2201
|
Sato Y, Harada K, Itatsu K, Ikeda H, Kakuda Y, Shimomura S, Shan Ren X, Yoneda N, Sasaki M, Nakanuma Y. Epithelial-mesenchymal transition induced by transforming growth factor-{beta}1/Snail activation aggravates invasive growth of cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:141-52. [PMID: 20489148 DOI: 10.2353/ajpath.2010.090747] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epithelial-mesenchymal transition is an important mechanism behind initiation of cancer invasion and metastasis. This study was performed to clarify the involvement of epithelial-mesenchymal transition in the progression of cholangiocarcinoma. Cholangiocarcinoma cell lines, CCKS-1 and TFK-1, were treated with transforming growth factor-beta1 (TGF-beta1), and the phenotypic changes and invasive activity were examined. Immunohistochemical analysis was performed using tissue sections of cholangiocarcinoma. In vitro, TGF-beta1 induced mesenchymal features in CCKS-1 and TFK-1 characterized by the reduction of E-cadherin and cytokeratin 19 expression and the induction of mesenchymal markers, such as vimentin and S100A4. TGF-beta1 also induced the nuclear expression of Snail, and the invasive activity was significantly increased in both cell lines. Studies using a mouse xenograft model showed that TGF-beta1 worsened the peritoneal dissemination of CCKS-1. All these changes by TGF-beta1 were inhibited by the simultaneous administration of soluble TGF-beta type II receptor. In vivo, six (16%) of 37 cholangiocarcinoma cases showed marked immunoreactivity of Snail in their nuclei. In these six cases, the immuno-expression of cytokeratin 19 was significantly reduced, and the expression of vimentin was significantly increased. The Snail expression significantly correlated with the lymph node metastasis and a poor survival rate of the patients. These results suggest that epithelial-mesenchymal transition induced by TGF-beta1/Snail activation is closely associated with the aggressive growth of cholangiocarcinoma, resulting in a poor prognosis.
Collapse
Affiliation(s)
- Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2202
|
Hong E, Jayachandran P, Brewster R. The polarity protein Pard3 is required for centrosome positioning during neurulation. Dev Biol 2010; 341:335-45. [PMID: 20138861 PMCID: PMC2862117 DOI: 10.1016/j.ydbio.2010.01.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 12/12/2022]
Abstract
Microtubules are essential regulators of cell polarity, architecture and motility. The organization of the microtubule network is context-specific. In non-polarized cells, microtubules are anchored to the centrosome and form radial arrays. In most epithelial cells, microtubules are noncentrosomal, align along the apico-basal axis and the centrosome templates a cilium. It follows that cells undergoing mesenchyme-to-epithelium transitions must reorganize their microtubule network extensively, yet little is understood about how this process is orchestrated. In particular, the pathways regulating the apical positioning of the centrosome are unknown, a central question given the role of cilia in fluid propulsion, sensation and signaling. In zebrafish, neural progenitors undergo progressive epithelialization during neurulation, and thus provide a convenient in vivo cellular context in which to address this question. We demonstrate here that the microtubule cytoskeleton gradually transitions from a radial to linear organization during neurulation and that microtubules function in conjunction with the polarity protein Pard3 to mediate centrosome positioning. Pard3 depletion results in hydrocephalus, a defect often associated with abnormal cerebrospinal fluid flow that has been linked to cilia defects. These findings thus bring to focus cellular events occurring during neurulation and reveal novel molecular mechanisms implicated in centrosome positioning.
Collapse
Affiliation(s)
- Elim Hong
- Children's Research Institute (CRI), Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
2203
|
Härmä V, Virtanen J, Mäkelä R, Happonen A, Mpindi JP, Knuuttila M, Kohonen P, Lötjönen J, Kallioniemi O, Nees M. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 2010; 5:e10431. [PMID: 20454659 PMCID: PMC2862707 DOI: 10.1371/journal.pone.0010431] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/31/2010] [Indexed: 01/06/2023] Open
Abstract
Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Cell Shape/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Collagen/pharmacology
- Drug Combinations
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelium/drug effects
- Epithelium/pathology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Laminin/pharmacology
- Male
- Mesoderm/drug effects
- Mesoderm/pathology
- Models, Biological
- Neoplasm Invasiveness
- Neoplasm Proteins/metabolism
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Principal Component Analysis
- Prostate/drug effects
- Prostate/pathology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proteoglycans/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/enzymology
- Spheroids, Cellular/pathology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ville Härmä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | | | - Rami Mäkelä
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
| | - Antti Happonen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | | | | | - Pekka Kohonen
- Biotechnology Centre, University of Turku, Turku, Finland
| | - Jyrki Lötjönen
- Knowledge Intensive Services, VTT Technical Research Centre of Finland, Tampere, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Matthias Nees
- Medical Biotechnology Knowledge Centre, VTT Technical Research Centre of Finland, Turku, Finland
- * E-mail:
| |
Collapse
|
2204
|
Lee HS, Kim C, Kim SB, Kim MG, Park D. Epithin, a target of transforming growth factor-β signaling, mediates epithelial–mesenchymal transition. Biochem Biophys Res Commun 2010; 395:553-9. [DOI: 10.1016/j.bbrc.2010.04.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022]
|
2205
|
Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, Wu J, Nakayama KI, Kang HY, Huang HY, Hung MC, Pandolfi PP, Lin HK. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol 2010; 12:457-467. [PMID: 20383141 PMCID: PMC3855841 DOI: 10.1038/ncb2047] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/01/2010] [Indexed: 12/13/2022]
Abstract
The RhoA GTPase is crucial in numerous biological functions and is linked to cancer metastasis. However, the understanding of the molecular mechanism responsible for RhoA transcription is still very limited. Here we show that RhoA transcription is orchestrated by the Myc-Skp2-Miz1-p300 transcriptional complex. Skp2 cooperates with Myc to induce RhoA transcription by recruiting Miz1 and p300 to the RhoA promoter independently of Skp1-Cullin-F-box protein containing complex (SCF)-Skp2 E3 ligase activity. Deficiency of this complex results in impairment in RhoA expression, cell migration, invasion, and breast cancer metastasis, recapitulating the phenotypes observed in RhoA knockdown, and RhoA restoration rescues the defect in cell invasion. Overexpression of the Myc-Skp2-Miz1 complex is found in metastatic human cancers and is correlated with RhoA expression. Our study provides insight into how oncogenic Skp2 and Myc coordinate to induce RhoA transcription and establishes a novel SCF-Skp2 E3-ligase-independent function for oncogenic Skp2 in transcription and cancer metastasis.
Collapse
Affiliation(s)
- Chia-Hsin Chan
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Szu-Wei Lee
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jing Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lei Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Ching-Yuan Wu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Chinese Medicine; Chang Gung Memorial Hospital-Kaohsiung Medical Center; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University; Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung Memorial Hospital-Koahsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Juan Wu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung Memorial Hospital-Koahsiung Medical Center, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Chang Gung Memorial Hospital-Kaohsiung Medical Center; Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hui-Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
2206
|
Hall B. Response to Sehgal. Oncogene 2010. [DOI: 10.1038/onc.2010.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2207
|
Mathias RA, Chen YS, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ. Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration. J Proteome Res 2010; 9:1007-19. [PMID: 19954229 DOI: 10.1021/pr900907g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) describes a process whereby immotile epithelial cells escape structural constraints imposed by cellular architecture and acquire a phenotype characteristic of migratory mesenchymal cells. Implicated in carcinoma progression and metastasis, EMT has been the focus of several recent proteomics-based studies aimed at identifying new molecular players. To gain insights into extracellular mediators associated with EMT, we conducted an extensive proteomic analysis of the secretome from MDCK cells following oncogenic Ras-induced EMT (21D1 cells). Using Orbitrap technology and a label-free quantitative approach, differential expression of several secreted modulators were revealed. Proteomic findings were further substantiated by mRNA transcript expression analysis with 71% concordance. MDCK cells undergoing Ras-induced EMT remodel the extracellular matrix (ECM) via diminished expression of basement membrane constituents (collagen type IV and laminin 5), up-regulation of extracellular proteases (MMP-1, kallikreins -6 and -7), and increased production and secretion of ECM constituents (SPARC, collagen type I, fibulins -1 and -3, biglycan, and decorin). Collectively, these findings suggest that hierarchical regulation of a subset of extracellular effectors may coordinate a biological response during EMT that enhances cell motility. Transient silencing of MMP-1 in 21D1 cells via siRNA-mediated knockdown attenuated cell migration. Many of the secretome proteins identified broaden our understanding of the EMT process.
Collapse
Affiliation(s)
- Rommel A Mathias
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
2208
|
Andreopoulou E, Cristofanilli M. Circulating tumor cells as prognostic marker in metastatic breast cancer. Expert Rev Anticancer Ther 2010; 10:171-7. [PMID: 20131993 DOI: 10.1586/era.09.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Testing for circulating tumor cells has emerged as a new and promising tool for stratifying and monitoring patients with metastatic disease. Appropriate risk and biologic stratification in breast cancer is important for the development of more effectively tailored targeted therapies. To optimize patient care, it is important for the clinicians to rely on validated and robust tools able to provide accurate predictive and prognostic information for each patient at any time during treatment. The recent demonstration that the presence of circulating tumor cells predicts the prognosis at any time during the treatment of patients with metastatic breast cancer raises the possibility that this approach will allow for a true 'biologic staging' of the disease. Important questions regarding the biological characteristics of cells and the reasons for the reduced capacity of systemic treatments to arrest or eradicate the cancer were raised. A further study suggests that comprehensive analysis of circulating tumor cells is likely to provide new insights into the biology of breast cancer and contribute to defining novel treatments and better prediction of clinical benefit. Efforts are being made to genotype and phenotype micrometastatic cells. Considerable progress has been already accomplished which should lead to further noninvasive, real-time monitoring of these rare events in the adjuvant and metastatic settings.
Collapse
Affiliation(s)
- Eleni Andreopoulou
- University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, 1155 Herman P Pressler, CPB5.3494 Houston, TX 77230, USA.
| | | |
Collapse
|
2209
|
Garmy-Susini B, Avraamides CJ, Schmid MC, Foubert P, Ellies LG, Barnes L, Feral C, Papayannopoulou T, Lowy A, Blair SL, Cheresh D, Ginsberg M, Varner JA. Integrin alpha4beta1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res 2010; 70:3042-51. [PMID: 20388801 PMCID: PMC2856096 DOI: 10.1158/0008-5472.can-09-3761] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have shown that lymphangiogenesis or the growth of lymphatic vessels at the periphery of tumors promotes tumor metastasis to lymph nodes. We show here that the fibronectin-binding integrin alpha4beta1 and its ligand fibronectin are novel functional markers of proliferative lymphatic endothelium. Tumors and lymphangiogenic growth factors, such as vascular endothelial growth factor-C (VEGF-C) and VEGF-A, induce lymphatic vessel expression of integrin alpha4beta1. Integrin alpha4beta1 then promotes growth factor and tumor-induced lymphangiogenesis, as genetic loss of integrin alpha4beta1 expression in Tie2Cre+ alpha4(loxp/loxp) mice or genetic loss of alpha4 signaling in alpha4Y991A knock-in mice blocks growth factor and tumor-induced lymphangiogenesis, as well as tumor metastasis to lymph nodes. In addition, antagonists of integrin alpha4beta1 suppress lymphangiogenesis and tumor metastasis. Our studies show that integrin alpha4beta1 and the signals it transduces regulate the adhesion, migration, invasion, and survival of proliferating lymphatic endothelial cells. As suppression of alpha4beta1 expression, signal transduction, or function in tumor lymphatic endothelium not only inhibits tumor lymphangiogenesis but also prevents metastatic disease, these results show that integrin alpha4beta1-mediated tumor lymphangiogenesis promotes metastasis and is a useful target for the suppression of metastatic disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Leo Barnes
- Moores Cancer Center, University of California, San Diego
- Department of Pathology, University of California, San Diego
| | - Chloe Feral
- Department of Medicine, University of California, San Diego
| | | | - Andrew Lowy
- Moores Cancer Center, University of California, San Diego
- Department of Surgery, University of California, San Diego
| | - Sarah L. Blair
- Moores Cancer Center, University of California, San Diego
- Department of Surgery, University of California, San Diego
| | - David Cheresh
- Moores Cancer Center, University of California, San Diego
- Department of Pathology, University of California, San Diego
| | - Mark Ginsberg
- Department of Medicine, University of California, San Diego
| | - Judith A. Varner
- Moores Cancer Center, University of California, San Diego
- Department of Medicine, University of California, San Diego
| |
Collapse
|
2210
|
Reiman JM, Knutson KL, Radisky DC. Immune promotion of epithelial-mesenchymal transition and generation of breast cancer stem cells. Cancer Res 2010; 70:3005-8. [PMID: 20395197 PMCID: PMC2856111 DOI: 10.1158/0008-5472.can-09-4041] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Elements of the immune system act as intimate regulators of cancer progression, inhibiting early stages of tumor growth, through immunosurveillance while facilitating later stages of tumor progression. Recent findings have revealed that activated CD8 T cells can stimulate mammary epithelial tumor cells to undergo epithelial-mesenchymal transition (EMT) and to acquire the greatly increased tumorigenic capability and chemotherapeutic resistance of breast cancer stem cells (BCSC). These studies provide a window to understanding how BCSC arise and are maintained within tumors, and how to best target these processes for therapeutic benefit.
Collapse
Affiliation(s)
| | | | - Derek C. Radisky
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224
| |
Collapse
|
2211
|
Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, Gouvin LM, Sharma VM, Mercurio AM. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 2010; 17:319-32. [PMID: 20385358 PMCID: PMC2881822 DOI: 10.1016/j.ccr.2010.02.030] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/03/2009] [Accepted: 03/01/2010] [Indexed: 12/18/2022]
Abstract
High Gleason grade prostate carcinomas are aggressive, poorly differentiated tumors that exhibit diminished estrogen receptor beta (ERbeta) expression. We report that a key function of ERbeta and its specific ligand 5alpha-androstane-3beta,17beta-diol (3beta-adiol) is to maintain an epithelial phenotype and repress mesenchymal characteristics in prostate carcinoma. Stimuli (TGF-beta and hypoxia) that induce an epithelial-mesenchymal transition (EMT) diminish ERbeta expression, and loss of ERbeta is sufficient to promote an EMT. The mechanism involves ERbeta-mediated destabilization of HIF-1alpha and transcriptional repression of VEGF-A. The VEGF-A receptor neuropilin-1 drives the EMT by promoting Snail1 nuclear localization. Importantly, this mechanism is manifested in high Gleason grade cancers, which exhibit significantly more HIF-1alpha and VEGF expression, and Snail1 nuclear localization compared to low Gleason grade cancers.
Collapse
Affiliation(s)
- Paul Mak
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2212
|
Cullinane AR, Straatman-Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK, Luo G, Rahman F, Gürakan F, Utine E, Ozkan TB, Denecke J, Vukovic J, Di Rocco M, Mandel H, Cangul H, Matthews RP, Thomas SG, Rappoport JZ, Arias IM, Wolburg H, Knisely AS, Kelly DA, Müller F, Maher ER, Gissen P. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 2010; 42:303-12. [PMID: 20190753 PMCID: PMC5308204 DOI: 10.1038/ng.538] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/25/2010] [Indexed: 02/06/2023]
Abstract
Arthrogryposis, renal dysfunction and cholestasis syndrome (ARC) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells. Mutations in VPS33B account for most cases of ARC. We identified mutations in VIPAR (also called C14ORF133) in individuals with ARC without VPS33B defects. We show that VIPAR forms a functional complex with VPS33B that interacts with RAB11A. Knockdown of vipar in zebrafish resulted in biliary excretion and E-cadherin defects similar to those in individuals with ARC. Vipar- and Vps33b-deficient mouse inner medullary collecting duct (mIMDC-3) cells expressed membrane proteins abnormally and had structural and functional tight junction defects. Abnormal Ceacam5 expression was due to mis-sorting toward lysosomal degradation, but reduced E-cadherin levels were associated with transcriptional downregulation. The VPS33B-VIPAR complex thus has diverse functions in the pathways regulating apical-basolateral polarity in the liver and kidney.
Collapse
Affiliation(s)
- Andrew R Cullinane
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2213
|
Iwatsuki M, Mimori K, Fukagawa T, Ishii H, Yokobori T, Sasako M, Baba H, Mori M. The clinical significance of vimentin-expressing gastric cancer cells in bone marrow. Ann Surg Oncol 2010; 17:2526-33. [PMID: 20358301 DOI: 10.1245/s10434-010-1041-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Indexed: 01/10/2023]
Abstract
BACKGROUND Expression of the mesenchymal marker gene vimentin (VIM) in gastric cancer is associated with a more aggressive form of the disease and poor prognosis. Because epithelial mesenchymal transition (EMT) plays a critical role in the progression of gastric cancer, VIM expression was examined in the bone marrow (BM) of gastric cancer patients. METHODS BM samples from 437 gastric cancer patients were collected and analyzed by quantitative RT-PCR. Expression of VIM protein in the primary lesions of resected gastric cancers was evaluated using immunohistochemistry. Furthermore, induction of VIM expression by TGF-beta1 and hypoxia was evaluated in gastric cancer cells. RESULTS VIM mRNA expression increased concordantly with clinical staging and was significantly associated with tumor invasion and lymph node metastasis (P < .0001). Though cancer cells in the primary lesions did not stain with VIM antibody, some of the cells invading the intratumoral vessels were strongly positive for VIM, but were negative for E-cadherin. Hypoxic conditions and treatment with TGF-beta1 induced VIM expression and repressed E-cadherin in gastric cancer cells, coupled with an alteration of cellular morphology. CONCLUSIONS We found that gastric cancer cells undergo EMT in BM to survive and metastasize. These findings suggest that isolated tumor cells have the potential to undergo EMT, which could increase the malignancy of gastric cancer.
Collapse
Affiliation(s)
- Masaaki Iwatsuki
- Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2214
|
Yori JL, Johnson E, Zhou G, Jain MK, Keri RA. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem 2010; 285:16854-63. [PMID: 20356845 DOI: 10.1074/jbc.m110.114546] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Krüppel-like factor 4 (KLF4) is a transcriptional regulator of proliferation and differentiation in epithelial cells, both during development and tumorigenesis. Although KLF4 functions as a tumor suppressor in several tissues, including the colon, the role of KLF4 in breast cancer is less clear. Here, we show that KLF4 is necessary for maintenance of the epithelial phenotype in non-transformed MCF-10A mammary epithelial cells. KLF4 silencing led to alterations in epithelial cell morphology and migration, indicative of an epithelial-to-mesenchymal transition. Consistent with these changes, decreased levels of KLF4 also resulted in the loss of E-cadherin protein and mRNA. Promoter/reporter analyses revealed decreased E-cadherin promoter activity with KLF4 silencing, while chromatin immunoprecipitation identified endogenous KLF4 binding to the GC-rich/E-box region of this promoter. Furthermore, forced expression of KLF4 in the highly metastatic MDA-MB-231 breast tumor cell line was sufficient to restore E-cadherin expression and suppress migration and invasion. These findings identify E-cadherin as a novel transcriptional target of KLF4. The clear requirement for KLF4 to maintain E-cadherin expression and prevent epithelial-to-mesenchymal transition in mammary epithelial cells supports a metastasis suppressive role for KLF4 in breast cancer.
Collapse
Affiliation(s)
- Jennifer L Yori
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
2215
|
Langton PF, Colombani J, Chan EHY, Wepf A, Gstaiger M, Tapon N. The dASPP-dRASSF8 complex regulates cell-cell adhesion during Drosophila retinal morphogenesis. Curr Biol 2010; 19:1969-78. [PMID: 19931458 DOI: 10.1016/j.cub.2009.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND Adherens junctions (AJs) provide structure to epithelial tissues by connecting adjacent cells through homophilic E-cadherin interactions and are linked to the actin cytoskeleton via the intermediate binding proteins beta-catenin and alpha-catenin. Rather than being static structures, AJs are extensively remodeled during development, allowing the cell rearrangements required for morphogenesis. Several "noncore" AJ components have been identified, which modulate AJs to promote this plasticity but are not absolutely required for cell-cell adhesion. RESULTS We previously identified dASPP as a positive regulator of dCsk (Drosophila C-terminal Src kinase). Here we show that dRASSF8, the Drosophila RASSF8 homolog, binds to dASPP and that this interaction is required for normal dASPP levels. Our genetic and biochemical data suggest that dRASSF8 acts in concert with dASPP to promote dCsk activity. Both proteins specifically localize to AJs and are mutually required for each other's localization. Furthermore, we observed abnormal E-cadherin localization in mutant pupal retinas, correlating with aberrant cellular arrangements. Loss of dCsk or overexpression of Src elicited similar AJ defects. CONCLUSIONS Because Src is known to regulate AJs in both Drosophila and mammals, we propose that dASPP and dRASSF8 fine tune cell-cell adhesion during development by directing dCsk and Src activity. We show that the dASPP-dRASSF8 interaction is conserved in humans, suggesting that mammalian ASPP1/2 and RASSF8, which are candidate tumor-suppressor genes, restrict the activity of the Src proto-oncogene.
Collapse
Affiliation(s)
- Paul F Langton
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
2216
|
Santibáñez JF, Kocić J, Fabra A, Cano A, Quintanilla M. Rac1 modulates TGF-β1-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes. FEBS Lett 2010; 584:2305-10. [DOI: 10.1016/j.febslet.2010.03.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/27/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
2217
|
Lencinas A, Broka DM, Konieczka JH, Klewer SE, Antin PB, Camenisch TD, Runyan RB. Arsenic exposure perturbs epithelial-mesenchymal cell transition and gene expression in a collagen gel assay. Toxicol Sci 2010; 116:273-85. [PMID: 20308225 DOI: 10.1093/toxsci/kfq086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5-500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion-related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets.
Collapse
Affiliation(s)
- Alejandro Lencinas
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
2218
|
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140:883-99. [PMID: 20303878 PMCID: PMC2866629 DOI: 10.1016/j.cell.2010.01.025] [Citation(s) in RCA: 8097] [Impact Index Per Article: 539.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, malignant conversion, invasion, and metastasis. Inflammation also affects immune surveillance and responses to therapy. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. This review outlines the principal mechanisms that govern the effects of inflammation and immunity on tumor development and discusses attractive new targets for cancer therapy and prevention.
Collapse
Affiliation(s)
- Sergei I. Grivennikov
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Florian R. Greten
- 2nd Department of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
2219
|
PAI-1 Regulates the Invasive Phenotype in Human Cutaneous Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2010; 2009:963209. [PMID: 20204159 PMCID: PMC2829771 DOI: 10.1155/2009/963209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/24/2009] [Indexed: 01/24/2023]
Abstract
The emergence of highly aggressive subtypes of human cutaneous squamous cell carcinoma (SCC) often reflects increased autocrine/paracrine TGF-beta synthesis and epidermal growth factor receptor (EGFR) amplification. Cooperative TGF-beta/EGFR signaling promotes cell migration and induces expression of both proteases and protease inhibitors that regulate stromal remodeling resulting in the acquisition of an invasive phenotype. In one physiologically relevant model of human cutaneous SCC progression, TGF-beta1+EGF stimulation increases the production of several matrix metalloproteinases (MMPs), among the most prominent of which is MMP-10-an MMP known to be elevated in SCC in situ. Activation of stromal plasminogen appears to be critical in triggering downstream MMP activity. Paradoxically, PAI-1, the major physiological inhibitor of plasmin generation, is also upregulated under these conditions and is an early event in progression of incipient epidermal SCC. One testable hypothesis proposes that TGF-beta1+EGF-dependent MMP-10 elevation directs focalized matrix remodeling events that promote epithelial cell plasticity and tissue invasion. Increased PAI-1 expression serves to temporally and spatially modulate plasmin-initiated pericellular proteolysis, further facilitating epithelial invasive potential. Defining the complex signaling and transcriptional mechanisms that maintain this delicate balance is critical to developing targeted therapeutics for the treatment of human cutaneous malignancies.
Collapse
|
2220
|
Wang JC. Good cells gone bad: the cellular origins of cancer. Trends Mol Med 2010; 16:145-51. [DOI: 10.1016/j.molmed.2010.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/20/2009] [Accepted: 01/08/2010] [Indexed: 01/06/2023]
|
2221
|
Li M, Aliotta JM, Asara JM, Wu Q, Dooner MS, Tucker LD, Wells A, Quesenberry PJ, Ramratnam B. Intercellular transfer of proteins as identified by stable isotope labeling of amino acids in cell culture. J Biol Chem 2010; 285:6285-97. [PMID: 20026604 PMCID: PMC2825424 DOI: 10.1074/jbc.m109.057943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/15/2009] [Indexed: 12/24/2022] Open
Abstract
We tracked the extracellular fate of proteins of pulmonary origin using the technique of stable isotope labeling of amino acids in cell culture (SILAC) in cell-impermeable Transwell culture systems. We find that irradiation to murine lung and lung-derived cells induces their release of proteins that are capable of entering neighboring cells, including primary murine bone marrow cells as well as prostate cancer and hematopoietic cell lines. The functional classification of transferred proteins was broad and included transcription factors, mediators of basic cellular processes and components of the nucleosome remodeling and deacetylase complex, including metastasis associated protein 3 and retinoblastoma-binding protein 7. In further analysis we find that retinoblastoma-binding protein 7 is a transcriptional activator of E-cadherin and that its intercellular transfer leads to decreased gene expression of downstream targets such as N-cadherin and vimentin. SILAC-generated data sets offer a valuable tool to identify and validate potential paracrine networks that may impact relevant biologic processes associated with phenotypic and genotypic signatures of health and disease.
Collapse
Affiliation(s)
- Ming Li
- From the Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, The Warren Alpert Medical School of Brown University, and
| | - Jason M. Aliotta
- the Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, and The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - John M. Asara
- the Mass Spectrometry Core, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02215, and
| | - Qian Wu
- the Department of Pathology, Pittsburgh Veterans Administration Medical Center, and University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Mark S. Dooner
- the Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, and The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Lynne D. Tucker
- From the Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, The Warren Alpert Medical School of Brown University, and
| | - Alan Wells
- the Department of Pathology, Pittsburgh Veterans Administration Medical Center, and University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Peter J. Quesenberry
- the Division of Hematology and Oncology, Department of Medicine, Rhode Island Hospital, and The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Bharat Ramratnam
- From the Laboratory of Retrovirology, Division of Infectious Diseases, Department of Medicine, The Warren Alpert Medical School of Brown University, and
| |
Collapse
|
2222
|
Keshamouni VG, Schiemann WP. Epithelial-mesenchymal transition in tumor metastasis: a method to the madness. Future Oncol 2010; 5:1109-11. [PMID: 19852724 DOI: 10.2217/fon.09.87] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Venkateshwar G Keshamouni
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
2223
|
Wendt MK, Allington TM, Schiemann WP. Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2010; 5:1145-68. [PMID: 19852727 DOI: 10.2217/fon.09.90] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells to acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-beta, and in doing so, converts TGF-beta to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-beta induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular and microenvironmental mechanisms used by TGF-beta to mediate its stimulation of EMT in normal and malignant cells.
Collapse
Affiliation(s)
- Michael K Wendt
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
2224
|
Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis. Proc Natl Acad Sci U S A 2010; 107:4329-34. [PMID: 20142499 DOI: 10.1073/pnas.0912766107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue injury initiates a complex series of events that act to restore structure and physiological homeostasis. Infiltration of inflammatory cells and vascular remodeling are both keystones of this process. However, the role of inflammation and angiogenesis in general and, more specifically, the significance of inflammatory cell-derived VEGF in this context are unclear. To determine the role of inflammatory cell-derived VEGF in a clinically relevant and chronically inflamed injury, pulmonary fibrosis, we deleted the VEGF-A gene in myeloid cells. In a model of pulmonary fibrosis in mice, deletion of VEGF in myeloid cells resulted in significantly reduced formation of blood vessels; however, it causes aggravated fibrotic tissue damage. This was accompanied by a pronounced decrease in epithelial cell survival and a striking increase in myofibroblast invasion. The drastic increase in fibrosis following loss of myeloid VEGF in the damaged lungs was also marked by increased levels of hypoxia-inducible factor (HIF) expression and Wnt/beta-catenin signaling. This demonstrates that the process of angiogenesis, driven by myeloid cell-derived VEGF, is essential for the prevention of fibrotic damage.
Collapse
|
2225
|
Fu J, Lv X, Lin H, Wu L, Wang R, Zhou Z, Zhang B, Wang YL, Tsang BK, Zhu C, Wang H. Ubiquitin ligase cullin 7 induces epithelial-mesenchymal transition in human choriocarcinoma cells. J Biol Chem 2010; 285:10870-9. [PMID: 20139075 DOI: 10.1074/jbc.m109.004200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Germ line mutations of the ubiquitin ligase cullin 7 (CUL7) are linked to 3-M syndrome and Yakuts short stature syndrome, both of which are characterized by pre- and post-natal growth retardation. CUL7 knock-out mice show placental and embryonic defects similar to intrauterine growth retardation, suggesting a role of CUL7 in placentation. CUL7 was found in this study to be highly expressed in first trimester invasive human placental villi as well as in HTR8/SVneo and B6Tert cells, two cell lines derived from human first trimester trophoblast cells. However, CUL7 levels in term trophoblast cells or JEG-3 cells, which are derived from human choriocarcinoma but exhibit weak invasion capacity, were low or undetectable. Forced expression of CUL7 in JEG-3 cells induced cell morphological changes characteristic of epithelial-mesenchymal transition, which was accompanied by a complete loss of the epithelial markers E-cadherin and P-cadherin and a significant elevation of mesenchymal markers Vimentin and N-cadherin. JEG-3 cells expressing CUL7 exhibited enhanced cell migration and invasion. Conversely, CUL7-specific RNA interference in HTR8/SVneo cells resulted in increased E-cadherin expression and reduced cell migration and invasion. Furthermore, CUL7 expression down-regulated E-cadherin mRNA expression by up-regulating ZEB1 and Slug, two transcriptional repressors of E-cadherin. Finally, CUL7-induced loss of E-cadherin expression was partially reversed by treatment of CUL7-expressing cells with the proteasome inhibitor MG-132. These results suggest that the CUL7 E3 ligase is a key regulator in trophoblast cell epithelial-mesenchymal transition and placental development.
Collapse
Affiliation(s)
- Jiejun Fu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2226
|
Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101:293-9. [PMID: 19961486 PMCID: PMC11159985 DOI: 10.1111/j.1349-7006.2009.01419.x] [Citation(s) in RCA: 591] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) plays a critical role in embryonic development. EMT is also involved in cancer progression and metastasis and it is probable that a common molecular mechanism is shared by these processes. Cancer cells undergoing EMT can acquire invasive properties and enter the surrounding stroma, resulting in the creation of a favorable microenvironment for cancer progression and metastasis. Furthermore, the acquisition of EMT features has been associated with chemoresistance which could give rise to recurrence and metastasis after standard chemotherapeutic treatment. Thus, EMT could be closely involved in carcinogenesis, invasion, metastasis, recurrence, and chemoresistance. Research into EMT and its role in cancer pathogenesis has progressed rapidly and it is now hypothesized that novel concepts such as cancer stem cells and microRNA could be involved in EMT. However, the involvement of EMT varies greatly among cancer types, and much remains to be learned. In this review, we present recent findings regarding the involvement of EMT in cancer progression and metastasis and provide a perspective from clinical and translational viewpoints.
Collapse
Affiliation(s)
- Masaaki Iwatsuki
- Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
2227
|
Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 2010; 20:65-71. [PMID: 20036794 PMCID: PMC2821983 DOI: 10.1016/j.gde.2009.11.004] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 12/18/2022]
Abstract
Epidemiological and experimental data suggest a close connection between inflammation and tumorigenesis. Solid tumors are typically infiltrated with immune cells and inflammation impacts most, if not all, stages of tumorigenesis. Molecular and cellular pathways, which connect inflammation and cancer, have emerged as attractive targets for prevention and therapy. In this review we discuss general mechanisms and concepts of cancer promoting inflammation.
Collapse
Affiliation(s)
- Sergei I Grivennikov
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
2228
|
Kim S, Kang HY, Nam EH, Choi MS, Zhao XF, Hong CS, Lee JW, Lee JH, Park YK. TMPRSS4 induces invasion and epithelial-mesenchymal transition through upregulation of integrin alpha5 and its signaling pathways. Carcinogenesis 2010; 31:597-606. [PMID: 20118200 DOI: 10.1093/carcin/bgq024] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid and other cancer tissues, although its oncogenic significance and molecular mechanisms are unknown. Previously, we have shown that TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition (EMT). In this study, we explored the molecular basis underlying TMPRSS4-mediated effects. We show that multiple downstream signaling pathways, including focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), Akt, Src and Rac1, are activated by TMPRSS4 expression and that FAK signaling and ERK activation are required for TMPRSS4-induced invasiveness and EMT, including cadherin switch. Inhibition of PI3K or Src reduced invasiveness and actin rearrangement mediated by TMPRSS4 without restoring E-cadherin expression. Downregulation of E-cadherin was required for TMPRSS4-mediated effects but was not sufficient to induce EMT and invasion. TMPRSS4 induced integrin alpha5 expression and its signal transduction, leading to invasiveness and EMT accompanied by downregulation of E-cadherin. Functional blocking confirmed that integrin alpha5beta1 is a critical signaling molecule that is sufficient to induce TMPRSS4-mediated effects. Immunohistochemical analysis showed that TMPRSS4 expression was significantly higher in human colorectal cancer tissues from advanced stages than in that of early stage. Furthermore, upregulation of TMPRSS4 was correlated with enhanced integrin alpha5 expression. These observations implicate integrin alpha5 upregulation as a molecular mechanism by which TMPRSS4 induces invasion and contributes to cancer progression.
Collapse
Affiliation(s)
- Semi Kim
- Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
2229
|
Circulating tumour cells in clinical practice: Methods of detection and possible characterization. Methods 2010; 50:289-97. [PMID: 20116432 DOI: 10.1016/j.ymeth.2010.01.027] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/08/2010] [Accepted: 01/18/2010] [Indexed: 01/10/2023] Open
Abstract
Circulating Tumour Cells (CTCs) can be released from the primary tumour into the bloodstream and may colonize distant organs giving rise to metastasis. The presence of CTCs in the blood has been documented more than a century ago, and in the meanwhile various methods have been described for their detection. Most of them require an initial enrichment step, since CTCs are a very rare event. The different technologies and also the differences among the screened populations make the clinical significance of CTCs detection difficult to interprete. Here we will review the different assays up to now available for CTC detection and analysis. Moreover, we will focus on the relevance of the clinical data, generated so far and based on the CTCs analysis. Since the vast majority of data have been produced in breast cancer patients, the review will focus especially on this malignancy.
Collapse
|
2230
|
Papageorgis P, Lambert AW, Ozturk S, Gao F, Pan H, Manne U, Alekseyev YO, Thiagalingam A, Abdolmaleky HM, Lenburg M, Thiagalingam S. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 2010; 70:968-78. [PMID: 20086175 DOI: 10.1158/0008-5472.can-09-1872] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer progression is associated with aberrant DNA methylation and expression of genes that control the epithelial-mesenchymal transition (EMT), a critical step in malignant conversion. Although the genes affected have been studied, there is little understanding of how aberrant activation of the DNA methylation machinery itself occurs. Using a breast cancer cell-based model system, we found that cells that underwent EMT exhibited overactive transforming growth factor beta (TGFbeta) signaling and loss of expression of the CDH1, CGN, CLDN4, and KLK10 genes as a result of hypermethylation of their corresponding promoter regions. Based on these observations, we hypothesized that activated TGFbeta-Smad signaling provides an "epigenetic memory" to maintain silencing of critical genes. In support of this hypothesis, disrupting Smad signaling in mesenchymal breast cancer cells resulted in DNA demethylation and reexpression of the genes identified. This epigenetic reversal was accompanied by an acquisition of epithelial morphology and a suppression of invasive properties. Notably, disrupting TGFbeta signaling decreased the DNA binding activity of DNA methyltransferase DNMT1, suggesting that failure to maintain methylation of newly synthesized DNA was the likely cause of DNA demethylation. Together, our findings reveal a hyperactive TGFbeta-TGFbetaR-Smad2 signaling axis needed to maintain epigenetic silencing of critical EMT genes and breast cancer progression.
Collapse
Affiliation(s)
- Panagiotis Papageorgis
- Departments of Medicine (Genetics and Molecular Medicine Programs and Cancer Research Center), Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2231
|
Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci U S A 2010; 107:2485-90. [PMID: 20080667 DOI: 10.1073/pnas.0908133107] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A single nucleotide polymorphism in the DAB2IP gene is associated with risk of aggressive prostate cancer (PCa), and loss of DAB2IP expression is frequently detected in metastatic PCa. However, the functional role of DAB2IP in PCa remains unknown. Here, we show that the loss of DAB2IP expression initiates epithelial-to-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in both human normal prostate epithelial and prostate carcinoma cells as well as in clinical prostate-cancer specimens. Conversely, restoring DAB2IP in metastatic PCa cells reversed EMT. In DAB2IP knockout mice, prostate epithelial cells exhibited elevated mesenchymal markers, which is characteristic of EMT. Using a human prostate xenograft-mouse model, we observed that knocking down endogenous DAB2IP in human carcinoma cells led to the development of multiple lymph node and distant organ metastases. Moreover, we showed that DAB2IP functions as a scaffold protein in regulating EMT by modulating nuclear beta-catenin/T-cell factor activity. These results show the mechanism of DAB2IP in EMT and suggest that assessment of DAB2IP may provide a prognostic biomarker and potential therapeutic target for PCa metastasis.
Collapse
|
2232
|
Panico F, Rizzi F, Fabbri LM, Bettuzzi S, Luppi F. Clusterin (CLU) and lung cancer. Adv Cancer Res 2010; 105:63-76. [PMID: 19879423 DOI: 10.1016/s0065-230x(09)05004-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality. It is categorized into two histological groups that have distinct clinical behaviors, the nonsmall cell lung cancers (NSCLC) and the small cell lung cancer (SCLC). When identified at an early stage, NSCLC is treated by surgical resection. However, patients who undergo surgical resection still have a relative low survival rate, primarily for tumor recurrence. Unfortunately, advances in cytotoxic therapy have reached a plateau and new approaches to treatment are needed together with new and better parameters for more accurate prediction of the outcome and more precise indication of the efficacy of the treatment. Several in vitro studies have examined the role of Clusterin (CLU) in carcinogenesis, lung cancer progression, and response to chemo- and radiotherapy. Studies performed in lung cancer cell lines and animal models showed that CLU is upregulated after exposure to chemo- and radiotherapy. A potential role proposed for the protein is cytoprotective. In vitro, CLU silencing by antisense oligonucleotides (ASO) and small-interfering RNAs (siRNA) directed against CLU mRNA in CLU-rich lung cancer cell lines sensitized cells to chemotherapy and radiotherapy and decreased their metastatic potential. In vivo, a recent work analyzed the prognostic role of CLU in NSCLC, showing that CLU-positive patients with lung cancer had a better overall survival and disease-free survival than those with CLU-negative tumors. These data are contradictory to the promising in vitro results. From the results of these studies we may hypothesize that in early-stage lung cancers CLU represents a positive biomarker correlating with better overall survival. In advanced patients, already treated with chemo- and radiotherapy, the induction of CLU may confer resistance to the treatments. However, many studies are needed to better understand the role of CLU in early-stage and advanced lung cancers with the aim to discriminate patients and specific local conditions that could benefit for a CLU knocking down treatment.
Collapse
Affiliation(s)
- F Panico
- Department of Oncology, Hematology and Respiratory Diseases, Section of Respiratory Diseases, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
2233
|
Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol 2010; 25:567-95. [PMID: 19575644 DOI: 10.1146/annurev.cellbio.24.110707.175315] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A seminal event in cancer progression is the ability of the neoplastic cell to mobilize the necessary machinery to breach surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes. With over 500 proteolytic enzymes identified in the human genome, interconnecting webs of protease-dependent and protease-independent processes have been postulated to drive the cancer cell invasion program via schemes of daunting complexity. Increasingly, however, a body of evidence has begun to emerge that supports a unifying model wherein a small group of membrane-tethered enzymes, termed the membrane-type matrix metalloproteinases (MT-MMPs), plays a dominant role in regulating cancer cell, as well as stromal cell, traffic through the extracellular matrix barriers assembled by host tissues in vivo. Understanding the mechanisms that underlie the regulation and function of these metalloenzymes as host cell populations traverse the dynamic extracellular matrix assembled during neoplastic states should provide new and testable theories regarding cancer invasion and metastasis.
Collapse
Affiliation(s)
- R Grant Rowe
- The Division of Molecular Medicine & Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
2234
|
Warin R, Chambers WH, Potter DM, Singh SV. Prevention of mammary carcinogenesis in MMTV-neu mice by cruciferous vegetable constituent benzyl isothiocyanate. Cancer Res 2010; 69:9473-80. [PMID: 19934325 DOI: 10.1158/0008-5472.can-09-2960] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of human breast cancer cells in culture. The present study provides in vivo evidence for efficacy of BITC for prevention of mammary cancer in MMTV-neu mice. Administration of BITC at 1 and 3 mmol/kg diet for 25 weeks markedly suppressed the incidence and/or burden of mammary hyperplasia and carcinoma in female MMTV-neu mice without causing weight loss or affecting neu protein level. For example, cumulative incidence of hyperplasia/carcinoma was significantly lower in mice fed BITC-supplemented diets compared with control mice (P = 0.01 by Fisher's test). The BITC-mediated prevention of mammary carcinogenesis correlated with suppression of cell proliferation and increased apoptosis. The average number of Ki-67-positive cells in the carcinoma lesions of 3 mmol BITC group was lower by approximately 21% (P < 0.05) compared with tumors from control mice. Apoptotic bodies in the mammary tumor were higher by about 2- to 2.5-fold in the 1 and 3 mmol BITC treatment groups (P < 0.05) compared with control group. The BITC administration also resulted in overexpression of E-cadherin and infiltration of CD3(+) T-cells in the tumor. Although BITC treatment increased cytotoxicity of natural killer (NK) cells in vitro, dietary feeding of BITC failed to augment NK cell lytic activity in an ex vivo assay. The present study demonstrating efficacy of BITC against mammary cancer in an animal model provides impetus to determine its activity in a clinical setting.
Collapse
Affiliation(s)
- Renaud Warin
- Department of Pharmacology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
2235
|
Zeitlinger J, Stark A. Developmental gene regulation in the era of genomics. Dev Biol 2010; 339:230-9. [PMID: 20045679 DOI: 10.1016/j.ydbio.2009.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/04/2009] [Accepted: 12/23/2009] [Indexed: 01/30/2023]
Abstract
Genetic experiments over the last few decades have identified many developmental control genes critical for pattern formation and cell fate specification during the development of multicellular organisms. A large fraction of these genes encode transcription factors and signaling molecules, show highly dynamic expression patterns during development, and are deeply evolutionarily conserved and deregulated in various human diseases such as cancer. Because of their importance in development, evolution, and disease, a fundamental question in biology is how these developmental control genes are regulated in such an extensive and precise fashion. Using genomics methods, it has become clear that developmental control genes are a distinct group of genes with special regulatory characteristics. However, a systematic analysis of these characteristics has not been presented. Here we review how developmental control genes were discovered, evaluate their genome-wide regulation and gene structure, discuss emerging evidence for their mode of regulation, and estimate their overall abundance in the genome. Understanding the global regulation of developmental control genes may provide a new perspective on development in the era genomics.
Collapse
Affiliation(s)
- Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
2236
|
Cano A, Portillo F. An emerging role for class I bHLH E2-2 proteins in EMT regulation and tumor progression. Cell Adh Migr 2010; 4:56-60. [PMID: 20023376 DOI: 10.4161/cam.4.1.9995] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
EMT is a complex process whereby cells lose cell-cell interactions and other epithelial properties whilst acquiring a migratory and mesenchymal phenotype. EMT is presently recognized as an important even for tumor invasion and metastasis. Functional E-cadherin loss is a hallmark of EMT and required for tumor invasion in the majority of carcinomas. Transcriptional downregulation is one of the major mechanisms for E-cadherin suppression in carcinomas. In the last decade several E-cadherin repressors, belonging to different transcriptional families, have been identified that, importantly, also act as potent EMT inducers. One of the last additions to EMT regulators are the class I bHLH factors E2-2 (also known as TCF4). However, the hierarchical and functional interrelations between the different EMT inducers are still poorly understood. Here, we comment on the new and so far unrecognized function of E2-2 factors in EMT and discuss on the potential interactions among various EMT inducers. Emerging evidence supporting the participation of TCF4 in human malignancies is also discussed. Thus, increasing understanding of EMT and its regulators is providing meaningful insights into the present knowledge on tumor progression.
Collapse
Affiliation(s)
- Amparo Cano
- Departmento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain.
| | | |
Collapse
|
2237
|
Du R, Huang C, Bi Q, Zhai Y, Xia L, Liu J, Sun S, Fan D. URG11 mediates hypoxia-induced epithelial-to-mesenchymal transition by modulation of E-cadherin and β-catenin. Biochem Biophys Res Commun 2010; 391:135-41. [DOI: 10.1016/j.bbrc.2009.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
|
2238
|
Liu L, Ren ZG, Shen Y, Zhu XD, Zhang W, Xiong W, Qin Y, Tang ZY. Influence of hepatic artery occlusion on tumor growth and metastatic potential in a human orthotopic hepatoma nude mouse model: relevance of epithelial-mesenchymal transition. Cancer Sci 2010; 101:120-8. [PMID: 19832842 PMCID: PMC11159595 DOI: 10.1111/j.1349-7006.2009.01363.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic artery ligation (HAL), transarterial embolization (TAE), and transarterial chemoembolization (TACE) have been treatment choices for unresectable hepatocellular carcinoma (HCC). Obstruction of tumor blood supply is one of the most important mechanisms of these therapeutics measures. Here we introduced HAL into a metastatic human HCC orthotopic nude mouse model (using MHCC97L and HepG2 cell lines) to examine the effects of hepatic blood flow obstruction on the metastatic potential of hepatic tumor cells, and to investigate the mechanisms underlying these effects. Our results indicated that HAL inhibited tumor growth but concomitantly elicited tumor adaptation and progression, with increased potential for invasion and distant metastases. The underlying proinvasive mechanism of HAL appeared to be associated with enhanced intratumoral hypoxia and epithelial-mesenchymal transition (EMT) due to hypoxia. This was in accord with the in vitro response of MHCC97L and HepG2 cells to hypoxia. The therapeutic effects of HAL could be enhanced by the phosphatidyl inositol 3-kinase (PI3K) inhibitor LY294002, through arrest of EMT in hepatic tumor cells. It could be useful in the development of mechanism-based combination therapies to enhance the initial antitumor response.
Collapse
Affiliation(s)
- Liang Liu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
2239
|
Vered M, Dobriyan A, Dayan D, Yahalom R, Talmi YP, Bedrin L, Barshack I, Taicher S. Tumor-host histopathologic variables, stromal myofibroblasts and risk score, are significantly associated with recurrent disease in tongue cancer. Cancer Sci 2010; 101:274-80. [PMID: 19804423 PMCID: PMC11158375 DOI: 10.1111/j.1349-7006.2009.01357.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Margin status, a major prognostic parameter in oral cancer, was analyzed vis-à-vis the histopathologic parameters of risk scores and stromal myofibroblasts. Specimens of tongue carcinoma (n = 50) were submitted to a risk score assignment consisting of the worst pattern of invasion, lymphocytic infiltration, and perineural invasion. Frequency of stromal myofibroblasts (alpha-smooth muscle actin stain) was assessed. A triple immunostaining assay with E-cadherin, Ki-67 and alpha-smooth muscle actin was used to identify carcinoma cells undergoing epithelial-mesenchymal transition. Margins were considered 'clean' if the tumor was >or=5 mm away from them. Patients
Collapse
Affiliation(s)
- Marilena Vered
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
2240
|
Abstract
Gastric cancer is one of the world's leading causes of cancer mortality. A small percentage of cases can be attributed to heritable mutations in highly penetrant cancer susceptibility genes. In this chapter we will focus on the genetic cause of hereditary diffuse gastric cancer (HDGC). Until 10 years ago, individuals from these families lived with the uncertainty of developing lethal gastric cancer. Today, HDGC families can be identified, tested for causative mutations in CDH1, and for those families where a pathogenic mutation can be identified, prophylactic total gastrectomy can be implemented in asymptomatic mutation carriers who elect to virtually eliminate their risk of developing this lethal disease.
Collapse
Affiliation(s)
- Kasmintan Schrader
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada, V5Z 4E6.
| | | |
Collapse
|
2241
|
Abstract
Circulating tumor cells (CTCs) can be separated and characterized from normal hematopoietic cellular constituents by a variety of methods. Different strategies have included separation by physical characteristics, such as size or weight, or by biological characteristics, such as expression of epithelial or cancer-specific markers. Of the latter, rtPCR for epithelial-related gene message, such as cytokeratin, and immunoseparation techniques using monoclonal antibodies against epithelial cellular adhesion molecule, have gained the most widespread use in investigational and standard clinical application to date. Detection and monitoring of CTCs might be useful for screening, prognosis, prediction of response to therapy, or monitoring clinical course in patients with primary or metastatic cancer. Currently, monitoring patients with metastatic disease is the most practical application of CTCs. In this regard, several studies have demonstrated that approximately 50-70% of patients with metastatic breast, colon, and prostate cancers have elevated CTC levels, when evaluated using a highly automated immunomagnetic CTC assay system, designated CellSearch®. These studies demonstrate that elevated CTC levels prior to initiation of a new systemic therapy are associated with a worse prognosis than those that do not, and that persistently elevated or subsequent rising CTC levels strongly suggest that the therapeutic regimen with which the patient is being treated is not working. Similar results have been shown with rtPCR assays, although they are not as widely available for routine clinical use. New areas of research are directed toward developing more sensitive means of CTC detection and generating a variety of methods to characterize the molecular and biologic nature of CTCs, such as the status of hormone receptors, epidermal, and other growth factor receptor family members, and indications of stem-cell characteristics.
Collapse
Affiliation(s)
- Daniel F Hayes
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2242
|
|
2243
|
Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. JOURNAL OF ONCOLOGY 2009; 2010:426218. [PMID: 20049168 PMCID: PMC2798617 DOI: 10.1155/2010/426218] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 09/15/2009] [Indexed: 01/30/2023]
Abstract
Solid cancers are a leading cause of death worldwide, primarily due to the failure of effective clinical detection and treatment of metastatic disease in distant sites. There is growing evidence that the presence of circulating tumor cells (CTCs) in the blood of cancer patients may be an important indicator of the potential for metastatic disease and poor prognosis. Technological advances have now facilitated the enumeration and characterization of CTCs using methods such as PCR, flow cytometry, image-based immunologic approaches, immunomagnetic techniques, and microchip technology. However, the rare nature of these cells requires that very sensitive and robust detection/enumeration methods be developed and validated in order to implement CTC analysis for widespread use in the clinic. This review will focus on the important technical and statistical considerations that must be taken into account when designing and implementing CTC assays, as well as the subsequent interpretation of these results for the purposes of clinical decision making.
Collapse
|
2244
|
Huszar M, Pfeifer M, Schirmer U, Kiefel H, Konecny GE, Ben-Arie A, Edler L, Münch M, Müller-Holzner E, Jerabek-Klestil S, Abdel-Azim S, Marth C, Zeimet AG, Altevogt P, Fogel M. Up-regulation of L1CAM is linked to loss of hormone receptors and E-cadherin in aggressive subtypes of endometrial carcinomas. J Pathol 2009; 220:551-61. [DOI: 10.1002/path.2673] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2245
|
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-90. [PMID: 19945376 DOI: 10.1016/j.cell.2009.11.007] [Citation(s) in RCA: 7705] [Impact Index Per Article: 481.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
Collapse
|
2246
|
Abstract
The ability to produce stem cells by induced pluripotency (iPS reprogramming) has rekindled an interest in earlier studies showing that transcription factors can directly convert specialized cells from one lineage to another. Lineage reprogramming has become a powerful tool to study cell fate choice during differentiation, akin to inducing mutations for the discovery of gene functions. The lessons learnt provide a rubric for how cells may be manipulated for therapeutic purposes.
Collapse
|
2247
|
Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 2009; 21:26-32. [PMID: 19948237 DOI: 10.1016/j.semcdb.2009.11.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 12/22/2022]
Abstract
Cancer development is complex and involves several layers of interactions and pleotropic signaling mechanisms leading to progression. Cancer cells associate with resident stromal fibroblasts, smooth muscle cells, macrophages, endothelium, neurons and migrating cells at metastatic sites and phenotypically and genotypically activate them. These become an integral part of the cancer cell community through activated cell signaling mechanisms. During this process, the cancer cells and cells in the cancer microenvironment "co-evolve" in part due to oxidative stress, and acquire the ability to mimic other cell types (which can be termed osteomimicry, vasculomimicry, neuromimicry and stem cell mimicry), and undergo transition from epithelium to mesenchyme with definitive morphologic and behavioral modifications. In our laboratory, we demonstrated that prostate cancer cells co-evolve in their genotypic and phenotypic characters with stroma and acquire osteomimetic properties allowing them to proliferate and survive in the skeleton as bone metastasis. Several signaling interactions in the bone microenvironment, mediated by reactive oxygen species, soluble and membrane bound factors, such as superoxide, beta2-microglobulin and RANKL have been described. Targeting the signaling pathways in the cancer-associated stromal microenvironment in combination with known conventional therapeutic modalities could have a synergistic effect on cancer treatment. Since cancer cells are constantly interacting and acquiring adaptive and survival changes primarily directed by their microenvironment, it is imperative to delineate these interactions and co-target both cancer and stroma to improve the treatment and overall survival of cancer patients.
Collapse
|
2248
|
Axial differentiation and early gastrulation stages of the pig embryo. Differentiation 2009; 78:301-11. [DOI: 10.1016/j.diff.2009.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/23/2022]
|
2249
|
Lan L, Han H, Zuo H, Chen Z, Du Y, Zhao W, Gu J, Zhang Z. Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis. Int J Cancer 2009; 126:53-64. [PMID: 19521958 DOI: 10.1002/ijc.24641] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell migration, which involves acto-myosin dynamics, cell adhesion, membrane trafficking and signal transduction, is a prerequisite for cancer cell metastasis. Here, we report that an actin-dependent molecular motor, unconventional myosin Va, is involved in this process and implicated in cancer metastasis. The mRNA expression of myosin Va is increased in a number of highly metastatic cancer cell lines and metastatic colorectal cancer tissues. Suppressing the expression of myosin Va by lentivirus-based RNA interference in highly metastatic cancer cells impeded their migration and metastasis capabilities both in vitro and in vivo. In addition, the levels of myosin Va in cancer cell lines are positively correlated with the expression of Snail, a transcriptional repressor that triggers epithelial-mesenchymal transition. Repression or overexpression of Snail in cancer cells caused reduced or elevated levels of myosin Va, respectively. Furthermore, Snail can bind to an E-box of the myosin Va promoter and induce its activity, which indicates that Snail might act as a transcriptional activator. These data demonstrate an essential role of myosin Va in cancer cell migration and metastasis, and suggest a novel target for Snail in its regulation of cancer progression.
Collapse
Affiliation(s)
- Linxiang Lan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
2250
|
Brekhman V, Neufeld G. A novel asymmetric 3D in-vitro assay for the study of tumor cell invasion. BMC Cancer 2009; 9:415. [PMID: 19948022 PMCID: PMC2791776 DOI: 10.1186/1471-2407-9-415] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 11/30/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The induction of tumor cell invasion is an important step in tumor progression. Due to the cost and slowness of in-vivo invasion assays, there is need for quantitative in-vitro invasion assays that mimic as closely as possible the tumor environment and in which conditions can be rigorously controlled. METHODS We have established a novel asymmetric 3D in-vitro invasion assay by embedding a monolayer of tumor cells between two layers of collagen. The cells were then allowed to invade the upper and lower layers of collagen. To visualize invading cells the gels were sectioned perpendicular to the monolayer so that after seeding the monolayer appears as a thin line precisely defining the origin of invasion. The number of invading tumor cells, their proliferation rate, the distance they traverse and the direction of invasion could then be determined quantitatively. RESULTS The assay was used to compare the invasive properties of several tumor cell types and the results compare well with those obtained by previously described assays. Lysyl-oxidase like protein-2 (Loxl2) is a potent inducer of invasiveness. Using our assay we show for the first time that inhibition of endogenous Loxl2 expression in several types of tumor cells strongly inhibits their invasiveness. We also took advantage of the asymmetric nature of the assay in order to show that fibronectin enhances the invasiveness of breast cancer cells more potently than laminin. The asymmetric properties of the assay were also used to demonstrate that soluble factors derived from fibroblasts can preferentially attract invading breast cancer cells. CONCLUSION Our assay displays several advantages over previous invasion assays as it is allows the quantitative analysis of directional invasive behavior of tumor cells in a 3D environment mimicking the tumor microenvironment. It should be particularly useful for the study of the effects of components of the tumor microenvironment on tumor cell invasiveness.
Collapse
Affiliation(s)
- Vera Brekhman
- Cancer Research and vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, PO Box 9679, 1 Efron St, Haifa, 31096, Israel.
| | | |
Collapse
|