201
|
Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG. Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 2013; 56:185-93. [PMID: 23064357 DOI: 10.1007/s00125-012-2745-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/13/2012] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Immunohistochemical staining reveals that the enteroviral capsid protein VP1 is present at higher frequency in the insulin-containing islets of patients with recent-onset type 1 diabetes than in controls. This is consistent with epidemiological evidence suggesting that enteroviral infection may contribute to the autoimmune response in type 1 diabetes. However, immunostaining of VP1 is not definitive since the antibody widely used to detect the protein (Clone 5D8/1) might also cross-react with additional proteins under some conditions. Therefore, we sought to verify that VP1 immunopositivity correlates with additional markers of viral infection. METHODS Antigen immunoreactivity was examined in formalin-fixed, paraffin-embedded, pancreases from two different collections of type 1 diabetes and control cases: a historical collection from the UK and the nPOD (network of Pancreatic Organ donors with Diabetes) cohort from the USA. RESULTS VP1 immunoreactivity was present in ~20% of insulin-containing islets of both cohorts under stringent conditions but was absent from insulin-deficient islets. The presence of VP1 was restricted to beta cells but only a minority of these contained the antigen. The innate viral sensor, protein kinase R (PKR) was upregulated selectively in beta cells that were immunopositive for VP1. The anti-apoptotic protein myeloid cell leukaemia sequence-1 (Mcl-1) was abundant in beta cells that were immunonegative for VP1 but Mcl-1 was depleted in cells containing VP1. CONCLUSIONS/INTERPRETATION The presence of immunoreactive VP1 within beta cells in type 1 diabetes is associated with a cellular phenotype consistent with the activation of antiviral response pathways and enhanced sensitivity to apoptosis. However, definitive studies confirming whether viral infections are causal to beta cell loss in human diabetes are still awaited.
Collapse
Affiliation(s)
- S J Richardson
- Endocrine Pharmacology, University of Exeter Medical School, John Bull Building, Plymouth PL6 8BU, UK.
| | | | | | | | | |
Collapse
|
202
|
La Torre D. Immunobiology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:194-218. [PMID: 23393680 DOI: 10.1007/978-1-4614-5441-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observations underscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet autoimmunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, Clinical Research Center (CRC), Department of Clinical Sciences, Malmö, Sweden.
| |
Collapse
|
203
|
Nair S, Akil A, Craig ME. Enterovirus infection, β-cell apoptosis and type 1 diabetes. MICROBIOLOGY AUSTRALIA 2013. [DOI: 10.1071/ma13051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
204
|
Ghazarian L, Diana J, Simoni Y, Beaudoin L, Lehuen A. Prevention or acceleration of type 1 diabetes by viruses. Cell Mol Life Sci 2013; 70:239-55. [PMID: 22766971 PMCID: PMC11113684 DOI: 10.1007/s00018-012-1042-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells. Even though extensive scientific research has yielded important insights into the immune mechanisms involved in pancreatic β-cell destruction, little is known about the events that trigger the autoimmune process. Recent epidemiological and experimental data suggest that environmental factors are involved in this process. In this review, we discuss the role of viruses as an environmental factor on the development of type 1 diabetes, and the immune mechanisms by which they can trigger or protect against this pathology.
Collapse
Affiliation(s)
- Liana Ghazarian
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Julien Diana
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Yannick Simoni
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Lucie Beaudoin
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Agnès Lehuen
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| |
Collapse
|
205
|
Abstract
Type 1 diabetes mellitus (T1DM) is a multi-factorial autoimmune disease determined by the interaction of genetic, environmental and immunologic factors. One of the environmental risk factors identified by a series of independent studies is represented by viral infection, with strong evidence showing that viruses can indeed infect pancreatic beta cells with consequent effects ranging from functional damage to cell death. In this chapter we review the data obtained both in man and in experimental animal models in support of the potential participation of viral infections to Type 1 diabetes pathogenesis, with a particular emphasis on virus-triggered islet inflammation, beta-cell dysfunction and autoimmunity.
Collapse
|
206
|
Nurminen N, Oikarinen S, Hyöty H. Virus infections as potential targets of preventive treatments for type 1 diabetes. Rev Diabet Stud 2012; 9:260-71. [PMID: 23804265 PMCID: PMC3740695 DOI: 10.1900/rds.2012.9.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022] Open
Abstract
Environmental factors play an important role in the pathogenesis of type 1 diabetes, and are attractive targets for preventive interventions. Several studies have shown that viruses can cause diabetes in animals, indicating their potential as candidates for environmental triggering agents. However, human studies have been hampered by the complex nature of the disease pathogenesis, leaving the question of viral etiology unanswered. Significant progress has recently been made in this field by searching for viruses within pancreatic tissue samples, and by carrying out prospective studies. Consequently, there is increasing evidence for a group of enteroviruses acting as possible environmental key triggers. In past studies, these viruses have been linked to type 1 diabetes. Recent studies have shown that they exert tropism to pancreatic islets, and that they are associated with the start of the beta-cell damaging process. Also, polymorphisms of the gene coding for the innate immune system sensor for enteroviruses (IFIH1) were found to modulate the risk of diabetes. Based on these findings, interest in the possible development of vaccines against these viruses has increased. However, even if enterovirus vaccines (polio vaccines) are effective and safe, we currently lack necessary information for the development of a vaccine against diabetogenic enteroviruses, e.g. regarding the identification of their specific serotypes and the causal relationship between these viruses and diabetes initiation. Ongoing research projects are currently addressing these questions, and will hopefully increase the consensus in this field. Also, new sequencing technologies will provide additional information about the whole virome, which could enable the discovery of new candidate viruses.
Collapse
Affiliation(s)
- Noora Nurminen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | | | | |
Collapse
|
207
|
Snell-Bergeon JK, Smith J, Dong F, Barón AE, Barriga K, Norris JM, Rewers M. Early childhood infections and the risk of islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetes Care 2012; 35:2553-8. [PMID: 23043167 PMCID: PMC3507568 DOI: 10.2337/dc12-0423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 diabetes is a common chronic childhood disease, and the incidence is increasing globally. Childhood infections are considered a potential environmental trigger of type 1 diabetes. Alternatively, improved hygiene and reduced childhood infections could explain the increase in type 1 diabetes in developed countries. The association of reported illnesses during infancy and later development of islet autoimmunity (IA) were examined in the Diabetes Autoimmunity Study in the Young. RESEARCH DESIGN AND METHODS Complete illness interviews through 9 months of age were collected for 1,729 children-1,174 without a family history of type 1 diabetes and 555 with a first-degree relative with type 1 diabetes. Persistent IA was defined as positive antibodies to insulin, glutamic acid decarboxylase, or tyrosine phosphatase on at least two consecutive study visits. RESULTS There were 109 children with persistent IA among the 1,729 children with illness records. A greater number of gastrointestinal illnesses were associated with an increased risk of IA, but only among children who were exposed to gluten-containing grains (wheat or barley) either <4 months of age (hazard ratio 1.37 [95% CI 1.22-1.55]; P < 0.0001) or ≥7 months of age (1.12 [1.05-1.19]; P = 0.0005) compared with 4-6 months of age (P for interaction = 0.02). There were no associations of upper respiratory symptoms, respiratory illnesses, or fevers with IA. CONCLUSIONS Specific pathogens such as enteroviruses or rotavirus may increase the risk of IA in the presence of existing inflammation induced by diet.
Collapse
Affiliation(s)
- Janet K Snell-Bergeon
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
208
|
Ylipaasto P, Smura T, Gopalacharyulu P, Paananen A, Seppänen-Laakso T, Kaijalainen S, Ahlfors H, Korsgren O, Lakey JRT, Lahesmaa R, Piemonti L, Oresic M, Galama J, Roivainen M. Enterovirus-induced gene expression profile is critical for human pancreatic islet destruction. Diabetologia 2012; 55:3273-83. [PMID: 22983635 DOI: 10.1007/s00125-012-2713-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/27/2012] [Indexed: 01/29/2023]
Abstract
AIMS/HYPOTHESIS Virally induced inflammatory responses, beta cell destruction and release of beta cell autoantigens may lead to autoimmune reactions culminating in type 1 diabetes. Therefore, viral capability to induce beta cell death and the nature of virus-induced immune responses are among key determinants of diabetogenic viruses. We hypothesised that enterovirus infection induces a specific gene expression pattern that results in islet destruction and that such a host response pattern is not shared among all enterovirus infections but varies between virus strains. METHODS The changes in global gene expression and secreted cytokine profiles induced by lytic or benign enterovirus infections were studied in primary human pancreatic islet using DNA microarrays and viral strains either isolated at the clinical onset of type 1 diabetes or capable of causing a diabetes-like condition in mice. RESULTS The expression of pro-inflammatory cytokine genes (IL-1-α, IL-1-β and TNF-α) that also mediate cytokine-induced beta cell dysfunction correlated with the lytic potential of a virus. Temporally increasing gene expression levels of double-stranded RNA recognition receptors, antiviral molecules, cytokines and chemokines were detected for all studied virus strains. Lytic coxsackievirus B5 (CBV-5)-DS infection also downregulated genes involved in glycolysis and insulin secretion. CONCLUSIONS/INTERPRETATION The results suggest a distinct, virus-strain-specific, gene expression pattern leading to pancreatic islet destruction and pro-inflammatory effects after enterovirus infection. However, neither viral replication nor cytotoxic cytokine production alone are sufficient to induce necrotic cell death. More likely the combined effect of these and possibly cellular energy depletion lie behind the enterovirus-induced necrosis of islets.
Collapse
Affiliation(s)
- P Ylipaasto
- Intestinal Viruses Unit, National Institute for Health and Welfare (THL), Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Cinek O, Tapia G, Witsø E, Kramna L, Holkova K, Rasmussen T, Stene LC, Rønningen KS. Enterovirus RNA in peripheral blood may be associated with the variants of rs1990760, a common type 1 diabetes associated polymorphism in IFIH1. PLoS One 2012; 7:e48409. [PMID: 23144876 PMCID: PMC3492349 DOI: 10.1371/journal.pone.0048409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
Objective Polymorphisms in the IFIH1 (common rs1990760 and four rare rs35667974, rs35337543, rs35744605, rs35732034) have been convincingly associated with type 1 diabetes. The encoded protein (interferon-induced helicase C domain-containing protein 1) senses double-stranded RNA during replication of Picornavirales, including Enterovirus, a genus suspected in the etiology of type 1 diabetes. We therefore investigated whether the polymorphisms are associated with differences in the frequency of enterovirus RNA in blood. Research Design and Methods The study included 1001 blood samples, each from a child participating in the Norwegian ‘Environmental Triggers of Type 1 Diabetes: the MIDIA study’. The enterovirus RNA was tested using qualitative semi-nested real-time reverse transcriptase PCR on RNA extracted from frozen cell packs after removal of plasma. Stool samples previously analyzed for enterovirus RNA were available in 417 children. Results The genotypes of IFIH1 rs1990760 were associated with different frequencies of enterovirus RNA in blood (7.0%, 14.4% and 9.5% bloods were enterovirus positive among children carrying the Ala/Ala, Ala/Thr and Thr/Thr genotypes, respectively, p = 0.012). This association remained essentially unchanged after adjustment for age and calendar year. The presence of enterovirus in the concomitantly sampled stool further increased the likelihood of enterovirus RNA in blood (odds ratio 2.40, CI 95% 1.13–4.70), but did not affect the association with IFIH1 rs1990760. The rare polymorphisms (individually, or pooled) were not significantly associated with enterovirus RNA in blood. Conclusions The common IFIH1 SNP may modify the frequency of enterovirus RNA in blood of healthy children. This effect can help explain the association of IFIH1 with type 1 diabetes.
Collapse
Affiliation(s)
- Ondrej Cinek
- 2nd Faculty of Medicine, Department of Paediatrics, Charles University in Prague and University Hospital Motol, Prague, The Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Abstract
The purpose of this article is to provide an overview that summarizes much in the way of our current state of knowledge regarding the pathogenesis and natural history of type 1 diabetes in humans. This information is presented to the reader as a series of seminal historical discoveries that, when advanced through research, transformed our understanding of the roles for the immune system, genes, and environment in the formation of this disease. In addition, where longitudinal investigations of these three facets occurred, their roles within the development of type 1 diabetes, from birth to symptomatic onset and beyond, are discussed, including their most controversial elements. Having an understanding of this disorder's pathogenesis and natural history is key for attempts seeking to understand the issues of what causes type 1 diabetes, as well as to develop a means to prevent and cure the disorder.
Collapse
Affiliation(s)
- Mark A Atkinson
- College of Medicine, Departments of Pathology and Pediatrics, The University of Florida, Gainesville, 32610-0275, USA.
| |
Collapse
|
211
|
Coppieters KT, Wiberg A, von Herrath MG. Viral infections and molecular mimicry in type 1 diabetes. APMIS 2012; 120:941-9. [PMID: 23051179 DOI: 10.1111/apm.12011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is a disease characterized by inflammation of pancreatic islets associated with autoimmunity against insulin-producing beta cells, leading to their progressive destruction. The condition constitutes a significant and worldwide problem to human health, particularly because of its rapid, but thus far unexplained, increase in incidence. Environmental factors such as viral infections are thought to account for this trend. While there is no lack of reports associating viral infections toT1D, it has proven difficult to establish which immunological processes link viral infections to disease onset or progression. One of the commonly discussed pathways is molecular mimicry, a mechanism that encompasses cross-reactive immunity against epitopes shared between viruses and beta cells. In this review, we will take a closer look at mechanistic evidence for a potential role of viruses in T1D, with a special focus on molecular mimicry.
Collapse
Affiliation(s)
- Ken T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
212
|
Abstract
Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the insulin-producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non-obese animal models with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in diabetes research. In addition, the use of transgenic and knock-out mouse models is discussed. Ideally, more than one animal model should be used to represent the diversity seen in human diabetic patients.
Collapse
|
213
|
Abstract
PURPOSE OF REVIEW It is the current opinion that pathogens, such as viruses, are contributing to the development of type 1 diabetes (T1D) in susceptible individuals. This opinion is based on epidemiological associations, direct isolation of pathogens from the islets of Langerhans, as well as a large amount of data from various experimental animal models. Human enteroviruses have dominated the literature associated with the etiology of T1D. However, virus infections have also been reported to protect from autoimmune disorders. RECENT FINDINGS Here we review the evidence for virus infections to be involved in the pathogenesis of T1D and discuss potential mechanisms of how such infections could accelerate the destruction of insulin-producing β-cells. In addition, we will review evidence from epidemiologic and experimental animal studies showing that virus infections could also have protective properties. SUMMARY Virus infections play an important role in the pathogenesis of T1D by inducing or accelerating the autodestructive process, but also by protecting from autoimmunity. Thus, multiple sequential infections might shape the autoreactive immune repertoire and the pathogenesis of T1D in a complex fashion.
Collapse
|
214
|
Marhfour I, Lopez XM, Lefkaditis D, Salmon I, Allagnat F, Richardson SJ, Morgan NG, Eizirik DL. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 2012; 55:2417-20. [PMID: 22699564 DOI: 10.1007/s00125-012-2604-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/03/2012] [Indexed: 01/03/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress may play a role in cytokine-mediated beta cell death in type 1 diabetes, but it remains controversial whether ER stress markers are present in islets from type 1 diabetic individuals. Therefore, we evaluated by immunostaining the expression of markers of the three main branches of the ER stress response in islets from 13 individuals with and 15 controls without type 1 diabetes (eight adults and seven children). METHODS Antibodies against the ER stress markers C/EBP homologous protein (CHOP), immunoglobulin heavy chain (BIP) and X-box binding protein 1 (XBP-1) were validated using HeLa cells treated with the ER stressor thapsigargin. These antibodies were then used to stain serial sections of paraffin-embedded pancreas from type 1 diabetic and non-diabetic individuals; samples were also immunostained for CD45, insulin and glucagon. Immunostaining intensities of the ER stress markers were quantified using a software-based, unbiased quantitative approach. RESULTS Islets from individuals with type 1 diabetes showed increased levels of CHOP and, at least for insulitis-positive and beta cell-containing islets, BIP. XBP-1 expression was not, however, increased. CONCLUSIONS/INTERPRETATION Islet cells from individuals with type 1 diabetes display a partial ER stress response, with evidence of the induction of some, but not all, components of the unfolded protein response.
Collapse
Affiliation(s)
- I Marhfour
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, CP-618, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Schulte BM, Lanke KHW, Piganelli JD, Kers-Rebel ED, Bottino R, Trucco M, Huijbens RJF, Radstake TRDJ, Engelse MA, de Koning EJP, Galama JM, Adema GJ, van Kuppeveld FJM. Cytokine and chemokine production by human pancreatic islets upon enterovirus infection. Diabetes 2012; 61:2030-6. [PMID: 22596052 PMCID: PMC3402326 DOI: 10.2337/db11-1547] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enteroviruses of the human enterovirus B species (HEV-Bs) (e.g., coxsackie B viruses [CVBs] and echoviruses) have been implicated as environmental factors that trigger/accelerate type 1 diabetes, but the underlying mechanism remains elusive. The aim of this study was to gain insight into the cytokines and chemokines that are produced by human pancreatic islets upon infection with CVBs. To this end, we studied the response of human islets of Langerhans upon mock or CVB3 infection. Using quantitative PCR, we showed that upon CVB3 infection, transcription of interferon (IFN), IFN-stimulated genes, and inflammatory genes was induced. Analysis of secreted cytokines and chemokines by Luminex technology confirmed production and secretion of proinflammatory cytokines (e.g., interleukin [IL]-6 and tumor necrosis factor-α) as well as various chemotactic proteins, such as IFN-γ-induced protein 10, macrophage inflammatory protein (MIP)-1α, MIP-1β, and IL-8. Infection with other HEV-Bs induced similar responses, yet their extent depended on replication efficiency. Ultra violet-inactivated CVB3 did not induce any response, suggesting that virus replication is a prerequisite for antiviral responses. Our data represent the first comprehensive overview of inflammatory mediators that are secreted by human islets of Langerhans upon CVB infection and may shed light on the role of enteroviruses in type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- Barbara M Schulte
- 1Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
The incidence of type 1 diabetes (T1D), as with several other autoimmune diseases and conditions, began to notably rise in the latter half of the last century. Most cases of T1D are not solely attributable to genetics and therefore, environmental influences are proposed to account for the difference. Humans live today in general under much more hygienic conditions than their ancestors. Although human enteroviruses (HEV) have been strongly implicated as causative environmental agents of T1D, recent work has shown that the bacterial genera in the gut of diabetics compared with non-diabetics, can vary significantly. Here, we consider these data in light of our non-hygienic human past in order to discuss a possible relationship between the resident bacterial biome and acute infectious events by HEV, suggesting how this may have influenced T1D incidences in the past and the risk for developing T1D today.
Collapse
Affiliation(s)
- Nora M Chapman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
217
|
Hemminki K, Houlston R, Sundquist J, Sundquist K, Shu X. Co-morbidity between early-onset leukemia and type 1 diabetes--suggestive of a shared viral etiology? PLoS One 2012; 7:e39523. [PMID: 22745776 PMCID: PMC3382185 DOI: 10.1371/journal.pone.0039523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are common early-onset malignancies. Their causes are largely unknown but infectious etiology has been implicated. Type 1 diabetes (T1D) is an autoimmune disease for which infectious triggers of disease onset have been sought and increasing pointing to enteroviruses. Based on our previous results on co-morbidity between leukemia and T1D, we updated the Swedish dataset and focused on early onset leukemias in patients who had been hospitalized for T1D, comparing to those not hospitalized for T1D. Methods and Findings Standardized incidence ratios (SIRs) were calculated for leukemia in 24,052 patients hospitalized for T1D covering years 1964 through 2008. T1D patients were included if hospitalized before age 21 years. Practically all Swedish children and adolescents with T1D are hospitalized at the start of insulin treatment. SIR for ALL was 8.30 (N = 18, 95% confidence interval 4.91–13.14) when diagnosed at age 10 to 20 years after hospitalization for T1D and it was 3.51 (13, 1.86–6.02) before hospitalization for T1D. The SIR for ALL was 19.85 (N = 33, 13.74–27.76) and that for AML was 25.28 (8, 10.80–50.06) when the leukemias were diagnosed within the year of T1D hospitalization. The SIRs increased to 38.97 (26, 25.43–57.18) and 40.11 (8, 17.13–79.42) when T1D was diagnosed between ages 10 to 20 years. No consistent time-dependent changes were found in leukemia risk. Conclusion A shared infectious etiology could be a plausible explanation to the observed co-morbidity. Other possible contributing factors could be insulin therapy or T1D related metabolic disturbances.
Collapse
Affiliation(s)
- Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
218
|
Brown MA, Hatfield JK. Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy? Front Immunol 2012; 3:147. [PMID: 22701454 PMCID: PMC3369183 DOI: 10.3389/fimmu.2012.00147] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/19/2012] [Indexed: 12/14/2022] Open
Abstract
There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens, and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention.
Collapse
Affiliation(s)
- Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|
219
|
Barbeau WE. What is the key environmental trigger in type 1 diabetes--is it viruses, or wheat gluten, or both? Autoimmun Rev 2012; 12:295-9. [PMID: 22633932 DOI: 10.1016/j.autrev.2012.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 12/23/2022]
Abstract
Prevention and treatment of type 1 diabetes is hampered by the fact that the key environmental trigger(s) of the disease is still unknown. Much of the data on this subject points to two possibilities, viruses and wheat gluten. Viruses appear to be involved as an etiological agent in some cases of type 1 diabetes, particularly in fulminant type 1 diabetes. Further analysis of the data suggests that viruses are not the sole trigger of type 1 diabetes in humans, and that wheat gluten may play a role in initiating the disease. Viruses may be the key environmental trigger in some cases of type 1 diabetes, and wheat gluten in others. Conceivably, some cases of type 1 diabetes might be caused by viruses and wheat gluten acting together as disease triggers.
Collapse
Affiliation(s)
- William E Barbeau
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061-0430, United States.
| |
Collapse
|
220
|
Stene LC, Rewers M. Immunology in the clinic review series; focus on type 1 diabetes and viruses: the enterovirus link to type 1 diabetes: critical review of human studies. Clin Exp Immunol 2012; 168:12-23. [PMID: 22385232 DOI: 10.1111/j.1365-2249.2011.04555.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hypothesis that under some circumstances enteroviral infections can lead to type 1 diabetes (T1D) was proposed several decades ago, based initially on evidence from animal studies and sero-epidemiology. Subsequently, enterovirus RNA has been detected more frequently in serum of patients than in control subjects, but such studies are susceptible to selection bias and reverse causality. Here, we review critically recent evidence from human studies, focusing on longitudinal studies with potential to demonstrate temporal association. Among seven longitudinal birth cohort studies, the evidence that enterovirus infections predict islet autoimmunity is quite inconsistent in our interpretation, due partially, perhaps, to heterogeneity in study design and a limited number of subjects studied. An association between enterovirus and rapid progression from autoimmunity to T1D was reported by one longitudinal study, but although consistent with evidence from animal models, this novel observation awaits replication. It is possible that a potential association with initiation and/or progression of islet autoimmunity can be ascribed to a subgroup of the many enterovirus serotypes, but this has still not been investigated properly. There is a need for larger studies with frequent sample intervals and collection of specimens of sufficient quality and quantity for detailed characterization of enterovirus. More research into the molecular epidemiology of enteroviruses and enterovirus immunity in human populations is also warranted. Ultimately, this knowledge may be used to devise strategies to reduce the risk of T1D in humans.
Collapse
Affiliation(s)
- L C Stene
- Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, Oslo, Norway.
| | | |
Collapse
|
221
|
Lind K, Hühn MH, Flodström-Tullberg M. Immunology in the clinic review series; focus on type 1 diabetes and viruses: the innate immune response to enteroviruses and its possible role in regulating type 1 diabetes. Clin Exp Immunol 2012; 168:30-8. [PMID: 22385234 DOI: 10.1111/j.1365-2249.2011.04557.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease arising as a consequence of a misdirected T cell response to the pancreatic beta cell. In recent years, there has been a growing interest in the innate immune system as a regulator of disease development. Genome-wide association studies have identified diabetes-associated polymorphisms in genes encoding proteins with functions related to the innate immune response. Moreover, enteroviruses, known to activate a strong innate immune response, have been implicated in the disease pathogenesis. In this review, we discuss the innate immune response elicited by enteroviruses and how this response may regulate T1D development.
Collapse
Affiliation(s)
- K Lind
- Department of Medicine HS, The Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
222
|
Grieco FA, Sebastiani G, Spagnuolo I, Patti A, Dotta F. Immunology in the clinic review series; focus on type 1 diabetes and viruses: how viral infections modulate beta cell function. Clin Exp Immunol 2012; 168:24-9. [PMID: 22385233 DOI: 10.1111/j.1365-2249.2011.04556.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a multi-factorial immune-mediated disease characterized by the autoimmune destruction of insulin-producing pancreatic islet beta cells in genetically susceptible individuals. Epidemiological evidence has also documented the constant rise in the incidence of T1DM worldwide, with viral infections representing one of the candidate environmental risk factors identified by several independent studies. In fact, epidemiological data showed that T1DM incidence increases after epidemics due to enteroviruses and that enteroviral RNA can be detected in the blood of >50% of T1DM patients at the time of disease onset. Furthermore, both in-vitro and ex-vivo studies have shown that viruses can infect pancreatic beta cells with consequent effects ranging from functional damage to cell death.
Collapse
Affiliation(s)
- F A Grieco
- Diabetes Unit, Dept. of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena, Viale Bracci 18, Siena, Italy
| | | | | | | | | |
Collapse
|
223
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:39-46. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04558.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
224
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:5-11. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04554.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
225
|
Gkrania-Klotsas E, Langenberg C, Tauriainen S, Sharp SJ, Luben R, Forouhi NG, Khaw KT, Hyöty H, Wareham NJ. The association between prior infection with five serotypes of Coxsackievirus B and incident type 2 diabetes mellitus in the EPIC-Norfolk study. Diabetologia 2012; 55:967-70. [PMID: 22231126 DOI: 10.1007/s00125-011-2443-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Infections with Coxsackieviruses have been linked to beta cell dysfunction. Given the importance of beta cell dysfunction in the aetiology of type 2 diabetes, we hypothesised that prior infection with Coxsackieviruses B would increase the risk of type 2 diabetes. The aims of the study were to estimate cross-sectional associations between potential predictors of previous infection and seropositivity for Coxsackievirus B serotypes 1-5 (CBV1-5), and then to assess the association between seropositivity and incident type 2 diabetes. METHODS Using a case-cohort design nested within the European Prospective Investigation of Cancer (EPIC)-Norfolk study, we ascertained n = 603 cases of incident type 2 diabetes. From within the entire cohort we identified a random subcohort of n = 835, without diabetes at baseline. The presence of Coxsackievirus B neutralising antibodies against serotypes 1-5 was assessed using a plaque neutralisation assay. Weighted Cox regression was used to examine the association between presence of antibodies to CBV1-5 and the development of type 2 diabetes. RESULTS Seropositivity in the subcohort for CBV1-5 was 50%, 67%, 66%, 75% and 45%, respectively. After adjustment for age, sex, BMI, physical activity and family history of diabetes, the presence of antibodies against CBV1-5 was not associated with incident type 2 diabetes, over a mean follow-up of 5.7 years (HR [95% CIs] 0.94 [0.72,1.25], 0.92 [0.68, 1.23], 1.33 [0.98,1.81], 1.16 [0.83,1.61] and 1.03 [0.77,1.39] for CBV1-5, respectively). CONCLUSIONS/INTERPRETATION The presence of antibodies against any of five serotypes of Coxsackievirus B was not associated with incident type 2 diabetes.
Collapse
|
226
|
Oikarinen M, Tauriainen S, Oikarinen S, Honkanen T, Collin P, Rantala I, Mäki M, Kaukinen K, Hyöty H. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 2012; 61:687-91. [PMID: 22315304 PMCID: PMC3282798 DOI: 10.2337/db11-1157] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enterovirus infections have been linked to type 1 diabetes in several studies. Enteroviruses also have tropism to pancreatic islets and can cause β-cell damage in experimental models. Viral persistence has been suspected to be an important pathogenetic factor. This study evaluates whether gut mucosa is a reservoir for enterovirus persistence in type 1 diabetic patients. Small-bowel mucosal biopsy samples from 39 type 1 diabetic patients, 41 control subjects, and 40 celiac disease patients were analyzed for the presence of enterovirus using in situ hybridization (ISH), RT-PCR, and immunohistochemistry. The presence of virus was compared with inflammatory markers such as infiltrating T cells, HLA-DR expression, and transglutaminase 2-targeted IgA deposits. Enterovirus RNA was found in diabetic patients more frequently than in control subjects and was associated with a clear inflammation response in the gut mucosa. Viral RNA was often detected in the absence of viral protein, suggesting defective replication of the virus. Patients remained virus positive in follow-up samples taken after 12 months' observation. The results suggest that a large proportion of type 1 diabetic patients have prolonged/persistent enterovirus infection associated with an inflammation process in gut mucosa. This finding opens new opportunities for studying the viral etiology of type 1 diabetes.
Collapse
Affiliation(s)
- Maarit Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Coppieters KT, von Herrath MG. Viruses and cytotoxic T lymphocytes in type 1 diabetes. Clin Rev Allergy Immunol 2012; 41:169-78. [PMID: 21181304 DOI: 10.1007/s12016-010-8220-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histopathological studies on pancreas tissues from individuals with recent-onset type 1 diabetes (T1D) consistently find that CD8 T cells substantially contribute to the formation of islet lesions. CD8 T cells reactive against islet-associated antigens can also be found in blood samples from T1D patients. Mechanistic studies on the pathogenic role of this T cell subset have mostly focused on two animal models, i.e., the non-obese diabetic mouse and the virally induced rat insulin promoter-lymphocytic choriomeningitis virus model. Data were obtained in support of a role for viral infection in expanding a population of diabetogenic cytotoxic T lymphocytes. In view of the theorized association of viral infection with initiation of islet autoimmunity and progression to clinically overt disease, CD8 T cells thus represent an attractive target for immunotherapy. We will review here arguments in favor of a pivotal role for CD8 T cells in driving T1D development and speculate on etiologic agents that may provoke their aberrant activation.
Collapse
Affiliation(s)
- Ken T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, CA, 92037, USA
| | | |
Collapse
|
228
|
Diaz-Horta O, Baj A, Maccari G, Salvatoni A, Toniolo A. Enteroviruses and causality of type 1 diabetes: how close are we? Pediatr Diabetes 2012; 13:92-9. [PMID: 22011004 DOI: 10.1111/j.1399-5448.2011.00790.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Oscar Diaz-Horta
- Department of Experimental Medicine, Laboratory of Medical Microbiology, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
229
|
Santin I, Moore F, Colli ML, Gurzov EN, Marselli L, Marchetti P, Eizirik DL. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic β-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 2011; 60:3279-88. [PMID: 21984578 PMCID: PMC3219938 DOI: 10.2337/db11-0758] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Genome-wide association studies allowed the identification of several associations between specific loci and type 1 diabetes (T1D). However, the mechanisms by which most candidate genes predispose to T1D remain unclear. We presently evaluated the mechanisms by which PTPN2, a candidate gene for T1D, modulates β-cell apoptosis after exposure to type I and II interferons (IFNs), cytokines that contribute to β-cell loss in early T1D. RESEARCH DESIGN AND METHODS Small interfering RNAs were used to inhibit PTPN2, STAT1, Bim, and Jun NH(2)-terminal kinase 1 (JNK1) expression. Cell death was assessed by Hoechst and propidium iodide staining. BAX translocation, Bim phosphorylation, cytochrome c release, and caspases 9 and 3 activation were measured by Western blot or immunofluorescence. RESULTS PTPN2 knockdown exacerbated type I IFN-induced apoptosis in INS-1E, primary rat, and human β-cells. PTPN2 silencing and exposure to type I and II IFNs induced BAX translocation to the mitochondria, cytochrome c release, and caspase 3 activation. There was also an increase in Bim phosphorylation that was at least in part regulated by JNK1. Of note, both Bim and JNK1 knockdown protected β-cells against IFN-induced apoptosis in PTPN2-silenced cells. CONCLUSIONS The present findings suggest that local IFN production may interact with a genetic factor (PTPN2) to induce aberrant proapoptotic activity of the BH3-only protein Bim, resulting in increased β-cell apoptosis via JNK activation and the intrinsic apoptotic pathway. This is the first indication of a direct interaction between a candidate gene for T1D and the activation of a specific downstream proapoptotic pathway in β-cells.
Collapse
Affiliation(s)
- Izortze Santin
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Moore
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Maikel L. Colli
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Esteban N. Gurzov
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Corresponding author: Decio L. Eizirik,
| |
Collapse
|
230
|
Simonen-Tikka ML, Pflueger M, Klemola P, Savolainen-Kopra C, Smura T, Hummel S, Kaijalainen S, Nuutila K, Natri O, Roivainen M, Ziegler AG. Human enterovirus infections in children at increased risk for type 1 diabetes: the Babydiet study. Diabetologia 2011; 54:2995-3002. [PMID: 21932150 DOI: 10.1007/s00125-011-2305-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/12/2011] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to examine human enteroviruses (HEVs) and other intestinal viruses derived from children who participated in the Babydiet intervention study and to analyse the findings according to the appearance of islet autoantibodies, dietary intervention, maternal type 1 diabetes and clinical symptoms. METHODS In the Babydiet study the influence of first gluten exposure (6 or 12 months) on the development of islet autoimmunity was investigated in 150 children with increased genetic and familial risk for type 1 diabetes. Blood and stool samples were collected at 3 monthly intervals until the age of 3 years and yearly thereafter. Infections and clinical symptoms were recorded daily for the first year. In the present study, 339 stool samples collected from 104 children during the first year of life were analysed for HEVs and a certain proportion of the samples were analysed for other intestinal viruses. RESULTS HEV was detected in 32 (9.4%) samples from 24 (23.1%) children. Altogether 13 serotypes were identified, with HEV-A species being the most common. Children with gastrointestinal symptoms had norovirus (3/11) and sapovirus (1/11) infections in addition to HEV (1/11). Of the 104 children, 22 developed islet autoantibodies. HEV infections were detected in 18% (4/22) and 24% (20/82) of islet-autoantibody-positive and -negative children, respectively (p = 0.5). The prevalence of HEV was similar in the gluten-exposed groups and in children from mothers with type 1 diabetes or from affected fathers and/or siblings (p = 1.0 and 0.6, respectively). CONCLUSIONS/INTERPRETATION No correlation was found between the presence of HEV in the first year of life and the development of islet autoantibodies. There was no association between HEV infections and dietary intervention, maternal diabetes or clinical symptoms.
Collapse
Affiliation(s)
- M-L Simonen-Tikka
- Intestinal Viruses Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Coppieters K, Amirian N, von Herrath M. Intravital imaging of CTLs killing islet cells in diabetic mice. J Clin Invest 2011; 122:119-31. [PMID: 22133877 DOI: 10.1172/jci59285] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/19/2011] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing β cells in the pancreatic islets, which are essentially mini-organs embedded in exocrine tissue. CTLs are considered to have a predominant role in the autoimmune destruction underlying T1D. Visualization of CTL-mediated killing of β cells would provide new insight into the pathogenesis of T1D, but has been technically challenging to achieve. Here, we report our use of intravital 2-photon imaging in mice to visualize the dynamic behavior of a virally expanded, diabetogenic CTL population in the pancreas at cellular resolution. Following vascular arrest and extravasation, CTLs adopted a random motility pattern throughout the compact exocrine tissue and displayed unimpeded yet nonlinear migration between anatomically nearby islets. Upon antigen encounter within islets, a confined motility pattern was acquired that allowed the CTLs to scan the target cell surface. A minority of infiltrating CTLs subsequently arrested at the β cell junction, while duration of stable CTL-target cell contact was on the order of hours. Slow-rate killing occurred in the sustained local presence of substantial numbers of effector cells. Collectively, these data portray the kinetics of CTL homing to and between antigenic target sites as a stochastic process at the sub-organ level and argue against a dominant influence of chemotactic gradients.
Collapse
Affiliation(s)
- Ken Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
232
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the lack of insulin due to an autoimmune destruction of pancreatic beta cells. Here, we report a unique case of a family with naturally conceived quadruplets in which T1D was diagnosed in two quadruplets simultaneously. At the same time, the third quadruplet was diagnosed with the pre-diabetic stage. Remarkably, all four quadruplets were positive for anti-islet cell antibodies, GAD65 and IA-A2. Monozygotic status of the quadruplets was confirmed by testing 14 different short tandem repeat polymorphisms. Serological examination confirmed that all quadruplets and their father suffered from a recent enteroviral infection of EV68-71 serotype. To assess the nature of the molecular pathological processes contributing to the development of diabetes, immunocompetent cells isolated from all family members were characterized by gene expression arrays, immune-cell enumerations and cytokine-production assays. The microarray data provided evidence that viral infection, and IL-27 and IL-9 cytokine signalling contributed to the onset of T1D in two of the quadruplets. The propensity of stimulated immunocompetent cells from non-diabetic members of the family to secrete high level of IFN-α further corroborates this conclusion. The number of T regulatory cells as well as plasmacytoid and/or myeloid dendritic cells was found diminished in all family members. Thus, this unique family is a prime example for the support of the so-called 'fertile-field' hypothesis proposing that genetic predisposition to anti-islet autoimmunity is 'fertilized' and precipitated by a viral infection leading to a fully blown T1D.
Collapse
|
233
|
Witsø E, Tapia G, Cinek O, Pociot FM, Stene LC, Rønningen KS. Polymorphisms in the innate immune IFIH1 gene, frequency of enterovirus in monthly fecal samples during infancy, and islet autoimmunity. PLoS One 2011; 6:e27781. [PMID: 22110759 PMCID: PMC3215739 DOI: 10.1371/journal.pone.0027781] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/25/2011] [Indexed: 02/07/2023] Open
Abstract
Interferon induced with helicase C domain 1 (IFIH1) senses and initiates antiviral activity against enteroviruses. Genetic variants of IFIH1, one common and four rare SNPs have been associated with lower risk for type 1 diabetes. Our aim was to test whether these type 1 diabetes-associated IFIH1 polymorphisms are associated with the occurrence of enterovirus infection in the gut of healthy children, or influence the lack of association between gut enterovirus infection and islet autoimmunity. After testing of 46,939 Norwegian newborns, 421 children carrying the high risk genotype for type 1 diabetes (HLA-DR4-DQ8/DR3-DQ2) as well as 375 children without this genotype were included for monthly fecal collections from 3 to 35 months of age, and genotyped for the IFIH1 polymorphisms. A total of 7,793 fecal samples were tested for presence of enterovirus RNA using real time reverse transcriptase PCR. We found no association with frequency of enterovirus in the gut for the common IFIH1 polymorphism rs1990760, or either of the rare variants of rs35744605, rs35667974, rs35337543, while the enterovirus prevalence marginally differed in samples from the 8 carriers of a rare allele of rs35732034 (26.1%, 18/69 samples) as compared to wild-type homozygotes (12.4%, 955/7724 samples); odds ratio 2.5, p = 0.06. The association was stronger when infections were restricted to those with high viral loads (odds ratio 3.3, 95% CI 1.3–8.4, p = 0.01). The lack of association between enterovirus frequency and islet autoimmunity reported in our previous study was not materially influenced by the IFIH1 SNPs. We conclude that the type 1 diabetes-associated IFIH1 polymorphisms have no, or only minor influence on the occurrence, quantity or duration of enterovirus infection in the gut. Its effect on the risk of diabetes is likely to lie elsewhere in the pathogenic process than in the modification of gut infection.
Collapse
|
234
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
235
|
Sané F, Moumna I, Hober D. Group B coxsackieviruses and autoimmunity: focus on Type 1 diabetes. Expert Rev Clin Immunol 2011; 7:357-66. [PMID: 21595602 DOI: 10.1586/eci.11.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Group B coxsackieviruses (CVB) and/or their components have been found in the blood and pancreas of patients with Type 1 diabetes (T1D). CVB infections lead to the activation of the innate and adaptive immune systems, which can result in the induction or aggravation of autoimmune processes. Persistent and/or repeated infections of pancreas islet β cells with CVB and the resulting production of IFN-α and inflammatory mediators, combined with a predisposed genetic background, may induce bystander activation of autoimmune effector T cells and an autoreactive response to islet self-antigens through molecular mimicry. Moreover, the antibody-dependent enhancement of CVB infection of monocytes, as well as infection of the thymus can intervene in the pathogenesis of T1D. In contrast with the deleterious effect of CVB, it has been shown that these viruses can protect against the development of T1D under certain experimental conditions. The role of CVB in autoimmunity is complex, and therefore a better understanding of the inducer versus protective effects of these viruses in T1D will help to design new strategies to treat and prevent the disease.
Collapse
Affiliation(s)
- Famara Sané
- Laboratory of Virology EA3610, University Lille 2, Faculty of Medecine, CHRU Lille, 59037 Lille, France
| | | | | |
Collapse
|
236
|
Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Immunohistochemical analysis of the relationship between islet cell proliferation and the production of the enteroviral capsid protein, VP1, in the islets of patients with recent-onset type 1 diabetes. Diabetologia 2011; 54:2417-20. [PMID: 21597997 DOI: 10.1007/s00125-011-2192-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/19/2011] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS The enteroviral capsid protein, VP1, was recently shown to be present in some beta cells in more than 60% of patients with recent-onset type 1 diabetes but in very few age-matched controls. The rate of proliferation of islet cells was also markedly increased in the type 1 diabetic patients. As it has been suggested that enteroviruses replicate most efficiently in proliferating cells, we have investigated whether VP1 is preferentially present in proliferating beta cells in type 1 diabetes. METHODS Combined immunoperoxidase and immunofluorescence staining was used to record the presence of enteroviral VP1, insulin and Ki67 in the islets of recent-onset type 1 diabetic patients. RESULTS From a total of 1,175 islets, 359 (30.5%) contained insulin. VP1-producing endocrine cells were found in 72 islets (6.1% of total), all of which retained insulin. Ki67(+) endocrine cells were present in 52 (4.4%) islets, with 44 (84.6%) of these being insulin-positive. Overall, 28 of 1,175 (2.4%) islets contained both Ki67(+) cells and VP1(+) cells. Dual positivity of these markers accounted for 38.9% of the total VP1(+) islets and 53.8% of the total Ki67(+) islets. No individual islet cells were dual-positive for Ki67 and VP1. CONCLUSIONS/INTERPRETATION Ki67(+) cells were frequently observed in islets that also contained VP1(+) cells, suggesting that the factors facilitating viral replication may also drive islet cell proliferation. However, in an individual cell, VP1 production does not require concurrent beta cell proliferation.
Collapse
Affiliation(s)
- A Willcox
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, University of Exeter, John Bull Building, Plymouth PL6 8BU, UK
| | | | | | | | | |
Collapse
|
237
|
In't Veld P. Insulitis in the human endocrine pancreas: does a viral infection lead to inflammation and beta cell replication? Diabetologia 2011; 54:2220-2. [PMID: 21701817 DOI: 10.1007/s00125-011-2224-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 12/17/2022]
Abstract
Defining the role of viruses in the aetiopathogenesis of human type 1 diabetes has been an elusive goal for more than 40 years, although indirect evidence is mounting that viruses have an important modulatory role in the development of the disease through their interaction with the innate immune system. In this issue of Diabetologia, Willcox et al. provide histopathological evidence that the islets of Langerhans in seven young patients with recent-onset disease expressed the enteroviral protein VP1 and report that this marker is preferentially present in islets that show signs of enhanced replicative activity. They suggest that insulitis may be the common factor linking beta cell replication and VP1 positivity, with persistent virus infection leading to chemokine secretion, infiltration of immune cells (insulitis) and pro-inflammatory cytokine-induced beta cell replication.
Collapse
Affiliation(s)
- P In't Veld
- Department of Pathology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
238
|
Abstract
The RIG-I-like receptors (RLRs) RIG-I, MDA5, and LGP2 play a major role in pathogen sensing of RNA virus infection to initiate and modulate antiviral immunity. The RLRs detect viral RNA ligands or processed self RNA in the cytoplasm to trigger innate immunity and inflammation and to impart gene expression that serves to control infection. Importantly, RLRs cooperate in signaling crosstalk networks with Toll-like receptors and other factors to impart innate immunity and to modulate the adaptive immune response. RLR regulation occurs at a variety of levels ranging from autoregulation to ligand and cofactor interactions and posttranslational modifications. Abberant RLR signaling or dysregulation of RLR expression is now implicated in the development of autoimmune diseases. Understanding the processes of RLR signaling and response will provide insights to guide RLR-targeted therapeutics for antiviral and immune-modifying applications.
Collapse
Affiliation(s)
- Yueh-Ming Loo
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
239
|
Abstract
Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide, and a rapidly rising incidence, diabetes mellitus poses a great burden on healthcare systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dys-regulation of the intestinal barrier. Via alterations in the intestinal permeability, intestinal barrier function becomes compromised whereby access of infectious agents and dietary antigens to mucosal immune elements is facilitated, which may eventually lead to immune reactions with damage to pancreatic beta cells and can lead to increased cytokine production with consequent insulin resistance. Understanding the factors regulating the intestinal barrier function will provide important insight into the interactions between luminal antigens and immune response elements. This review analyses recent advances in the mechanistic understanding of the role of the intestinal epithelial barrier function in the development of type 1 and type 2 diabetes. Given our current knowledge, we may assume that reinforcing the intestinal barrier can offer and open new therapeutic horizons in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- S de Kort
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | | |
Collapse
|
240
|
Skog O, Korsgren O, Frisk G. Modulation of innate immunity in human pancreatic islets infected with enterovirus in vitro. J Med Virol 2011; 83:658-64. [PMID: 21328381 DOI: 10.1002/jmv.21924] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Present knowledge of innate immunity in infected cells relies on studies of cell lines and animal models. In this study, primary human pancreatic islets of Langerhans were used to study virus-host interactions in a model of the possible induction of type 1 diabetes by enterovirus (EV). Human islets were infected with a strain of EV isolated at onset of type 1 diabetes, or exposed to synthetic dsRNA (poly(I:C)), used commonly to mimic viral infection. Induction of innate immunity and the effect of the female sex hormone 17β-estradiol, known to have cell-protective effects, on islet chemokine secretion were investigated. 17β-Estradiol reduced EV-but not poly(I:C)-induced IP-10/CXCL10 secretion from human islets, suggesting that separate signaling pathways of the innate immune response are triggered by EV and poly(I:C), respectively. Infection with EV increased the gene-expression of toll-like receptor 3, interferon-β, and the intracellular helicase MDA5, involved in antiviral innate immunity, multi-fold over time, whereas poly(I:C) increased the expression of these genes transiently. The induced expression pattern was similar in all donors, but the expression levels varied greatly. Pre-exposure to poly(I:C) blocked viral replication in islets from 56% of the donors. These data provide insight on the innate immune responses induced by EV in human islets, and show that this can be modulated by 17β-estradiol, and suggest an important difference between virus- and poly(I:C)-induced signaling.
Collapse
Affiliation(s)
- Oskar Skog
- Division of Clinical Immunology, Department of Oncology, Radiology, and Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
241
|
Boettler T, von Herrath M. Protection against or triggering of Type 1 diabetes? Different roles for viral infections. Expert Rev Clin Immunol 2011; 7:45-53. [PMID: 21162649 DOI: 10.1586/eci.10.91] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of autoreactivity that ultimately destroys insulin-producing β-cells and causes Type 1 diabetes (T1D) is a result of genetic susceptibility and environmental factors, such as viral infections. The ability to induce strong cellular immune responses and to cause inflammation in the target organ makes viral infections prime candidates for the initiation of islet autoreactivity. Indeed, certain viruses have been linked to the occurrence of T1D based on epidemiological, serological and histological findings; and several rodent studies clearly demonstrate that viral infections can trigger autoimmunity. However, viruses have also been shown to efficiently prevent autoimmunity, which underlines the beneficial aspects of exposure to microbial agents as suggested by the hygiene hypothesis. Here, we will try to untangle some aspects of the complex interplay between viruses and the immune system and we will recapitulate by what rationale certain viruses have been associated with T1D.
Collapse
Affiliation(s)
- Tobias Boettler
- La Jolla Institute for Allergy and Immunology - LIAI, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
242
|
Abstract
Lymphocytes and myeloid cells (monocyte/macrophages) have important roles in multiple types of diseases characterized by unresolved inflammation. The relatively recent appreciation of obesity, insulin resistance and type 2 diabetes (T2D) as chronic inflammatory diseases has stimulated interest in understanding the role of immune cells in metabolic imbalance. Myeloid cells regulate inflammation through cytokine production and the adipose tissue remodeling that accompanies hyper-nutrition, thus are critical players in metabolic homeostasis. More recently, multiple studies have indicated a role for T cells in obesity-associated inflammation and insulin resistance in model organisms, with parallel work indicating that pro-inflammatory changes in T cells also associate with human T2D. Furthermore, the expansion of T cells with similar antigen-binding sites in obesity and T2D indicates these diseases share characteristics previously attributed to inflammatory autoimmune disorders. Parallel pro-inflammatory changes in the B-cell compartment of T2D patients have also been identified. Taken together, these studies indicate that in addition to accepted pro-inflammatory roles of myeloid cells in T2D, pro-inflammatory skewing of both major lymphocyte subsets has an important role in T2D disease pathogenesis. Basic immunological principles suggest that alterations in lymphocyte function in obesity and T2D patients are an integral part of a feed-forward pro-inflammatory loop involving additional cell types. Importantly, the pro-inflammatory loop almost inevitably includes adipocytes, known to respond to pro-inflammatory, pro-diabetogenic cytokines originating from the myeloid and lymphoid compartments. We propose a model for inflammation in T2D that functionally links lymphocyte, myeloid and adipocyte contributions, and importantly proposes that tools for B-cell ablation or regulation of T-cell subset balance may have a place in the endocrinologist's limited arsenal.
Collapse
|
243
|
Yeung WCG, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 2011; 342:d35. [PMID: 21292721 PMCID: PMC3033438 DOI: 10.1136/bmj.d35] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To review the association between current enterovirus infection diagnosed with molecular testing and development of autoimmunity or type 1 diabetes. DESIGN Systematic review and meta-analysis of observational studies, analysed with random effects models. DATA SOURCES PubMed (until May 2010) and Embase (until May 2010), no language restrictions, studies in humans only; reference lists of identified articles; and contact with authors. Study eligibility criteria Cohort or case-control studies measuring enterovirus RNA or viral protein in blood, stool, or tissue of patients with pre-diabetes and diabetes, with adequate data to calculate an odds ratio and 95% confidence intervals. RESULTS The 24 papers and two abstracts (all case-control studies) that met the eligibility criteria included 4448 participants. Study design varied greatly, with a high level of statistical heterogeneity. The two separate outcomes were diabetes related autoimmunity or type 1 diabetes. Meta-analysis showed a significant association between enterovirus infection and type 1 diabetes related autoimmunity (odds ratio 3.7, 95% confidence interval 2.1 to 6.8; heterogeneity χ(2)/df = 1.3) and clinical type 1 diabetes (9.8, 5.5 to 17.4; χ(2)/df = 3.2). CONCLUSIONS There is a clinically significant association between enterovirus infection, detected with molecular methods, and autoimmunity/type 1 diabetes. Larger prospective studies would be needed to establish a clear temporal relation between enterovirus infection and the development of autoimmunity and type 1 diabetes.
Collapse
Affiliation(s)
- Wing-Chi G Yeung
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
244
|
Smura T, Ylipaasto P, Klemola P, Kaijalainen S, Kyllönen L, Sordi V, Piemonti L, Roivainen M. Cellular tropism of human enterovirus D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis. J Med Virol 2011; 82:1940-9. [PMID: 20872722 DOI: 10.1002/jmv.21894] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterovirus 94 (EV-94) is an enterovirus serotype described recently which, together with EV-68 and EV-70, forms human enterovirus D species. This study investigates the seroprevalences of these three serotypes and their abilities to infect, replicate, and damage cell types considered to be essential for enterovirus-induced diseases. The cell types studied included human leukocyte cell lines, primary endothelial cells, and pancreatic islets. High prevalence of neutralizing antibodies against EV-68 and EV-94 was found in the Finnish population. The virus strains studied had wide leukocyte tropism. EV-94 and EV-68 were able to produce infectious progeny in leukocyte cell lines with monocytic, granulocytic, T-cell, or B-cell characteristics. EV-94 and EV-70 were capable of infecting primary human umbilical vein endothelial cells, whereas EV-68 had only marginal progeny production and did not induce cytopathic effects in these cells. Intriguingly, EV-94 was able to damage pancreatic islet β-cells, to infect, replicate, and cause necrosis in human pancreatic islets, and to induce proinflammatory and chemoattractive cytokine expression in endothelial cells. These results suggest that HEV-D viruses may be more prevalent than has been thought previously, and they provide in vitro evidence that EV-94 may be a potent pathogen and should be considered a potentially diabetogenic enterovirus type.
Collapse
Affiliation(s)
- Teemu Smura
- Intestinal Viruses Unit, Division of Health Protection, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Nair S, Leung KC, Rawlinson WD, Naing Z, Craig ME. Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells. J Med Virol 2011; 82:1950-7. [PMID: 20872723 DOI: 10.1002/jmv.21900] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite evidence supporting an association between enterovirus (EV) infection and type 1 diabetes, the etiological mechanism(s) for EV-induced beta cell destruction is(are) not well understood. In this study, the effects of Coxsackievirus B (CVB) 1-6 on cell lysis and cytokine/chemokine expression in the insulinoma-1 (INS-1) beta cell line were investigated. Cytolysis was assessed using tissue culture infectious dose 50 (TCID(50)). Quantitative RT-PCR was used to measure viral RNA and mRNA of cytokines interferon (IFN)-α, IFN-β, IFN-γ, tumor necrosis factor (TNF)-α, and chemokine (C-X-C motif) ligand 10 (CXCL10), chemokine (C-C motif) ligand 2 (CCL2), and chemokine (C-C motif) ligand 5 (CCL5) in infected INS-1 cells. CVB2, 4, 5, and 6 lysed and replicated in INS-1 cells; TCID(50) was lowest for CVB5 and highest for CVB6. IFN-γ, CXCL10, and CCL5 mRNA levels all increased significantly following infection with CVB2, 4, 5, and 6 (P<0.05). CCL2 mRNA increased with CVB2, 5, and 6 (P<0.05), IFN-α mRNA increased with CVB5 infection (P<0.05), while TNF-α mRNA and IFN-β mRNA (P<0.001) increased with CVB2 infection. Dose-dependent effects of infection on cytokine mRNA levels were observed for all (P<0.01) except IFN-γ. Following inoculation of INS-1 cells with CVB1 and 3, viral RNA was not detected and cytokine/chemokine mRNA levels were unchanged. In conclusion, CVB2, 4, 5, and 6 induce dose-dependent cytokine and chemokine mRNA production from INS-1 cells suggesting that pro-inflammatory cytokine and chemokine secretion by beta cells is a potential mechanism for EV-induced beta cell damage in type 1 diabetes.
Collapse
Affiliation(s)
- Sandhya Nair
- Virology Research, POWH and UNSW Research Laboratories, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
246
|
Do viral infections protect from or enhance type 1 diabetes and how can we tell the difference? Cell Mol Immunol 2011; 8:193-8. [PMID: 21258361 DOI: 10.1038/cmi.2010.71] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Virus infections have been implicated in both initiation of and protection from autoimmune diseases, such as type 1 diabetes (T1D). In this review we intend to reflect on recent evidence how viruses might on the one hand be involved in the pathogenesis of T1D and on the other hand induce a state of protection from autoimmune-mediated damage. It is important to acknowledge that human individuals encounter more than just one virus infection in their lifetime. Therefore, it is important to integrate more than just one possible environmental triggering factor for autoimmune diseases to occur.
Collapse
|
247
|
Tapia G, Cinek O, Rasmussen T, Witsø E, Grinde B, Stene LC, Rønningen KS. Human enterovirus RNA in monthly fecal samples and islet autoimmunity in Norwegian children with high genetic risk for type 1 diabetes: the MIDIA study. Diabetes Care 2011; 34:151-5. [PMID: 20929993 PMCID: PMC3005474 DOI: 10.2337/dc10-1413] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test whether the frequency of human enterovirus RNA in fecal samples collected monthly from early infancy was associated with development of multiple islet autoantibodies in children with the highest risk HLA genotype. RESEARCH DESIGN AND METHODS Individuals carrying the HLA DRB1*0401-DQA1*03-DQB1*0302/DRB1*03-DQA1*05-DQB1*02 genotype were identified at birth and followed with monthly stool samples from age 3 to 35 months. Blood samples taken at age 3, 6, 9, and 12 months and then annually were tested for autoantibodies to insulin, GAD 65 and IA-2. Among 911 children, 27 developed positivity for two or more islet autoantibodies in two or more consecutive samples (case subjects). Two control subjects per case subject were matched by follow-up time, date of birth, and county of residence. Stool samples were analyzed for enterovirus with a semiquantitative real-time RT-PCR. RESULTS The frequency of human enterovirus RNA in stool samples from case subjects before seroconversion (43 of 339, 12.7%) did not differ from the frequency in control subjects (94 of 692, 13.6%) (P = 0.97). Results remained essentially unchanged after adjustment for potential confounders, restriction to various time windows before seroconversion, or infections in the 1st year of life or after inclusion of samples collected after seroconversion. There was no difference in the average quantity of enterovirus RNA or in the frequency of repeatedly positive samples. The estimated relative risk for islet autoimmunity per enterovirus RNA-positive sample during follow-up (nested case-control analysis) was 1.12 (95% CI 0.66-1.91). CONCLUSIONS There was no support for the hypothesis that fecal shedding of enteroviral RNA is a major predictor of advanced islet autoimmunity.
Collapse
Affiliation(s)
- German Tapia
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
248
|
Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R, Simell O, Knip M, Hyöty H. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes 2011; 60:276-9. [PMID: 20943747 PMCID: PMC3012181 DOI: 10.2337/db10-0186] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess whether the detection of enterovirus RNA in blood predicts the development of clinical type 1 diabetes in a prospective birth cohort study. Further, to study the role of enteroviruses in both the initiation of the process and the progression to type 1 diabetes. RESEARCH DESIGN AND METHODS This was a nested case-control study where all case children (N = 38) have progressed to clinical type 1 diabetes. Nondiabetic control children (N = 140) were pairwise matched for sex, date of birth, hospital district, and HLA-DQ-conferred genetic susceptibility to type 1 diabetes. Serum samples, drawn at 3- to 12-month intervals, were screened for enterovirus RNA using RT-PCR. RESULTS Enterovirus RNA-positive samples were more frequent among the case subjects than among the control subjects. A total of 5.1% of the samples (17 of 333) in the case group were enterovirus RNA-positive compared with 1.9% of the samples (19 of 993) in the control group (P < 0.01). The strongest risk for type 1 diabetes was related to enterovirus RNA positivity during the 6-month period preceding the first autoantibody-positive sample (odds ratio 7.7 [95% CI 1.9-31.5]). This risk effect was stronger in boys than in girls. CONCLUSIONS The present study supports the hypothesis that enteroviruses play a role in the pathogenesis of type 1 diabetes, especially in the initiation of the β-cell damaging process. The enterovirus-associated risk for type 1 diabetes may be stronger in boys than in girls.
Collapse
|
249
|
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiol Rev 2011; 91:79-118. [DOI: 10.1152/physrev.00003.2010] [Citation(s) in RCA: 673] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.
Collapse
Affiliation(s)
- Tom L. Van Belle
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Ken T. Coppieters
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Matthias G. Von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
250
|
Coppieters KT, Roep BO, von Herrath MG. Beta cells under attack: toward a better understanding of type 1 diabetes immunopathology. Semin Immunopathol 2010; 33:1-7. [PMID: 21170533 DOI: 10.1007/s00281-010-0236-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Ken T Coppieters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | |
Collapse
|