2151
|
Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J, Mehta K. Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 2010; 5:e13390. [PMID: 20967228 PMCID: PMC2953521 DOI: 10.1371/journal.pone.0013390] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022] Open
Abstract
Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44(+)/CD24(-/low) cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jia Xu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Samuel Brady
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Hui Gao
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - James Reuben
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kapil Mehta
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
2152
|
Kumar PA, Kotlyarevska K, Dejkhmaron P, Reddy GR, Lu C, Bhojani MS, Menon RK. Growth hormone (GH)-dependent expression of a natural antisense transcript induces zinc finger E-box-binding homeobox 2 (ZEB2) in the glomerular podocyte: a novel action of gh with implications for the pathogenesis of diabetic nephropathy. J Biol Chem 2010; 285:31148-31156. [PMID: 20682777 PMCID: PMC2951188 DOI: 10.1074/jbc.m110.132332] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/02/2010] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) excess results in structural and functional changes in the kidney and is implicated as a causative factor in the development of diabetic nephropathy (DN). Glomerular podocytes are the major barrier to the filtration of serum proteins, and altered podocyte function and/or reduced podocyte number is a key event in the pathogenesis of DN. We have previously shown that podocytes are a target for GH action. To elucidate the molecular basis for the effects of GH on the podocyte, we conducted microarray and RT-quantitative PCR analyses of immortalized human podocytes and identified zinc finger E-box-binding homeobox 2 (ZEB2) to be up-regulated in a GH dose- and time-dependent manner. We established that the GH-dependent increase in ZEB2 levels is associated with increased transcription of a ZEB2 natural antisense transcript required for efficient translation of the ZEB2 transcript. GH down-regulated expression of E- and P-cadherins, targets of ZEB2, and inhibited E-cadherin promoter activity. Mutation of ZEB2 binding sites on the E-cadherin promoter abolished this effect of GH on the E-cadherin promoter. Whereas GH increased podocyte permeability to albumin in a paracellular albumin influx assay, shRNA-mediated knockdown of ZEB2 expression abrogated this effect. We conclude that GH increases expression of ZEB2 in part by increasing expression of a ZEB2 natural antisense transcript. GH-dependent increase in ZEB2 expression results in loss of P- and E-cadherins in podocytes and increased podocyte permeability to albumin. Decreased expression of P- and E-cadherins is implicated in podocyte dysfunction and epithelial-mesenchymal transition observed in DN. We speculate that the actions of GH on ZEB2 and P- and E-cadherin expression play a role in the pathogenesis of microalbuminuria of DN.
Collapse
Affiliation(s)
| | | | | | | | - Chunxia Lu
- From Pediatrics and Communicable Diseases
| | | | - Ram K. Menon
- From Pediatrics and Communicable Diseases
- Molecular and Integrative Physiology, and
| |
Collapse
|
2153
|
Whipple RA, Matrone MA, Cho EH, Balzer EM, Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J, Martin SS. Epithelial-to-mesenchymal transition promotes tubulin detyrosination and microtentacles that enhance endothelial engagement. Cancer Res 2010; 70:8127-37. [PMID: 20924103 DOI: 10.1158/0008-5472.can-09-4613] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is associated with increased breast tumor metastasis; however, the specific mechanisms by which EMT promotes metastasis remain somewhat unclear. Despite the importance of cytoskeletal dynamics during both EMT and metastasis, very few current studies examine the cytoskeleton of detached and circulating tumor cells. Specific posttranslational α-tubulin modifications are critical for adherent cell motility and implicated in numerous pathologies, but also remain understudied in detached cells. We report here that EMT induced through ectopic expression of Twist or Snail promotes α-tubulin detyrosination and the formation of tubulin-based microtentacles in detached HMLEs. Mechanistically, EMT downregulates the tubulin tyrosine ligase enzyme, resulting in an accumulation of detyrosinated α-tubulin (Glu-tubulin), and increases microtentacles that penetrate endothelial layers to facilitate tumor cell reattachment. Confocal microscopy shows that microtentacles are capable of penetrating the junctions between endothelial cells. Suppression of endogenous Twist in metastatic human breast tumor cells is capable of reducing both tubulin detyrosination and microtentacles. Clinical breast tumor samples display high concordance between Glu-tubulin and Twist expression levels, emphasizing the coupling between EMT and tubulin detyrosination in vivo. Coordinated elevation of Twist and Glu-tubulin at invasive tumor fronts, particularly within ductal carcinoma in situ samples, establishes that EMT-induced tubulin detyrosination occurs at the earliest stages of tumor invasion. These data support a novel model where the EMT that occurs during tumor invasion downregulates tubulin tyrosine ligase, increasing α-tubulin detyrosination and promoting microtentacles that could enhance the reattachment of circulating tumor cells to the vascular endothelium during metastasis.
Collapse
Affiliation(s)
- Rebecca A Whipple
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2154
|
Taiyab A, Rao CM. HSP90 modulates actin dynamics: inhibition of HSP90 leads to decreased cell motility and impairs invasion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:213-21. [PMID: 20883729 DOI: 10.1016/j.bbamcr.2010.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
HSP90, a major molecular chaperone, plays an essential role in the maintenance of several signaling molecules. Inhibition of HSP90 by inhibitors such as 17-allylamino-demethoxy-geldanamycin (17AAG) is known to induce apoptosis in various cancer cells by decreasing the activation or expression of pro-survival molecules such as protein kinase B (Akt). While we did not observe either decrease in expression or activation of pro-survival signaling molecules in human breast cancer cells upon inhibiting HSP90 with 17AAG, we did observe a decrease in cell motility of transformed cells, and cell motility and invasion of cancer cells. We found a significant decrease in the number of filopodia and lamellipodia, and in the F-actin bundles upon HSP90 inhibition. Our results show no change in the active forms or total levels of FAK and Pax, or in the activation of Rac-1 and Cdc-42; however increased levels of HSP90, HSP90α and HSP70 were observed upon HSP90 inhibition. Co-immuno-precipitation of HSP90 reveals interaction of HSP90 with G-actin, which increases upon HSP90 inhibition. FRET results show a significant decrease in interaction between actin monomers, leading to decreased actin polymerization upon HSP90 inhibition. We observed a decrease in the invasion of human breast cancer cells in the matrigel assay upon HSP90 inhibition. Over-expression of αB-crystallin, known to be involved in actin dynamics, did not abrogate the effect of HSP90 inhibition. Our work provides the molecular mechanism by which HSP90 inhibition delays cell migration and should be useful in developing cancer treatment strategies with known anti-cancer drugs such as cisplatin in combination with HSP90 inhibitors.
Collapse
Affiliation(s)
- Aftab Taiyab
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | | |
Collapse
|
2155
|
Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2:a002915. [PMID: 20182623 DOI: 10.1101/cshperspect.a002915] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development.
Collapse
Affiliation(s)
- Julian Heuberger
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
2156
|
Maupin KA, Sinha A, Eugster E, Miller J, Ross J, Paulino V, Keshamouni VG, Tran N, Berens M, Webb C, Haab BB. Glycogene expression alterations associated with pancreatic cancer epithelial-mesenchymal transition in complementary model systems. PLoS One 2010; 5:e13002. [PMID: 20885998 PMCID: PMC2946336 DOI: 10.1371/journal.pone.0013002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/30/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ability to selectively detect and target cancer cells that have undergone an epithelial-mesenchymal transition (EMT) may lead to improved methods to treat cancers such as pancreatic cancer. The remodeling of cellular glycosylation previously has been associated with cell differentiation and may represent a valuable class of molecular targets for EMT. METHODOLOGY/PRINCIPAL FINDINGS As a first step toward investigating the nature of glycosylation alterations in EMT, we characterized the expression of glycan-related genes in three in-vitro model systems that each represented a complementary aspect of pancreatic cancer EMT. These models included: 1) TGFβ-induced EMT, which provided a look at the active transition between states; 2) a panel of 22 pancreatic cancer cell lines, which represented terminal differentiation states of either epithelial-like or mesenchymal-like; and 3) actively-migrating and stationary cells, which provided a look at the mechanism of migration. We analyzed expression data from a list of 587 genes involved in glycosylation (biosynthesis, sugar transport, glycan-binding, etc.) or EMT. Glycogenes were altered at a higher prevalence than all other genes in the first two models (p<0.05 and <0.005, respectively) but not in the migration model. Several functional themes were shared between the induced-EMT model and the cell line panel, including alterations to matrix components and proteoglycans, the sulfation of glycosaminoglycans; mannose receptor family members; initiation of O-glycosylation; and certain forms of sialylation. Protein-level changes were confirmed by Western blot for the mannose receptor MRC2 and the O-glycosylation enzyme GALNT3, and cell-surface sulfation changes were confirmed using Alcian Blue staining. CONCLUSIONS/SIGNIFICANCE Alterations to glycogenes are a major component of cancer EMT and are characterized by changes to matrix components, the sulfation of GAGs, mannose receptors, O-glycosylation, and specific sialylated structures. These results provide leads for targeting aggressive and drug resistant forms of pancreatic cancer cells.
Collapse
Affiliation(s)
- Kevin A. Maupin
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Arkadeep Sinha
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Emily Eugster
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jeremy Miller
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Julianna Ross
- The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Vincent Paulino
- The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Venkateshwar G. Keshamouni
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nhan Tran
- The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Michael Berens
- The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Craig Webb
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Brian B. Haab
- Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
2157
|
Kokura K, Sun L, Bedford MT, Fang J. Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J 2010; 29:3673-87. [PMID: 20871592 DOI: 10.1038/emboj.2010.239] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/30/2010] [Indexed: 01/06/2023] Open
Abstract
H3K9 methylation has been linked to a variety of biological processes including position-effect variegation, heterochromatin formation and transcriptional regulation. To further understand the function of H3K9 methylation, we have identified and characterized MPP8 as a methyl-H3K9-binding protein. MPP8 displays an elevated expression pattern in various human carcinoma cells, whereas knocking-down MPP8 results in the loss of cellular mesenchymal marker as well as the reduction of tumour cell migration and invasiveness, suggesting that MPP8 contributes to tumour progression. Following characterization demonstrates that MPP8 targets the E-cadherin gene promoter and modulates the expression of this key regulator of cell behaviour and tumour progression through its methyl-H3K9 binding. Furthermore, MPP8 interacts with H3K9 methyltransferases GLP and ESET, as well as DNA methyltransferase 3A. MPP8 knockdown decreases DNA methylation on E-cadherin CpG island attended by the loss of DNMT3A localization, indicating MPP8 also directs DNA methylation. Together, our results suggest a model by which MPP8 recognizes methyl-H3K9 marks and directs DNA methylation to repress tumour suppressor gene expression and, in turn, has an important function in epithelial-to-mesenchymal transition and metastasis.
Collapse
Affiliation(s)
- Kenji Kokura
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
2158
|
Abstract
The PI3K/AKT signaling pathway is aberrant in a wide variety of cancers. Downstream effectors of AKT are involved in survival, growth and metabolic-related pathways. In contrast, contradictory data relating to AKT effects on cell motility and invasion, crucial prometastatic processes, have been reported pointing to a potential cell type and isoform type-specific AKT-driven function. By implication, study of AKT signaling should optimally be conducted in an appropriate intracellular environment. Prognosis in soft-tissue sarcoma (STS), the aggressive malignancies of mesenchymal origin, is poor, reflecting our modest ability to control metastasis, an effort hampered by lack of insight into molecular mechanisms driving STS progression and dissemination. We examined the impact of the cancer progression-relevant AKT pathway on the mesenchymal tumor cell internal milieu. We demonstrate that AKT1 activation induces STS cell motility and invasiveness at least partially through a novel interaction with the intermediate filament vimentin (Vim). The binding of AKT (tail region) to Vim (head region) results in Vim Ser39 phosphorylation enhancing the ability of Vim to induce motility and invasion while protecting Vim from caspase-induced proteolysis. Moreover, vimentin phosphorylation was shown to enhance tumor and metastasis growth in vivo. Insights into this mesenchymal-related molecular mechanism may facilitate the development of critically lacking therapeutic options for these devastating malignancies.
Collapse
|
2159
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
2160
|
Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, Wang L. Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 2010; 98:2442-51. [PMID: 20513387 DOI: 10.1016/j.bpj.2010.02.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 02/07/2023] Open
Abstract
Clonality is, at present, the only means by which the self-renewal potential of a given stem cell can be determined. To assess the clonality of human embryonic stem cells (hESC), a protocol involving seeding wells at low cell densities is commonly used to surmount poor cloning efficiencies. However, factors influencing the accuracy of such an assay have not been fully elucidated. Using clonogenic assays together with time-lapse microscopy, numerical analyses, and regulated gene expression strategies, we found that individual and collective cell movements are inherent properties of hESCs and that they markedly impact the accuracy of clonogenic assays. Analyses of cell motility using mean-square displacement and paired migration correlation indicated that cell movements become more straight-line or ballistic and less random-walk as separation distance decreases. Such motility-induced reaggregation (rather than a true clone) occurs approximately 70% of the time if the distance between two hESCs is <6.4 mum, and is not observed if the distance is >150 mum. Furthermore, newly formed small hESC colonies have a predisposition toward the formation of larger colonies through asymmetric colony expansion and movement, which would not accurately reflect self-renewal and proliferative activity of a true hESC clone. Notably, inhibition of Rho-associated kinase markedly upregulated hESC migration and reaggregation, producing considerable numbers of false-positive colonies. Conversely, E-cadherin upregulation significantly augmented hESC clonogenicity via improved survival of single hESCs without influencing cell motility. This work reveals that individual cell movement, asymmetric colony expansion, Rho-associated kinase, and E-cadherin all work together to influence hESC clonogenicity, and provides additional guidance for improvement of clonogenic assays in the analysis of hESC self-renewal.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
2161
|
Deep G, Agarwal R. Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer. Cancer Metastasis Rev 2010; 29:447-63. [PMID: 20714788 PMCID: PMC3928361 DOI: 10.1007/s10555-010-9237-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a major health problem around the world. Research efforts in the last few decades have been successful in providing better and effective treatments against both early stage and localized cancer, but clinical options against advanced metastatic stage/s of cancer remain limited. The high morbidity and mortality in most of the cancers are attributed to their metastatic spread to distant organs. Due to its extreme clinical relevance, metastasis has been extensively studied and is now understood as a highly complex biological event that involves multiple steps including acquisition of invasiveness by cancer cells, intravasation into circulatory system, survival in the circulation, arrest in microvasculature, extravasation, and growth at distant organs. The increasing understanding of molecular underpinnings of these events has provided excellent opportunity to target metastasis especially through nontoxic and biologically effective nutraceuticals. Silibinin, a popular dietary supplement isolated from milk thistle seed extracts, is one such natural agent that has shown biological efficacy through pleiotropic mechanisms against a variety of cancers and is currently in clinical trials. Recent preclinical studies have also shown strong efficacy of silibinin to target cancer cell's migratory and invasive characteristics as well as their ability to metastasize to distant organs. Detailed mechanistic analyses revealed that silibinin targets signaling molecules involved in the regulation of epithelial-to-mesenchymal transition, proteases activation, adhesion, motility, invasiveness as well as the supportive tumor-microenvironment components, thereby inhibiting metastasis. Overall, the long history of human use, remarkable nontoxicity, and preclinical efficacy strongly favor the clinical use of silibinin against advanced metastatic cancers.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
2162
|
Wendt MK, Smith JA, Schiemann WP. Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 2010; 29:6485-98. [PMID: 20802523 PMCID: PMC3076082 DOI: 10.1038/onc.2010.377] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TGF-β and EGF play critical roles in regulating the metastasis of aggressive breast cancers, yet the impact of epithelial-mesenchymal transition (EMT) induced by TGF-β in altering the response of breast cancer cells to EGF remains unknown. We show here that murine metastatic 4T1 breast cancer cells formed compact, and dense spheroids when cultured under 3-dimensional (3D) conditions, which contrasted sharply to the branching phenotypes exhibited by their nonmetastatic counterparts. Using the human MCF10A series, we show that epithelial-type and nonmetastatic breast cancer cells were unable to invade to EGF, while their mesenchymal-type and metastatic counterparts readily invaded to EGF. Furthermore, EMT induced by TGF-β was sufficient to manifest spheroid morphologies, a phenotype that increased primary tumor exit and invasion to EGF. Post-EMT invasion to EGF was dependent upon increased activation of EGFR and p38 MAPK, all of which could be abrogated either by pharmacological (PF-271) or genetic (shRNA) targeting of focal adhesion kinase (FAK). Mechanistically, EMT induced by TGF-β increased cell surface levels of EGFR and prevented its physical interaction with E-cadherin, leading instead to the formation of oncogenic signaling complexes with TβR-II. Elevated EGFR expression was sufficient to transform normal mammary epithelial cells, and to progress their 3D morphology from that of hollow acini to branched structures characteristic of nonmetastatic breast cancer cells. Importantly, we show that TGF-β stimulation of EMT enabled this EGFR-driven breast cancer model to abandon their inherent branching architecture and form large, undifferentiated masses that were hyper-invasive to EGF and displayed increased pulmonary tumor growth upon tail vein injection. Finally, chemotherapeutic targeting of FAK was sufficient to revert the aggressive behaviors of these structures. Collectively, this investigation has identified a novel EMT-based approach to neutralize the oncogenic activities of EGF and TGF-β in aggressive and invasive forms of breast cancer.
Collapse
Affiliation(s)
- M K Wendt
- Division of General Medical Sciences--Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
2163
|
Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 2010; 19:39-53. [PMID: 20643349 PMCID: PMC2913244 DOI: 10.1016/j.devcel.2010.06.012] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/06/2010] [Accepted: 05/03/2010] [Indexed: 11/17/2022]
Abstract
Directional collective migration is now a widely recognized mode of migration during embryogenesis and cancer. However, how a cluster of cells responds to chemoattractants is not fully understood. Neural crest cells are among the most motile cells in the embryo, and their behavior has been likened to malignant invasion. Here, we show that neural crest cells are collectively attracted toward the chemokine Sdf1. While not involved in initially polarizing cells, Sdf1 directionally stabilizes cell protrusions promoted by cell contact. At this cell contact, N-cadherin inhibits protrusion and Rac1 activity and in turn promotes protrusions and activation of Rac1 at the free edge. These results show a role for N-cadherin during contact inhibition of locomotion, and they reveal a mechanism of chemoattraction likely to function during both embryogenesis and cancer metastasis, whereby attractants such as Sdf1 amplify and stabilize contact-dependent cell polarity, resulting in directional collective migration.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
2164
|
Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010; 18:884-901. [PMID: 20627072 DOI: 10.1016/j.devcel.2010.05.012] [Citation(s) in RCA: 888] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/06/2010] [Accepted: 04/23/2010] [Indexed: 02/07/2023]
Abstract
Solid tumors are not simply clones of cancer cells. Instead, they are abnormal organs composed of multiple cell types and extracellular matrix. Some aspects of tumor development resemble processes seen in developing organs, whereas others are more akin to tissue remodeling. Some microenvironments, particularly those associated with tissue injury, are favorable for progression of mutant cells, whereas others restrict it. Cancer cells can also instruct surrounding tissues to undergo changes that promote malignancy. Understanding the complex ways in which cancer cells interact with their surroundings, both locally in the tumor organ and systemically in the body as a whole, has implications for effective cancer prevention and therapy.
Collapse
Affiliation(s)
- Mikala Egeblad
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| | | | | |
Collapse
|
2165
|
Molecular characterization of TGFbeta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells. Biochem Biophys Res Commun 2010; 399:659-64. [PMID: 20691661 DOI: 10.1016/j.bbrc.2010.07.138] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/30/2010] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic program essential for embryonic development and wound healing, but can adversely cause fibrosis and metastatic cancer progression when deregulated. Here, we established a model of efficient EMT induction in normal finite lifespan human mammary epithelial cells (HMEC) using transforming growth factor beta (TGFbeta). We demonstrate that EMT in HMEC occurs in three distinctive phases that are governed by a hierarchy of EMT-activating transcription factors (TFs). Loss of epithelial cell polarity (ZO-1), and acquisition of mesenchymal marker (Vimentin, Fibronectin) expression are immediate-early events, whereas switching from E-cadherin to N-cadherin protein expression occurs only after EMT-like morphological changes become apparent. The kinetics of TF induction suggests that ZEB1 and SNAIL mediate early EMT induction reinforced by ZEB2, while GOOSECOID and FOXC2 may play a role in EMT maintenance. TWIST and SLUG were not significantly induced in this system. Furthermore, we show for the first time that normal HMEC acquire a CD44(+)/CD24(-/low) stem cell phenotype during a third phase of EMT that is characterized by maximum TF expression levels. Our results may have important implications for understanding potential changes that might occur in normal breast epithelium under pathological conditions triggering elevated TGFbeta levels.
Collapse
|
2166
|
|
2167
|
Junxia W, Ping G, Yuan H, Lijun Z, Jihong R, Fang L, Min L, Xi W, Ting H, Ke D, Huizhong Z. Double strand RNA-guided endogeneous E-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo. Cancer Sci 2010; 101:1790-6. [PMID: 20518789 PMCID: PMC11158458 DOI: 10.1111/j.1349-7006.2010.01594.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
E-cadherin plays a crucial role in epithelial cell-cell adhesion and in the maintenance of tissue architecture. Down-regulation of E-cadherin expression correlates with a strong invasive potential, resulting in poor prognosis in many human carcinomas, including breast cancer. Restoration of E-cadherin can inhibit cell invasion and metastasis in many types of tumors. It has been demonstrated that promoter hypermethylation causes transcriptional down-regulation of E-cadherin. Here, using an RNAa technique specifically activating the expression of E-cadherin through transcriptional regulation, we assessed the phenotype changes of a breast carcinoma cell line with transfection of small-activating RNAs (saRNAs). We observed cell apoptosis, proliferation inhibition and reduction in human breast cancer migration in vitro. Animal experiment results showed that saRNA could inhibit tumor growth in vivo compared with scramble double-small RNA (dsRNA).This study provides a new potential strategy for breast cancer therapy, and also demonstrates the potential for saRNA as a therapeutic option for enhancing tumor suppressor gene expression in breast cancer. (Cancer Sci 2010).
Collapse
Affiliation(s)
- Wei Junxia
- Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2168
|
Ouyang G, Wang Z, Fang X, Liu J, Yang CJ. Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 2010; 67:2605-18. [PMID: 20238234 PMCID: PMC11115908 DOI: 10.1007/s00018-010-0338-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/23/2010] [Accepted: 02/26/2010] [Indexed: 02/07/2023]
Abstract
The epithelial to mesenchymal transition (EMT) is a highly conserved cellular program that allows polarized, well-differentiated epithelial cells to convert to unpolarized, motile mesenchymal cells. EMT is critical for appropriate embryogenesis and plays a crucial role in tumorigenesis and cancer progression. Recent studies revealed that there is a direct link between the EMT program and the gain of epithelial stem cell properties. EMT is sufficient to induce a population with stem cell characteristics from well-differentiated epithelial cells and cancer cells. In this review, we briefly introduce the biology of EMT inducers and transcription factors in tumorigenesis and then focus on the role of these key players of the EMT in generating and maintaining cancer stem cells.
Collapse
Affiliation(s)
- Gaoliang Ouyang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, China.
| | | | | | | | | |
Collapse
|
2169
|
Blavier L, Lazaryev A, Shi XH, Dorey FJ, Shackleford GM, DeClerck YA. Stromelysin-1 (MMP-3) is a target and a regulator of Wnt1-induced epithelial-mesenchymal transition (EMT). Cancer Biol Ther 2010; 10:198-208. [PMID: 20534975 DOI: 10.4161/cbt.10.2.12193] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play a well-defined role in later stages of tumor progression. However, there has been evidence that they also contribute to earlier stages of malignant transformation. The Wnt signaling transduction pathway plays a critical role in development and in the pathogenesis of many epithelial cancers. Here we have used Wnt1-induced epithelial-mesenchymal transition (EMT) in C57MG murine mammary epithelial cells to study the role of MMPs in this early step of malignant progression. Overexpression of Wnt1 in C57MG cells promoted EMT, the translocation of β-catenin from the cell membrane to the nucleus and its transcriptional activity, cell proliferation and cell motility. Simultaneously, we observed an increased expression of stromelysin-1 (MMP-3) and a 5.5-fold increase in MMP-3 promoter activity in C57MG cells expressing Wnt1 compared with C57MG cells. Treatment of Wnt-overexpressing cells with MMP inhibitor AG3340 decreased MMP-3 expression. We also found evidence that MMP-3 and Wnt3a cooperate in enhancing the transcriptional activity of β-catenin in C57MG cells. Consistently, the effects of Wnt1 on EMT, proliferation and migration were inhibited by MMP inhibitors, or upon downregulation of MMP-3 by siRNA. These results suggest that MMP-3 is both a direct transcriptional target and a necessary contributor of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Laurence Blavier
- Division of Hematology-Oncology, Department of Pediatrics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
2170
|
Abstract
Epithelial-mesenchymal transition (EMT) is a mechanism for generating primitive mesenchymal cells during gastrulation or mobile tumor cells during cancer metastasis. For 15 years, EMT has also been viewed as a principal source of fibroblasts in tissue fibrosis. Because several recent studies question its role in fibrogenesis, it seems like a good time for debate.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
2171
|
Alexaki VI, Javelaud D, Van Kempen LCL, Mohammad KS, Dennler S, Luciani F, Hoek KS, Juàrez P, Goydos JS, Fournier PJ, Sibon C, Bertolotto C, Verrecchia F, Saule S, Delmas V, Ballotti R, Larue L, Saiag P, Guise TA, Mauviel A. GLI2-mediated melanoma invasion and metastasis. J Natl Cancer Inst 2010; 102:1148-59. [PMID: 20660365 DOI: 10.1093/jnci/djq257] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The transforming growth factor-beta (TGF-beta) pathway, which has both tumor suppressor and pro-oncogenic activities, is often constitutively active in melanoma and is a marker of poor prognosis. Recently, we identified GLI2, a mediator of the hedgehog pathway, as a transcriptional target of TGF-beta signaling. METHODS We used real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting to determine GLI2 expression in human melanoma cell lines and subsequently classified them as GLI2high or as GLI2low according to their relative GLI2 mRNA and protein expression levels. GLI2 expression was reduced in a GLI2high cell line with lentiviral expression of short hairpin RNA targeting GLI2. We assessed the role of GLI2 in melanoma cell invasiveness in Matrigel assays. We measured secretion of matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography and expression of E-cadherin by western blotting and RT-PCR. The role of GLI2 in development of bone metastases was determined following intracardiac injection of melanoma cells in immunocompromised mice (n = 5-13). Human melanoma samples (n = 79) at various stages of disease progression were analyzed for GLI2 and E-cadherin expression by immunohistochemistry, in situ hybridization, or RT-PCR. All statistical tests were two-sided. RESULTS Among melanoma cell lines, increased GLI2 expression was associated with loss of E-cadherin expression and with increased capacity to invade Matrigel and to form bone metastases in mice (mean osteolytic tumor area: GLI2high vs GLI2low, 2.81 vs 0.93 mm(2), difference = 1.88 mm(2), 95% confidence interval [CI] = 1.16 to 2.60, P < .001). Reduction of GLI2 expression in melanoma cells that had expressed high levels of GLI2 substantially inhibited both basal and TGF-beta-induced cell migration, invasion (mean number of Matrigel invading cells: shGLI2 vs shCtrl (control), 52.6 vs 100, difference = 47.4, 95% CI = 37.0 to 57.8, P = .024; for shGLI2 + TGF-beta vs shCtrl + TGF-beta, 31.0 vs 161.9, difference = -130.9, 95% CI = -96.2 to -165.5, P = .002), and MMP secretion in vitro and the development of experimental bone metastases in mice. Within human melanoma lesions, GLI2 expression was heterogeneous, associated with tumor regions in which E-cadherin was lost and increased in the most aggressive tumors. CONCLUSION GLI2 was directly involved in driving melanoma invasion and metastasis in this preclinical study.
Collapse
|
2172
|
Alexaki VI, Javelaud D, Van Kempen LCL, Mohammad KS, Dennler S, Luciani F, Hoek KS, Juàrez P, Goydos JS, Fournier PJ, Sibon C, Bertolotto C, Verrecchia F, Saule S, Delmas V, Ballotti R, Larue L, Saiag P, Guise TA, Mauviel A. GLI2-mediated melanoma invasion and metastasis. J Natl Cancer Inst 2010. [PMID: 20660365 DOI: 10.1093/jnci/djq257djq257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The transforming growth factor-beta (TGF-beta) pathway, which has both tumor suppressor and pro-oncogenic activities, is often constitutively active in melanoma and is a marker of poor prognosis. Recently, we identified GLI2, a mediator of the hedgehog pathway, as a transcriptional target of TGF-beta signaling. METHODS We used real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting to determine GLI2 expression in human melanoma cell lines and subsequently classified them as GLI2high or as GLI2low according to their relative GLI2 mRNA and protein expression levels. GLI2 expression was reduced in a GLI2high cell line with lentiviral expression of short hairpin RNA targeting GLI2. We assessed the role of GLI2 in melanoma cell invasiveness in Matrigel assays. We measured secretion of matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography and expression of E-cadherin by western blotting and RT-PCR. The role of GLI2 in development of bone metastases was determined following intracardiac injection of melanoma cells in immunocompromised mice (n = 5-13). Human melanoma samples (n = 79) at various stages of disease progression were analyzed for GLI2 and E-cadherin expression by immunohistochemistry, in situ hybridization, or RT-PCR. All statistical tests were two-sided. RESULTS Among melanoma cell lines, increased GLI2 expression was associated with loss of E-cadherin expression and with increased capacity to invade Matrigel and to form bone metastases in mice (mean osteolytic tumor area: GLI2high vs GLI2low, 2.81 vs 0.93 mm(2), difference = 1.88 mm(2), 95% confidence interval [CI] = 1.16 to 2.60, P < .001). Reduction of GLI2 expression in melanoma cells that had expressed high levels of GLI2 substantially inhibited both basal and TGF-beta-induced cell migration, invasion (mean number of Matrigel invading cells: shGLI2 vs shCtrl (control), 52.6 vs 100, difference = 47.4, 95% CI = 37.0 to 57.8, P = .024; for shGLI2 + TGF-beta vs shCtrl + TGF-beta, 31.0 vs 161.9, difference = -130.9, 95% CI = -96.2 to -165.5, P = .002), and MMP secretion in vitro and the development of experimental bone metastases in mice. Within human melanoma lesions, GLI2 expression was heterogeneous, associated with tumor regions in which E-cadherin was lost and increased in the most aggressive tumors. CONCLUSION GLI2 was directly involved in driving melanoma invasion and metastasis in this preclinical study.
Collapse
|
2173
|
Tanno B, Sesti F, Cesi V, Bossi G, Ferrari-Amorotti G, Bussolari R, Tirindelli D, Calabretta B, Raschellà G. Expression of Slug is regulated by c-Myb and is required for invasion and bone marrow homing of cancer cells of different origin. J Biol Chem 2010; 285:29434-45. [PMID: 20622260 DOI: 10.1074/jbc.m109.089045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In metastatic cancer cells, the process of invasion is regulated by several transcription factors that induce changes required for migration and resistance to apoptosis. Slug (SNAI2, Snail2) is involved in epithelial mesenchymal transition in physiological and in pathological contexts. We show here that in embryonic kidney, colon carcinoma, chronic myeloid leukemia-blast crisis, and in neuroblastoma cells, expression of Slug is transcriptionally regulated by c-Myb via Myb binding sites in the 5'-flanking region and in the first intron of the slug gene. In embryonic kidney and neuroblastoma cells, c-Myb induced vimentin, fibronectin, and N-cadherin expression and membrane ruffling via actin polymerization consistent with the acquisition of a mesenchymal-like phenotype. Furthermore, down-regulation of endogenous c-Myb levels in colon carcinoma cells led to increased expression of E-cadherin and reduced levels of vimentin. Some of these changes are predominantly Slug-dependent as Slug silencing via RNA interference (RNAi) reverts the cells to a quasi-parental condition. Changes in gene expression and morphology induced by c-Myb-activated Slug correlated with increased ability to migrate (embryonic kidney) and to invade through a Matrigel membrane (embryonic kidney, colon carcinoma, neuroblastoma). c-Myb-dependent Slug expression was also essential for the homing of chronic myeloid leukemia K562 cells to the bone marrow. In summary, we show here that the proto-oncogene c-Myb controls Slug transcription in tumor cells of different origin. Such a regulatory pathway contributes to the acquisition of invasive properties that are important for the metastatic process.
Collapse
Affiliation(s)
- Barbara Tanno
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Research Center Casaccia, Laboratory of Radiation Biology and Biomedicine, 00123 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
2174
|
Jia D, Yan M, Wang X, Hao X, Liang L, Liu L, Kong H, He X, Li J, Yao M. Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer 2010; 10:364. [PMID: 20615257 PMCID: PMC2912267 DOI: 10.1186/1471-2407-10-364] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 07/09/2010] [Indexed: 01/26/2023] Open
Abstract
Background The formation of metastasis is the most common cause of death in patients with lung cancer. A major implement to understand the molecular mechanisms involved in lung cancer metastasis has been the lack of suitable models to address it. In this study, we aimed at establishing a highly metastatic model of human lung cancer and characterizing its metastatic properties and underlying mechanisms. Methods The human lung adeno-carcinoma SPC-A-1 cell line was used as parental cells for developing of highly metastatic cells by in vivo selection in NOD/SCID mice. After three rounds of selection, a new SPC-A-1sci cell line was established from pulmonary metastatic lesions. Subsequently, the metastatic properties of this cell line were analyzed, including optical imaging of in vivo metastasis, immunofluorescence and immunohistochemical analysis of several epithelial mesenchymal transition (EMT) makers and trans-well migration and invasion assays. Finally, the functional roles of fibronectin in the invasive and metastatic potentials of SPC-A-1sci cells were determined by shRNA analysis. Results A spontaneously pulmonary metastatic model of human lung adeno-carcinoma was established in NOD/SCID mice, from which a new lung cancer cell line, designated SPC-A-1sci, was isolated. Initially, the highly metastatic behavior of this cell line was validated by optical imaging in mice models. Further analyses showed that this cell line exhibit phenotypic and molecular alterations consistent with EMT. Compared with its parent cell line SPC-A-1, SPC-A-1sci was more aggressive in vitro, including increased potentials for cell spreading, migration and invasion. Importantly, fibronectin, a mesenchymal maker of EMT, was found to be highly expressed in SPC-A-1sci cells and down-regulation of it can decrease the in vitro and in vivo metastatic abilities of this cell line. Conclusions We have successfully established a new human lung cancer cell line with highly metastatic potentials, which is subject to EMT and possibly mediated by increased fibronectin expression. This cell line and its reproducible s.c. mouse model can further be used to identify underlying mechanisms of lung cancer metastasis.
Collapse
Affiliation(s)
- Deshui Jia
- Laboratory of Experimental Pathology, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2175
|
Firrincieli D, Boissan M, Chignard N. Epithelial-mesenchymal transition in the liver. ACTA ACUST UNITED AC 2010; 34:523-8. [PMID: 20615641 DOI: 10.1016/j.gcb.2010.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/30/2010] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological process occurring in the embryo. In adult organism, EMT could be involved in disease development. In the liver, the possibility that EMT of liver epithelial cells participate to liver fibrosis is increasingly discussed. Furthermore, the involvement of hepatocyte EMT to liver cancer biology has also been documented over the past few years. In this review, we will first describe how EMT participates to embryological development. We will then discuss the involvement of hepatocytes and biliary epithelial cells in liver fibrosis. Finally, we will describe how EMT may impact the metastatic process and resistance to therapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- D Firrincieli
- UMR_S 938, centre de recherche Saint-Antoine, UPMC université Paris 06, 27 rue de Chaligny, Paris, France
| | | | | |
Collapse
|
2176
|
Park KS, Gumbiner BM. Cadherin 6B induces BMP signaling and de-epithelialization during the epithelial mesenchymal transition of the neural crest. Development 2010; 137:2691-701. [PMID: 20610481 DOI: 10.1242/dev.050096] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of neural crest cells involves an epithelial-mesenchymal transition (EMT) associated with the restriction of cadherin 6B expression to the pre-migratory neural crest cells (PMNCCs), as well as a loss of N-cadherin expression. We find that cadherin 6B, which is highly expressed in PMNCCs, persists in early migrating neural crest cells and is required for their emigration from the neural tube. Cadherin 6B-expressing PMNCCs exhibit a general loss of epithelial junctional polarity and acquire motile properties before their delamination from the neuroepithelium. Cadherin 6B selectively induces the de-epithelialization of PMNCCs, which is mediated by stimulation of BMP signaling, whereas N-cadherin inhibits de-epithelialization and BMP signaling. As BMP signaling also induces cadherin 6B expression and represses N-cadherin, cadherin-regulated BMP signaling may create two opposing feedback loops. Thus, the overall EMT of neural crest cells occurs via two distinct steps: a cadherin 6B and BMP signaling-mediated de-epithelialization, and a subsequent delamination through the basement membrane.
Collapse
Affiliation(s)
- Ki-Sook Park
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
2177
|
The embryonic transcription cofactor LBH is a direct target of the Wnt signaling pathway in epithelial development and in aggressive basal subtype breast cancers. Mol Cell Biol 2010; 30:4267-79. [PMID: 20606007 DOI: 10.1128/mcb.01418-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Limb-bud and heart (LBH) is a novel key transcriptional regulator of vertebrate development. However, the molecular mechanisms upstream of LBH and its role in adult development are unknown. Here we show that in epithelial development, LBH expression is tightly controlled by Wnt signaling. LBH is transcriptionally induced by the canonical Wnt pathway, as evident by the presence of conserved functional T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) binding sites in the LBH locus and rapid beta-catenin-dependent upregulation of endogenous LBH by Wnt3a. In contrast, LBH induction by Wnt/beta-catenin signaling is inhibited by Wnt7a, which in limb development signals through a noncanonical pathway involving Lmx1b. Furthermore, we show that LBH is aberrantly overexpressed in mammary tumors of mouse mammary tumor virus (MMTV)-Wnt1-transgenic mice and in aggressive basal subtype human breast cancers that display Wnt/beta-catenin hyperactivation. Deregulation of LBH in human basal breast cancer appears to be Wnt/beta-catenin dependent, as DKK1 and Wnt7a inhibit LBH expression in breast tumor cells. Overexpression studies indicate that LBH suppresses mammary epithelial cell differentiation, an effect that could contribute to Wnt-induced tumorigenesis. Taken together, our findings link LBH for the first time to the Wnt signaling pathway in both development and cancer and highlight LBH as a potential new marker for therapeutically challenging basal-like breast cancers.
Collapse
|
2178
|
Foubert E, De Craene B, Berx G. Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res 2010; 12:206. [PMID: 20594364 PMCID: PMC2917026 DOI: 10.1186/bcr2585] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer among women, and despite significant advances in diagnosing and treating it, metastatic spread of cancer cells results in a high mortality rate. Epithelial-to-mesenchymal transition (EMT) is an embryonic program in which epithelial cells lose their characteristics and gain mesenchymal features. Therefore, EMT might play a very important role during malignant tumour progression. In this review we summarise recent advances in breast cancer research with a particular focus on the transcription factors Snail1 and Twist1. Besides discussing the role of EMT in normal mammary gland development, we describe regulatory mechanisms involving newly discovered upstream regulators and microRNAs, the association of EMT with breast cancer stem cells, and the involvement of the tumour microenvironment in breast cancer progression.
Collapse
Affiliation(s)
- Ellen Foubert
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Ghent University,Ghent, Belgium.
| | | | | |
Collapse
|
2179
|
Lin T, Ponn A, Hu X, Law BK, Lu J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 2010; 29:4896-904. [PMID: 20562920 DOI: 10.1038/onc.2010.234] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has pivotal roles during embryonic development and carcinoma progression. Members of the Snai1 family of zinc finger transcription factors are central mediators of EMT and induce EMT in part by directly repressing epithelial markers such as E-cadherin, a gatekeeper of the epithelial phenotype and a suppressor of tumor invasion. However, the molecular mechanism underlying Snai1-mediated transcriptional repression remains incompletely understood. Here we show that Snai1 physically interacts with and recruits the histone demethylase LSD1 (KDM1A) to epithelial gene promoters. LSD1 removes dimethylation of lysine 4 on histone H3 (H3K4m2), a covalent histone modification associated with active chromatin. Importantly, LSD1 is essential for Snai1-mediated transcriptional repression and for maintenance of the silenced state of Snai1 target genes in invasive cancer cells. In the absence of LSD1, Snai1 fails to repress E-cadherin. In cancer cells in which E-cadherin is silenced, depletion of LSD1 results in partial de-repression of epithelial genes and elevated H3K4m2 levels at the E-cadherin promoter. These results underline the critical role of LSD1 in Snai1-dependent transcriptional repression of epithelial markers and suggest that the LSD1 complex could be a potential therapeutic target for prevention of EMT-associated tumor invasion.
Collapse
Affiliation(s)
- T Lin
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
2180
|
Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 2010; 12:1383-430. [PMID: 19903090 DOI: 10.1089/ars.2009.2737] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a fundamental process, paradigmatic of the concept of cell plasticity, that leads epithelial cells to lose their polarization and specialized junctional structures, to undergo cytoskeleton reorganization, and to acquire morphological and functional features of mesenchymal-like cells. Although EMT has been originally described in embryonic development, where cell migration and tissue remodeling have a primary role in regulating morphogenesis in multicellular organisms, recent literature has provided evidence suggesting that the EMT process is a more general biological process that is also involved in several pathophysiological conditions, including cancer progression and organ fibrosis. This review offers first a comprehensive introduction to describe major relevant features of EMT, followed by sections dedicated on those signaling mechanisms that are known to regulate or affect the process, including the recently proposed role for oxidative stress and reactive oxygen species (ROS). Current literature data involving EMT in both physiological conditions (i.e., embryogenesis) and major human diseases are then critically analyzed, with a special final focus on the emerging role of hypoxia as a relevant independent condition able to trigger EMT.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Experimental Medicine and Oncology and Interuniversity Center for Hepatic Pathophysiology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
2181
|
Carretero J, Shimamura T, Rikova K, Jackson AL, Wilkerson MD, Borgman CL, Buttarazzi MS, Sanofsky BA, McNamara KL, Brandstetter KA, Walton ZE, Gu TL, Silva JC, Crosby K, Shapiro GI, Maira M, Ji H, Castrillon DH, Kim CF, García-Echeverría C, Bardeesy N, Sharpless NE, Hayes ND, Kim WY, Engelman JA, Wong KK. Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 2010; 17:547-59. [PMID: 20541700 PMCID: PMC2901842 DOI: 10.1016/j.ccr.2010.04.026] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/12/2010] [Accepted: 05/07/2010] [Indexed: 01/06/2023]
Abstract
In mice, Lkb1 deletion and activation of Kras(G12D) results in lung tumors with a high penetrance of lymph node and distant metastases. We analyzed these primary and metastatic de novo lung cancers with integrated genomic and proteomic profiles, and have identified gene and phosphoprotein signatures associated with Lkb1 loss and progression to invasive and metastatic lung tumors. These studies revealed that SRC is activated in Lkb1-deficient primary and metastatic lung tumors, and that the combined inhibition of SRC, PI3K, and MEK1/2 resulted in synergistic tumor regression. These studies demonstrate that integrated genomic and proteomic analyses can be used to identify signaling pathways that may be targeted for treatment.
Collapse
Affiliation(s)
- Julian Carretero
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia 46010, Spain
| | - Takeshi Shimamura
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Klarisa Rikova
- Cell Signaling Technology Inc., 3 Trask Lane, Danvers, MA 01923 USA
| | - Autumn L. Jackson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew D. Wilkerson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christa L. Borgman
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
| | - Matthew S. Buttarazzi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115, USA
| | - Benjamin A. Sanofsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115, USA
| | - Kate L. McNamara
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115, USA
| | - Kathleyn A. Brandstetter
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115, USA
| | - Zandra E. Walton
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115, USA
| | - Ting-Lei Gu
- Cell Signaling Technology Inc., 3 Trask Lane, Danvers, MA 01923 USA
| | - Jeffrey C. Silva
- Cell Signaling Technology Inc., 3 Trask Lane, Danvers, MA 01923 USA
| | - Katherine Crosby
- Cell Signaling Technology Inc., 3 Trask Lane, Danvers, MA 01923 USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michel Maira
- Novartis Institutes for Biomedical Research, Oncology Disease Area, CH4002 Basel, Switzerland
| | - Hongbin Ji
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Diego H. Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carla F Kim
- Children's Hospital Boston, 1 Blackfan Circle, 8-216, Boston, MA 02115, USA
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, 185 Cambridge Street Boston, MA 02114, USA
| | - Norman E. Sharpless
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine and Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Neil D. Hayes
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine and Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey A. Engelman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, 185 Cambridge Street Boston, MA 02114, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115 USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Dana-Farber/Harvard Cancer Center, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
2182
|
Gregory SL, Lorensuhewa N, Saint R. Signalling through the RhoGEF Pebble in Drosophila. IUBMB Life 2010; 62:290-5. [PMID: 20175154 DOI: 10.1002/iub.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small GTPase pathways of the Ras superfamily are implicated in a wide range of signalling processes in animal cells. Small GTPases control pathways by acting as molecular switches. They are converted from an inactive GDP-bound form to an active GTP-bound form by GTP exchange factors (GEFs). The spatial and temporal regulation of GEFs is a major component of the regulation of small GTPases. Here we review the role of the Drosophila RhoGEF, Pebble (the Drosophila ortholog of mammalian ECT2). We discuss its roles in cytokinesis and cell migration, highlighting the diversity with which Rho family signalling pathways operate in biological systems.
Collapse
Affiliation(s)
- Stephen L Gregory
- School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
2183
|
Novel insight into the function and regulation of alphaN-catenin by Snail2 during chick neural crest cell migration. Dev Biol 2010; 344:896-910. [PMID: 20542025 DOI: 10.1016/j.ydbio.2010.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 12/18/2022]
Abstract
The neural crest is a transient population of migratory cells that differentiates to form a variety of cell types in the vertebrate embryo, including melanocytes, the craniofacial skeleton, and portions of the peripheral nervous system. These cells initially exist as adherent epithelial cells in the dorsal aspect of the neural tube and only later become migratory after an epithelial-to-mesenchymal transition (EMT). Snail2 plays a critical role in mediating chick neural crest cell EMT and migration due to its expression by both premigratory and migratory cranial neural crest cells and its ability to down-regulate intercellular junctions components. In an attempt to delineate the role of cellular junction components in the neural crest, we have identified the adherens junction molecule neural alpha-catenin (alphaN-catenin) as a Snail2 target gene whose repression is critical for chick neural crest cell migration. Knock-down and overexpression of alphaN-catenin enhances and inhibits neural crest cell migration, respectively. Furthermore, our results reveal that alphaN-catenin regulates the appropriate movement of neural crest cells away from the neural tube into the embryo. Collectively, our data point to a novel function of an adherens junction protein in facilitating the proper migration of neural crest cells during the development of the vertebrate embryo.
Collapse
|
2184
|
Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010; 24:3950-9. [PMID: 20530248 DOI: 10.1096/fj.10-157404] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
microRNA-205 (miR-205) and miR-184 coordinately regulate the lipid phosphatase SHIP2 for Akt survival signaling in keratinocytes. As the PI3K-Akt pathway has also been implicated in regulating the actin cytoskeleton and cell motility, we investigated the role that these 2 miRNAs play in keratinocyte migration. We used antagomirs (antago) to reduce the levels of miR-205 and miR-184 in primary human epidermal keratinocytes (HEKs) and corneal epithelial keratinocytes (HCEKs) as well as direct SHIP2 silencing using siRNA oligos. Treatment of HEKs and HCEKs with antago-205 increased SHIP2 levels and impaired the ability of these cells to seal linear scratch wounds compared with untreated or irrelevant-antago treatments. In contrast, AKT signaling was enhanced and wounds sealed faster in HCEKs where miR-184 was suppressed, enabling miR-205 to inhibit SHIP2. Similar increases in migration were observed following direct SHIP2 silencing in HEKs. Furthermore, down-regulation of miR-205 resulted in an increase in Rho-ROCKI activity, phosphorylation of the actin severing protein cofilin, and a corresponding diminution of filamentous actin. The connection among miR-205, RhoA-ROCKI-cofilin inactivation, and the actin cytoskeleton represents a novel post-translational mechanism for the regulation of normal human keratinocyte migration.
Collapse
Affiliation(s)
- Jia Yu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Ward 9-124, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
2185
|
Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29:4741-51. [PMID: 20531305 DOI: 10.1038/onc.2010.215] [Citation(s) in RCA: 2063] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumors are cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like features (CSCs). Epithelial to mesenchymal transitions (EMT) are transdifferentiation programs that are required for tissue morphogenesis during embryonic development. The EMT process can be regulated by a diverse array of cytokines and growth factors, such as transforming growth factor (TGF)-beta, whose activities are dysregulated during malignant tumor progression. Thus, EMT induction in cancer cells results in the acquisition of invasive and metastatic properties. Recent reports indicate that the emergence of CSCs occurs in part as a result of EMT, for example, through cues from tumor stromal components. Recent evidence now indicates that EMT of tumor cells not only causes increased metastasis, but also contributes to drug resistance. In this review, we will provide potential mechanistic explanations for the association between EMT induction and the emergence of CSCs. We will also highlight recent studies implicating the function of TGF-beta-regulated noncoding RNAs in driving EMT and promoting CSC self-renewal. Finally we will discuss how EMT and CSCs may contribute to drug resistance, as well as therapeutic strategies to overcome this clinically.
Collapse
Affiliation(s)
- A Singh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA
| | | |
Collapse
|
2186
|
Mink S, Vashistha S, Zhang W, Hodge A, Agus DB, Jain A. Cancer-associated fibroblasts derived from EGFR-TKI-resistant tumors reverse EGFR pathway inhibition by EGFR-TKIs. Mol Cancer Res 2010; 8:809-20. [PMID: 20530582 PMCID: PMC2891820 DOI: 10.1158/1541-7786.mcr-09-0460] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays a critical role in oncogenesis, which makes it an attractive target for pharmacologic inhibition. Yet, EGFR inhibition with tyrosine kinase inhibitors (TKI) does not result in a measurable and sustainable clinical benefit in a vast majority of tumors. This emphasizes the need for further investigations into resistance mechanisms against EGFR-TKIs. We previously reported the generation of an in vivo adenocarcinoma model of EGFR-TKI-acquired resistance that was devoid of the known mechanisms of resistance. Using this same xenograft model, we now show that the tumor stroma plays an important role in limiting responsiveness to EGFR-TKIs. EGFR-TKI-resistant tumors display increased surface expression of CD44(hi)/CD24(lo) and markers of epithelial to mesenchymal transition (EMT), SNAI1, and N-cadherin. An in vivo green fluorescent protein-tagging approach reveals that the tumor stroma of the EGFR-TKI-resistant tumors is distinct in that 24% of its cancer-associated fibroblast (CAF) population is composed of EMT-derived tumor cells that represent the in vivo escape from EGFR-TKIs. We further show that EMT subpopulation-harboring CAFs isolated from the EGFR-TKI-resistant tumors are tumorigenic and express the biomarker of gefitinib resistance, epithelial membrane protein-1. Finally, we provide evidence that paracrine factors secreted from the EGFR-TKI-resistant CAFs mitigate the EGFR-TKI-mediated blockade of pEGFR and pMAPK in cocultured tumor cells, regardless of their EGFR mutational status. This is the first demonstration that the tumor stroma is modified with acquisition of EGFR-TKI resistance and that it further contributes in promoting drug resistance.
Collapse
Affiliation(s)
- Sheldon Mink
- Sumner M. Redstone Prostate Cancer Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Surabhi Vashistha
- Sumner M. Redstone Prostate Cancer Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Wenxuan Zhang
- Sumner M. Redstone Prostate Cancer Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Amanda Hodge
- Sumner M. Redstone Prostate Cancer Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - David B. Agus
- Sumner M. Redstone Prostate Cancer Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Anjali Jain
- Sumner M. Redstone Prostate Cancer Research Program, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
2187
|
Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson EW, Polette M, Gilles C. Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 2010; 15:261-73. [PMID: 20449641 DOI: 10.1007/s10911-010-9174-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 04/20/2010] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) phenomena endow epithelial cells with enhanced migratory and invasive potential, and as such, have been implicated in many physiological and pathological processes requiring cell migration/invasion. Although their involvement in the metastatic cascade is still a subject of debate, data are accumulating to demonstrate the existence of EMT phenotypes in primary human tumors, describe enhanced metastatic potential of EMT derivatives in animal models, and report EMT attributes in circulating tumor cells (CTCs). The relationships between EMT and CTCs remain largely unexplored, and we review here in vitro and in vivo data supporting a putative role of EMT processes in CTC generation and survival.
Collapse
Affiliation(s)
- Arnaud Bonnomet
- Laboratory of Tumor and Developmental Biology, Liège University, GIGA - Cancer, C.H.U. Sart-Tilman, Tour de Pathologie B23, 4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
2188
|
Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010; 15:169-90. [PMID: 20467795 PMCID: PMC3721368 DOI: 10.1007/s10911-010-9181-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/22/2010] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an essential process that drives polarized, immotile mammary epithelial cells (MECs) to acquire apolar, highly migratory fibroblastoid-like features. EMT is an indispensable process that is associated with normal tissue development and organogenesis, as well as with tissue remodeling and wound healing. In stark contrast, inappropriate reactivation of EMT readily contributes to the development of a variety of human pathologies, particularly those associated with tissue fibrosis and cancer cell invasion and metastasis, including that by breast cancer cells. Although metastasis is unequivocally the most lethal aspect of breast cancer and the most prominent feature associated with disease recurrence, the molecular mechanisms whereby EMT mediates the initiation and resolution of breast cancer metastasis remains poorly understood. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that is intimately involved in regulating numerous physiological processes, including cellular differentiation, homeostasis, and EMT. In addition, TGF-beta also functions as a powerful tumor suppressor in MECs, whose neoplastic development ultimately converts TGF-beta into an oncogenic cytokine in aggressive late-stage mammary tumors. Recent findings have implicated the process of EMT in mediating the functional conversion of TGF-beta during breast cancer progression, suggesting that the chemotherapeutic targeting of EMT induced by TGF-beta may offer new inroads in ameliorating metastatic disease in breast cancer patients. Here we review the molecular, cellular, and microenvironmental factors that contribute to the pathophysiological activities of TGF-beta during its regulation of EMT in normal and malignant MECs.
Collapse
Affiliation(s)
- Molly A Taylor
- Case Comprehensive Cancer Center, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
2189
|
de Herreros AG, Peiró S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15:135-47. [PMID: 20455012 PMCID: PMC2930904 DOI: 10.1007/s10911-010-9179-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022] Open
Abstract
Since its initial description, the interconversion between epithelial and mesenchymal cells (designed as epithelial-mesenchymal or mesenchymal-epithelial transition, EMT or MET, respectively) has received special attention since it provides epithelial cells with migratory features. Different studies using cell lines have identified cytokines, intercellular signaling elements and transcriptional factors capable of regulating this process. Particularly, the identification of Snail family members as key effectors of EMT has opened new ways for the study of this cellular process. In this article we discuss the molecular pathways that control EMT, showing a very tight and interdependent regulation. We also analyze the contribution of EMT and Snail genes in the process of tumorigenesis using the mammary gland as cellular model.
Collapse
Affiliation(s)
- Antonio Garcia de Herreros
- IMIM-Hospital del Mar, Parc de Recerca Biomèdica de Barcelona, C/Doctor Aiguader, 88, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
2190
|
Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138:2101-2114.e5. [PMID: 20420949 DOI: 10.1053/j.gastro.2010.01.058] [Citation(s) in RCA: 1497] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 02/06/2023]
Abstract
The connection between inflammation and tumorigenesis is well-established and in the last decade has received a great deal of supporting evidence from genetic, pharmacological, and epidemiological data. Inflammatory bowel disease is an important risk factor for the development of colon cancer. Inflammation is also likely to be involved with other forms of sporadic as well as heritable colon cancer. The molecular mechanisms by which inflammation promotes cancer development are still being uncovered and could differ between colitis-associated and other forms of colorectal cancer. Recent work has elucidated the role of distinct immune cells, cytokines, and other immune mediators in virtually all steps of colon tumorigenesis, including initiation, promotion, progression, and metastasis. These mechanisms, as well as new approaches to prevention and therapy, are discussed in this review.
Collapse
Affiliation(s)
- Janos Terzić
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
2191
|
Cakouros D, Raices RM, Gronthos S, Glackin C. Twist-ing cell fate: Mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. J Cell Biochem 2010; 110:1288-98. [DOI: 10.1002/jcb.22651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
2192
|
Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 2010; 15:149-68. [PMID: 20461450 DOI: 10.1007/s10911-010-9180-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 02/04/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) and its reversion via mesenchymal to epithelial transition (MET), represent a stepwise cycle of epithelial plasticity that allows for normal tissue remodelling and diversification during development. In particular, epithelial-mesenchymal plasticity is central to many aspects of mammary development and has been proposed to be a key process in breast cancer progression. Such epithelial-mesenchymal plasticity requires complex cellular reprogramming to orchestrate a change in cell shape to an alternate morphology more conducive to migration. During this process, epithelial characteristics, including apical-basal polarity and specialised cell-cell junctions are lost and mesenchymal properties, such as a front-rear polarity associated with weak cell-cell contacts, increased motility, resistance to apoptosis and invasiveness are gained. The ability of epithelial cells to undergo transitions through cell polarity states is a central feature of epithelial-mesenchymal plasticity. These cell polarity states comprise a set of distinct asymmetric distributions of cellular constituents that are fashioned to allow specialized cellular functions, such as the regulated homeostasis of molecules across epithelial barriers, cell migration or cell diversification via asymmetric cell divisions. Each polarity state is engineered using a molecular toolbox that is highly conserved between organisms and cell types which can direct the initiation, establishment and continued maintenance of each asymmetry. Here we discuss how EMT pathways target cell polarity mediators, and how this EMT-dependent change in polarity states impact on the various stages of breast cancer. Emerging evidence places cell polarity at the interface of proliferation and morphology control and as such the changing dynamics within polarity networks play a critical role in normal mammary gland development and breast cancer progression.
Collapse
Affiliation(s)
- Nathan J Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, East Melbourne, VIC 3002, Australia
| | | | | | | |
Collapse
|
2193
|
Chen YS, Mathias RA, Mathivanan S, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ. Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition. Mol Cell Proteomics 2010; 10:M110.001131. [PMID: 20511395 DOI: 10.1074/mcp.m110.001131] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) describes a process whereby polarized epithelial cells with restricted migration transform into elongated spindle-shaped mesenchymal cells with enhanced motility and invasiveness. Although there are some molecular markers for this process, including the down-regulation of E-cadherin, our understanding of plasma membrane (PM) and associated proteins involved in EMT is limited. To specifically explore molecular alterations occurring at the PM, we used the cationic colloidal silica isolation technique to purify PM fractions from epithelial Madin-Darby canine kidney cells during Ras/TGF-β-mediated EMT. Proteins in the isolated membrane fractions were separated by one-dimensional SDS-PAGE and subjected to nano-LC-MS/MS-based protein identification. In this study, the first membrane protein analysis of an EMT model, we identified 805 proteins and determined their differential expression using label-free spectral counting. These data reveal that Madin-Darby canine kidney cells switch from cadherin-mediated to integrin-mediated adhesion following Ras/TGF-β-mediated EMT. Thus, during the EMT process, E-cadherin, claudin 4, desmoplakin, desmoglein-2, and junctional adhesion molecule A were down-regulated, whereas integrins α6β1, α3β1, α2β1, α5β1, αVβ1, and αVβ3 along with their extracellular ligands collagens I and V and fibronectin had increased expression levels. Conspicuously, Wnt-5a expression was elevated in cells undergoing EMT, and transient Wnt-5a siRNA silencing attenuated both cell migration and invasion in these cells. Furthermore, Wnt-5a expression suppressed canonical Wnt signaling induced by Wnt-3a. Wnt-5a may act through the planar cell polarity pathway of the non-canonical Wnt signaling pathway as several of the components and modulators (Wnt-5a, -5b, frizzled 6, collagen triple helix repeat-containing protein 1, tyrosine-protein kinase 7, RhoA, Rac, and JNK) were found to be up-regulated during Ras/TGF-β-mediated EMT.
Collapse
Affiliation(s)
- Yuan-Shou Chen
- Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
2194
|
Su JL, Chen PB, Chen YH, Chen SC, Chang YW, Jan YH, Cheng X, Hsiao M, Hung MC. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res 2010; 70:5096-108. [PMID: 20501832 DOI: 10.1158/0008-5472.can-09-4148] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The leading cause of death in cancer patients is cancer metastasis, for which there is no effective treatment. MicroRNAs (miRNA) have been shown to play a significant role in cancer metastasis through regulation of gene expression. The adenovirus type 5 E1A (E1A) is associated with multiple tumor-suppressing activities including the inhibition of metastasis, and E1A gene therapies have been tested in several clinical trials. However, the mechanisms involved in E1A-mediated tumor-suppressing activities are not yet completely defined. Here, we showed that E1A downregulated the expression of the miRNA miR-520h, which was critical for E1A-mediated cancer cell mobility and in vitro invasion activity. In addition, we identified a signal cascade, namely, E1A-->miRNA-520h-->PP2A/C-->IkappaB kinase-->NF-kappaB-->Twist, in which E1A inhibited the expression of Twist through downregulation of miR-520h and the signal cascade. Our results indicated a functional link between miR-520h and tumorigenicity/invasive ability and provided a new insight into the role of E1A-mediated miRNA regulation in tumor suppression. Therefore, the results identified a new cascade of E1A-mediated tumor suppression activity via downregulation of miRNA-520h expression.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, China Medical University and Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
2195
|
Lee NP, Poon RTP, Shek FH, Ng IOL, Luk JM. Role of cadherin-17 in oncogenesis and potential therapeutic implications in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2010; 1806:138-45. [PMID: 20580775 DOI: 10.1016/j.bbcan.2010.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/03/2010] [Accepted: 05/08/2010] [Indexed: 12/14/2022]
Abstract
Cadherin is an important cell adhesion molecule that plays paramount roles in organ development and the maintenance of tissue integrity. Dysregulation of cadherin expression is often associated with disease pathology including tissue dysplasia, tumor formation, and metastasis. Cadherin-17 (CDH17), belonging to a subclass of 7D-cadherin superfamily, is present in fetal liver and gastrointestinal tract during embryogenesis, but the gene becomes silenced in healthy adult liver and stomach tissues. It functions as a peptide transporter and a cell adhesion molecule to maintain tissue integrity in epithelia. However, recent findings from our group and others have reported aberrant expression of CDH17 in major gastrointestinal malignancies including hepatocellular carcinoma (HCC), stomach and colorectal cancers, and its clinical association with tumor metastasis and advanced tumor stages. Furthermore, alternative splice isoforms and genetic polymorphisms of CDH17 gene have been identified in HCC and linked to an increased risk of HCC. CDH17 is an attractive target for HCC therapy. Targeting CDH17 in HCC can inhibit tumor growth and inactivate Wnt signaling pathway in concomitance with activation of tumor suppressor genes. Further investigation on CDH17-mediated oncogenic signaling and cognate molecular mechanisms would shed light on new targeting therapy on HCC and potentially other gastrointestinal malignancies.
Collapse
Affiliation(s)
- Nikki P Lee
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
2196
|
Sato Y, Harada K, Itatsu K, Ikeda H, Kakuda Y, Shimomura S, Shan Ren X, Yoneda N, Sasaki M, Nakanuma Y. Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:141-52. [PMID: 20489148 DOI: 10.2353/ajpath.2010.090747] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epithelial-mesenchymal transition is an important mechanism behind initiation of cancer invasion and metastasis. This study was performed to clarify the involvement of epithelial-mesenchymal transition in the progression of cholangiocarcinoma. Cholangiocarcinoma cell lines, CCKS-1 and TFK-1, were treated with transforming growth factor-beta1 (TGF-beta1), and the phenotypic changes and invasive activity were examined. Immunohistochemical analysis was performed using tissue sections of cholangiocarcinoma. In vitro, TGF-beta1 induced mesenchymal features in CCKS-1 and TFK-1 characterized by the reduction of E-cadherin and cytokeratin 19 expression and the induction of mesenchymal markers, such as vimentin and S100A4. TGF-beta1 also induced the nuclear expression of Snail, and the invasive activity was significantly increased in both cell lines. Studies using a mouse xenograft model showed that TGF-beta1 worsened the peritoneal dissemination of CCKS-1. All these changes by TGF-beta1 were inhibited by the simultaneous administration of soluble TGF-beta type II receptor. In vivo, six (16%) of 37 cholangiocarcinoma cases showed marked immunoreactivity of Snail in their nuclei. In these six cases, the immuno-expression of cytokeratin 19 was significantly reduced, and the expression of vimentin was significantly increased. The Snail expression significantly correlated with the lymph node metastasis and a poor survival rate of the patients. These results suggest that epithelial-mesenchymal transition induced by TGF-beta1/Snail activation is closely associated with the aggressive growth of cholangiocarcinoma, resulting in a poor prognosis.
Collapse
Affiliation(s)
- Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2197
|
Härmä V, Virtanen J, Mäkelä R, Happonen A, Mpindi JP, Knuuttila M, Kohonen P, Lötjönen J, Kallioniemi O, Nees M. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 2010; 5:e10431. [PMID: 20454659 PMCID: PMC2862707 DOI: 10.1371/journal.pone.0010431] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/31/2010] [Indexed: 01/06/2023] Open
Abstract
Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Cell Shape/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Collagen/pharmacology
- Drug Combinations
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelium/drug effects
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Laminin/pharmacology
- Male
- Mesoderm/drug effects
- Mesoderm/pathology
- Models, Biological
- Neoplasm Invasiveness
- Neoplasm Proteins/metabolism
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Principal Component Analysis
- Prostate/drug effects
- Prostate/pathology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proteoglycans/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/enzymology
- Spheroids, Cellular/pathology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ville Härmä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | | | - Rami Mäkelä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | - Antti Happonen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | | | | | - Pekka Kohonen
- Biotechnology Centre, University of Turku, Turku, Finland
| | - Jyrki Lötjönen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Matthias Nees
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
- * E-mail:
| |
Collapse
|
2198
|
Abstract
Nuclear Factor (erythroid-derived 2)-like 2 (Nrf2) expression is deregulated in many cancers. Genetic and biochemical approaches coupled with functional assays in cultured cells were used to explore the consequence of Nrf2 repression. Nrf2 suppression by Keap1-directed ubiquitylation or expression of independent shRNA/siRNA sequences enhanced cellular ROS, Smad-dependent tumor cell motility, and growth in soft agar. Loss of Nrf2 was accompanied by concomitant Smad linker region/C-terminus phosphorylation, induction of the E-Cadherin transcriptional repressor Slug, and suppression of the cell-cell adhesion protein E-Cadherin. Ectopic expression of wildtype Nrf2, but not dominant negative Nrf2, suppressed the activity of a synthetic TGF-β1 responsive CAGA-directed luciferase reporter. shRNA knock-down of Nrf2 enhanced the activity of the synthetic CAGA-reporter, as well as the expression of the endogenous Smad target gene plasminogen activator inhibitor-1. Finally, we found that Nrf2/Smad3/Smad4 formed an immunoprecipitable nuclear complex. Thus, loss of Nrf2 increased R-Smad phosphorylation and R-Smad signaling, supporting the hypothesis that loss of Nrf2 in an oncogenic context-dependent manner can enhance cellular plasticity and motility, in part by using TGF-β/Smad signaling.
Collapse
|
2199
|
Lee HS, Kim C, Kim SB, Kim MG, Park D. Epithin, a target of transforming growth factor-β signaling, mediates epithelial–mesenchymal transition. Biochem Biophys Res Commun 2010; 395:553-9. [DOI: 10.1016/j.bbrc.2010.04.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022]
|
2200
|
Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, Wu J, Nakayama KI, Kang HY, Huang HY, Hung MC, Pandolfi PP, Lin HK. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol 2010; 12:457-467. [PMID: 20383141 PMCID: PMC3855841 DOI: 10.1038/ncb2047] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/01/2010] [Indexed: 12/13/2022]
Abstract
The RhoA GTPase is crucial in numerous biological functions and is linked to cancer metastasis. However, the understanding of the molecular mechanism responsible for RhoA transcription is still very limited. Here we show that RhoA transcription is orchestrated by the Myc-Skp2-Miz1-p300 transcriptional complex. Skp2 cooperates with Myc to induce RhoA transcription by recruiting Miz1 and p300 to the RhoA promoter independently of Skp1-Cullin-F-box protein containing complex (SCF)-Skp2 E3 ligase activity. Deficiency of this complex results in impairment in RhoA expression, cell migration, invasion, and breast cancer metastasis, recapitulating the phenotypes observed in RhoA knockdown, and RhoA restoration rescues the defect in cell invasion. Overexpression of the Myc-Skp2-Miz1 complex is found in metastatic human cancers and is correlated with RhoA expression. Our study provides insight into how oncogenic Skp2 and Myc coordinate to induce RhoA transcription and establishes a novel SCF-Skp2 E3-ligase-independent function for oncogenic Skp2 in transcription and cancer metastasis.
Collapse
Affiliation(s)
- Chia-Hsin Chan
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Szu-Wei Lee
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jing Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lei Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Ching-Yuan Wu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Chinese Medicine; Chang Gung Memorial Hospital-Kaohsiung Medical Center; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University; Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung Memorial Hospital-Koahsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Juan Wu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung Memorial Hospital-Koahsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Chang Gung Memorial Hospital-Kaohsiung Medical Center; Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hui-Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|