201
|
Dong T, Chiang SM, Joyce C, Yu R, Schellhorn HE. Polymorphism and selection of rpoS in pathogenic Escherichia coli. BMC Microbiol 2009; 9:118. [PMID: 19493358 PMCID: PMC2700278 DOI: 10.1186/1471-2180-9-118] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/03/2009] [Indexed: 11/23/2022] Open
Abstract
Background Though RpoS is important for survival of pathogenic Escherichia coli in natural environments, polymorphism in the rpoS gene is common. However, the causes of this polymorphism and consequential physiological effects on gene expression in pathogenic strains are not fully understood. Results In this study, we found that growth on non-preferred carbon sources can efficiently select for loss of RpoS in seven of ten representative verocytotoxin-producing E. coli (VTEC) strains. Mutants (Suc++) forming large colonies on succinate were isolated at a frequency of 10-8 mutants per cell plated. Strain O157:H7 EDL933 yielded mainly mutants (about 90%) that were impaired in catalase expression, suggesting the loss of RpoS function. As expected, inactivating mutations in rpoS sequence were identified in these mutants. Expression of two pathogenicity-related phenotypes, cell adherence and RDAR (red dry and rough) morphotype, were also attenuated, indicating positive control by RpoS. For the other Suc++ mutants (10%) that were catalase positive, no mutation in rpoS was detected. Conclusion The selection for loss of RpoS on poor carbon sources is also operant in most pathogenic strains, and thus is likely responsible for the occurrence of rpoS polymorphisms among E. coli isolates.
Collapse
Affiliation(s)
- Tao Dong
- Department of Biology, Life Sciences Building, Rm, 433, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | | | | | | | | |
Collapse
|
202
|
Kroupitski Y, Pinto R, Brandl MT, Belausov E, Sela S. Interactions of Salmonella enterica with lettuce leaves. J Appl Microbiol 2009; 106:1876-85. [PMID: 19239550 DOI: 10.1111/j.1365-2672.2009.04152.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
AIMS To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors. METHODS AND RESULTS Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25 degrees C, but not for 18 h at 4 degrees C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4 degrees C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3.0) revealed increased tolerance of the attached vs planktonic bacteria. CONCLUSIONS Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks.
Collapse
Affiliation(s)
- Y Kroupitski
- Microbial Food-Safety Research Unit, Department of Food Science, Institute for Technology and Storage of Fresh Produce, Agricultural Research Organization, The Volcani Center, Beth-Dagan, Israel
| | | | | | | | | |
Collapse
|
203
|
Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R. Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. MICROBIOLOGY-SGM 2009; 155:1318-1331. [PMID: 19332833 DOI: 10.1099/mic.0.024257-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Switching from the motile planktonic bacterial lifestyle to a biofilm existence is stimulated by the signalling molecule bis-(3'-5')-cyclic-diguanosine monophosphate (cyclic-di-GMP), which is antagonistically controlled by diguanylate cyclases (DGCs; characterized by GGDEF domains) and specific phosphodiesterases (PDEs; mostly featuring EAL domains). Here, we present the expression patterns of all 28 genes that encode GGDEF/EAL domain proteins in Escherichia coli K-12. Twenty-one genes are expressed in Luria-Bertani medium, with 15 being under sigma(S) control. While a small subset of GGDEF/EAL proteins (YeaJ and YhjH) is dominant and modulates motility in post-exponentially growing cells, a diverse battery of GGDEF/EAL proteins is deployed during entry into stationary phase, especially in cells grown at reduced temperature (28 degrees C). This suggests that multiple signal input into cyclic-di-GMP control is particularly important in growth-restricted cells in an extra-host environment. Six GGDEF/EAL genes differentially control the expression of adhesive curli fimbriae. Besides the previously described ydaM, yciR, yegE and yhjH genes, these are yhdA (csrD), which stimulates the expression of the DGC YdaM and the major curli regulator CsgD, and yeaP, which contributes to expression of the curli structural operon csgBAC. Finally, we discuss why other GGDEF/EAL domain-encoding genes, despite being expressed, do not influence motility and/or curli formation.
Collapse
Affiliation(s)
- Nicole Sommerfeldt
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Alexandra Possling
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gisela Becker
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christina Pesavento
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Natalia Tschowri
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Regine Hengge
- Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
204
|
Jonas K, Melefors O, Römling U. Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 2009; 4:341-58. [PMID: 19327118 DOI: 10.2217/fmb.09.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic (5 to 3 )-diguanosine monophosphate (c-di-GMP) is a small molecule that regulates the transition between the sessile and motile lifestyle, an integrative part of biofilm formation and other multicellular behavior, in many bacteria. The recognition of c-di-GMP as a novel secondary messenger soon raised the question about the specificity of the signaling system, as individual bacterial genomes frequently encode numerous c-di-GMP metabolizing proteins. Recent work has demonstrated that several global regulators concertedly modify the expression of selected panels of c-di-GMP metabolizing proteins, which act on targets with physiological functions. Within complex feed-forward arrangements, the global regulators commonly combine the control of c-di-GMP metabolism with the direct regulation of proteins with functions in motility or biofilm formation, leading to precise and fine-tuned output responses that determine bacterial behavior. c-di-GMP metabolizing proteins are also controlled at the post-translational level by mechanisms including phosphorylation, localization, protein-protein interactions or protein stability. A detailed understanding of such complex regulatory mechanisms will not only help to explain the specificity in c-di-GMP signaling systems, but will also be necessary to understand the high phenotypic diversity within bacterial biofilms at the single cell level.
Collapse
Affiliation(s)
- Kristina Jonas
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
205
|
Sahr T, Brüggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol Microbiol 2009; 72:741-62. [PMID: 19400772 PMCID: PMC2888818 DOI: 10.1111/j.1365-2958.2009.06677.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To transit from intra- to extracellular environments, Legionella pneumophila differentiates from a replicative/non-virulent to a transmissive/virulent form using the two-component system LetA/LetS and the global repressor protein CsrA. While investigating how both regulators act co-ordinately we characterized two ncRNAs, RsmY and RsmZ, that link the LetA/LetS and CsrA regulatory networks. We demonstrate that LetA directly regulates their expression and show that RsmY and RsmZ are functional in Escherichia coli and are able to bind CsrA in vitro. Single mutants have no (ΔrsmY) or a little (ΔrsmZ) impact on virulence, but the ΔrsmYZ strain shows a drastic defect in intracellular growth in Acanthamoeba castellanii and THP-1 monocyte-derived macrophages. Analysis of the transcriptional programmes of the ΔletA, ΔletS and ΔrsmYZ strains revealed that the switch to the transmissive phase is partially blocked. One major difference between the ΔletA, ΔletS and ΔrsmYZ strains was that the latter synthesizes flagella. Taken together, LetA activates transcription of RsmY and RsmZ, which sequester CsrA and abolish its post-transcriptional repressive activity. However, the RsmYZ-CsrA pathway appears not to be the main or only regulatory circuit governing flagella synthesis. We suggest that rather RpoS and LetA, by influencing LetE and probably cyclic-di-GMP levels, regulate motility in L. pneumophila.
Collapse
Affiliation(s)
| | | | | | - Mariella Lomma
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | | | | | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
206
|
Koza A, Hallett PD, Moon CD, Spiers AJ. Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. MICROBIOLOGY-SGM 2009; 155:1397-1406. [PMID: 19383709 DOI: 10.1099/mic.0.025064-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonads are able to form a variety of biofilms that colonize the air-liquid (A-L) interface of static liquid microcosms, and differ in matrix composition, strength, resilience and degrees of attachment to the microcosm walls. From Pseudomonas fluorescens SBW25, mutants have evolved during prolonged adaptation-evolution experiments which produce robust biofilms of the physically cohesive class at the A-L interface, and which have been well characterized. In this study we describe a novel A-L interface biofilm produced by SBW25 that is categorized as a viscous mass (VM)-class biofilm. Several metals were found to induce this biofilm in static King's B microcosms, including copper, iron, lead and manganese, and we have used iron to allow further examination of this structure. Iron was demonstrated to induce SBW25 to express cellulose, which provided the matrix of the biofilm, a weak structure that was readily destroyed by physical disturbance. This was confirmed in situ by a low (0.023-0.047 g) maximum deformation mass and relatively poor attachment as measured by crystal violet staining. Biofilm strength increased with increasing iron concentration, in contrast to attachment levels, which decreased with increasing iron. Furthermore, iron added to mature biofilms significantly increased strength, suggesting that iron also promotes interactions between cellulose fibres that increase matrix interconnectivity. Whilst weak attachment is important in maintaining the biofilm at the A-L interface, surface-interaction effects involving cellulose, which reduced surface tension by approximately 3.8 mN m(-1), may also contribute towards this localization. The fragility and viscoelastic nature of the biofilm were confirmed by controlled-stress amplitude sweep tests to characterize critical rheological parameters, which included a shear modulus of 0.75 Pa, a zero shear viscosity of 0.24 Pa s(-1) and a flow point of 0.028 Pa. Growth and morphological data thus far support a non-specific metal-associated physiological, rather than mutational, origin for production of the SBW25 VM biofilm, which is an example of the versatility of bacteria to inhabit optimal niches within their environment.
Collapse
Affiliation(s)
- Anna Koza
- SIMBIOS Centre, Level 5 Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| | - Paul D Hallett
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Christina D Moon
- AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Andrew J Spiers
- SIMBIOS Centre, Level 5 Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| |
Collapse
|
207
|
A role for the EAL-like protein STM1344 in regulation of CsgD expression and motility in Salmonella enterica serovar Typhimurium. J Bacteriol 2009; 191:3928-37. [PMID: 19376870 DOI: 10.1128/jb.00290-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial second messenger cyclic di-GMP (c-di-GMP) regulates the transition between sessility and motility. In Salmonella enterica serovar Typhimurium, the expression of CsgD, the regulator of multicellular rdar morphotype behavior, is a major target of c-di-GMP signaling. CsgD expression is positively regulated by at least two diguanylate cyclases, GGDEF domain proteins, and negatively regulated by at least four phosphodiesterases, EAL domain proteins. Here, we show that in contrast to EAL domain proteins acting as phosphodiesterases, the EAL-like protein STM1344 regulated CsgD expression positively and motility negatively. STM1344, however, did not have a role in c-di-GMP turnover and also did not bind the nucleotide. STM1344 acted upstream of the phosphodiesterases STM1703 and STM3611, previously identified to participate in CsgD downregulation, where it repressed their expression. Consequently, although STM1344 has not retained a direct role in c-di-GMP metabolism, it still participates in the regulation of c-di-GMP turnover and has a role in the transition between sessility and motility.
Collapse
|
208
|
Cha J, Jung J, Park S, Cho M, Seo D, Ha S, Yoon J, Lee O, Kim Y, Park C. Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp. FMB-1. J Appl Microbiol 2009; 107:1119-30. [DOI: 10.1111/j.1365-2672.2009.04295.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
209
|
Malcova M, Karasova D, Rychlik I. aroAandaroDmutations influence biofilm formation inSalmonellaEnteritidis. FEMS Microbiol Lett 2009; 291:44-9. [DOI: 10.1111/j.1574-6968.2008.01433.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
210
|
Monteiro C, Saxena I, Wang X, Kader A, Bokranz W, Simm R, Nobles D, Chromek M, Brauner A, Brown RM, Römling U. Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ Microbiol 2009; 11:1105-16. [PMID: 19175667 DOI: 10.1111/j.1462-2920.2008.01840.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacterial species of the Enterobacteriaceae family produce cellulose and curli fimbriae as extracellular matrix components, and their synthesis is positively regulated by the transcriptional activator CsgD. In this group of bacteria, cellulose biosynthesis is commonly regulated by CsgD via the GGDEF domain protein AdrA, a diguanylate cyclase that produces cyclic-diguanylic acid (c-di-GMP), an allosteric activator of cellulose synthase. In the probiotic Escherichia coli strain Nissle 1917 and its recent clonal isolates, CsgD activates the production of curli fimbriae at 28 degrees C, but neither CsgD nor AdrA is required for the c-di-GMP-dependent biosynthesis of cellulose at 28 degrees C and 37 degrees C. In these strains, the GGDEF domain protein YedQ, a diguanylate cyclase that activates cellulose biosynthesis in certain E. coli strains, is not required for cellulose biosynthesis and it has in fact evolved into a novel protein. Cellulose production in Nissle 1917 is required for adhesion of bacteria to the gastrointestinal epithelial cell line HT-29, to the mouse epithelium in vivo, and for enhanced cytokine production. The role of cellulose in this strain is in contrast to the role of cellulose in the commensal strain E. coli TOB1. Consequently, the role of cellulose in bacterial-host interaction is dependent on the E. coli strain background.
Collapse
Affiliation(s)
- Cláudia Monteiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC. The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 2009; 71:253-72. [PMID: 19017270 PMCID: PMC2771394 DOI: 10.1111/j.1365-2958.2008.06534.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Campylobacter jejuni, a prevalent cause of bacterial gastroenteritis, must adapt to different environments to be a successful pathogen. We previously identified a C. jejuni two-component regulatory system (Cj1226/7c) as upregulated during cell infections. Analyses described herein led us to designate the system CprRS (Campylobacter planktonic growth regulation). While the response regulator was essential, a cprS sensor kinase mutant was viable. The Delta cprS mutant displayed an apparent growth defect and formed dramatically enhanced and accelerated biofilms independent of upregulation of previously characterized surface polysaccharides. Delta cprS also displayed a striking dose-dependent defect for colonization of chicks and was modestly enhanced for intracellular survival in INT407 cells. Proteomics analyses identified changes consistent with modulation of essential metabolic genes, upregulation of stress tolerance proteins, and increased expression of MOMP and FlaA. Consistent with expression profiling, we observed enhanced motility and secretion in Delta cprS, and decreased osmotolerance and oxidative stress tolerance. We also found that C. jejuni biofilms contain a DNase I-sensitive component and that biofilm formation is influenced by deoxycholate and the metabolic substrate fumarate. These results suggest that CprRS influences expression of factors important for biofilm formation, colonization and stress tolerance, and also add to our understanding of C. jejuni biofilm physiology.
Collapse
Affiliation(s)
- Sarah L. Svensson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay M. Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Brenda J. Allan
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | | | - Stuart A. Thompson
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
212
|
Brown PJ, Hardy GG, Trimble MJ, Brun YV. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2009; 54:1-101. [PMID: 18929067 PMCID: PMC2621326 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
Affiliation(s)
- Pamela J.B. Brown
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Gail G. Hardy
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Michael J. Trimble
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Yves V. Brun
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| |
Collapse
|
213
|
Abstract
Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effective model for studying enteropathogenesis. In this study we investigated the role of RpoS, the stationary phase sigma factor, in virulence in C. rodentium. Sequence analysis showed that the rpoS gene is highly conserved in C. rodentium and E. coli, exhibiting 92% identity. RpoS was critical for survival under heat shock conditions and during exposure to H(2)O(2) and positively regulated the expression of catalase KatE (HPII). The development of the RDAR (red dry and rough) morphotype, an important virulence trait in E. coli, was also mediated by RpoS in C. rodentium. Unlike E. coli, C. rodentium grew well in the mouse colon, and the wild-type strain colonized significantly better than rpoS mutants. However, a mutation in rpoS conferred a competitive growth advantage over the wild type both in vitro in Luria-Bertani medium and in vivo in the mouse colon. Survival analysis showed that the virulence of an rpoS mutant was attenuated. The expression of genes on the LEE pathogenicity island, which are essential for colonization and virulence, was reduced in the rpoS mutant. In conclusion, RpoS is important for the stress response and is required for full virulence in C. rodentium.
Collapse
|
214
|
Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors Ö. The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 2008; 70:236-57. [PMID: 18713317 PMCID: PMC2735045 DOI: 10.1111/j.1365-2958.2008.06411.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobility shift assays confirmed the direct and specific binding of CsrA to the mRNA leaders of ydeH and ycdT. Overexpression of ycdT and ydeH resulted in a more than 20-fold increase in the cellular concentration of the second messenger cyclic di-GMP (c-di-GMP), implying that both proteins possess diguanylate cyclase activity. Phenotypic characterization revealed that both proteins are involved in the regulation of motility in a c-di-GMP-dependent manner. CsrA was also found to regulate the expression of five additional GGDEF/EAL proteins and a csrA mutation led to modestly increased cellular levels of c-di-GMP. All together, these data demonstrate a global role for CsrA in the regulation of c-di-GMP metabolism by regulating the expression of GGDEF proteins at the post-transcriptional level.
Collapse
Affiliation(s)
- Kristina Jonas
- Swedish Institute for Infectious Disease Control, SE-17182, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, US
| | - Roger Simm
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, US
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, US
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Öjar Melefors
- Swedish Institute for Infectious Disease Control, SE-17182, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
215
|
Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J. Living on a surface: swarming and biofilm formation. Trends Microbiol 2008; 16:496-506. [PMID: 18775660 DOI: 10.1016/j.tim.2008.07.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/16/2008] [Accepted: 07/28/2008] [Indexed: 10/21/2022]
Abstract
Swarming is the fastest known bacterial mode of surface translocation and enables the rapid colonization of a nutrient-rich environment and host tissues. This complex multicellular behavior requires the integration of chemical and physical signals, which leads to the physiological and morphological differentiation of the bacteria into swarmer cells. Here, we provide a review of recent advances in the study of the regulatory pathways that lead to swarming behavior of different model bacteria. It has now become clear that many of these pathways also affect the formation of biofilms, surface-attached bacterial colonies. Decision-making between rapidly colonizing a surface and biofilm formation is central to bacterial survival among competitors. In the second part of this article, we review recent developments in the understanding of the transition between motile and sessile lifestyles of bacteria.
Collapse
Affiliation(s)
- Natalie Verstraeten
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
216
|
The Anabaena sp. strain PCC 7120 gene all2874 encodes a diguanylate cyclase and is required for normal heterocyst development under high-light growth conditions. J Bacteriol 2008; 190:6829-36. [PMID: 18723619 DOI: 10.1128/jb.00701-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 harbors 14 genes containing a GGDEF diguanylate cyclase domain. We found that inactivation of one of these genes, all2874, caused abnormal heterocyst development. The all2874 mutant showed a pronounced reduction in heterocyst frequency during diazotrophic growth and reduced vegetative cell size compared to the wild type. The severity of the mutant phenotype varied with light intensity; at high light intensity, the mutant phenotype was accentuated, whereas at low light intensity the phenotype was similar to wild type. Under high-light growth conditions, the initial heterocyst frequency and pattern for the all2874 mutant were normal, but within 4 days following nitrogen step-down, many intervals between heterocysts increased to as many as 200 vegetative cells, whereas in the wild type the intervals were less than 25 vegetative cells. Filaments containing these unusually long vegetative cell intervals between heterocysts also contained intervals of normal length. An all2874 mutant strain carrying a P(patS)-gfp transcriptional reporter fusion failed to show normal upregulation of the reporter, which indicates that the decrease in heterocyst frequency is due to an early block in differentiation before induction of the patS gene, which in the wild type takes place 8 h after nitrogen step-down. Genetic epistasis experiments suggest that All2874 acts upstream of the master regulator HetR in differentiating cells. We also showed that purified All2874 functions as a diguanylate cyclase in vitro. We hypothesize that All2874 is required for the normal regulation of heterocyst frequency under high-light growth conditions.
Collapse
|
217
|
Epstein EA, Chapman MR. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell Microbiol 2008; 10:1413-20. [PMID: 18373633 PMCID: PMC2674401 DOI: 10.1111/j.1462-5822.2008.01148.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Amyloid fibres are proteinaceous aggregates associated with several human diseases, including Alzheimer's, Huntington's and Creutzfeldt Jakob's. Disease-associated amyloid formation is the result of proteins that misfold and aggregate into beta sheet-rich fibre polymers. Cellular toxicity is readily associated with amyloidogenesis, although the molecular mechanism of toxicity remains unknown. Recently, a new class of 'functional' amyloid fibres was discovered that demonstrates that amyloids can be utilized as a productive part of cellular biology. These functional amyloids will provide unique insights into how amyloid formation can be controlled and made less cytotoxic. Bacteria produce some of the best-characterized functional amyloids, including a surface amyloid fibre called curli. Assembled by enteric bacteria, curli fibres mediate attachment to surfaces and host tissues. Some bacterial amyloids, like harpins and microcinE492, have exploited amyloid toxicity in a directed and functional manner. Here, we review and discuss the functional amyloids assembled by bacteria. Special emphasis will be paid to the biology of functional amyloid synthesis and the connections between bacterial physiology and pathology.
Collapse
Affiliation(s)
- Elisabeth Ashman Epstein
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
218
|
Effect of growth temperature on Crl-dependent regulation of sigmaS activity in Salmonella enterica serovar Typhimurium. J Bacteriol 2008; 190:4453-9. [PMID: 18456810 DOI: 10.1128/jb.00154-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small regulatory protein Crl favors association of the stationary-phase sigma factor sigma(S) (RpoS) with the core enzyme polymerase and thereby increases sigma(S) activity. Crl has a major physiological impact at low levels of sigma(S). Here, we report that the Crl effects on sigma(S)-dependent gene expression, the H(2)O(2) resistance of Salmonella enterica serovar Typhimurium, and the resistance of this organism to acidic pH are greater at 28 degrees C than at 37 degrees C. Immunoblot experiments revealed a negative correlation between sigma(S) and Crl levels; the production of Crl was slightly greater at 28 degrees C than at 37 degrees C, whereas the sigma(S) levels were about twofold lower at 28 degrees C than at 37 degrees C. At both temperatures, Crl was present in excess of sigma(S), and increasing the Crl level further did not increase the H(2)O(2) resistance level of Salmonella and the expression of the sigma(S)-dependent gene katE encoding the stationary-phase catalase. In contrast, increasing the sigma(S) level rendered Salmonella more resistant to H(2)O(2) at 28 degrees C, increased the expression of katE, and reduced the magnitude of Crl activation. In addition, the effect of Crl on katE transcription in vitro was not dependent on temperature. These results suggest that the effect of temperature on Crl-dependent regulation of the katE gene and H(2)O(2) resistance are mediated mainly via an effect on sigma(S) levels. In addition, our results revealed that sigma(S) exerts a negative effect on the production of Crl in stationary phase when the cells contain high levels of sigma(S).
Collapse
|
219
|
Evolutionary loss of the rdar morphotype in Salmonella as a result of high mutation rates during laboratory passage. ISME JOURNAL 2008; 2:293-307. [PMID: 18256702 DOI: 10.1038/ismej.2008.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid evolution of microbes under laboratory conditions can lead to domestication of environmental or clinical strains. In this work, we show that domestication due to laboratory passage in rich medium is extremely rapid. Passaging of wild-type Salmonella in rich medium led to diversification of genotypes contributing to the loss of a spatial phenotype, called the rdar morphotype, within days. Gene expression analysis of the rdar regulatory network demonstrated that mutations were primarily within rpoS, indicating that the selection pressure for scavenging during stationary phase had the secondary effect of impairing this highly conserved phenotype. If stationary phase was omitted from the experiment, radiation of genotypes and loss of the rdar morphotype was also demonstrated, but due to mutations within the cellulose biosynthesis pathway and also in an unknown upstream regulator. Thus regardless of the selection pressure, rapid regulatory changes can be observed on laboratory timescales. The speed of accumulation of rpoS mutations during daily passaging could not be explained by measured fitness and mutation rates. A model of mutation accumulation suggests that to generate the observed accumulation of sigma 38 mutations, this locus must experience a mutation rate of approximately 10(-4) mutations/gene/generation. Sequencing and gene expression of population isolates indicated that there were a wide variety of sigma 38 phenotypes within each population. This suggests that the rpoS locus is highly mutable by an unknown pathway, and that these mutations accumulate rapidly under common laboratory conditions.
Collapse
|
220
|
Abstract
Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli.
Collapse
Affiliation(s)
- C Beloin
- Groupe de Génétique des Biofilms, Institut Pasteur, CNRS URA 2172, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
221
|
Thijs L, Vinck E, Bolli A, Trandafir F, Wan X, Hoogewijs D, Coletta M, Fago A, Weber RE, Van Doorslaer S, Ascenzi P, Alam M, Moens L, Dewilde S. Characterization of a globin-coupled oxygen sensor with a gene-regulating function. J Biol Chem 2007; 282:37325-37340. [PMID: 17925395 DOI: 10.1074/jbc.m705541200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Globin-coupled sensors (GCSs) are multiple-domain transducers, consisting of a regulatory globin-like heme-binding domain and a linked transducer domain(s). GCSs have been described in both Archaea and bacteria. They are generally assumed to bind O(2) (and perhaps other gaseous ligands) and to transmit a conformational change signal through the transducer domain in response to fluctuating O(2) levels. In this study, the heme-binding domain, AvGReg178, and the full protein, AvGReg of the Azotobacter vinelandii GCS, were cloned, expressed, and purified. After purification, the heme iron of AvGReg178 was found to bind O(2). This form was stable over many hours. In contrast, the predominant presence of a bis-histidine coordinate heme in ferric AvGReg was revealed. Differences in the heme pocket structure were also observed for the deoxygenated ferrous state of these proteins. The spectra showed that the deoxygenated ferrous derivatives of AvGReg178 and AvGReg are characterized by a penta-coordinate and hexa-coordinate heme iron, respectively. O(2) binding isotherms indicate that AvGReg178 and AvGReg show a high affinity for O(2) with P(50) values at 20 degrees C of 0.04 and 0.15 torr, respectively. Kinetics of CO binding indicate that AvGReg178 carbonylation conforms to a monophasic process, comparable with that of myoglobin, whereas AvGReg carbonylation conforms to a three-phasic reaction, as observed for several proteins with bis-histidine heme iron coordination. Besides sensing ligands, in vitro data suggest that AvGReg(178) may have a role in O(2)-mediated NO-detoxification, yielding metAvGReg(178) and nitrate.
Collapse
Affiliation(s)
- Liesbet Thijs
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Malcova M, Hradecka H, Karpiskova R, Rychlik I. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation. Vet Microbiol 2007; 129:360-6. [PMID: 18242887 DOI: 10.1016/j.vetmic.2007.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/05/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
In this study we examined the extent of biofilm formation in field strains of Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen. Ninety-four field strains of S. Typhimurium were tested for their ability to form biofilm and components contributing to its formation. Most S. Typhimurium strains were highly capable of biofilm formation except for strains of phage type DT2 originating from pigeons. The most efficient biofilm forming strains were those of phage type DT104 positive for Salmonella genomic island 1 (SGI1). A comparison of SGI1 positive and negative strains indicated that the increased biofilm formation of SGI1 positive strains was associated with the presence of this genomic island. Finally, in five strains we found an alternative strategy of biofilm formation independent of curli fimbriae and cellulose production but solely dependent on an overproduction of capsular polysaccharide. Due to a mucoid and brown appearance on Congo Red agar we designated these strains as belonging to the SBAM (smooth brown and mucoid) morphotype.
Collapse
Affiliation(s)
- M Malcova
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | |
Collapse
|
223
|
Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 2007; 65:1474-84. [PMID: 17824927 PMCID: PMC2170427 DOI: 10.1111/j.1365-2958.2007.05879.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bis-(3′,5′)-cyclic-dimeric-guanosine monophosphate (c-di-GMP) has been shown to be a global regulatory molecule that modulates the reciprocal responses of bacteria to activate either virulence pathways or biofilm formation. The mechanism of c-di-GMP signal transduction, including recognition of c-di-GMP and subsequent phenotypic regulation, remain largely uncharacterized. The key components of these regulatory pathways are the various adaptor proteins (c-di-GMP receptors). There is compelling evidence suggesting that, in addition to PilZ domains, there are other unidentified c-di-GMP receptors. Here we show that the PelD protein of Pseudomonas aeruginosa is a novel c-di-GMP receptor that mediates c-di-GMP regulation of PEL polysaccharide biosynthesis. Analysis of PelD orthologues identified a number of conserved residues that are required for c-di-GMP binding as well as synthesis of the PEL polysaccharide. Secondary structure similarities of PelD to the inhibitory site of diguanylate cyclase suggest that a common fold can act as a platform to bind c-di-GMP. The combination of a c-di-GMP binding site with a variety of output signalling motifs within one protein domain provides an explanation for the specificity for different cellular responses to this regulatory dinucleotide.
Collapse
Affiliation(s)
- Vincent T Lee
- Department of Microbiology and Molecular Genetics, Harvard Medical SchoolBoston, MA 02115, USA
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD 20742, USA
| | - Jody M Matewish
- Department of Microbiology and Molecular Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| | - Jennifer L Kessler
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD 20742, USA
| | - Mamoru Hyodo
- Graduate School of Information Science/Human Informatics and CREST of JST, Nagoya UniversityChikusa, Nagoya 464-8601, Japan
| | - Yoshihiro Hayakawa
- Graduate School of Information Science/Human Informatics and CREST of JST, Nagoya UniversityChikusa, Nagoya 464-8601, Japan
| | - Stephen Lory
- Department of Microbiology and Molecular Genetics, Harvard Medical SchoolBoston, MA 02115, USA
- E-mail ; Tel. (+1) 617 432 5099; Fax (+1) 617 738 7664
| |
Collapse
|
224
|
Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation. J Bacteriol 2007; 190:1054-63. [PMID: 18055599 DOI: 10.1128/jb.01523-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including agglutination and biofilm formation. One isolate, E. coli MS2027, was uniquely proficient at biofilm growth despite the absence of adhesins known to promote this phenotype. Mini-Tn5 mutagenesis of E. coli MS2027 identified several mutants with altered biofilm growth. Mutants containing insertions in genes involved in O antigen synthesis (rmlC and manB) and capsule synthesis (kpsM) possessed enhanced biofilm phenotypes. Three independent mutants deficient in biofilm growth contained an insertion in a gene locus homologous to the type 3 chaperone-usher class fimbrial genes of Klebsiella pneumoniae. These type 3 fimbrial genes (mrkABCDF), which were located on a conjugative plasmid, were cloned from E. coli MS2027 and could complement the biofilm-deficient transconjugants when reintroduced on a plasmid. Primers targeting the mrkB chaperone-encoding gene revealed its presence in CAUTI strains of Citrobacter koseri, Citrobacter freundii, Klebsiella pneumoniae, and Klebsiella oxytoca. All of these mrkB-positive strains caused type 3 fimbria-specific agglutination of tannic acid-treated red blood cells. This is the first description of type 3 fimbriae in E. coli, C. koseri, and C. freundii. Our data suggest that type 3 fimbriae may contribute to biofilm formation by different gram-negative nosocomial pathogens.
Collapse
|
225
|
Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, Rainey PB. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. MICROBIOLOGY-SGM 2007; 153:980-994. [PMID: 17379708 DOI: 10.1099/mic.0.2006/002824-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The GGDEF response regulator WspR couples the chemosensory Wsp pathway to the overproduction of acetylated cellulose and cell attachment in the Pseudomonas fluorescens SBW25 wrinkly spreader (WS) genotype. Here, it is shown that WspR is a diguanylate cyclase (DGC), and that DGC activity is elevated in the WS genotype compared to that in the ancestral smooth (SM) genotype. A structure-function analysis of 120 wspR mutant alleles was employed to gain insight into the regulation and activity of WspR. Firstly, 44 random and defined pentapeptide insertions were produced in WspR, and the effects determined using assays based on colony morphology, attachment to surfaces and cellulose production. The effects of mutations within WspR were interpreted using a homology model, based on the crystal structure of Caulobacter crescentus PleD. Mutational analyses indicated that WspR activation occurs as a result of disruption of the interdomain interface, leading to the release of effector-domain repression by the N-terminal receiver domain. Quantification of attachment and cellulose production raised significant questions concerning the mechanisms of WspR function. The conserved RYGGEEF motif of WspR was also subjected to mutational analysis, and 76 single amino acid residue substitutions were tested for their effects on WspR function. The RYGGEEF motif of WspR is functionally conserved, with almost every mutation abolishing function.
Collapse
Affiliation(s)
- J G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - R Williams
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - M Christen
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - U Jenal
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - A J Spiers
- Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - P B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
226
|
Get the message out: cyclic-Di-GMP regulates multiple levels of flagellum-based motility. J Bacteriol 2007; 190:463-75. [PMID: 17993515 DOI: 10.1128/jb.01418-07] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
227
|
Tree JJ, Ulett GC, Hobman JL, Constantinidou C, Brown NL, Kershaw C, Schembri MA, Jennings MP, McEwan AG. The multicopper oxidase (CueO) and cell aggregation in Escherichia coli. Environ Microbiol 2007; 9:2110-6. [PMID: 17635554 DOI: 10.1111/j.1462-2920.2007.01320.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cueO encodes a periplasmic multicopper oxidase, which is known to be involved in copper homeostasis and protection against oxidative stress in Escherichia coli K12. Transcriptional profiling showed that expression of genes associated with motility was lowered in a cueO mutant while expression of genes associated with autoaggregation was elevated. Increased aggregation was correlated with increased expression of cell surface proteins antigen 43 and curli. Changes in gene expression caused by the deletion of cueO were essentially independent of SoxR and OxyR, the global regulators of oxidative stress response.
Collapse
Affiliation(s)
- Jai J Tree
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Barak JD, Jahn CE, Gibson DL, Charkowski AO. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1083-91. [PMID: 17849711 DOI: 10.1094/mpmi-20-9-1083] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Numerous salmonellosis outbreaks have been associated with vegetables, in particular sprouted seed. Thin aggregative fimbriae (Tafi), a component of the extracellular matrix responsible for multicellular behavior, are important for Salmonella enterica attachment and colonization of plants. Here, we demonstrate that the other surface polymers composing the extracellular matrix, cellulose, and O-antigen capsule also play a role in colonization of plants. Mutations in bacterial cellulose synthesis (bcsA) and O-antigen capsule assembly and translocation (yihO) reduced the ability to attach to and colonize alfalfa sprouts. A colanic acid mutant was unaffected in plant attachment or colonization. Tafi, cellulose synthesis, and O-antigen capsule, all of which contribute to attachment and colonization of plants, are regulated by AgfD, suggesting that AgfD is a key regulator for survival outside of hosts of Salmonella spp. The cellulose biosynthesis regulator adrA mutant was not affected in the ability to attach to or colonize plants; however, promoter probe assays revealed expression by cells attached to alfalfa sprouts. Furthermore, quantitative reverse-transcriptase polymerase chain reaction revealed differential expression of agfD and adrA between planktonic and plant-attached cells. In addition, there was no correlation among mutants between biofilm formation in culture and attachment to plants. Outside of animal hosts, S. enterica appears to rely on an arsenal of adhesins to persist on plants, which can act as vectors and perpetuate public health concerns.
Collapse
Affiliation(s)
- Jeri D Barak
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|
229
|
Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol 2007; 7:70. [PMID: 17650335 PMCID: PMC1949822 DOI: 10.1186/1471-2180-7-70] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/24/2007] [Indexed: 11/24/2022] Open
Abstract
Background Curli, cellulose and the cell surface protein BapA are matrix components in Salmonella biofilms. In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM) and light microscopy. Results AFM imaging was performed on colonies of Salmonella Typhimurium grown on agar plates for 24 h and on biofilms grown for 4, 8, 16 or 24 h on mica slides submerged in standing cultures. Our data show that in the wild type curli were visible as extracellular material on and between the cells and as fimbrial structures at the edges of biofilms grown for 16 h and 24 h. In contrast to the wild type, which formed a three-dimensional biofilm within 24 h, a curli mutant and a strain mutated in the global regulator CsgD were severely impaired in biofilm formation. A mutant in cellulose production retained some capability to form cell aggregates, but not a confluent biofilm. Extracellular matrix was observed in this mutant to almost the same extent as in the wild type. Overexpression of CsgD led to a much thicker and a more rapidly growing biofilm. Disruption of BapA altered neither colony and biofilm morphology nor the ability to form a biofilm within 24 h on the submerged surfaces. Besides curli, the expression of flagella and pili as well as changes in cell shape and cell size could be monitored in the growing biofilms. Conclusion Our work demonstrates that atomic force microscopy can efficiently be used as a tool to monitor the morphology of bacteria grown as colonies on agar plates or within biofilms formed in a liquid at high resolution.
Collapse
|
230
|
Abstract
Fimbria-mediated interaction with the host elicits both innate and adaptive immune responses, and thus their expression may not always be beneficial in vivo. Furthermore, the metabolic drain of producing fimbriae is significant. It is not surprising, therefore, to find that fimbrial production in Escherichia coli and Salmonella enterica is under extensive environmental regulation. In many instances, fimbrial expression is regulated by phase variation, in which individual cells are capable of switching between fimbriate and afimbriate states to produce a mixed population. Mechanisms of phase variation vary considerably between different fimbriae and involve both genetic and epigenetic processes. Notwithstanding this, fimbrial expression is also sometimes controlled at the posttranscriptional level. In this chapter, we review key features of the regulation of fimbrial gene expression in E. coli and Salmonella. The occurrence and distribution of fimbrial operons vary significantly among E. coli pathovars and even among the many Salmonella serovars. Therefore, general principles are presented on the basis of detailed discussion of paradigms that have been extensively studied, including Pap, type 1 fimbriae, and curli. The roles of operon specific regulators like FimB or CsgD and of global regulatory proteins like Lrp, CpxR, and the histone-like proteins H-NS and IHF are reviewed as are the roles of sRNAs and of signalling nucleotide cyclic-di-GMP. Individual examples are discussed in detail to illustrate how the regulatory factors cooperate to allow tight control of expression of single operons. Molecular networks that allow coordinated expression between multiple fimbrial operons and with flagella in a single isolate are also presented. This chapter illustrates how adhesin expression is controlled, and the model systems also illustrate general regulatory principles germane to our overall understanding of bacterial gene regulation.
Collapse
|
231
|
Kim YK, McCarter LL. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus. J Bacteriol 2007; 189:4094-107. [PMID: 17400744 PMCID: PMC1913424 DOI: 10.1128/jb.01510-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this work, we describe a new gene controlling lateral flagellar gene expression. The gene encodes ScrG, a protein containing GGDEF and EAL domains. This is the second GGDEF-EAL-encoding locus determined to be involved in the regulation of swarming: the first was previously characterized and named scrABC (for "swarming and capsular polysaccharide regulation"). GGDEF and EAL domain-containing proteins participate in the synthesis and degradation of the nucleotide signal cyclic di-GMP (c-di-GMP) in many bacteria. Overexpression of scrG was sufficient to induce lateral flagellar gene expression in liquid, decrease biofilm formation, decrease cps gene expression, and suppress the DeltascrABC phenotype. Removal of its EAL domain reversed ScrG activity, converting ScrG to an inhibitor of swarming and activator of cps expression. Overexpression of scrG decreased the intensity of a (32)P-labeled nucleotide spot comigrating with c-di-GMP standard, whereas overexpression of scrG(Delta)(EAL) enhanced the intensity of the spot. Mutants with defects in scrG showed altered swarming and lateral flagellin production and colony morphology (but not swimming motility); furthermore, mutation of two GGDEF-EAL-encoding loci (scrG and scrABC) produced cumulative effects on swarming, lateral flagellar gene expression, lateral flagellin production and colony morphology. Mutant analysis supports the assignment of the primary in vivo activity of ScrG to acting as a phosphodiesterase. The data are consistent with a model in which multiple GGDEF-EAL proteins can influence the cellular nucleotide pool: a low concentration of c-di-GMP favors surface mobility, whereas high levels of this nucleotide promote a more adhesive Vibrio parahaemolyticus cell type.
Collapse
Affiliation(s)
- Yun-Kyeong Kim
- Microbiology Department, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
232
|
Da Re S, Le Quéré B, Ghigo JM, Beloin C. Tight modulation of Escherichia coli bacterial biofilm formation through controlled expression of adhesion factors. Appl Environ Microbiol 2007; 73:3391-403. [PMID: 17384304 PMCID: PMC1907114 DOI: 10.1128/aem.02625-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite the economic and sanitary problems caused by harmful biofilms, biofilms are nonetheless used empirically in industrial environmental and bioremediation processes and may be of potential use in medical settings for interfering with pathogen development. Escherichia coli is one of the bacteria with which biofilm formation has been studied in great detail, and it is especially appreciated for biotechnology applications because of its genetic amenability. Here we describe the development of two new genetic tools enabling the constitutive and inducible expression of any gene or operon of interest at its native locus. In addition to providing valuable tools for complementation and overexpression experiments, these two compact genetic cassettes were used to modulate the biofilm formation capacities of E. coli by taking control of two biofilm-promoting factors, autotransported antigen 43 adhesin and the bscABZC cellulose operon. The modulation of the biofilm formation capacities of E. coli or those of other bacteria capable of being genetically manipulated may be of use both for reducing and for improving the impact of biofilms in a number of industrial and medical applications.
Collapse
Affiliation(s)
- Sandra Da Re
- Groupe de Génétique des Biofilms, CNRS URA 2172, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
233
|
Simm R, Lusch A, Kader A, Andersson M, Römling U. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:3613-23. [PMID: 17322315 PMCID: PMC1855888 DOI: 10.1128/jb.01719-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GGDEF and EAL domain proteins are involved in turnover of the novel secondary messenger cyclic di(3'-->5')-guanylic acid (c-di-GMP) in many bacteria. The rdar morphotype, a multicellular behavior of Salmonella enterica serovar Typhimurium characterized by the expression of the extracellular matrix components cellulose and curli fimbriae is controlled by c-di-GMP. In this work the roles of the EAL and GGDEF-EAL domain proteins on rdar morphotype development were investigated. Knockout of four of 15 EAL and GGDEF-EAL domain proteins upregulated rdar morphotype expression and expression of CsgD, the central regulator of the rdar morphotype, and partially downregulated c-di-GMP concentrations. More-detailed analysis showed that the EAL domain protein STM4264 and the GGDEF-EAL domain protein STM1703, which highly downregulated the rdar morphotype, have overlapping yet distinct functions. Another subset of EAL and GGDEF-EAL domain proteins influenced multicellular behavior in liquid culture and flagellum-mediated motility. Consequently, this work has shown that several EAL and GGDEF-EAL domain proteins, which act as phosphodiesterases, play a determinative role in the expression level of multicellular behavior of Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Roger Simm
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
234
|
Klauck E, Typas A, Hengge R. The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 2007; 90:103-27. [PMID: 17725229 PMCID: PMC10368345 DOI: 10.3184/003685007x215922] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigmaS (RpoS) subunit of RNA polymerase in Escherichia coli is a key master regulator which allows this bacterial model organism and important pathogen to adapt to and survive environmentally rough times. While hardly present in rapidly growing cells, sigmaS strongly accumulates in response to many different stress conditions, partly replaces the vegetative sigma subunit in RNA polymerase and thereby reprograms this enzyme to transcribe sigmaS-dependent genes (up to 10% of the E. coli genes). In this review, we summarize the extremely complex regulation of sigmaS itself and multiple signal input at the level of this master regulator, we describe the way in which sigmaS specifically recognizes "stress" promoters despite their similarity to vegetative promoters, and, while being far from comprehensive, we give a short overview of the far-reaching physiological impact of sigmaS. With sigmaS being a central and multiple signal integrator and master regulator of hundreds of genes organized in regulatory cascades and sub-networks or regulatory modules, this system also represents a key model system for analyzing complex cellular information processing and a starting point for understanding the complete regulatory network of an entire cell.
Collapse
Affiliation(s)
| | - Athanasios Typas
- Aristotle University of Thessaloniki in Greece, Freie Universität Berlin
| | - Regine Hengge
- University of Konstanz. University of Princeton (NJ, USA)
| |
Collapse
|
235
|
Dow JM, Fouhy Y, Lucey JF, Ryan RP. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1378-84. [PMID: 17153922 DOI: 10.1094/mpmi-19-1378] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cyclic di-GMP is an almost ubiquitous second messenger in bacteria that was first described as an allosteric activator of cellulose synthase but is now known to regulate a range of functions, including virulence in human and animal pathogens. Two protein domains, GGDEF and EAL, are implicated in the synthesis and degradation, respectively, of cyclic di-GMP. These domains are widely distributed in bacteria, including plant pathogens. The majority of proteins with GGDEF and EAL domains contain additional signal input domains, suggesting that their activities are responsive to environmental cues. Recent studies have demonstrated that a third domain, HD-GYP, is also active in cyclic di-GMP degradation. In the plant pathogen Xanthomonas campestris pv. campestris, a two-component signal transduction system comprising the HD-GYP domain regulatory protein RpfG and cognate sensor RpfC positively controls virulence. The signals recognized by RpfC may include the cell-cell signal DSF, which also acts to regulate virulence in X. campestris pv. campestris. Here, we review these recent advances in our understanding of cyclic di-GMP signaling with particular reference to one or more roles in the bacterial pathogenesis of plants.
Collapse
Affiliation(s)
- J Maxwell Dow
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland.
| | | | | | | |
Collapse
|
236
|
Latasa C, Solano C, Penadés JR, Lasa I. Biofilm-associated proteins. C R Biol 2006; 329:849-57. [PMID: 17067927 DOI: 10.1016/j.crvi.2006.07.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/03/2006] [Accepted: 07/12/2006] [Indexed: 11/17/2022]
Abstract
Although exopolysaccharides are important and often essential compounds of the biofilm matrix, recent evidences suggest that a group of surface proteins plays a leading role during the development of the microbial communities. The first member of this group of proteins was described in a Staphylococcus aureus bovine mastitis isolate and was named Bap, for biofilm-associated protein. Later on, other surface proteins homologous to Bap and involved in biofilm development have been described in many gram-positive and gram-negative bacteria. In this review, we have summarized our knowledge about three members of this group of proteins: Bap of S. aureus, Esp of Enterococcus faecalis and BapA of Salmonella enterica ser. Enteritidis.
Collapse
Affiliation(s)
- Cristina Latasa
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología & Departamento de Producción Agraria, Universidad Pública de Navarra-CSIC, 31006 Pamplona, Spain
| | | | | | | |
Collapse
|
237
|
Gjermansen M, Ragas P, Tolker-Nielsen T. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett 2006; 265:215-24. [PMID: 17054717 DOI: 10.1111/j.1574-6968.2006.00493.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli YhjH protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved in regulating the transition of bacteria between a roaming lifestyle and a sessile biofilm lifestyle.
Collapse
Affiliation(s)
- Morten Gjermansen
- Centre for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark, UK
| | | | | |
Collapse
|
238
|
Ryan RP, Fouhy Y, Lucey JF, Dow JM. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 2006; 188:8327-34. [PMID: 17028282 PMCID: PMC1698238 DOI: 10.1128/jb.01079-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Robert P Ryan
- BIOMERIT Research Centre, Department of Microbiology, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
239
|
Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 2006; 62:1014-34. [PMID: 17010156 DOI: 10.1111/j.1365-2958.2006.05440.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bis-(3'-5')-cyclic-di-guanosine monophosphate (c-di-GMP) is a bacterial signalling molecule produced by diguanylate cyclases (DGC, carrying GGDEF domains) and degraded by specific phosphodiesterases (PDE, carrying EAL domains). Neither its full physiological impact nor its effector mechanisms are currently understood. Also, the existence of multiple GGDEF/EAL genes in the genomes of most species raises questions about output specificity and robustness of c-di-GMP signalling. Using microarray and gene fusion analyses, we demonstrate that at least five of the 29 GGDEF/EAL genes in Escherichia coli are not only stationary phase-induced under the control of the general stress response master regulator sigma(S) (RpoS), but also exhibit differential control by additional environmental and temporal signals. Two of the corresponding proteins, YdaM (GGDEF only) and YciR (GGDEF + EAL), which in vitro show DGC and PDE activity, respectively, play an antagonistic role in the expression of the biofilm-associated curli fimbriae. This control occurs at the level of transcription of the curli and cellulose regulator CsgD. Moreover, we show that H-NS positively affects curli expression by inversely controlling the expression of ydaM and yciR. Furthermore, we demonstrate a temporally fine-tuned GGDEF cascade in which YdaM controls the expression of another GGDEF protein, YaiC. By genome-wide microarray analysis, evidence is provided that YdaM and YciR strongly and nearly exclusively control CsgD-regulated genes. We conclude that specific GGDEF/EAL proteins have very distinct expression patterns, and when present in physiological amounts, can act in a highly precise, non-global and perhaps microcompartmented manner on a few or even a single specific target(s).
Collapse
Affiliation(s)
- Harald Weber
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
240
|
Hinsa SM, O'Toole GA. Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. MICROBIOLOGY-SGM 2006; 152:1375-1383. [PMID: 16622054 DOI: 10.1099/mic.0.28696-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A role for the outer-membrane-associated LapA protein in early biofilm formation by Pseudomonas fluorescens WCS365 has previously been shown. This paper reports that lapD, a gene located adjacent to the lapA gene, also plays a role in biofilm formation. A mutation in lapD results in a conditional biofilm defect in a static assay - this biofilm phenotype is exacerbated when biofilm formation is assayed in a flow-cell system. Furthermore, a lapD mutation shows a partial defect in the transition from reversible to irreversible attachment, consistent with an early role for the lapD gene product in biofilm formation. LapD is shown to be localized to the inner membrane of P. fluorescens. The data show decreased LapA associated with the cell surface, but no apparent change in cytoplasmic levels of this protein or lapA transcription, in a lapD mutant. A model is proposed wherein the role of LapD in biofilm formation is modulating the secretion of the LapA adhesin.
Collapse
Affiliation(s)
- Shannon M Hinsa
- Department of Microbiology and Immunology, Room 505 Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Room 505 Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
241
|
O'Shea TM, Klein AH, Geszvain K, Wolfe AJ, Visick KL. Diguanylate cyclases control magnesium-dependent motility of Vibrio fischeri. J Bacteriol 2006; 188:8196-205. [PMID: 16980460 PMCID: PMC1698204 DOI: 10.1128/jb.00728-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellar biogenesis and hence motility of Vibrio fischeri depends upon the presence of magnesium. In the absence of magnesium, cells contain few or no flagella and are poorly motile or nonmotile. To dissect the mechanism by which this regulation occurs, we screened transposon insertion mutants for those that could migrate through soft agar medium lacking added magnesium. We identified mutants with insertions in two distinct genes, VF0989 and VFA0959, which we termed mifA and mifB, respectively, for magnesium-dependent induction of flagellation. Each gene encodes a predicted membrane-associated protein with diguanylate cyclase activity. Consistent with that activity, introduction into V. fischeri of medium-copy plasmids carrying these genes inhibited motility. Furthermore, multicopy expression of mifA induced other phenotypes known to be correlated with diguanylate cyclase activity, including cellulose biosynthesis and biofilm formation. To directly test their function, we introduced the wild-type genes on high-copy plasmids into Escherichia coli. We assayed for the production of cyclic di-GMP using two-dimensional thin-layer chromatography and found that strains carrying these plasmids produced a small but reproducible spot that migrated with an R(f) value consistent with cyclic di-GMP that was not produced by strains carrying the vector control. Disruptions of mifA or mifB increased flagellin levels, while multicopy expression decreased them. Semiquantitative reverse transcription-PCR experiments revealed no significant difference in the amount of flagellin transcripts produced in either the presence or absence of Mg(2+) by either vector control or mifA-overexpressing cells, indicating that the impact of magnesium and cyclic-di-GMP primarily acts following transcription. Finally, we present a model for the roles of magnesium and cyclic di-GMP in the control of motility of V. fischeri.
Collapse
Affiliation(s)
- Therese M O'Shea
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave., Bldg. 105, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
242
|
Ryjenkov DA, Simm R, Römling U, Gomelsky M. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 2006; 281:30310-4. [PMID: 16920715 DOI: 10.1074/jbc.c600179200] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitous bacterial second messenger c-di-GMP controls exopolysaccharide synthesis, flagella- and pili-based motility, gene expression, and interactions of bacteria with eukaryotic hosts. With the exception of bacterial cellulose synthases, the identities of c-di-GMP receptors and end targets have remained unknown. Recently, Amikam and Galperin (Amikam, D., and Galperin, M. (2006) Bioinformatics 22, 3-6) hypothesized that the PilZ domains present in the BcsA subunits of bacterial cellulose synthases function in c-di-GMP binding. This hypothesis has been tested here using the Escherichia coli PilZ domain protein YcgR, its individual PilZ domain and the PilZ domain from Gluconacetobacter xylinus BcsA. YcgR was purified and found to bind c-di-GMP tightly and specifically, Kd 0.84 microm. Individual PilZ domains from YcgR and BcsA also bound c-di-GMP, albeit with lesser affinity, indicating that PilZ is sufficient for binding. The site-directed mutagenesis performed on YcgR implicated the most conserved residues in the PilZ domain directly in c-di-GMP binding. It is suggested that c-di-GMP binding to PilZ brings about conformational changes in the protein that stabilize the bound ligand and initiate the downstream signal transduction cascade. While the identity of the downstream partner(s) of YcgR remains unknown, it is shown that YcgR regulates flagellum-based motility in a c-di-GMP-dependent manner. The inactivation of ycgR improves swimming and swarming motility of the poorly motile yhjH mutants of Salmonella enterica serovar Typhimurium UMR1. Therefore, biochemical and genetic evidence presented here establishes PilZ as a long sought after c-di-GMP-binding domain and YcgR as a c-di-GMP receptor affecting motility in enterobacteria.
Collapse
Affiliation(s)
- Dmitri A Ryjenkov
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
243
|
Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette C, Kunst F, Steinert M, Heuner K, Coppée JY, Buchrieser C. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 2006; 8:1228-40. [PMID: 16882028 DOI: 10.1111/j.1462-5822.2006.00703.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptation to the host environment and exploitation of host cell functions are critical to the success of intracellular pathogens. Here, insight to these virulence mechanisms was obtained for the first time from the transcriptional program of the human pathogen Legionella pneumophila during infection of its natural host, Acanthamoeba castellanii. The biphasic life cycle of L. pneumophila was reflected by a major shift in gene expression from replicative to transmissive phase, concerning nearly half of the genes predicted in the genome. However, three different L. pneumophila strains showed similar in vivo gene expression patterns, indicating that common regulatory mechanisms govern the Legionella life cycle, despite the plasticity of its genome. During the replicative phase, in addition to components of aerobic metabolism and amino acid catabolism, the Entner-Doudoroff pathway, a NADPH producing mechanism used for sugar and/or gluconate assimilation, was expressed, suggesting for the first time that intracellular L. pneumophila may also scavenge host carbohydrates as nutrients and not only proteins. Identification of genes only upregulated in vivo but not in vitro, may explain higher virulence of in vivo grown L. pneumophila. Late in the life cycle, L. pneumophila upregulates genes predicted to promote transmission and manipulation of a new host cell, therewith priming it for the next attack. These including substrates of the Dot/Icm secretion system, other factors associated previously with invasion and virulence, the motility and the type IV pilus machineries, and > 90 proteins not characterized so far. Analysis of a fliA (sigma28) deletion mutant identified genes coregulated with the flagellar regulon, including GGDEF/EAL regulators and factors that promote host cell entry and survival.
Collapse
Affiliation(s)
- Holger Brüggemann
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Robbe-Saule V, Jaumouillé V, Prévost MC, Guadagnini S, Talhouarne C, Mathout H, Kolb A, Norel F. Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:3983-94. [PMID: 16707690 PMCID: PMC1482930 DOI: 10.1128/jb.00033-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, the stationary-phase sigma factor sigma(S) (RpoS) is required for virulence, stress resistance, biofilm formation, and development of the rdar morphotype. This morphotype is a multicellular behavior characterized by expression of the adhesive extracellular matrix components cellulose and curli fimbriae. The Crl protein of Escherichia coli interacts with sigma(S) and activates expression of sigma(S)-regulated genes, such as the csgBAC operon encoding the subunit of the curli proteins, by an unknown mechanism. Here, we showed using in vivo and in vitro experiments that the Crl protein of Salmonella serovar Typhimurium is required for development of a typical rdar morphotype and for maximal expression of the csgD, csgB, adrA, and bcsA genes, which are involved in curli and cellulose biosynthesis. In vitro transcription assays and potassium permanganate reactivity experiments with purified His(6)-Crl showed that Crl directly activated sigma(S)-dependent transcription initiation at the csgD and adrA promoters. We observed no effect of Crl on sigma(70)-dependent transcription. Crl protein levels increased during the late exponential and stationary growth phases in Luria-Beratani medium without NaCl at 28 degrees C. We obtained complementation of the crl mutation by increasing sigma(S) levels. This suggests that Crl has a major physiological impact at low concentrations of sigma(S).
Collapse
Affiliation(s)
- Véronique Robbe-Saule
- Institut Pasteur, Unité des Régulations Transcriptionnelles, URA-CNRS 2172, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Beyhan S, Tischler AD, Camilli A, Yildiz FH. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 2006; 188:3600-13. [PMID: 16672614 PMCID: PMC1482859 DOI: 10.1128/jb.188.10.3600-3613.2006] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, is a facultative human pathogen with intestinal and aquatic life cycles. The capacity of V. cholerae to recognize and respond to fluctuating parameters in its environment is critical to its survival. In many microorganisms, the second messenger, 3',5'-cyclic diguanylic acid (c-di-GMP), is believed to be important for integrating environmental stimuli that affect cell physiology. Sequence analysis of the V. cholerae genome has revealed an abundance of genes encoding proteins with either GGDEF domains, EAL domains, or both, which are predicted to modulate cellular c-di-GMP concentrations. To elucidate the cellular processes controlled by c-di-GMP, whole-genome transcriptome responses of the El Tor and classical V. cholerae biotypes to increased c-di-GMP concentrations were determined. The results suggest that V. cholerae responds to an elevated level of c-di-GMP by increasing the transcription of the vps, eps, and msh genes and decreasing that of flagellar genes. The functions of other c-di-GMP-regulated genes in V. cholerae are yet to be identified.
Collapse
Affiliation(s)
- Sinem Beyhan
- Department of Environmental Toxicology, University of California, Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
246
|
Abstract
Using UV, CD, and NMR, we demonstrate that the important bacterial signaling molecule involved in biofilm formation, cyclic diguanosine monophosphate (c-di-GMP), exists as a mixture of five different but related structures in an equilibrium that is sensitive both to its concentration and to the metal present. At the lower concentrations used for UV and CD work (0.05-0.5 mM), Li(+), Na(+), Cs(+), and Mg(2+) favor a bimolecular self-intercalated structure, while K(+), Rb(+), and NH(4)(+) favor formation of one or more guanine quartet complexes as well. At the higher NMR concentrations ( approximately 30 mM), the bimolecular structures associate and rearrange to a mixture of all-syn and all-anti tetramolecular and octamolecular quartet complexes. With K(+) the octamolecular complexes predominate, while with Li(+) the tetramolecular and octamolecular quartet complexes are present in approximately equal amounts, along with the bimolecular structure. We also find that both guanine amino groups in c-di-GMP are essential for formation of the quartets, because substitution of inosine for one guanosine allows formation of only the bimolecular structure. Further, two molecules of c-di-GMP tethered together are constrained in such a way that limits their ability to form these quartet complexes. The polymorphism we describe may provide different options for this signaling molecule when performing its functions in a bacterial cell, with K(+) and its own local concentration controlling the equilibrium.
Collapse
Affiliation(s)
- Zhaoying Zhang
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
247
|
Da Re S, Ghigo JM. A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 2006; 188:3073-87. [PMID: 16585767 PMCID: PMC1447019 DOI: 10.1128/jb.188.8.3073-3087.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial growth on a surface often involves the production of a polysaccharide-rich extracellular matrix that provides structural support for the formation of biofilm communities. In Salmonella, cellulose is one of the major constituents of the biofilm matrix. Its production is regulated by CsgD and the diguanylate cyclase AdrA that activates cellulose synthesis at a posttranscriptional level. Here, we studied a collection of Escherichia coli isolates, and we found that the ability to produce cellulose is a common trait shared by more than 50% of the tested strains. We investigated the genetic determinants of cellulose production and its role in biofilm formation in the commensal strain E. coli 1094. By contrast with the Salmonella cellulose regulatory cascade, neither CsgD nor AdrA is required in E. coli 1094 to regulate cellulose production. In this strain, an alternative cellulose regulatory pathway is used, which involves the GGDEF domain protein, YedQ. Although AdrA(1094) is functional, it is weakly expressed in E. coli 1094 compared to YedQ, which constitutively activates cellulose production under all tested environmental conditions. The study of cellulose regulation in several other E. coli isolates showed that, besides the CsgD/AdrA regulatory pathway, both CsgD-independent/YedQ-dependent and CsgD-independent/YedQ-independent pathways are found, indicating that alternative cellulose pathways are common in E. coli and possibly in other cellulose-producing Enterobacteriaceae.
Collapse
Affiliation(s)
- Sandra Da Re
- Groupe de Génétique des Biofilms-CNRS URA 2172, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | | |
Collapse
|
248
|
Römling U, Amikam D. Cyclic di-GMP as a second messenger. Curr Opin Microbiol 2006; 9:218-28. [PMID: 16530465 DOI: 10.1016/j.mib.2006.02.010] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/27/2006] [Indexed: 12/22/2022]
Abstract
In many bacteria bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling determines the timing and amplitude of complex biological processes from biofilm formation and virulence to photosynthesis. Thereby, the tightly regulated temporal and spatial activity patterns of GGDEF and EAL domain proteins, which synthesize and degrade c-di-GMP, respectively, are currently being resolved. Although details of the mechanisms of c-di-GMP signaling are not yet determined, the recent presentation of PilZ as a candidate c-di-GMP binding-domain opens the field for experimental investigations. Besides its role as an intracellular signaling molecule in bacteria, c-di-GMP also acts as an intercellular signaling molecule between prokaryotes and also has effects in eukaryotes that could provide a perspective in cancer treatment.
Collapse
Affiliation(s)
- Ute Römling
- Karolinska Institutet, Microbiology and Tumor Biology Center (MTC), Box 280, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
249
|
Abstract
Curli are the major proteinaceous component of a complex extracellular matrix produced by many Enterobacteriaceae. Curli were first discovered in the late 1980s on Escherichia coli strains that caused bovine mastitis, and have since been implicated in many physiological and pathogenic processes of E. coli and Salmonella spp. Curli fibers are involved in adhesion to surfaces, cell aggregation, and biofilm formation. Curli also mediate host cell adhesion and invasion, and they are potent inducers of the host inflammatory response. The structure and biogenesis of curli are unique among bacterial fibers that have been described to date. Structurally and biochemically, curli belong to a growing class of fibers known as amyloids. Amyloid fiber formation is responsible for several human diseases including Alzheimer's, Huntington's, and prion diseases, although the process of in vivo amyloid formation is not well understood. Curli provide a unique system to study macromolecular assembly in bacteria and in vivo amyloid fiber formation. Here, we review curli biogenesis, regulation, role in biofilm formation, and role in pathogenesis.
Collapse
Affiliation(s)
- Michelle M Barnhart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|