occurs in warm oral fluid containing millions of microorganisms. The present review provides a basic overview of the wound healing process and with a discussion of the local and general factors that play roles in achieving efficient would healing. Results of oral cavity wound healing can vary from a clinically healed wound without scar formation and with histologically normal connective tissue under epithelial cells to extreme forms of trismus caused by fibrosis. Many local and general factors affect oral wound healing, and an improved understanding of these factors will help to address issues that lead to poor oral wound healing.
Collapse
Affiliation(s)
- Constantinus Politis
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Katholieke Universiteit LeuvenLeuven, Belgium; Oral and Maxillofacial Surgery, Leuven University HospitalsLeuven, Belgium
| | - Joseph Schoenaers
- Oral and Maxillofacial Surgery, Leuven University Hospitals Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Jimoh O Agbaje
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Katholieke Universiteit LeuvenLeuven, Belgium; Oral and Maxillofacial Surgery, Leuven University HospitalsLeuven, Belgium
| |
Collapse
|
2018
|
Ghatak S, Niland S, Schulz JN, Wang F, Eble JA, Leitges M, Mauch C, Krieg T, Zigrino P, Eckes B. Role of Integrins α1β1 and α2β1 in Wound and Tumor Angiogenesis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3011-3027. [DOI: 10.1016/j.ajpath.2016.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
|
2019
|
Isidori AM, Venneri MA, Fiore D. Angiopoietin-1 and Angiopoietin-2 in metabolic disorders: therapeutic strategies to restore the highs and lows of angiogenesis in diabetes. J Endocrinol Invest 2016; 39:1235-1246. [PMID: 27344309 DOI: 10.1007/s40618-016-0502-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022]
Abstract
The morbidity and mortality of diabetes mellitus are mostly attributed to cardiovascular complications. Despite tremendous advancement in glycemic control, anti-diabetic medications have failed to revert vascular impairment once triggered by the metabolic disorder. The angiogenic growth factors, Angiopoietin-1 (Ang1) and Angiopoietin-2 (Ang2), are crucial regulators of vessel formation and maintenance starting with embryonic development and continuing through life. In mature vessels, angiopoietins control vascular permeability, inflammation and remodeling. A crucial role of angiopoietins is to drive vascular inflammation from the active to the quiescent state, enabling restoration of tissue homeostasis. The mechanism is of particular importance for healing and repair after damage, two conditions typically impaired in metabolic disorders. There is an emerging body of evidences suggesting that the imbalance of Ang1 and Ang2 regulation, leading to an increased Ang2/Ang1 ratio, represents a culprit of the vascular alterations of patients with type-2 diabetes mellitus. Pharmacological modulation of Ang1 or Ang2 actions may help prevent or delay the onset of diabetic vascular complications by restoring vessel function, favoring tissue repair and maintaining endothelial quiescence. In this review, we present a summary of the role of Ang1 and Ang2, their involvement in diabetic complications, and novel therapeutic strategies targeting angiopoietins to ameliorate vascular health in metabolic disorders.
Collapse
Affiliation(s)
- A M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - M A Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Fiore
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| |
Collapse
|
2020
|
Ahluwalia A, Jones MK, Brzozowski T, Tarnawski AS. Nerve growth factor is critical requirement for in vitro angiogenesis in gastric endothelial cells. Am J Physiol Gastrointest Liver Physiol 2016; 311:G981-G987. [PMID: 27742705 DOI: 10.1152/ajpgi.00334.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
Angiogenesis is critical for the healing of gastric mucosal injury and is considered to be primarily regulated by vascular endothelial growth factor (VEGF), the fundamental proangiogenic factor. The role of nerve growth factor (NGF) in gastric angiogenesis is unknown. We examined the expression of NGF and its TrkA receptor in endothelial cells (ECs) isolated from gastric mucosa of rats (GMECs), the effect of NGF treatment on in vitro angiogenesis in GMECs, and, the mechanisms underlying NGF's proangiogenic actions. Isolated GMECs from Fisher rats were treated with vehicle, NGF (10-1,000 ng/ml), VEGF (20 ng/ml), or NGF+VEGF. To determine whether and to what extent NGF is critical for angiogenesis in GMECs, we silenced NGF expression using specific siRNA and examined in vitro angiogenesis with and without treatment with exogenous NGF and/or VEGF. Treatment of GMECs with NGF significantly increased in vitro angiogenesis similar to that seen in GMECs treated with VEGF. Silencing of NGF in GMECs abolished angiogenesis, and this effect was reversed only by exogenous NGF but not VEGF, which indicates a direct proangiogenic action of NGF on GMECs that is, at least in part, distinct and independent of VEGF. NGF's proangiogenic action on GMECs was mediated via PI3-K/Akt signaling. This study showed for the first time that gastric mucosal ECs express NGF and its receptor TrkA and that NGF is critical for angiogenesis in these cells.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California, and the Department of Medicine, University of California, Irvine, California; and
| | - Michael K Jones
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California, and the Department of Medicine, University of California, Irvine, California; and
| | | | - Andrzej S Tarnawski
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System, Long Beach, California, and the Department of Medicine, University of California, Irvine, California; and
| |
Collapse
|
2021
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2022
|
Xie J, Yao B, Han Y, Huang S, Fu X. Skin appendage-derived stem cells: cell biology and potential for wound repair. BURNS & TRAUMA 2016; 4:38. [PMID: 27800498 PMCID: PMC5082359 DOI: 10.1186/s41038-016-0064-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Jiangfan Xie
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, 51 Fu Cheng Road, Beijing, 100048 People's Republic of China
| | - Bin Yao
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, 51 Fu Cheng Road, Beijing, 100048 People's Republic of China ; School of Medicine, Nankai University, Tianjin, 300052 People's Republic of China
| | - Yutong Han
- Graduate School of the Second Teaching Hospital of Zhengzhou University, Zhengzhou, 450000 People's Republic of China
| | - Sha Huang
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, 51 Fu Cheng Road, Beijing, 100048 People's Republic of China ; Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853 People's Republic of China
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, First Hospital Affiliated to General Hospital of PLA, 51 Fu Cheng Road, Beijing, 100048 People's Republic of China ; Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853 People's Republic of China
| |
Collapse
|
2023
|
Rodrigues HG, Vinolo MAR, Sato FT, Magdalon J, Kuhl CMC, Yamagata AS, Pessoa AFM, Malheiros G, dos Santos MF, Lima C, Farsky SH, Camara NOS, Williner MR, Bernal CA, Calder PC, Curi R. Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. PLoS One 2016; 11:e0165115. [PMID: 27764229 PMCID: PMC5072690 DOI: 10.1371/journal.pone.0165115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022] Open
Abstract
Introduction Impaired wound healing has been widely reported in diabetes. Linoleic acid (LA) accelerates the skin wound healing process in non-diabetic rats. However, LA has not been tested in diabetic animals. Objectives We investigated whether oral administration of pure LA improves wound healing in streptozotocin-induced diabetic rats. Methods Dorsal wounds were induced in streptozotocin-induced type-1 diabetic rats treated or not with LA (0.22 g/kg b.w.) for 10 days. Wound closure was daily assessed for two weeks. Wound tissues were collected at specific time-points and used to measure fatty acid composition, and contents of cytokines, growth factors and eicosanoids. Histological and qPCR analyses were employed to examine the dynamics of cell migration during the healing process. Results LA reduced the wound area 14 days after wound induction. LA also increased the concentrations of cytokine-induced neutrophil chemotaxis (CINC-2αβ), tumor necrosis factor-α (TNF-α) and leukotriene B4 (LTB4), and reduced the expression of macrophage chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1). These results together with the histological analysis, which showed accumulation of leukocytes in the wound early in the healing process, indicate that LA brought forward the inflammatory phase and improved wound healing in diabetic rats. Angiogenesis was induced by LA through elevation in tissue content of key mediators of this process: vascular-endothelial growth factor (VEGF) and angiopoietin-2 (ANGPT-2). Conclusions Oral administration of LA hastened wound closure in diabetic rats by improving the inflammatory phase and angiogenesis.
Collapse
Affiliation(s)
- Hosana G. Rodrigues
- School of Applied Sciences, University of Campinas, Limeira, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
- * E-mail:
| | - Marco A. R. Vinolo
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fabio T. Sato
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana Magdalon
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | | | - Ana S. Yamagata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Ana Flávia M. Pessoa
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Gabriella Malheiros
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Marinilce F. dos Santos
- Cell and Developmental Biology Department, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Camila Lima
- Department of Clinical and Toxicology Analyses, School of Pharmaceutical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Sandra H. Farsky
- Department of Clinical and Toxicology Analyses, School of Pharmaceutical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| | - Maria R. Williner
- Food Sciences and Nutrition, School of Biochemistry and Biological Sciences, National University of Litoral, Santa Fé, Argentina
| | - Claudio A. Bernal
- Food Sciences and Nutrition, School of Biochemistry and Biological Sciences, National University of Litoral, Santa Fé, Argentina
| | - Philip C. Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, Sao Paulo University, Sao Paulo, Brazil
| |
Collapse
|
2024
|
Li M, Ke QF, Tao SC, Guo SC, Rui BY, Guo YP. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B 2016; 4:6830-6841. [PMID: 32263577 DOI: 10.1039/c6tb01560c] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The exploration of an effective diabetic chronic wound healing process still remains a great challenge. Herein, we used gene overexpression technology to obtain synovial mesenchymal stem cells (SMSCs) and the miR-126-3p highly expressed SMSCs (SMSCs-126). The exosomes derived from miR-126-3p overexpressed SMSCs (SMSCs-126-Exos) with a particle size of 85 nm were encapsulated in hydroxyapatite/chitosan (HAP-CS) composite hydrogels (HAP-CS-SMSCs-126-Exos) as wound dressings. The SMSCs-126-Exos, CS and low-crystallinity HAP nanorods with a length of 200 nm and a diameter of 50 nm are uniformly dispersed within the whole composite hydrogel. The HAP-CS-SMSCs-126-Exos possess the controlled release property of SMSCs-126-Exos for at least 6 days. The released SMSCs-126-Exos nanoparticles stimulate the proliferation and migration of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1). At the same time, the migration and capillary-network formation of HMEC-1 are promoted through the activation of MAPK/ERK and PI3K/AKT. In vivo tests demonstrate that the HAP-CS-SMSCs-126-Exos successfully promote wound surface re-epithelialization, accelerate angiogenesis, and expedite collagen maturity due to the presence of HAP, CS and SMSCs-126-Exos. Therefore, the HAP-CS-SMSCs-126-Exos possess great potential application for diabetic chronic wound healing, and especially provide the possibility of using exosomes derived from modified cells as a new approach to bring wonderful functionality and controllability in future chronic wound therapy.
Collapse
Affiliation(s)
- Min Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | | | |
Collapse
|
2025
|
Insulin and TOR signal in parallel through FOXO and S6K to promote epithelial wound healing. Nat Commun 2016; 7:12972. [PMID: 27713427 PMCID: PMC5059774 DOI: 10.1038/ncomms12972] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022] Open
Abstract
The TOR and Insulin/IGF signalling (IIS) network controls growth, metabolism and ageing. Although reducing TOR or insulin signalling can be beneficial for ageing, it can be detrimental for wound healing, but the reasons for this difference are unknown. Here we show that IIS is activated in the cells surrounding an epidermal wound in Drosophila melanogaster larvae, resulting in PI3K activation and redistribution of the transcription factor FOXO. Insulin and TOR signalling are independently necessary for normal wound healing, with FOXO and S6K as their respective effectors. IIS is specifically required in cells surrounding the wound, and the effect is independent of glycogen metabolism. Insulin signalling is needed for the efficient assembly of an actomyosin cable around the wound, and constitutively active myosin II regulatory light chain suppresses the effects of reduced IIS. These findings may have implications for the role of insulin signalling and FOXO activation in diabetic wound healing.
Collapse
|
2026
|
Duke JM, Randall SM, Fear MW, Boyd JH, Rea S, Wood FM. Respiratory Morbidity After Childhood Burns: A 10-Year Follow-up Study. Pediatrics 2016; 138:peds.2016-1658. [PMID: 27664086 DOI: 10.1542/peds.2016-1658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The systemic responses triggered by burns and resuscitative measures may cause pulmonary damage and edema in the acute phase. These effects may occur in the absence of inhalation injury. Currently, there is a paucity of data on the recovery of the respiratory system postburn. This study aimed to examine 10-year hospital service use for respiratory morbidity in children with cutaneous burns and no smoke inhalation injury. METHODS A population-based longitudinal study with 10-year follow-up using linked hospital and death from Western Australia for children <5 years when hospitalized for a first burn injury (n = 5290) between 1980 and 2012 and a frequency matched noninjury comparison cohort, randomly selected from Western Australia's birth registrations (n = 27 061). Multivariate negative binomial and Cox proportional hazards regression models were used to generate adjusted incidence rate ratios (IRR) and hazard ratios, respectively. RESULTS After adjustment for demographic factors and preexisting health status, the burn cohort had higher rates of admissions for influenza and viral pneumonia (IRR, 1.78; 95% confidence interval [CI], 1.10-2.87), bacterial pneumonia (IRR, 1.34; 95% CI, 1.06-1.70), and other respiratory infections (IRR, 1.65; 95% CI, 1.43-1.90. No significant difference was found for other upper respiratory tract conditions (IRR, 1.10; 95% CI, 0.98-1.23) or chronic lower respiratory diseases (IRR, 0.99; 95% CI, 0.80-1.23) compared with the uninjured cohort. CONCLUSIONS These findings demonstrated increased respiratory infection admissions after burns. These outcomes suggest that immune changes triggered by a burn injury may persist in some children for at least 10 years after wound healing.
Collapse
Affiliation(s)
- Janine M Duke
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, Western Australia, Australia;
| | - Sean M Randall
- Centre for Data Linkage, Curtin University, Perth, Western Australia, Australia; and
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - James H Boyd
- Centre for Data Linkage, Curtin University, Perth, Western Australia, Australia; and
| | - Suzanne Rea
- Burns Service of Western Australia, Fiona Stanley Hospital and Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Fiona M Wood
- Burns Service of Western Australia, Fiona Stanley Hospital and Princess Margaret Hospital, Perth, Western Australia, Australia
| |
Collapse
|
2027
|
Wang X, Tang P, Guo F, Zhang M, Chen Y, Yan Y, Tian Z, Xu P, Zhang L, Zhang L, Zhang L. RhoA regulates Activin B-induced stress fiber formation and migration of bone marrow-derived mesenchymal stromal cell through distinct signaling. Biochim Biophys Acta Gen Subj 2016; 1861:3011-3018. [PMID: 27693126 DOI: 10.1016/j.bbagen.2016.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND In our previous study, Activin B induced actin stress fiber formation and cell migration in Bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. However, the underlying molecular mechanisms are not well studied. RhoA is recognized to play a critical role in the regulation of actomyosin cytoskeletal organization and cell migration. METHODS Pull-down assay was performed to investigate the activity of RhoA. The dominant-negative mutants of RhoA (RhoA(N19)) was used to determine whether RhoA has a role in Activin B-induced cytoskeleton organization and cell migration in BMSCs. Cytoskeleton organization was examined by fluorescence Rhodamine-phalloidin staining, and cell migration by transwell and cell scratching assay. Western blot was carried out to investigate downstream signaling cascade of RhoA. Inhibitor and siRNAs were used to detect the role of downstream signaling in stress fiber formation and/or cell migration. RESULTS RhoA was activated by Activin B in BMSCs. RhoA(N19) blocked Activin B-induced stress fiber formation and cell migration. ROCK inhibitor blocked Activin B-induced stress fiber formation but enhanced BMSCs migration. Activin B induced phosphorylation of LIMK2 and Cofilin, which was abolished by ROCK inhibition. Both of siRNA LIMK2 and siRNA Cofilin inhibited Activin B-induced stress fiber formation. CONCLUSIONS RhoA regulates Activin B-induced stress fiber formation and migration of BMSCs. A RhoA-ROCK-LIMK2-Cofilin signaling node exists and regulates actin stress fiber formation. RhoA regulates Activin B-induced cell migration independent of ROCK. GENERAL SIGNIFICANCE Better understanding of the molecular mechanisms of BMSCs migration will help optimize therapeutic strategy to target BMSCs at injured tissues.
Collapse
Affiliation(s)
- Xueer Wang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pei Tang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Min Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yinghua Chen
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuan Yan
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihui Tian
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Xu
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2028
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice. Toxicol Appl Pharmacol 2016; 311:42-51. [PMID: 27693115 DOI: 10.1016/j.taap.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high-affinity ligand for the aryl hydrocarbon receptor (AhR). Increasing evidence indicates that AhR signaling contributes to wound healing, which involves the coordinated deposition and remodeling of the extracellular matrix. In the liver, wound healing is attributed to the activation of hepatic stellate cells (HSCs), which mediate fibrogenesis through the production of soluble mediators and collagen type I. We recently reported that TCDD treatment increases the activation of human HSCs in vitro. The goal of this study was to determine how TCDD impacts HSC activation in vivo using a mouse model of experimental liver fibrosis. To elicit fibrosis, C57BL6/male mice were treated twice weekly for 8weeks with 0.5ml/kg carbon tetrachloride (CCl4). TCDD (20μg/kg) or peanut oil (vehicle) was administered once a week during the last 2weeks. Results indicate that TCDD increased liver-body-weight ratios, serum alanine aminotransferase activity, and hepatic necroinflammation in CCl4-treated mice. Likewise, TCDD treatment increased mRNA expression of HSC activation and fibrogenesis genes, namely α-smooth muscle actin, desmin, delta-like homolog-1, TGF-β1, and collagen type I. However, TCDD treatment did not exacerbate fibrosis, nor did it increase the collagen content of the liver. Instead, TCDD increased hepatic collagenase activity and increased expression of matrix metalloproteinase (MMP)-13 and the matrix regulatory proteins, TIMP-1 and PAI-1. These results support the conclusion that TCDD increases CCl4-induced liver damage and exacerbates HSC activation, yet collagen deposition and the development of fibrosis may be limited by TCDD-mediated changes in extracellular matrix remodeling.
Collapse
|
2029
|
Zheng Z, Zhang X, Dang C, Beanes S, Chang GX, Chen Y, Li CS, Lee KS, Ting K, Soo C. Fibromodulin Is Essential for Fetal-Type Scarless Cutaneous Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2824-2832. [PMID: 27665369 DOI: 10.1016/j.ajpath.2016.07.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
Abstract
In contrast to adult and late-gestation fetal skin wounds, which heal with scar, early-gestation fetal skin wounds display a remarkable capacity to heal scarlessly. Although the underlying mechanism of this transition from fetal-type scarless healing to adult-type healing with scar has been actively investigated for decades, in utero restoration of scarless healing in late-gestation fetal wounds has not been reported. In this study, using loss- and gain-of-function rodent fetal wound models, we identified that fibromodulin (Fm) is essential for fetal-type scarless wound healing. In particular, we found that loss of Fm can eliminate the ability of early-gestation fetal rodents to heal without scar. Meanwhile, administration of fibromodulin protein (FM) alone was capable of restoring scarless healing in late-gestation rat fetal wounds, which naturally heal with scar, as characterized by dermal appendage restoration and organized collagen architectures that were virtually indistinguishable from those in age-matched unwounded skin. High Fm levels correlated with decreased transforming growth factor (TGF)-β1 expression and scarless repair, while low Fm levels correlated with increased TGF-β1 expression and scar formation. This study represents the first successful in utero attempt to induce scarless repair in late-gestation fetal wounds by using a single protein, Fm, and highlights the crucial role that the FM-TGF-β1 nexus plays in fetal-type scarless skin repair.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, the Department of Orthopaedic Surgery, and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Catherine Dang
- Saul & Joyce Brandman Breast Center, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Grace X Chang
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Yao Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Chen-Shuang Li
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kevin S Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, the Department of Orthopaedic Surgery, and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, the Department of Orthopaedic Surgery, and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
2030
|
Vilangattu Parambu Kunjikuttan R, Jayasree A, Biswas R, Jayakumar R. Recent developments in drug-eluting dressings for the treatment of chronic wounds. Expert Opin Drug Deliv 2016; 13:1645-1647. [PMID: 27650305 DOI: 10.1080/17425247.2016.1238456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rajan Vilangattu Parambu Kunjikuttan
- a Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Amrita University , Kochi , India
| | - Anjana Jayasree
- a Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Amrita University , Kochi , India
| | - Raja Biswas
- a Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Amrita University , Kochi , India
| | - R Jayakumar
- a Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Amrita University , Kochi , India
| |
Collapse
|
2031
|
Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization. Proc Natl Acad Sci U S A 2016; 113:E5792-E5801. [PMID: 27647919 DOI: 10.1073/pnas.1612277113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments. In this study, we present an integrin-binding prosurvival peptide derived from angiopoietin-1, QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine), as a therapeutic candidate for diabetic wound treatments by demonstrating its efficacy in promoting the attachment, survival, and collective migration of human primary keratinocytes and the activation of protein kinase B Akt and MAPKp42/44 The QHREDGS peptide, both as a soluble supplement and when immobilized in a substrate, protected keratinocytes against hydrogen peroxide stress in a dose-dependent manner. Collective migration of both normal and diabetic human keratinocytes was promoted on chitosan-collagen films with the immobilized QHREDGS peptide. The clinical relevance was demonstrated further by assessing the chitosan-collagen hydrogel with immobilized QHREDGS in full-thickness excisional wounds in a db/db diabetic mouse model; QHREDGS showed significantly accelerated and enhanced wound closure compared with a clinically approved collagen wound dressing, peptide-free hydrogel, or blank wound controls. The accelerated wound closure resulted primarily from faster re-epithelialization and increased formation of granulation tissue. There were no observable differences in blood vessel density or size within the wound; however, the total number of blood vessels was greater in the peptide-hydrogel-treated wounds. Together, these findings indicate that QHREDGS is a promising candidate for wound-healing interventions that enhance re-epithelialization and the formation of granulation tissue.
Collapse
|
2032
|
Erdman SE, Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:91-126. [PMID: 27793228 DOI: 10.1016/bs.irn.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now understood that gut bacteria exert effects beyond the local boundaries of the gastrointestinal tract to include distant tissues and overall health. Prototype probiotic bacterium Lactobacillus reuteri has been found to upregulate hormone oxytocin and systemic immune responses to achieve a wide array of health benefits involving wound healing, mental health, metabolism, and myoskeletal maintenance. Together these display that the gut microbiome and host animal interact via immune-endocrine-brain signaling networks. Such findings provide novel therapeutic strategies to stimulate powerful homeostatic pathways and genetic programs, stemming from the coevolution of mammals and their microbiome.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2033
|
|
2034
|
Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells Int 2016; 2016:7231038. [PMID: 27648076 PMCID: PMC5018320 DOI: 10.1155/2016/7231038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.
Collapse
|
2035
|
Campitiello N, Faenza M, Pagliara D, Baldi C, Zeppa P, Rosati A, Rubino C. Expression of the anti-apoptotic BAG3 protein in leg venous ulcerative tissues. Cell Death Discov 2016; 2:15068. [PMID: 27551493 PMCID: PMC4979477 DOI: 10.1038/cddiscovery.2015.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- N Campitiello
- 'SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana', University of Salerno , Salerno, Italy
| | - M Faenza
- 'SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana', University of Salerno , Salerno, Italy
| | - D Pagliara
- 'SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana', University of Salerno , Salerno, Italy
| | - C Baldi
- 'SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana', University of Salerno , Salerno, Italy
| | - P Zeppa
- 'SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana', University of Salerno, Salerno, Italy; Department of Medicine and Surgery, School in Translational Medicine, University of Salerno, Baronissi, Salerno, Italy
| | - A Rosati
- Department of Medicine and Surgery, School in Translational Medicine, University of Salerno, Baronissi, Salerno, Italy; BIOUNIVERSA s.r.l., Baronissi, Salerno, Italy
| | - C Rubino
- 'SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana', University of Salerno, Salerno, Italy; Department of Medicine and Surgery, School in Translational Medicine, University of Salerno, Baronissi, Salerno, Italy
| |
Collapse
|
2036
|
Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:9-26. [PMID: 27405960 DOI: 10.1089/ten.teb.2016.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Samad Ahadian
- 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Milica Radisic
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
2037
|
Godwin JW, Pinto AR, Rosenthal NA. Chasing the recipe for a pro-regenerative immune system. Semin Cell Dev Biol 2016; 61:71-79. [PMID: 27521522 DOI: 10.1016/j.semcdb.2016.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Identification of the key ingredients and essential processes required to achieve perfect tissue regeneration in humans has so far remained elusive. Injury in vertebrates induces an obligatory wound response that will precede or overlap any regeneration specific program or scarring outcome. This process shapes the cellular and molecular landscape of the tissue, influencing the success of endogenous repair pathways or for potential clinical intervention. The involvement of immune cells is also required for aspects of development extending beyond the initial inflammatory phase of wounding. It has now become clear from amphibian, fish and mammalian models of tissue injury that the type of immune response and the profile of immune cells attending the site of injury can act as the gatekeepers that determine wound repair quality. The heterogeneity among innate and adaptive immune cell populations, along with the developmental origin of these cells, form key ingredients affecting the potential for downstream repair and the suppression of fibrosis. Cell-to-cell interactions between immune cells, such as macrophages and T cells, with stem cells and mesenchymal cells are critically important for shaping this process and these exchanges, are in turn influenced by the type of injury, tissue location and developmental stage of the organism. Developmentally, mouse cardiac regeneration is restricted to early stages of postnatal life where the balance of innate to adaptive immune cells may be poised towards regeneration. In the injured adult mouse liver, specific macrophage subsets improve repair while other bone marrow derived cells can exacerbate injury. Other studies using genetically diverse mice have shown enhanced regeneration in certain strains, restricted to specific tissues. This enhanced repair is linked with expression of genes such as Insulin-like Growth Factor- 1 (IGF-1) and activin (Act 1), that both play important roles in shaping the immune system. Immune cells are now appreciated to have powerful influences on critical cell types required for regeneration success. The winning recipe for tissue regeneration is likely to be found ultimately by identifying the genetic elements and specific cell populations that limit or allow intrinsic potential. This will be essential for developing therapeutic strategies for tissue regeneration in humans.
Collapse
Affiliation(s)
- James W Godwin
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; MDI Biological Laboratory, Salisbury Cove, ME 04672, USA; Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
| | | | | |
Collapse
|
2038
|
Minutti CM, Knipper JA, Allen JE, Zaiss DMW. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol 2016; 61:3-11. [PMID: 27521521 DOI: 10.1016/j.semcdb.2016.08.006] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022]
Abstract
Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a substantial contribution to wound healing following injury. In this review, we evaluate how macrophages in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process of wound healing. We highlight the commonalities of macrophage functions during repair and contrast them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound healing.
Collapse
Affiliation(s)
- Carlos M Minutti
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Johanna A Knipper
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Judith E Allen
- School of Biological Sciences, Faculty of Biology, Medicine & Health & Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Dietmar M W Zaiss
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| |
Collapse
|
2039
|
Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 2016; 365:495-506. [PMID: 27461257 DOI: 10.1007/s00441-016-2464-0] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/24/2016] [Indexed: 12/28/2022]
Abstract
The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).
Collapse
Affiliation(s)
- Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
- The Research Residency Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fla., USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Sophia Liu
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Karen I Garzon
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA.
| |
Collapse
|
2040
|
Sasso O, Pontis S, Armirotti A, Cardinali G, Kovacs D, Migliore M, Summa M, Moreno-Sanz G, Picardo M, Piomelli D. Endogenous N-acyl taurines regulate skin wound healing. Proc Natl Acad Sci U S A 2016; 113:E4397-406. [PMID: 27412859 PMCID: PMC4968764 DOI: 10.1073/pnas.1605578113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy.
Collapse
Affiliation(s)
- Oscar Sasso
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Silvia Pontis
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Andrea Armirotti
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Giorgia Cardinali
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Daniela Kovacs
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Marco Migliore
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Maria Summa
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Mauro Picardo
- Cutaneous Physiopathology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697; Department of Pharmacology, University of California, Irvine, CA 92697; Department of Biological Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
2041
|
Businaro R, Corsi M, Di Raimo T, Marasco S, Laskin DL, Salvati B, Capoano R, Ricci S, Siciliano C, Frati G, De Falco E. Multidisciplinary approaches to stimulate wound healing. Ann N Y Acad Sci 2016; 1378:137-142. [PMID: 27434638 DOI: 10.1111/nyas.13158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
New civil wars and waves of terrorism are causing crucial social changes, with consequences in all fields, including health care. In particular, skin injuries are evolving as an epidemic issue. From a physiological standpoint, although wound repair takes place more rapidly in the skin than in other tissues, it is still a complex organ to reconstruct. Genetic and clinical variables, such as diabetes, smoking, and inflammatory/immunological pathologies, are also important risk factors limiting the regenerative potential of many therapeutic applications. Therefore, optimization of current clinical strategies is critical. Here, we summarize the current state of the field by focusing on stem cell therapy applications in wound healing, with an emphasis on current clinical approaches being developed. These involve protocols for the ex vivo expansion of adipose tissue-derived mesenchymal stem cells by means of a patented Good Manufacturing Practice-compliant platelet lysate. Combinations of multiple strategies, including genetic modifications and stem cells, biomimetic scaffolds, and novel vehicles, such as nanoparticles, are also discussed as future approaches.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| | - Mariangela Corsi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Tania Di Raimo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sergio Marasco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Raffaele Capoano
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Serafino Ricci
- Department of Anatomical, Histological, Legal Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Camilla Siciliano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
2042
|
Weavers H, Liepe J, Sim A, Wood W, Martin P, Stumpf MPH. Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient. Curr Biol 2016; 26:1975-1989. [PMID: 27426513 PMCID: PMC4985561 DOI: 10.1016/j.cub.2016.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/11/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023]
Abstract
In the acute inflammatory phase following tissue damage, cells of the innate immune system are rapidly recruited to sites of injury by pro-inflammatory mediators released at the wound site. Although advances in live imaging allow us to directly visualize this process in vivo, the precise identity and properties of the primary immune damage attractants remain unclear, as it is currently impossible to directly observe and accurately measure these signals in tissues. Here, we demonstrate that detailed information about the attractant signals can be extracted directly from the in vivo behavior of the responding immune cells. By applying inference-based computational approaches to analyze the in vivo dynamics of the Drosophila inflammatory response, we gain new detailed insight into the spatiotemporal properties of the attractant gradient. In particular, we show that the wound attractant is released by wound margin cells, rather than by the wounded tissue per se, and that it diffuses away from this source at rates far slower than those of previously implicated signals such as H2O2 and ATP, ruling out these fast mediators as the primary chemoattractant. We then predict, and experimentally test, how competing attractant signals might interact in space and time to regulate multi-step cell navigation in the complex environment of a healing wound, revealing a period of receptor desensitization after initial exposure to the damage attractant. Extending our analysis to model much larger wounds, we uncover a dynamic behavioral change in the responding immune cells in vivo that is prognostic of whether a wound will subsequently heal or not. Video Abstract
Computational modeling of in vivo inflammatory response to tissue damage is applied The model infers novel spatiotemporal properties of the wound attractant gradient Wound signal is released from the wound edge for 30 min and diffuses at 200 μm2/min Modeling two competing wounds reveals a period of immune cell desensitization
Collapse
Affiliation(s)
- Helen Weavers
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Cellular and Molecular Medicine, Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Juliane Liepe
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Aaron Sim
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | - Will Wood
- School of Cellular and Molecular Medicine, Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK; Department of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Lee Kong Chian School of Medicine, Nanyang Technologicial University, Singapore 636921, Singapore.
| | - Michael P H Stumpf
- Theoretical Systems Biology, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2043
|
Karkampouna S, Kreulen M, Obdeijn MC, Kloen P, Dorjée AL, Rivellese F, Chojnowski A, Clark I, Kruithof-de Julio M. Connective Tissue Degeneration: Mechanisms of Palmar Fascia Degeneration (Dupuytren's Disease). CURRENT MOLECULAR BIOLOGY REPORTS 2016; 2:133-140. [PMID: 27617187 PMCID: PMC4996878 DOI: 10.1007/s40610-016-0045-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dupuytren's disease is a connective tissue disorder of the hand causing excessive palmar fascial fibrosis with associated finger contracture and disability. The aetiology of the disease is heterogeneous, with both genetic and environmental components. The connective tissue is abnormally infiltrated by myofibroblasts that deposit collagen and other extracellular matrix proteins. We describe the clinical profile of Dupuytren's disease along with current therapeutic schemes. Recent findings on molecular and cellular parameters that are dysregulated in Dupuytren's disease, which may contribute to the onset of the disease, and the role of resident inflammation promoting fibrosis, are highlighted. We review recent literature focusing on non-myofibroblast cell types (stem cell-like cells), their pro-inflammatory and pro-fibrotic role that may account for abnormal wound healing response.
Collapse
Affiliation(s)
- S. Karkampouna
- Department of Urology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA 2333 The Netherlands
- Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, 3008 Switzerland
| | - M. Kreulen
- Department of Plastic Surgery, Rode Kruis Ziekenhuis, Vondellaan 13, Beverwijk, 1942 LE The Netherlands
| | - M. C. Obdeijn
- Department of Plastic Reconstructive and Hand Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD The Netherlands
| | - P. Kloen
- Department of Orthopedic Surgery, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD The Netherlands
| | - A. L. Dorjée
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA The Netherlands
| | - F. Rivellese
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA The Netherlands
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - A. Chojnowski
- Institute of Orthopaedics, Norfolk and Norwich University Hospital, Norwich, UK
| | - I. Clark
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Marianna Kruithof-de Julio
- Department of Urology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA 2333 The Netherlands
- Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Bern, Murtenstrasse 35, Bern, 3008 Switzerland
| |
Collapse
|
2044
|
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 2016; 100:979-984. [PMID: 27406995 DOI: 10.1189/jlb.4mr0316-102r] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Collapse
Affiliation(s)
- Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
2045
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
2046
|
Uzunalli G, Mammadov R, Yesildal F, Alhan D, Ozturk S, Ozgurtas T, Guler MO, Tekinay AB. Angiogenic Heparin-Mimetic Peptide Nanofiber Gel Improves Regenerative Healing of Acute Wounds. ACS Biomater Sci Eng 2016; 3:1296-1303. [DOI: 10.1021/acsbiomaterials.6b00165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gozde Uzunalli
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Rashad Mammadov
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Fatih Yesildal
- Department
of Medical Biochemistry, Diyarbakir Military Hospital, Diyarbakir, Turkey
| | - Dogan Alhan
- Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | - Mustafa O. Guler
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey 06800
| |
Collapse
|
2047
|
Abstract
Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. Summary: Fin cryolesion resulted in histolysis and a delayed tissue loss. Despite prolonged destruction of the stump architecture, fin regeneration resumed and was normally completed, revealing robustness of the regenerative capacity.
Collapse
Affiliation(s)
- Bérénice Chassot
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
2048
|
IL-33-Dependent Group 2 Innate Lymphoid Cells Promote Cutaneous Wound Healing. J Invest Dermatol 2016; 136:487-496. [PMID: 26802241 PMCID: PMC4731037 DOI: 10.1038/jid.2015.406] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Breaches in the skin barrier initiate an inflammatory immune response that is critical for successful wound healing. Innate lymphoid cells (ILCs) are a recently identified population of immune cells that reside at epithelial barrier surfaces such as the skin, lung and gut and promote pro-inflammatory or epithelial repair functions following exposure to allergens, pathogens or chemical irritants. However, the potential role of ILCs in regulating cutaneous wound healing remains undefined. Here, we demonstrate that cutaneous injury promotes an IL-33-dependent group 2 ILC (ILC2) response and that abrogation of this response impairs re-epithelialization and efficient wound closure. Additionally, we provide evidence suggesting that an analogous ILC2 response is operational in acute wounds of human skin. Together, these results indicate that IL-33-responsive ILC2s are an important link between the cutaneous epithelium and the immune system, acting to promote the restoration of skin integrity following injury.
Collapse
|
2049
|
Muzzio NE, Pasquale MA, Huergo MAC, Bolzán AE, González PH, Arvia AJ. Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media. J Biol Phys 2016; 42:477-502. [PMID: 27270331 DOI: 10.1007/s10867-016-9418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/04/2016] [Indexed: 10/21/2022] Open
Abstract
To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar-Parisi-Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched-KPZ equation. Seemingly, these results show a possible way of linking the cellular Potts models and the 2D colony front roughness dynamics.
Collapse
Affiliation(s)
- N E Muzzio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| | - M A Pasquale
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina.
| | - M A C Huergo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| | - A E Bolzán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| | - P H González
- Cátedra de Patología, Facultad de Ciencias Médicas, UNLP, CIC, Calle 60 y 120, 1900, La Plata, Bs. As., Argentina
| | - A J Arvia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| |
Collapse
|
2050
|
Liu Z, Xu Y, Chen L, Xie J, Tang J, Zhao J, Shu B, Qi S, Chen J, Liang G, Luo G, Wu J, He W, Liu X. Dendritic epidermal T cells facilitate wound healing in diabetic mice. Am J Transl Res 2016; 8:2375-2384. [PMID: 27347345 PMCID: PMC4891450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
The impairment of skin repair in diabetic patients can lead to increased morbidity and mortality. Proper proliferation, apoptosis and migration in keratinocytes are vital for skin repair, but in diabetic patients, hyperglycemia impairs this process. Dendritic epidermal T cells (DETCs) are an important part of the resident cutaneous immunosurveillance program. We observed a reduction in the number of DETCs in a streptozotocin-induced diabetic mouse model. This reduction in DETCs resulted in decreased IGF-1 and KGF production in the epidermis, which is closely associated with diabetic delayed wound closure. DETCs ameliorated the poor wound-healing conditions in diabetic mice by increasing keratinocyte migration and proliferation and decreasing keratinocyte apoptosis in diabetes-like microenvironments. Our results elucidate a new mechanism for diabetic delayed wound closure and point to a new strategy for the treatment of wounds in diabetic patients.
Collapse
Affiliation(s)
- Zhongyang Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Yingbin Xu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Lei Chen
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Jinming Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Jingling Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Bin Shu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| | - Jian Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Guangping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical UniversityChongqing 400038, P. R. China
- Chongqing Key Laboratory for Disease ProteomicsChongqing 400038, P. R. China
| | - Xusheng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, 510080, Guangdong, P. R. China
| |
Collapse
|