201
|
Yang Y, Yin N, Gu Z, Zhao Y, Liu C, Zhou T, Zhang K, Zhang Z, Liu J, Shi J. Engineered biomimetic drug-delivery systems for ischemic stroke therapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
202
|
Peng J, Wu J. Effects of the FNDC5/Irisin on Elderly Dementia and Cognitive Impairment. Front Aging Neurosci 2022; 14:863901. [PMID: 35431908 PMCID: PMC9009536 DOI: 10.3389/fnagi.2022.863901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Population aging is an inevitable problem nowadays, and the elderly are going through a lot of geriatric symptoms, especially cognitive impairment. Irisin, an exercise-stimulating cleaved product from transmembrane fibronectin type III domain-containing protein 5 (FNDC5), has been linked with favorable effects on many metabolic diseases. Recently, mounting studies also highlighted the neuroprotective effects of irisin on dementia. The current evidence remains uncertain, and few clinical trials have been undertaken to limit its clinical practice. Therefore, we provided an overview of current scientific knowledge focusing on the preventive mechanisms of irisin on senile cognitive decline and dementia, in terms of the possible connections between irisin and neurogenesis, neuroinflammation, oxidative stress, and dementia-related diseases. This study summarized the recent advances and ongoing studies, aiming to provide a better scope into the effectiveness of irisin on dementia progression, as well as a mediator of muscle brain cross talk to provide theoretical support for exercise therapy for patients with dementia. Whether irisin is a diagnostic or prognostic factor for dementia needs more researches.
Collapse
|
203
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
204
|
The Role of Plasma Extracellular Vesicles in Remote Ischemic Conditioning and Exercise-Induced Ischemic Tolerance. Int J Mol Sci 2022; 23:ijms23063334. [PMID: 35328755 PMCID: PMC8951333 DOI: 10.3390/ijms23063334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE). Blood samples were collected from human participants before and at serial time points after intervention. RIC and BFRRE plasma EVs released early after stimulation improved viability of endothelial cells subjected to oxygen-glucose deprivation. Furthermore, post-RIC EVs accumulated in the ischemic area of a stroke mouse model, and a mean decrease in infarct volume was observed for post-RIC EVs, although not reaching statistical significance. Thus, circulating EVs induced by RIC and BFRRE can mediate protection, but the in vivo and translational effects of conditioned EVs require further experimental verification.
Collapse
|
205
|
Inflammatory Response and Secondary White Matter Damage to the Corpus Callosum after Focal Striatal Stroke in Rats. Int J Mol Sci 2022; 23:ijms23063179. [PMID: 35328600 PMCID: PMC8955860 DOI: 10.3390/ijms23063179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/06/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disabilities worldwide, resulting in a debilitating condition occasioned by disturbances in the cerebral vasculature. Primary damage due to metabolic collapse is a quick outcome following stroke, but a multitude of secondary events, including excitotoxicity, inflammatory response, and oxidative stress cause further cell death and functional impairment. In the present work, we investigated whether a primary ischemic damage into the dorsal striatum may cause secondary damage in the circumjacent corpus callosum (CC). Animals were injected with endothelin-1 and perfused at 3, 7, 14, and 30 post-lesion days (PLD). Sections were stained with Cresyl violet for basic histopathology and immunolabeled by antibodies against astrocytes (anti-GFAP), macrophages/microglia (anti-IBA1/anti MHC-II), oligodendrocytes (anti-TAU) and myelin (anti-MBP), and Anti-Nogo. There were conspicuous microgliosis and astrocytosis in the CC, followed by later oligodendrocyte death and myelin impairment. Our results suggest that secondary white matter damage in the CC follows a primary focal striatal ischemia in adult rats.
Collapse
|
206
|
Zhang Y, Liu Y, Cui Q, Fu Z, Yu H, Liu A, Liu J, Qin X, Ge S, Zhang G. Hydroxysafflor Yellow A Alleviates Ischemic Stroke in Rats via HIF-1[Formula: see text], BNIP3, and Notch1-Mediated Inhibition of Autophagy. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:799-815. [PMID: 35300568 DOI: 10.1142/s0192415x22500331] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stroke has become a major cause of death and disability worldwide. The cellular recycling pathway autophagy has been implicated in ischemia-induced neuronal changes, but whether autophagy plays a beneficial or detrimental role is controversial. Hydroxysafflor Yellow A (HSYA), a popular herbal medicine, is an extract of Carthamus tinctorius and is used to treat ischemic stroke (IS) in China. HSYA has been shown to prevent cardiovascular and cerebral ischemia/reperfusion injury in animal models. However, the specific active ingredients and molecular mechanisms of HSYA in IS remain unclear. Here, we investigated the effect of HSYA treatment on autophagy in a rat model of IS. IS was induced in rats by middle cerebral artery occlusion. Rats were treated once daily for 3 days with saline, HYSA, or the neuroprotective agent Edaravone. Neurobehavioral testing was performed on days 1, 2, and 3 post-surgery. Brains were removed on day 3 post-surgery for histological evaluation of infarct area, morphology, and for qRT-PCR and western blot analysis of the expression of the autophagy factor LC3 and the signaling molecules HIF-1[Formula: see text], BNIP3, and Notch1. Molecular docking studies were performed in silico to predict potential interactions between HSYA and LC3, HIF-1[Formula: see text], BNIP3, and Notch1 proteins. The result showed that HSYA treatment markedly alleviated IS-induced neurobehavioral deficits and reduced brain infarct area and tissue damage. HSYA also significantly reduced hippocampal expression levels of LC3, HIF-1[Formula: see text], BNIP3, and Notch1. The beneficial effect of HSYA was generally superior to that of Edaravone. Molecular modeling suggested that HSYA may bind strongly to HIF-1[Formula: see text], BNIP3, and Notch1 but weakly to LC3. In conclusion, HSYA inhibits post-IS autophagy induction in the brain, possibly by suppressing HIF-1[Formula: see text], BNIP3 and Notch1. HSYA may have utility as a post-IS neuroprotective agent.
Collapse
Affiliation(s)
- Yuliang Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
- Langfang TCM Hospital, Langfang, Hebei 065000, P. R. China
| | - Yi Liu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Qian Cui
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Zitong Fu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Haoyu Yu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Ao Liu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Jingjing Liu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Xiude Qin
- Shenzhen TCM Hospital, Shenzhen, Guangdong 518000, P. R. China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| | - Guowei Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei 071000, P. R. China
| |
Collapse
|
207
|
circDlgap4 Alleviates Cerebral Ischaemic Injury by Binding to AUF1 to Suppress Oxidative Stress and Neuroinflammation. Mol Neurobiol 2022; 59:3218-3232. [PMID: 35294732 DOI: 10.1007/s12035-022-02796-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Ischaemic stroke is one of the most common causes of mortality and morbidity.circDlgap4 has been implicated in ischemia/reperfusion injury through an unknown mechanism. Here, we studied the function of circDlgap4/AUF1 in ischaemic stroke and its underlying molecular mechanism. N2a cells and primary mouse cortical neurons were subjected to OGD to mimic neuronal injury during ischemia. BV-2 cells were treated with LPS to mimic neuroinflammation. The MTT assay was used to assess cell viability, while flow cytometry was used to measure cell apoptosis. qRT-PCR, western blotting, immunohistochemistry, and immunostaining were employed to determine the levels of circDlgap4, AUF1, NRF2/HO-1, proinflammatory cytokines, NF-κB pathway-related proteins, and IBA-1. RIP and RNA pulldown assays were employed to validate the interactions of circDlgap4/AUF1, AUF1/NRF2, and AUF1/cytokine mRNAs. mRNA degradation was used to determine the effects on mRNA stability. The tMCAO model was used as an in vivo model of ischaemic stroke. TCC staining and neurological scoring were performed to evaluate ischaemic injury. circDlgap4 was decreased following OGD and during tMCAO. circDlgap4 overexpression inhibited OGD-induced cell death and oxidative stress and LPS-induced increases in proinflammatory cytokines by increasing NRF2/HO-1. Knockdown of AUF1 blocked the effects of circDlgap4 overexpression. Mechanistically, RIP, RNA pulldown, and mRNA degradation assay results showed circDlgap4/AUF1/NRF2 mRNA formed a complex to stabilize NRF2 mRNA. Furthermore, AUF1 directly interacted with TNF-α, IL-1β, and COX-2 mRNAs, and circDlgap4/AUF1 binding promoted the degradation of these mRNAs. Finally, circDlgap4 ameliorated ischaemic injury in vivo. circDlgap4 alleviates ischaemic stroke injury by suppressing oxidative stress and neuroinflammation by binding to AUF1.
Collapse
|
208
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
209
|
Peng J, Yu ZT, Xiao RJ, Wang QS, Xia Y. LncRNA CEBPA-AS1 knockdown prevents neuronal apoptosis against oxygen glucose deprivation/reoxygenation by regulating the miR-455/GPER1 axis. Metab Brain Dis 2022; 37:677-688. [PMID: 35088289 DOI: 10.1007/s11011-021-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
Ischemic stroke (IS) is a common nervous system disease, which is a major cause of disability and death in the world. In present study, we demonstrated a regulatory mechanism of CCAAT/enhancer binding protein-alpha antisense 1 (CEBPA-AS1) in oxygen glucose deprivation/reoxygenation (OGD/R)-induced SH-SY5Y cells, with a focus on neuronal apoptosis. CEBPA-AS1, miR-455, and GPER1 expressions were evaluated by using qRT-PCR and Western blotting. The binding relationship among CEBPA-AS1, miR-455, and GPER1 was determined by a dual luciferase reporter assay. Neuronal viability and apoptosis were examined using MTT and flow cytometry assays, followed by determination of apoptosis-related factors (caspase 3, caspase 8, caspase 9, Bax, and Bcl-2). CEBPA-AS1 and GPER1 levels were upregulated, and miR-455 level was downregulated in the cell model of OGD/R induced. CEBPA-AS1 knockdown increased SH-SY5Y viability and reduced OGD/R-induced apoptosis. CEBPA-AS1 could act as a sponge of miR-455, and CEBPA-AS1 knockdown was found to elevate miR-455 expression. miR-455 overexpression also promoted SH-SY5Y cell viability and rescued them from OGD/R-induced apoptosis by binding to GPER1. GPER1 overexpression or miR-455 inhibition reversed the anti-apoptotic effect of CEBPA-AS1 knockdown. These findings suggest a regulatory network of CEBPA-AS1/miR-455/GPER1 that mediates neuronal cell apoptosis in the OGD model, providing a better understanding of pathogenic mechanisms after IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Zheng-Tao Yu
- Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Rong-Jun Xiao
- Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Qing-Song Wang
- Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou People's Hospital, No. 43 Renmin Road, Meilan District, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
210
|
NADPH is superior to NADH or edaravone in ameliorating metabolic disturbance and brain injury in ischemic stroke. Acta Pharmacol Sin 2022; 43:529-540. [PMID: 34168317 PMCID: PMC8888674 DOI: 10.1038/s41401-021-00705-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022]
Abstract
Our previous studies confirm that exogenous reduced nicotinamide adenine dinucleotide phosphate (NADPH) exerts a neuroprotective effect in animal models of ischemic stroke, and its primary mechanism is related to anti-oxidative stress and improved energy metabolism. However, it is unknown whether nicotinamide adenine dinucleotide (NADH) also plays a neuroprotective role and whether NADPH is superior to NADH against ischemic stroke? In this study we compared the efficacy of NADH, NADPH, and edaravone in ameliorating brain injury and metabolic stress in ischemic stroke. Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) mouse model and in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model were established. The mice were intravenously administered the optimal dose of NADPH (7.5 mg/kg), NADH (22.5 mg/kg), or edaravone (3 mg/kg) immediately after reperfusion. We showed that the overall efficacy of NADPH in ameliorating ischemic injury was superior to NADH and edaravone. NADPH had a longer therapeutic time window (within 5 h) after reperfusion than NADH and edaravone (within 2 h) for ischemic stroke. In addition, NADPH and edaravone were better in alleviating the brain atrophy, while NADH and NADPH were better in increasing the long-term survival rate. NADPH showed stronger antioxidant effects than NADH and edaravone; but NADH was the best in terms of maintaining energy metabolism. Taken together, this study demonstrates that NADPH exerts better neuroprotective effects against ischemic stroke than NADH and edaravone.
Collapse
|
211
|
Yang R, Shen YJ, Chen M, Zhao JY, Chen SH, Zhang W, Song JK, Li L, Du GH. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:278-289. [PMID: 34292112 DOI: 10.1080/10286020.2021.1949302] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
The purpose of the present study was to examine the protective action and mechanisms of quercetin on the blood-brain barrier (BBB) in rats subjected to transient middle cerebral artery occlusion (tMCAO) and reperfusion. Quercetin (10, 30, 50 mg/kg) was intraperitoneally administered at the onset of reperfusion. The results showed that quercetin significantly reduced cerebral infarct volume, neurological deficit, BBB permeability and ROS generation via Sirt1/Nrf2/HO-1 signaling pathway. Moreover, EX527, a selective inhibitor of Sirt1, reversed these neuroprotective effects. Our findings indicate that quercetin has neuroprotective effects against cerebral ischemia-reperfusion injury by protecting BBB through Sirt1 signaling pathway in MCAO rats.
Collapse
Affiliation(s)
- Ran Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Jia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Miao Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Ying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shu-Han Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun-Ke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
212
|
Zhu Y, Zhu X, Chen Z, Cao X, Wang L, Zang L, Cao W, Sun T, Bai X. The Efficacy of Needle-Warming Moxibustion Combined with Hyperbaric Oxygen Therapy for Ischemic Stroke and Its Effect on Neurological Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2204981. [PMID: 35237338 PMCID: PMC8885239 DOI: 10.1155/2022/2204981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To elucidate the therapeutic efficacy of needle-warming moxibustion (NWM) combined with hyperbaric oxygen therapy (HBOT) in the treatment of patients with ischemic stroke and its effect on neurological function. METHODS One hundred patients with ischemic stroke admitted to the Xuzhou Medical University Affiliated Hospital of Lianyungang from January 2019 to July 2021 were enrolled. Among them, 45 patients treated with NWM were set as the control group, and the rest 55 patients treated by NWM combined with HBOT were included in the research group. The curative effect, neurological deficit score, activity of daily living (ADL), balance ability, and the levels of serum proinflammatory factors in both groups were observed and recorded. Of them, the neurological deficit of patients was evaluated by the National Institutes of Health Stroke Scale (NHISS), the ADL ability was determined by the Barthel index score, and the balance ability was assessed by the Berg balance scale. RESULTS The total effective rate of the research group was higher than that of the control group. Better ADL and balance ability and milder neurologic impairment were determined in the research group compared with the control group. After treatment, the secretion levels of proinflammatory factors such as C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) in the serum of patients in the research group were statistically lower than those before treatment and the control group. CONCLUSIONS NWM combined with HBOT is effective in the treatment of patients with ischemic stroke, which can not only improve patients' neurological function, ADL, and balance ability but also inhibit serum inflammatory reactions.
Collapse
Affiliation(s)
- Yonggang Zhu
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xiuhua Zhu
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Zhitian Chen
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xueli Cao
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Lu Wang
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Lin Zang
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Weiwei Cao
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Tian Sun
- Neurorehabilitation Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| | - Xinyu Bai
- Acupuncture and Massage Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222002 Jiangsu Province, China
| |
Collapse
|
213
|
Zhu L, Ding S, Xu L, Wu Z. Ozone treatment alleviates brain injury in cerebral ischemic rats by inhibiting the NF-κB signaling pathway and autophagy. Cell Cycle 2022; 21:406-415. [PMID: 34985377 PMCID: PMC8855843 DOI: 10.1080/15384101.2021.2020961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stroke is the most frequent cause of disability in developed countries. A common phenomenon of stroke, cerebral ischemia, is threatening many lives worldwide. In addition, ozone treatment was previously reported to exert functions in relieving brain injury. In the current study, the therapeutic effects of ozone on cerebral ischemia are investigated. A rat model of middle cerebral artery occlusion (MCAO) was established. The brain water content was calculated by weighing brain tissues, and the 2, 3, 5-triphenyltetrazolium chloride staining was performed to measure brain infarction volume in rats. A colorimetric assay was conducted to examine expression levels of malondialdehyde, superoxide dismutase, catalase, and glutathione in the rat hippocampus. Reverse transcription quantitative polymerase-chain reaction and Western blot analyses were employed to evaluate expression levels of Beclin1, LC3B, p62, and critical factors implicated in the NF-κB signaling pathway. We found that ozone significantly improved the survival rate of MCAO model rats, reduced the cerebral water content, and decreased the neurological scores of ischemic rats. Ozone markedly reduced cerebral ischemia-induced infarction in ischemic rats. Ozone decreased MDA levels and increased SOD, catalase, and GSH levels in the hippocampus of rats. Ozone significantly inhibited autophagy by decreasing Beclin1 and LC3B expression and increasing p62 expression. The ozone inactivated the NF-κB signaling pathway by decreasing the protein levels of TLR4, p-IKKβ, p-IKBα, and p-p65. We conclude that ozone treatment alleviates the brain injury in ischemic rats by suppressing autophagy and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Shengyang Ding
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Lingshan Xu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Zhouquan Wu
- Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, Changzhou, China,CONTACT Zhouquan Wu Department of Anesthesiology, The Affiliated Changzhou NO. 2 People’s Hospital of Nanjing Medical University, 68 Gehu Middle Road, Wujin District, Changzhou, Jiangsu, China
| |
Collapse
|
214
|
Zhou X, Shao T, Xie X, Ding M, Jiang X, Su P, Jin Z. Tongqiao Huoxue Decoction for the treatment of acute ischemic stroke: A Systematic Review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114693. [PMID: 34600074 DOI: 10.1016/j.jep.2021.114693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aim of this study was to evaluate the efficacy and safety of Tongqiao Huoxue Decoction (TQHXT) in the treatment of acute ischemic stroke (AIS); Study Design: A total of 17 randomized controlled trials, involving 1489 AIS patients, were included for data analyses. MATERIALS AND METHODS All randomized controlled trials (RCTs) of TQHXT in the treatment of acute ischemic stroke before September 2020 were retrieved from seven electronic databases, including PubMed, Web of Science, Central, CNKI, CBM, Wanfang, and VIP. Data were analyzed by RevMan 5.3 software, and quality was evaluated by GRADEpro; Results: Results showed that, while TQHXT demonstrated undeniable positive effects in clinical effective rate, neurological deficit scores, activities of daily living (ADL) scores, and hemorheology (including HCT; fibrinogen; plasma viscosity and platelet adherence rate), adverse events (AE) require further study; and Conclusions: This study provides evidence that TQHXT is an effective treatment for acute ischemic stroke. However, due to the limited quality of the included studies, the above conclusion needs to be further verified by stricter randomized controlled, double-blind, large-sample, high-quality trials.
Collapse
Affiliation(s)
- Xiu Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Tianyu Shao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiuzhen Xie
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Minrui Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xumin Jiang
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Pingping Su
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhuqing Jin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
215
|
Wan R, Fan J, Song H, Sun W, Yin Y. Oxygen-Glucose Deprivation/Reperfusion-Induced Sirt3 Reduction Facilitated Neuronal Injuries in an Apoptosis-Dependent Manner During Prolonged Reperfusion. Neurochem Res 2022; 47:1012-1024. [PMID: 35091982 DOI: 10.1007/s11064-021-03502-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Cerebral ischemia is a major cause of morbidity and permanent disability. To date, no treatments for cerebral ischemia/reperfusion injury can be effectively administered beyond 4-6 h after the ischemic insult. Our study aimed to clarify the significance of Sirt3 during acute cerebral ischemia and explore Sirt3-targeted therapy for ischemic injuries. Upon establishing the oxygen-glucose deprivation/reperfusion (OGD/R) cell model, changes of Sirt3 protein levels and the effects of Sirt3 overexpression on primary hippocampal neurons were detected at indicated time points. Moreover, mitochondrial damage was observed in neurons upon OGD/R injury. The results showed that compared with the normoxia group, Sirt3 protein was significantly decreased in hippocampal neurons exposed to 1 h of OGD followed by 12 h of reperfusion. In addition, the reduction of Sirt3 protein levels contributed to OGD/R-induced neuronal injuries, a higher ratio of neuronal apoptosis, and extensive production of reactive oxygen species (ROS). However, all neuronal injuries were partly rescued by Sirt3 overexpression induced by lentivirus transfection. Mitochondrial morphologies were significantly impaired after OGD/R, but partly salvaged by Sirt3 overexpression. We further explored whether pharmacologically activating Sirt3 is protective for neurons, and found that treatment with honokiol (a Sirt3 agonist) after OGD exposure activated Sirt3 during reperfusion and significantly alleviated OGD/R-induced neuronal injuries. Because mitochondrial functions are essential for neuronal survival, the current results indicate that Sirt3 may be an efficient target to suppress ischemic injuries via maintenance of mitochondrial homeostasis. Our current findings shed light on a novel therapeutic strategy against subacute ischemic injuries.
Collapse
Affiliation(s)
- Rongqi Wan
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jiahui Fan
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Huimeng Song
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yanling Yin
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
216
|
Gao H, Ju F, Ti R, Zhang Y, Zhang S. Differential Regulation of Microglial Activation in Response to Different Degree of Ischemia. Front Immunol 2022; 13:792638. [PMID: 35154109 PMCID: PMC8831277 DOI: 10.3389/fimmu.2022.792638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are primary immune cells within the brain and are rapidly activated after cerebral ischemia. The degree of microglial activation is closely associated with the severity of ischemia. However, it remains largely unclear how microglial activation is differentially regulated in response to a different degree of ischemia. In this study, we used a bilateral common carotid artery ligation (BCAL) model and induced different degrees of ischemia by varying the duration of ligation to investigate the microglial response in CX3CR1GFP/+ mice. Confocal microscopy, immunofluorescence staining, RNA sequencing, and qRT-PCR were used to evaluate the de-ramification, proliferation, and differential gene expression associated with microglial activation. Our results showed that 30 min of ischemia induced rapid de-ramification of microglia but did not have significant influence on the microglial density. In contrast, 60 min of ischemia led to a significant decrease in microglial density and more pronounced de-ramification of microglial processes. Importantly, 30 min of ischemia did not induce proliferation of microglia, but 60 min of ischemia led to a marked increase in the density of proliferative microglia. Further analysis utilized transcriptome sequencing showed that microglial activation is differentially regulated in response to different degrees of ischemia. A total of 1,097 genes were differentially regulated after 60 min of ischemia, but only 68 genes were differentially regulated after 30 min of ischemia. Pathway enrichment analysis showed that apoptosis, cell mitosis, immune receptor activity and inflammatory-related pathways were highly regulated after 60 min of ischemia compared to 30 min of ischemia. Multiple microglia-related genes such as Cxcl10, Tlr7, Cd86, Tnfrsf1a, Nfkbia, Tgfb1, Ccl2 and Il-6, were upregulated with prolonged ischemia. Pharmacological inhibition of CSF1 receptor demonstrated that CSF1R signaling pathway contributed to microglial proliferation. Together, these results suggest that the proliferation of microglia is gated by the duration of ischemia and microglia were differentially activated in responding to different degrees of ischemia.
Collapse
|
217
|
Sevoflurane Offers Neuroprotection in a Cerebral Ischemia/Reperfusion Injury Rat Model Through the E2F1/EZH2/TIMP2 Regulatory Axis. Mol Neurobiol 2022; 59:2219-2231. [PMID: 35064540 DOI: 10.1007/s12035-021-02602-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury contributes considerably to the poor prognosis in patients with ischemic stroke. This study is aimed to delineate the molecular mechanistic actions by which sevoflurane protects against cerebral I/R injury. A rat model of cerebral I/R injury was established and pre-treated with sevoflurane, in which hippocampal neuron apoptosis was found to be repressed and the level of E2F transcription factor 1 (E2F1) was observed to be down-regulated. Then, the up-regulated expression of E2F1 was validated in rats with cerebral I/R injury, responsible for stimulated neuron apoptosis. Further, the binding of E2F1 to enhancer of zeste homolog 2 (EZH2) and EZH2 to tissue inhibitor of metalloproteinases-2 (TIMP2) was identified. The stimulative effect of the E2F1/EZH2/TIMP2 regulatory axis on neuron apoptosis was subsequently demonstrated through functional assays. After that, it was substantiated in vivo that sevoflurane suppressed the apoptosis of hippocampal neurons in rats with cerebral I/R injury by down-regulating E2F1 to activate the EZH2/TIMP2 axis. Taken together, our data elucidated that sevoflurane reduced neuron apoptosis through mediating the E2F1/EZH2/TIMP2 regulatory axis, thus protecting rats against cerebral I/R injury.
Collapse
|
218
|
Kaur MM, Sharma DS. Mitochondrial repair as potential pharmacological target in cerebral ischemia. Mitochondrion 2022; 63:23-31. [PMID: 34999014 DOI: 10.1016/j.mito.2022.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia and its consequences like transient ischemic attack, aneurysm and stroke are the common and devastating conditions which remain the leading cause of mortality after coronary heart disease in developed countries and are the greatest cause of disability, leaving 50% of survivors permanently disabled. Despite recognition of risk factors and mechanisms involved in the pathology of the disease, treatment of ischemic disorders is limited to thrombolytic drugs like recombinant tissue plasminogen activator (rt-PA) and clinical rendition of the neuroprotective agents have not been so successful. Recent studies evidenced the role of mitochondrial dysfunction in neuronal damage that occurred after cerebral ischemia. This review article will focus on the various fundamental mechanisms responsible for neuronal damage because of mitochondrial dysfunction including cell signaling pathways, autophagy, apoptosis/necrosis, generation of reactive oxygen species, calcium overload, the opening of membrane permeability transition pore (mPTP), mitochondrial dynamics and biogenesis. Recent studies have concerned the significant role of mitochondrial biogenesis in mitochondrial repair and transfer of healthy mitochondria from astrocytes to the damaged neurons, providing neuroprotection and neural recovery following ischemia. Novel and influential studies have evidenced the significant role of mitochondria transfer and mitochondrial transplantation in reviving cell energy and in replacement of impaired or dysfunctional mitochondria with healthy mitochondria after ischemic episode. This review article will focus on recent advances in mitochondrial interventions and exogenous therapeutic modalities like mitochondria transfer technique, employment of stem cells, mitochondrial transplantation, miRNA inhibition and mitochondrial-targeted Sirtuin1 activator for designing novel and promising treatment for cerebral ischemia induced pathological states.
Collapse
Affiliation(s)
- Ms Mandeep Kaur
- Research Scholar, Department of Pharmacology, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| | - Dr Saurabh Sharma
- Principal and Head, School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| |
Collapse
|
219
|
WD-40 repeat protein 26 protects against oxidative stress-induced injury in astrocytes via Nrf2/HO-1 pathways. Mol Biol Rep 2022; 49:1045-1056. [PMID: 34981336 DOI: 10.1007/s11033-021-06925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Stroke is the leading cause of disability and the third leading cause of death in the world, and no effective treatment has been developed. Oxidative stress-induced cell injury and genomic instability is implicated in the pathogenesis of stroke, whose prognosis remains poor. METHODS A model of cerebral ischemic/reperfusion injury model was established through four artery occlusions. This study was carried out using western blot, flow cytometry and RT-PCR on cell line U251-MG. The cytotoxic effect of H2O2 and expression of LDH, caspase-3, MDA and SOD was analyzed by assay kit. RESULTS We found that the expression of WDR26 was induced in cerebral ischemia-reperfusion injury in vivo and the expression of WDR26 was induced by H2O2 in a dose- and time-dependent manner in vitro. WDR26 over-expression significantly suppressed H2O2-induced cell death and caspase-3-mediated apoptosis in U251-MG cells. In contrast, inhibition of WDR26 markedly enhanced cell death in U251-MG cells. In addition, WDR26 regulated oxidative stress response and induced Nrf2/HO-1 pathway. CONCLUSIONS These findings suggest that WDR26 mediates H2O2-induced oxidative stress and cell injury, possibly by reducing the intrinsic apoptotic pathway and activating Nrf2 and HO-1 in astrocytes.
Collapse
|
220
|
Pei J, Yovitania V, Fu QH, Zhou H. Neuroprotective effect of electroacupuncture against acute ischemic stroke via PI3K-Akt-mTOR pathway-mediated autophagy. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.333712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
221
|
Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood brain barrier with "nano" warriors: Novel strategy against ischemic stroke. Theranostics 2022; 12:689-719. [PMID: 34976208 PMCID: PMC8692911 DOI: 10.7150/thno.64806] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability resulting in inevitable burden globally. Ischemic injury initiates cascade of pathological events comprising energy dwindling, failure of ionic gradients, failure of blood brain barrier (BBB), vasogenic edema, calcium over accumulation, excitotoxicity, increased oxidative stress, mitochondrial dysfunction, inflammation and eventually cell death. In spite of such complexity of the disease, the only treatment approved by US Food and Drug Administration (FDA) is tissue plasminogen activator (t-PA). This therapy overcome blood deficiency in the brain along with side effects of reperfusion which are responsible for considerable tissue injury. Therefore, there is urgent need of novel therapeutic perspectives that can protect the integrity of BBB and salvageable brain tissue. Advancement in nanomedicine is empowering new approaches that are potent to improve the understanding and treatment of the IS. Herein, we focus nanomaterial mediated drug delivery systems (DDSs) and their role to bypass and cross BBB especially via intranasal drug delivery. The various nanocarriers used in DDSs are also discussed. In a nut shell, the objective is to provide an overview of use of nanomedicine in the diagnosis and treatment of IS to facilitate the research from benchtop to bedside.
Collapse
Affiliation(s)
- Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Medha Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mubashshir Ali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi 110029, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
222
|
Shcherbak N, Suchkova I, Patkin E, Voznyuk I. DNA methylation in experimental ischemic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:32-40. [DOI: 10.17116/jnevro202212208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
223
|
Gao Q, Han ZY, Tian DF, Liu GL, Wang ZY, Lin JF, Chang Z, Zhang DD, Xie YZ, Sun YK, Yao XW, Ma DY. Xinglou Chengqi Decoction improves neurological function in experimental stroke mice as evidenced by gut microbiota analysis and network pharmacology. Chin J Nat Med 2021; 19:881-899. [PMID: 34961587 DOI: 10.1016/s1875-5364(21)60079-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The current study was designed to explore the brain protection mechanism of Xinglou Chengqi Decoction (XCD) based on gut microbiota analysis and network pharmacology. A transient middle cerebral artery occlusion (MCAO) model of mice was established, followed by behavioral evaluation, TTC and TUNEL staining. Additionally, to investigate the effects of gut microbiota on neurological function after stroke, C57BL/6 mice were treated with anti-biotic cocktails 14 days prior to ischemic stroke (IS) to deplete the gut microbiota. High-throughput 16S rDNA gene sequencing, metabonomics technique, and flow multifactor technology were used to analyze bacterial communities, SCFAs and inflammatory cytokines respectively. Finally, as a supplement, network pharmacology and molecular docking were applied to fully explore the multicomponent-multitarget-multichannel mechanism of XCD in treating IS, implicated in ADME screening, target identification, network analysis, functional annotation, and pathway enrichment analysis. We found that XCD effectively improved neurological function, relieved cerebral infarction and decreased the neuronal apoptosis. Moreover, XCD promoted the release of anti-inflammatory factor like IL-10, while down-regulating pro-inflammatory factors such as TNF-α, IL-17A, and IL-22. Furthermore, XCD significantly increased the levels of short chain fatty acids (SCFAs), especially butyric acid. The mechanism might be related to the regulation of SCFAs-producing bacteria like Verrucomicrobia and Akkermansia, and bacteria that regulate inflammation like Paraprevotella, Roseburia, Streptophyta and Enterococcu. Finally, in the network pharmacological analysis, 51 active compounds in XCD and 44 intersection targets of IS and XCD were selected. As a validation, components in XCD docked well with key targets. It was obviously that biological processes were mainly involved in the regulation of apoptotic process, inflammatory response, response to fatty acid, and regulation of establishment of endothelial barrier in GO enrichment. XCD can improve neurological function in experimental stroke mice, partly due to the regulation of gut microbiota. Besises, XCD has the characteristic of "multi-component, multi-target and multi-channel" in the treatment of IS revealed by network pharmacology and molecular docking.
Collapse
Affiliation(s)
- Qiang Gao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhen-Yun Han
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen 518172, China
| | - Dan-Feng Tian
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Gan-Lu Liu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhen-Yi Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Feng Lin
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze Chang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dan-Dan Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying-Zhen Xie
- Department of Neurology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yi-Kun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xing-Wei Yao
- Clinical Laboratory, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Da-Yong Ma
- Department of Neurology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
224
|
GSK-3β inhibition elicits a neuroprotection by restoring lysosomal dysfunction in neurons via facilitation of TFEB nuclear translocation after ischemic stroke. Brain Res 2021; 1778:147768. [PMID: 34968440 DOI: 10.1016/j.brainres.2021.147768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022]
Abstract
Lysosomal dysfunction is an essential pathogenesis of autophagic neuronal injury after ischemic stroke. As a result of cerebral ischemia, transcription factor EB (TFEB) is greatly phosphorylated by prominently activated glycogen synthase kinase-3β (GSK-3β). This increased TFEB phosphorylation decreases its nuclear translocation and subsequently leads to reduced lysosomal biosynthesis, which ultimately results in lysosomal dysfunction. The present study is to investigate whether the lysosomal dysfunction in neurons can be restored to alleviate post-stroke damage by GSK-3β inhibition. The GSK-3β activity was inhibited by pre-treatment with CHIR-99021 (CHIR) for 3 days before middle cerebral artery occlusion (MCAO) surgery in rats. Besides, the lysosomal capacity was altered by pre-administration with Bafilomycin A1 (Baf-A1) and EN6, respectively. Twenty-four hours after MCAO/reperfusion, the penumbral tissues were obtained to detect the GSK-3β, cytoplasmic and nuclear TFEB, and proteins in autophagic/lysosomal pathway by western blot and immunofluorescence, respectively. Meanwhile, the infarct volume, neurological deficits and neuron survival were assessed to evaluate the neurological outcomes elicited by GSK-3β inhibition. The results demonstrated that the neurological injury could be significantly mitigated by GSK-3β inhibition in MCAO+CHIR group, compared with that in MCAO group. Moreover, CHIR-facilitated TFEB nuclear translocation in neurons was coupled with reinforced lysosomal activities and attenuated autophagic substrates. However, GSK-3β inhibition-induced neuroprotection was greatly counteracted by Baf-A1-weakened lysosomal capacity. Conversely, EN6-reinforced lysosomal activities further ameliorated the autophagic/lysosomal signaling, and synergistically alleviated the neurological damage upon GSK-3β inhibition after MCAO/reperfusion. Our data suggests that GSK-3β inhibition-augmented neuroprotection against ischemic stroke is elicited by restoring the lysosomal dysfunction in neurons.
Collapse
|
225
|
Zhang Y, Xing Z, Zhou K, Jiang S. The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clin Interv Aging 2021; 16:1997-2007. [PMID: 34880606 PMCID: PMC8645951 DOI: 10.2147/cia.s339221] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose Stroke is a disease associated with high mortality. Many inflammatory indicators such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR) and red blood cell distribution width (RDW) have been documented to predict stroke prognosis, their predictive power is limited. A novel inflammatory indicator called systemic inflammatory response index (SIRI) has been advocated to have an essential role in the prognostic assessment of cancer and infectious diseases. In this study, we attempted to assess the prognosis of stroke by SIRI. Moreover, we compared SIRI with other clinical parameters, including NLR, PLR, LMR and RDW. Methods This was a retrospective cohort study. We obtained data of 2450 stroke patients from the Multiparametric Intelligent Monitoring in Intensive Care III database. We used the Cox proportional hazards models to evaluate the relationship between SIRI and all-cause mortality and sepsis. Receiver operating curve (ROC) analysis was used to assess the predictive power of SIRI compared to NLR, PLR, LMR and RDW for the prognosis of stroke. We collected data of 180 patients from the First Affiliated Hospital of Wenzhou Medical University, which used the Pearson’s correlation coefficient to assess the relationship between SIRI and the National Institute of Health stroke scale (NIHSS). Results After adjusting multiple covariates, we found that SIRI was associated with all-cause mortality in stroke patients. Rising SIRI accompanied by rising mortality. Besides, ROC analysis showed that the area under the curve of SIRI was significantly greater than for NLR, PLR, LMR and RDW. Besides, Pearson’s correlation test confirmed a significant positive correlation between SIRI and NIHSS. Conclusion Elevated SIRI was associated with higher risk of mortality and sepsis and higher stroke severity. Therefore, SIRI is a promising low-grade inflammatory factor for predicting stroke prognosis that outperformed NLR, PLR, LMR, and RDW in predictive power.
Collapse
Affiliation(s)
- Yihui Zhang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.,Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zekun Xing
- Neurology Department, Wencheng People's Hospital, Wenzhou, Zhejiang, People's Republic of China
| | - Kecheng Zhou
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.,Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.,Intelligent Rehabilitation Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
226
|
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2021; 49:15. [PMID: 34878154 PMCID: PMC8711586 DOI: 10.3892/ijmm.2021.5070] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke is the leading cause of disabilities and cognitive deficits, accounting for 5.2% of all mortalities worldwide. Transient or permanent occlusion of cerebral vessels leads to ischemic strokes, which constitutes the majority of strokes. Ischemic strokes induce brain infarcts, along with cerebral tissue death and focal neuronal damage. The infarct size and neurological severity after ischemic stroke episodes depends on the time period since occurrence, the severity of ischemia, systemic blood pressure, vein systems and location of infarcts, amongst others. Ischemic stroke is a complex disease, and neuronal injuries after ischemic strokes have been the focus of current studies. The present review will provide a basic pathological background of ischemic stroke and cerebral infarcts. Moreover, the major mechanisms underlying ischemic stroke and neuronal injuries are summarized. This review will also briefly summarize some representative clinical trials and up-to-date treatments that have been applied to stroke and brain infarcts.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiaojing Zhang
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Xinye Chen
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Yun Wei
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| |
Collapse
|
227
|
Maksimova MY, Ivanov AV, Nikiforova KA, Virus ED, Suanova ET, Ochtova FR, Piradov MA, Kubatiev AA. Plasma low molecular weight aminothiols in ischemic stroke patients with type 2 diabetes mellitus. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was found that ischemic stroke (IS) results in decreased levels of a number of reduced forms of low molecular weight aminothiols (LMWTs). The study was aimed to assess the impact of type 2 diabetes mellitus (Т2D) on the total content, reduced forms and redox status of LMWTs in patients with IS. A total of 175 patients with IS in the internal carotid artery basin (the average age was 62 (55–69)) years) were assessed, who were admitted to the Center within the first 10–24 h since the onset of neurological disorder. The index group included 68 patients with IS and T2D (males made up 41.2%). The comparison group consisted of 107 patients with IS and stress hyperglycemia (males made up 57%), and the control group included 31 non-diabetic patients with chronic cerebrovascular disease (CCVD) (males made up 54.8%). The admission plasma levels of LMWTs were assessed by liquid chromatography in all patients. It was found, that IS in patients with T2D was associated with the rapid decrease in total cysteine (tCys), total glutathione (tGSH), total homocysteine (tHcy), reduced glutathione (rGSH), and glutathione redox status (GSH RS), along with the increase in cysteine redox status (Cys RS) and homocysteine redox status (Hcy RS). In contrast to patients with stress hyperglycemia developing during the acute period of IS, patients with T2D had lower tCys, tGSH, and tHcy levels. Thus, GSH RS of 4.06% or lower in the first 24 hours after the IS in patients with T2D was a predictor of poor functional outcome (mRS score was 3 or more 3 weeks after IS).
Collapse
Affiliation(s)
| | - AV Ivanov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - KA Nikiforova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - ED Virus
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - ET Suanova
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - FR Ochtova
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - MA Piradov
- Research Center of Neurology, Moscow, Russia
| | - AA Kubatiev
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
228
|
Wang Q, Liu N, Ni YS, Yang JM, Ma L, Lan XB, Wu J, Niu JG, Yu JQ. TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Channels (Austin) 2021; 15:136-154. [PMID: 33455532 PMCID: PMC7833771 DOI: 10.1080/19336950.2020.1870088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca2+ accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Yuan-Shu Ni
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
229
|
Li J, Wang J, Wang Z. Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition. Metab Brain Dis 2021; 36:2521-2534. [PMID: 34146216 DOI: 10.1007/s11011-021-00775-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
Circular RNAs (circRNAs) have been widely implicated in multiple diseases, including ischemic stroke. This study aimed to explore the function and functional mechanism of circ_0006768 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain injury models of ischemic stroke. Human brain microvascular endothelial cells (HBMECs) were induced by OGD/R to mimic ischemic stroke models in vitro. The expression of circ_0006768, microRNA-222-3p (miR-222-3p) and vascular endothelial zinc finger 1 (VEZF1) was detected by quantitative real-time PCR (qPCR). Cell viability, angiogenesis ability and cell migration were assessed by cell counting kit-8 (CCK-8) assay, tube formation assay and wound healing assay, respectively. The releases of pro-inflammatory factors were determined by commercial enzyme-linked immunosorbent assay (ELISA) kits. The protein levels of vascular endothelial growth factor A (VEGFA), N-cadherin and VEZF1 were detected by western blot. The putative relationship between miR-222-3p and circ_0006768 or VEZF1 was validated by dual-luciferase reporter assay, RNA Immunoprecipitation (RIP) assay and pull-down assay. Circ_0006768 was poorly expressed in ischemic stroke plasma and OGD/R-induced HBMECs. OGD/R inhibited cell viability, angiogenesis and cell migration and promoted the releases of pro-inflammatory factors, while circ_0006768 overexpression or miR-222-3p inhibition partially abolished the effects of OGD/R. MiR-222-3p was targeted by circ_0006768, and VEZF1 was a target of miR-222-3p. Circ_0006768 enriched the expression of VEZF1 via mediating miR-222-3p inhibition. Rescue experiments presented that the effects of circ_0006768 overexpression were reversed by miR-222-3p restoration or VEZF1 knockdown. Circ_0006768 overexpression attenuates OGD/R-induced HBMEC injuries by upregulating VEZF1 via miR-222-3p inhibition.
Collapse
Affiliation(s)
- Jing Li
- Department of Internal Medicine-Neurology, Hengshui People's Hospital, No. 180, Renmin East Road, Hengshui, 053000, China
| | - Jiguang Wang
- Department of Internal Medicine-Neurology, Hengshui People's Hospital, No. 180, Renmin East Road, Hengshui, 053000, China.
| | - Zhi Wang
- Department of Internal Medicine-Neurology, Hengshui People's Hospital, No. 180, Renmin East Road, Hengshui, 053000, China
| |
Collapse
|
230
|
Zhang Y, Lei Y, Yao X, Yi J, Feng G. Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress. Chem Biol Drug Des 2021; 98:986-996. [PMID: 34546621 PMCID: PMC9293043 DOI: 10.1111/cbdd.13956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 01/03/2023]
Abstract
Brain ischemia/reperfusion (I/R) injury is a common pathological process after ischemic stroke. Pinoresinol diglucoside (PDG) has antioxidation and anti-inflammation activities. However, whether PDG ameliorates brain I/R injury is still unclear. In this study, middle cerebral artery occlusion (MCAO) model was established with male C57BL/6 mice, and the mice were treated with 5 and 10 mg/kg PDG via intravenous injection, respectively. The neurological deficit, infarct volume, and brain water content were then evaluated. HE staining and Nissl staining were used to analyze neuron injury. Besides, enzyme-linked immunosorbent assay and colorimetry assay were used to examine the level of inflammatory markers and oxidative stress markers, and Western blot was used to detect the expressions of p-p65, Nrf2, and HO-1. It was revealed that PDG could significantly alleviate the MCAO-induced neurological dysfunction of the mice and reduce the infarct volume, brain water content, and neuron injury. PDG treatment decreased the levels of TNF-α, IL-1β, IL-6, NO, ROS, and MDA, and significantly increased the activities of SOD, GSH, and GSH-Px in the brain tissue of the mice. Additionally, PDG could repress the activation of p65 and promote Nrf2 and HO-1 expressions. In conclusion, PDG exerts anti-inflammatory and antioxidation effects via regulating the NF-κB pathway and Nrf2/HO-1 pathway, thereby reducing the I/R-induced brain injury of mice.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyChenzhou No. 1 People’s HospitalChenzhouChina
| | - Yuanbiao Lei
- Department of NeurologyChenzhou No. 1 People’s HospitalChenzhouChina
| | - Xiaoxi Yao
- Department of NeurologyChenzhou No. 1 People’s HospitalChenzhouChina
| | - Jiping Yi
- Department of NeurologyChenzhou No. 1 People’s HospitalChenzhouChina
| | - Ganghua Feng
- Department of NeurologyChenzhou No. 1 People’s HospitalChenzhouChina
| |
Collapse
|
231
|
Alshumrani G, Alzahrani F, Alamri A, Al-Khani AM, Shehata S, Alsabaani A, Alhazzani A. The Role of Cerebral CT Angiogram in Subacute Ischemic Cerebrovascular Events. Neurologist 2021; 27:65-68. [PMID: 34855674 DOI: 10.1097/nrl.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stroke is a spectrum of medical emergencies resulting from a direct insult to the cerebral blood flow. Cerebral computed tomography angiogram (CTA) plays an important role in the diagnostic algorithm of acute stroke. However, the role of CTA in the subacute phase is not well-established. This study aimed to assess the diagnostic role of CTA in subacute ischemic stroke and transient ischemic attack (TIA) in identifying underlying etiology. It also aimed to describe the commonly encountered CTA findings in the subacute phase of ischemic events. METHODS This is a retrospective study in which we evaluated the radiologic records of all patients who had a cerebral CTA for subacute stroke and TIA during the period from January 1, 2010 to May 30, 2018. RESULTS The study included 104 cases diagnosed with subacute ischemic stroke or TIA. Patients' ages ranged from 8 to 96 years with a mean age of 52.9 (18.1) years. Most of the patients were males (68.3%; 71). CTA findings were abnormal in 86 cases (82.7%). Stenosis was diagnosed in 34 (32.7%) cases, followed by acute arterial thrombosis (25; 24%) and chronic occlusion (17; 16.3%). The internal carotid artery was the most affected (57.6%), followed by the vertebrobasilar arteries. CONCLUSION The current study revealed that CTA has a high diagnostic yield in the subacute phase of ischemic cerebrovascular events, with an important role in detecting clinically relevant findings in this group of patients.
Collapse
Affiliation(s)
| | | | | | | | - Shehata Shehata
- Family & Community Medicine, College of Medicine, King Khalid University
| | - Abdullah Alsabaani
- Family & Community Medicine, College of Medicine, King Khalid University
| | - Adel Alhazzani
- Neurology Division, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
232
|
Agomelatine Exerts an Anti-inflammatory Effect by Inhibiting Microglial Activation Through TLR4/NLRP3 Pathway in pMCAO Rats. Neurotox Res 2021; 40:259-266. [PMID: 34843079 DOI: 10.1007/s12640-021-00447-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic stroke is one of the main causes of death and long-term disability worldwide. However, the mechanism is unclear, and treatments are limited. In this study, we aimed to investigate the anti-inflammatory effect of agomelatine in a permanent middle cerebral artery occlusion (pMCAO) model. Forty-eight male Wistar rats were randomly divided into four groups: sham, pMCAO + vehicle, pMCAO + agomelatine (40 mg/kg, i.p.), and pMCAO + melatonin (10 mg/kg, i.p.) groups. On day 1 after permanent cerebral ischemia, the animals were sacrificed, and brain tissues were collected for western blot analysis, and immunohistochemistry. Agomelatine treatment ameliorated inflammatory responses by decreasing the protein levels of trigger Toll-like receptor (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway components together with nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome components. In addition, agomelatine suppressed microglial activation and pyroptotic cell death after cerebral ischemic injury. These results suggest that agomelatine exerts an anti-inflammatory effect and attenuates brain damage by inhibiting microglial activation through the TLR4/NLRP3 signaling pathway.
Collapse
|
233
|
Jödicke RA, Huo S, Kränkel N, Piper SK, Ebinger M, Landmesser U, Flöel A, Endres M, Nave AH. The Dynamic of Extracellular Vesicles in Patients With Subacute Stroke: Results of the "Biomarkers and Perfusion-Training-Induced Changes After Stroke" ( BAPTISe) Study. Front Neurol 2021; 12:731013. [PMID: 34819906 PMCID: PMC8606784 DOI: 10.3389/fneur.2021.731013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Extracellular vesicles (EV) are sub-1 μm bilayer lipid coated particles and have been shown play a role in long-term cardiovascular outcome after ischemic stroke. However, the dynamic change of EV after stroke and their implications for functional outcome have not yet been elucidated. Methods: Serial blood samples from 110 subacute ischemic stroke patients enrolled in the prospective BAPTISe study were analyzed. All patients participated in the PHYS-STROKE trial and received 4-week aerobic training or relaxation sessions. Levels of endothelial-derived (EnV: Annexin V+, CD45-, CD41-, CD31+/CD144+/CD146+), leukocyte-derived (LV: Annexin V+, CD45+, CD41-), monocytic-derived (MoV: Annexin V+, CD41-, CD14+), neuronal-derived (NV: Annexin V+, CD41-, CD45-, CD31-, CD144-, CD146-, CD56+/CD171+/CD271+), and platelet-derived (PV: Annexin V+, CD41+) EV were assessed via fluorescence-activated cell sorting before and after the trial intervention. The levels of EV at baseline were dichotomized at the 75th percentile, with the EV levels at baseline above the 75th percentile classified as "high" otherwise as "low." The dynamic of EV was classified based on the difference between baseline and post intervention, defining increases above the 75th percentile as "high increase" otherwise as "low increase." Associations of baseline levels and change in EV concentrations with Barthel Index (BI) and cardiovascular events in the first 6 months post-stroke were analyzed using mixed model regression analyses and cox regression. Results: Both before and after intervention PV formed the largest population of vesicles followed by NV and EnV. In mixed-model regression analyses, low NV [-8.57 (95% CI -15.53 to -1.57)] and low PV [-6.97 (95% CI -13.92 to -0.01)] at baseline were associated with lower BI in the first 6 months post-stroke. Patients with low increase in NV [8.69 (95% CI 2.08-15.34)] and LV [6.82 (95% CI 0.25-13.4)] were associated with reduced BI in the first 6 months post-stroke. Neither baseline vesicles nor their dynamic were associated with recurrent cardiovascular events. Conclusion: This is the first report analyzing the concentration and the dynamic of EV regarding associations with functional outcome in patients with subacute stroke. Lower levels of PV and NV at baseline were associated with a worse functional outcome in the first 6 months post-stroke. Furthermore, an increase in NV and LV over time was associated with worse BI in the first 6 months post-stroke. Further investigation of the relationship between EV and their dynamic with functional outcome post-stroke are warranted. Clinical Trial Registration: clinicaltrials.gov/, identifier: NCT01954797.
Collapse
Affiliation(s)
- Ruben A Jödicke
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Disease, Partner Site Berlin, Berlin, Germany
| | - Nicolle Kränkel
- Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie K Piper
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Ebinger
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Medical Park Berlin Humboldtmühle, Berlin, Germany
| | - Ulf Landmesser
- Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases, Rostock/Greifswald, Germany
| | - Matthias Endres
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Neurodegenerative Disease, Partner Site Berlin, Berlin, Germany
| | - Alexander H Nave
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Disease, Partner Site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
234
|
Yawoot N, Sengking J, Wicha P, Govitrapong P, Tocharus C, Tocharus J. Melatonin attenuates reactive astrogliosis and glial scar formation following cerebral ischemia and reperfusion injury mediated by GSK-3β and RIP1K. J Cell Physiol 2021; 237:1818-1832. [PMID: 34825376 DOI: 10.1002/jcp.30649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/06/2022]
Abstract
Even though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone. All drugs were administered via intraperitoneal injection at the onset of reperfusion and were continued until the rats were sacrificed on Day 7 or 14 after the surgery. Melatonin presented long-term benefits on cerebral damage after I/R injury, as demonstrated by a decreased infarct volume, histopathological changes, and reduced neuronal cell death. We also found that melatonin attenuated reactive astrogliosis and glial scar formation and, consequently, enhanced axonal regeneration and promoted neurobehavioral recovery. Furthermore, glycogen synthase kinase-3 beta (GSK-3β) and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), which had previously been revealed as proteins involved in astrocyte responses, were significantly reduced after melatonin administration. Taken together, melatonin effectively counteracted the deleterious effects due to astrocyte responses and improved axonal regeneration to promote functional recovery during the chronic phase of cerebral I/R injury by inhibiting GSK-3β and RIP1K activities.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
235
|
Totten JD, Alhadrami HA, Jiffri EH, McMullen CJ, Seib FP, Carswell HVO. Towards clinical translation of 'second-generation' regenerative stroke therapies: hydrogels as game changers? Trends Biotechnol 2021; 40:708-720. [PMID: 34815101 DOI: 10.1016/j.tibtech.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Stroke is an unmet clinical need with a paucity of treatments, at least in part because chronic stroke pathologies are prohibitive to 'first-generation' stem cell-based therapies. Hydrogels can remodel the hostile stroke microenvironment to aid endogenous and exogenous regenerative repair processes. However, no clinical trials have yet been successfully commissioned for these 'second-generation' hydrogel-based therapies for chronic ischaemic stroke regeneration. This review recommends a path forward to improve hydrogel technology for future clinical translation for stroke. Specifically, we suggest that a better understanding of human host stroke tissue-hydrogel interactions in addition to the effects of scaling up hydrogel volume to human-sized cavities would help guide translation of these second-generation regenerative stroke therapies.
Collapse
Affiliation(s)
- John D Totten
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Hani A Alhadrami
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Essam H Jiffri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Calum J McMullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
236
|
Cepparulo P, Cuomo O, Vinciguerra A, Torelli M, Annunziato L, Pignataro G. Hemorrhagic Stroke Induces a Time-Dependent Upregulation of miR-150-5p and miR-181b-5p in the Bloodstream. Front Neurol 2021; 12:736474. [PMID: 34777204 PMCID: PMC8580415 DOI: 10.3389/fneur.2021.736474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
To date, the only effective pharmacological treatment for ischemic stroke is limited to the clinical use of recombinant tissue plasminogen activator (rtPA), although endovascular therapy has also emerged as an effective treatment for acute ischemic stroke. Unfortunately, the benefit of this treatment is limited to a 4.5-h time window. Most importantly, the use of rtPA is contraindicated in the case of hemorrhagic stroke. Therefore, the identification of a reliable biomarker to distinguish hemorrhagic from ischemic stroke could provide several advantages, including an earlier diagnosis, a better treatment, and a faster decision on ruling out hemorrhage so that tPA may be administered earlier. microRNAs (miRNAs) are stable non-coding RNAs crucially involved in the downregulation of gene expression via mRNA cleavage or translational repression. In the present paper, taking advantage of three preclinical animal models of stroke, we compared the miRNA blood levels of animals subjected to permanent or transient middle cerebral artery occlusion (MCAO) or to collagenase-induced hemorrhagic stroke. Preliminarily, we examined the rat miRNome in the brain tissue of ischemic and sham-operated rats; then, we selected those miRNAs whose expression was significantly modulated after stroke to create a list of miRNAs potentially involved in stroke damage. These selected miRNAs were then evaluated at different time intervals in the blood of rats subjected to permanent or transient focal ischemia or to hemorrhagic stroke. We found that four miRNAs-miR-16-5p, miR-101a-3p, miR-218-5p, and miR-27b-3p-were significantly upregulated in the plasma of rats 3 h after permanent MCAO, whereas four other different miRNAs-miR-150-5p, let-7b-5p, let-7c-5p, and miR-181b-5p-were selectively upregulated by collagenase-induced hemorrhagic stroke. Collectively, our study identified some selective miRNAs expressed in the plasma of hemorrhagic rats and pointed out the importance of a precise time point measurement to render more reliable the use of miRNAs as stroke biomarkers.
Collapse
Affiliation(s)
- Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Monica Torelli
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Lucio Annunziato
- Istituto di Ricovero e Cura a Carattere Scientifico SDN Napoli, Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
237
|
Relevance of stromal interaction molecule 1 (STIM1) in experimental and human stroke. Pflugers Arch 2021; 474:141-153. [PMID: 34757454 DOI: 10.1007/s00424-021-02636-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Stroke represents a main cause of death and permanent disability worldwide. In the attempt to develop targeted preventive and therapeutic strategies, several efforts were performed over the last decades to identify the specific molecular abnormalities preceding cerebral ischemia and neuronal death. In this regard, mitochondrial dysfunction, autophagy, and intracellular calcium homeostasis appear important contributors to stroke development, as underscored by recent pre-clinical evidence. Intracellular calcium (Ca2+) homeostasis is regulated, among other mechanisms, by the calcium sensor stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator (ORAI) members, which mediate the store-operated Ca2+ entry (SOCE). The activity of SOCE is deregulated in animal models of ischemic stroke, leading to ischemic injury exacerbation. We found a different pattern of expression of few SOCE components, dependent from a STIM1 mutation, in cerebral endothelial cells isolated from the stroke-prone spontaneously hypertensive rat (SHRSP), compared to the stroke-resistant (SHRSR) strain, suggesting a potential involvement of this mechanism into the stroke predisposition of SHRSP. In this article, we discuss the relevant role of STIM1 in experimental stroke, as highlighted by the current literature and by our recent experimental findings, and the available evidence in the human disease. We also provide a glance on future perspectives and clinical implications of STIM1.
Collapse
|
238
|
Alleviation of Neuronal Cell Death and Memory Deficit with Chungkookjang Made with Bacillus amyloliquefaciens and Bacillus subtilis Potentially through Promoting Gut-Brain Axis in Artery-Occluded Gerbils. Foods 2021; 10:foods10112697. [PMID: 34828975 PMCID: PMC8619225 DOI: 10.3390/foods10112697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Short-term fermented soybeans (chungkookjang) with specific Bacillus (B.) spp. have anti-obesity, antidiabetic, and anti-stroke functions. We examined the hypothesis that the long-term consumption of B. amyloliquefaciens SCGB 1 fermented (CKJ1) and B. subtilis SCDB 291 (CKJ291) chungkookjang can alleviate clinical symptoms and hyperglycemia after ischemic stroke by promoting the gut microbiota-brain axis. We examined this hypothesis in Mongolian male gerbils with stroke symptoms induced by carotid artery occlusion. The artery-occluded gerbils were divided into five groups: no supplementation (Control, Normal-control), 4% cooked soybeans (CSB), CKJ1, or CKJ291 in a high-fat diet for 3 weeks. The carotid arteries of gerbils in the Control, CSB, CKJ1, and CKJ291 groups were occluded for 8 min and they then continued on their assigned diets for an additional 3 weeks. Normal-control gerbils had no artery occlusion. The diets in all groups contained an identical macronutrient composition using starch, casein, soybean oil, and dietary fiber. The CSB, CKJ1, and CKJ291 groups exhibited less neuronal cell death than the Control group, while the CKJ1 group produced the most significant reduction among all groups, as much as 85% of the Normal-control group. CKJ1 and CKJ291 increased the blood flow and removal of blood clots, as determined by Doppler, more than the Control. They also showed more improvement in neurological disorders from ischemic stroke. Their improvement showed a similar tendency as neuronal cell death. CKJ1 treatment improved memory impairment, measured with Y maze and passive avoidance tests, similar to the Normal-control. The gerbils in the Control group had post-stroke hyperglycemia due to decreased insulin sensitivity and β-cell function and mass; the CKJ291, CSB, and CKJ1 treatments protected against glucose disturbance after artery occlusion and were similar to the Normal-control. CKJ1 and CKJ291 also reduced serum tumor necrosis factor-α concentrations and hippocampal interleukin-1β expression levels, compared to the Control. CKJ1 and CKJ291 increased the contents of Lactobacillus, Bacillus, and Akkermansia in the cecum feces, similar to the Normal-control. Picrust2 analysis showed that CKJ1 and CKJ291 increased the propionate and butyrate metabolism and the starch and glucose metabolism but reduced the lipopolysaccharide biosynthesis and fatty acid metabolism compared to the Control. In conclusion, daily CKJ1 and CKJ291 intake prevented neuronal cell death and memory dysfunction from the artery occlusion by increasing blood flow and β-cell survival and reducing post-stroke-hyperglycemia through modulating the gut microbiome composition and metabolites to influence the host metabolism, especially inflammation and insulin resistance, protecting against neuronal cell death and brain dysfunction. CKJ1 had better effects than CKJ291.
Collapse
|
239
|
Shi Y, Jin Y, Li X, Chen C, Zhang Z, Liu X, Deng Y, Fan X, Wang C. C5aR1 Mediates the Progression of Inflammatory Responses in the Brain of Rats in the Early Stage after Ischemia and Reperfusion. ACS Chem Neurosci 2021; 12:3994-4006. [PMID: 34637270 DOI: 10.1021/acschemneuro.1c00244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C5a receptor 1 (C5aR1) can induce a strong inflammatory response to an injury. Targeting C5aR1 has emerged as a novel anti-inflammatory therapeutic method. However, the role of C5aR1 in cerebral ischemia and reperfusion (I/R) injury and the definitive mechanism have not been elucidated clearly. Here, we determined whether C5aR1 signaling was essential to the post-ischemic inflammation and brain injury and whether it is a valid target for therapeutic blockade by using soluble receptor antagonist PMX53 in the early stage after I/R injury. In an in vitro model (oxygen and glucose deprivation and reperfusion, OGD/R) and in vivo model (middle cerebral artery occlusion and reperfusion, MCAO/R) of I/R, the neuronal cells of rats showed significantly up-regulated gene expression of C5aR1, and a notable inflammatory response was demonstrated with elevated tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Inhibition of C5aR1 by PMX53 treatment significantly reduced cell injury and inflammation and promoted brain function recovery. Further mechanism studies showed that inhibiting C5aR1 by PMX53 protected the rats from MCAO/R injury, decreased cell inflammation, and apoptosis via inhibiting the TLR4 and NF-κB signaling pathway and reducing the production of TNF-α, IL-1β, and IL-6 in MCAO/R rats. In addition, manipulation of the C5aR1 gene expression in vitro displayed that the inflammatory cascade signals including TLR4, TNF-α, IL-1β, and IL-6 were coincidently regulated with the regulation of C5aR1 expression levels. Thus, our results demonstrated a pathogenic role for C5aR1 in the progression of brain injury and inflammation response following I/R injury. Our study clearly demonstrated that C5aR1 inhibition might be an effective treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xing Li
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Chen Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Yijun Deng
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
240
|
Sharma D, Spring KJ, Bhaskar SMM. Neutrophil-lymphocyte ratio in acute ischemic stroke: Immunopathology, management, and prognosis. Acta Neurol Scand 2021; 144:486-499. [PMID: 34190348 DOI: 10.1111/ane.13493] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
There is an ongoing need for accurate prognostic biomarkers in the milieu of acute ischemic stroke (AIS) receiving reperfusion therapy. Neutrophil-lymphocyte ratio (NLR) has been implicated in emergency medicine and acute stroke setting as an important biomarker in the prognosis of patients. However, there are ongoing questions around its accuracy and translation into clinical practice given suboptimal sensitivity and specificity results, as well as varying thresholds and lack of clarity around which NLR time points are most clinically indicative. This article provides a comprehensive overview of the role of NLR in AIS patients receiving reperfusion therapy and perspectives on areas of future research. NLR may be an important biomarker in risk stratifying patients in AIS to identify and select those who are more likely to benefit from reperfusion therapy. Appropriate clinical decision-making tools and models are required to harness the predictive value of NLR, which could be useful in identifying and monitoring high-risk patients to guide early treatment and achieve improved outcomes. Our understanding of the role of NLR in the immunopathogenesis of AIS is also suboptimal, which hinders the ability to translate this into clinical practice.
Collapse
Affiliation(s)
- Divyansh Sharma
- Neurovascular Imaging Laboratory Clinical Sciences Stream Ingham Institute for Applied Medical Research Sydney NSW Australia
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
| | - Kevin J. Spring
- South Western Sydney Clinical School University of New South Wales (UNSW) Sydney NSW Australia
- NSW Health Pathology NSW Brain Clot Bank Sydney NSW Australia
- Medical Oncology Group Liverpool Clinical School Western Sydney University & Ingham Institute of Applied Medical Research Sydney NSW Australia
| | - Sonu Menachem Maimonides Bhaskar
- Neurovascular Imaging Laboratory Clinical Sciences Stream Ingham Institute for Applied Medical Research Sydney NSW Australia
- NSW Health Pathology NSW Brain Clot Bank Sydney NSW Australia
- Department of Neurology & Neurophysiology Liverpool Hospital and South Western Sydney Local Health District (SWSLHD) Sydney NSW Australia
| |
Collapse
|
241
|
Inhibitory effects of sulforaphane on NLRP3 inflammasome activation. Mol Immunol 2021; 140:175-185. [PMID: 34717147 DOI: 10.1016/j.molimm.2021.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023]
Abstract
SFN, a dietary phytochemical, is a significant member of isothiocyanates present in cruciferous vegetables at high levels in broccoli. It is a well-known activator of the Nrf2/ARE antioxidant pathway. Long since, the therapeutic effects of SFN have been widely studied in several different diseases. Other than the antioxidant effect, SFN also exhibits an anti-inflammatory effect through suppression of various mechanisms, including inflammasome activation. Considerably, SFN has been demonstrated to inhibit multiple inflammasomes, including NLRP3 inflammasome. NLRP3 inflammasome induces secretion of pro-inflammatory cytokines and promotes inflammatory cell death. The release of pro-inflammatory cytokines enhances the inflammatory response, in turn leading to tissue damage. These self-propelling inflammatory responses would need modulation with exogenous therapeutic agents to suppress them. SFN is a promising candidate molecule for the mitigation of NLRP3 inflammasome activation, which has been related to the pathogenesis of numerous disorders. In this review, we have provided fundamental knowledge about Sulforaphane, elaborated its characteristics, and evidentially focused on its mechanisms of action with regard to its anti-inflammatory, anti-oxidative, and neuroprotective features. Thereafter, we have summarized both in vitro and in vivo studies regarding SFN effect on NLRP3 inflammasome activation.
Collapse
|
242
|
Yao J, Du Y, Liu J, Gareev I, Yang G, Kang X, Wang X, Beylerli O, Chen X. Hypoxia related long non-coding RNAs in ischemic stroke. Noncoding RNA Res 2021; 6:153-158. [PMID: 34703955 PMCID: PMC8511691 DOI: 10.1016/j.ncrna.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
With high rates of mortality and disability, stroke has caused huge social burden, and 85% of which is ischemic stroke. In recent years, it is a progressive discovery of long non-coding RNA (lncRNA) playing an important regulatory role throughout ischemic stroke. Hypoxia, generated from reduction or interruption of cerebral blood flow, leads to changes in lncRNA expression, which then influence disease progression. Therefore, we reviewed studies on expression of hypoxia-related lncRNAs and relevant molecular mechanism in ischemic stroke. Considering that hypoxia-inducible factor (HIF) is a crucial regulator in hypoxic progress, we mainly focus on the HIF-related lncRNA which regulates the expression of HIF or is regulated by HIF, further reveal their pathogenesis and adaption after brain ischemia and hypoxia, so as to find effective biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yiming Du
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Junsi Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Guang Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xiaohui Kang
- Department of Pharmacy, Rizhao People's Hospital, Rizhao, 276826, Shandong Province, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
243
|
Regulatory role of miR-129 and miR-384-5p on apoptosis induced by oxygen and glucose deprivation in PC12 cell. Exp Brain Res 2021; 240:97-111. [PMID: 34661743 DOI: 10.1007/s00221-021-06236-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to establish the role of miR-129 and miR-384-5p in cerebral ischemia-induced apoptosis. Using PC12 cells transfected with miR-129 or miR-384-5p mimics or inhibitors, oxygen glucose deprivation (OGD) conditions were applied for 4 h to simulate transient cerebral ischemia. Apoptotic phenotypes were assessed via lactate dehydrogenase (LDH) assay, MTT cell metabolism assay, and fluorescence-activated cell sorting (FACS). The effect of miR overexpression and inhibition was evaluated by protein and mRNA detection of bcl-2 and caspase-3, critical apoptosis factors. Finally, the direct relationship of miR-129 and bcl-2 and miR-384-5p and caspase-3 was measured by luciferase reporter assay. The overexpression of miR-384-5p and miR-129 deficiency significantly enhanced cell viability, reduced LDH release, and inhibited apoptosis. By contrast, overexpression of miR-129 and miR-384-5p deficiency aggravated hypoxia-induced apoptosis and cell injury. miR-129 overexpression significantly reduced mRNA and protein levels of bcl-2 and miR-129 inhibition significantly increased mRNA and protein levels of bcl-2 in hypoxic cells.miR-384-5p overexpression significantly reduced protein levels of caspase-3 while miR-384-5p deficiency significantly increased protein levels of caspase-3. However, no changes were observed in caspase-3 mRNA in either transfection paradigm. Finally, luciferase reporter assay confirmed caspase-3 to be a direct target of miR-384-5p; however, no binding activity was detected between bcl-2 and miR-129.Transient cerebral ischemia induces differential expression of miR-129 and miR-384-5p which influences apoptosis by regulating apoptotic factors caspase-3 and bcl-2, thereby participating in the pathological mechanism of cerebral ischemia, and becoming potential targets for the treatment of ischemic cerebral injury in the future.
Collapse
|
244
|
Sharma HS, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Li C, Zhang Z, Wiklund L, Sharma A. Cerebrolysin restores balance between excitatory and inhibitory amino acids in brain following concussive head injury. Superior neuroprotective effects of TiO 2 nanowired drug delivery. PROGRESS IN BRAIN RESEARCH 2021; 266:211-267. [PMID: 34689860 DOI: 10.1016/bs.pbr.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concussive head injury (CHI) often associated with military personnel, soccer players and related sports personnel leads to serious clinical situation causing lifetime disabilities. About 3-4k head injury per 100k populations are recorded in the United States since 2000-2014. The annual incidence of concussion has now reached to 1.2% of population in recent years. Thus, CHI inflicts a huge financial burden on the society for rehabilitation. Thus, new efforts are needed to explore novel therapeutic strategies to treat CHI cases to enhance quality of life of the victims. CHI is well known to alter endogenous balance of excitatory and inhibitory amino acid neurotransmitters in the central nervous system (CNS) leading to brain pathology. Thus, a possibility exists that restoring the balance of amino acids in the CNS following CHI using therapeutic measures may benefit the victims in improving their quality of life. In this investigation, we used a multimodal drug Cerebrolysin (Ever NeuroPharma, Austria) that is a well-balanced composition of several neurotrophic factors and active peptide fragments in exploring its effects on CHI induced alterations in key excitatory (Glutamate, Aspartate) and inhibitory (GABA, Glycine) amino acids in the CNS in relation brain pathology in dose and time-dependent manner. CHI was produced in anesthetized rats by dropping a weight of 114.6g over the right exposed parietal skull from a distance of 20cm height (0.224N impact) and blood-brain barrier (BBB), brain edema, neuronal injuries and behavioral dysfunctions were measured 8, 24, 48 and 72h after injury. Cerebrolysin (CBL) was administered (2.5, 5 or 10mL/kg, i.v.) after 4-72h following injury. Our observations show that repeated CBL induced a dose-dependent neuroprotection in CHI (5-10mL/kg) and also improved behavioral functions. Interestingly when CBL is delivered through TiO2 nanowires superior neuroprotective effects were observed in CHI even at a lower doses (2.5-5mL/kg). These observations are the first to demonstrate that CBL is effectively capable to attenuate CHI induced brain pathology and behavioral disturbances in a dose dependent manner, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Zhiquiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
245
|
Saposhnikoviae Radix Enhanced the Angiogenic and Anti-Inflammatory Effects of Huangqi Chifeng Tang in a Rat Model of Cerebral Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4232708. [PMID: 34594389 PMCID: PMC8478555 DOI: 10.1155/2021/4232708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Huangqi Chifeng Tang (HQCFT), a traditional Chinese formula of three herbs, has been used to treat cerebral infarction (CI). Saposhnikoviae Radix (SR) was designed as a guiding drug for HQCFT to improve its angiogenic and anti-inflammatory effects. In this study, TTC staining was used to detect the area of CI. H&E staining was used to detect the histopathologic changes in the cerebral tissue. Western blotting was performed to detect the protein expression of NLRP3, caspase 1, IL-1β, IL-6, TNF-α, MMP-9, VEGF, and VEGFR2 in cerebral tissue. Immunohistochemistry was used to detect the protein expression of MMP-9, VEGF, and VEGFR2. The contents of HIF-1α, NLRP3, caspase 1, IL-1β, IL-6, and TNF-α in the serum were determined by ELISA. Our study showed that HQCFT and HQCFT-SR could improve the pathological condition and reduce the infarcted area of the brain tissue in a rat model. In addition, HQCFT and HQCFT-SR significantly decreased the expression levels and serum contents of NLRP3, caspase 1, IL-1β, IL-6, and TNF-α; increased the expression levels of the VEGF and VEGFR2 proteins; and obviously reduced the serum content of HIF-1α. Importantly, the cytokines in brain tissue and serum from the HQCFT group exhibited better efficacy than those from the HQCFT-SR group. HQCFT exerted significant angiogenic and anti-inflammatory effects in rats subjected to middle cerebral artery occlusion (MCAO); these effects can be attributed to the guiding and enhancing effect of SR.
Collapse
|
246
|
Toufic El Hussein M, Green T. Alphabetical Mnemonic to Assist in the Treatment of an Acute Ischemic Stroke. Crit Care Nurs Q 2021; 44:368-378. [PMID: 34437315 DOI: 10.1097/cnq.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Determining the treatment plan and how to successfully manage a patient suffering from an acute ischemic stroke can be challenging for a registered nurse (RN) in the emergency department. Using a mnemonic in the treatment process assists in reducing medical errors and increases the likelihood of making positive clinical outcomes. Mnemonics sum up complex strategies into relevant information that can be comprehensible for users. The authors have created a mnemonic strategy to provide RNs in the emergency department with a structured approach to the pharmacotherapeutic strategies used in treating patients with an acute ischemic stroke. All guidelines used throughout the article are in concurrence.
Collapse
Affiliation(s)
- Mohamed Toufic El Hussein
- School of Nursing and Midwifery, Mount Royal University, Calgary, Alberta, Canada (Dr El Hussein and Ms Green); Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada (Dr El Hussein); and NP Cardiology CCU, Alberta Health Services, Rockyview Hospital, Calgary, Alberta, Canada (Dr El Hussein)
| | | |
Collapse
|
247
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
248
|
Chen M, Zhang X, Fan J, Sun H, Yao Q, Shi J, Qu H, Du S, Cheng Y, Ma S, Zhang M, Zhan S. Dynorphin A (1-8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels. Neuropeptides 2021; 89:102182. [PMID: 34298371 DOI: 10.1016/j.npep.2021.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
The contents of Dynorphin A(1-8) decreased gradually in ischemic cortices in rats and an intracerebroventricular administration of synthetic Dynorphin A(1-8) reduced the volume of cerebral infarction in our previous research. However, the specific protective mechanism is unclear and Dynorphin A(1-8) is unlikely to cross the blood-brain barrier (BBB) by noninvasive oral or intravenous administration as a macromolecule neuropeptide. In this study, intranasal administration was used to middle cerebral artery occlusion(MCAO) rats to assessed the therapeutic effects of Dynorphin A(1-8) by evaluating behavior, volume of cerebral infarct, cerebral edema ratio, histological observation. Then apoptosis neuron rate was detected by TUNEL staining. Immunohistochemical staining was carried out to explore the alteration of Bcl-2, Bax and Caspase-3. Finally, κ-opioid receptor antagonist and N-methyl-d-aspartate(NMDA) receptor antagonist were used to explore its possible mechanism. We found that MCAO rats under intranasal administration of Dynorphin A(1-8) showed better behavioral improvement, higher extent of Bcl-2, activity of SOD along with much lower level of infarction volume, brain water content, number of cell apoptosis, extent of Bax and Caspase-3, and concentration of MDA compared with those in MCAO model group and intravenous Dynorphin A(1-8) group. Administration of nor-BNI or MK-801 reversed these neuroprotective effects of intranasal Dynorphin A(1-8). In summary, Dynorphin A(1-8), with advantages of intranasal administration, could be effectively delivered to central nervous system(CNS). Dynorphin A(1-8) inhibited oxidative stress and apoptosis against cerebral ischemia/reperfusion injury, affording neuroprotection through NMDA receptor and κ-opioid receptor channels.
Collapse
Affiliation(s)
- Mengying Chen
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiaxin Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Sun
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qingling Yao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jinming Shi
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuang Du
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meijuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
249
|
Restoration of HDAC1 Enzymatic Activity after Stroke Protects Neurons from Ischemia/Reperfusion Damage and Attenuates Behavioral Deficits in Rats. Int J Mol Sci 2021; 22:ijms221910654. [PMID: 34638996 PMCID: PMC8508747 DOI: 10.3390/ijms221910654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
A therapeutic approach for promoting neuroprotection and brain functional regeneration after strokes is still lacking. Histone deacetylase 1 (HDAC1), which belongs to the histone deacetylase family, is involved in the transcriptional repression of cell-cycle-modulated genes and DNA damage repair during neurodegeneration. Our previous data showed that the protein level and enzymatic activity of HDAC1 are deregulated in stroke pathogenesis. A novel compound named 5104434 exhibits efficacy to selectively activate HDAC1 enzymatic function in neurodegeneration, but its potential in stroke therapy is still unknown. In this study, we adopted an induced rat model with cerebral ischemia using the vessel dilator endothelin-1 to evaluate the potential of compound 5104434. Our results indicated compound 5104434 selectively restored HDAC1 enzymatic activity after oxygen and glucose deprivation, preserved neurite morphology, and protected neurons from ischemic damage in vitro. In addition, compound 5104434 attenuated the infarct volume, neuronal loss, apoptosis, DNA damage, and DNA breaks in cerebral ischemia rats. It further ameliorated the behavioral outcomes of neuromuscular response, balance, forepaw strength, and functional recovery. Collectively, our data support the efficacy of compound 5104434 in stroke therapy and contend that it can be considered for clinical trial evaluation.
Collapse
|
250
|
Li W, Guo A, Sun M, Wang J, Wang Q. Neuroprotective Effects of Deproteinized Calf Serum in Ischemic Stroke. Front Neurol 2021; 12:636494. [PMID: 34557139 PMCID: PMC8453072 DOI: 10.3389/fneur.2021.636494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Deproteinized calf serum (DCS) may have neuroprotective effects after ischemic stroke. The aim of this study is to investigate whether and how the DCS inhibits neuronal injury following cerebral ischemia. Rats were subjected to 2 h transient middle cerebral artery occlusion (MCAO). One dose of 0.125 mg/gbw DCS was given immediately after reperfusion. Neurological deficit and infarct volume at 24 h post-MCAO in DCS-treated rats were lower than those in vehicle-treated rats (p < 0.0005). In cultured neurons model, cell viability was decreased, and apoptosis was increased by oxygen-glucose deprivation/reperfusion (OGD/R) (p < 0.0005). These effects of OGD/R were attenuated by 0.4 μg/μl DCS (p < 0.05) that were validated by CCK8 cell viability assay, phycoerythrin–Annexin V Apoptosis Detection assay, and TUNEL assay. Furthermore, the increase of intracellular ROS level in cultured neurons was suppressed by DCS (p < 0.05). Compared with cells subjected to OGD/R, the expression level of Bax protein decreased, and bcl-2 protein increased after DSC treatment (p < 0.05). Overall, the neuroprotective effects of DCS following cerebral ischemia may in part be due to decreased ROS production and inhibition of apoptosis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Anchen Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Beijing, China
| | - Jiachuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neuropharmacology, Beijing Neurosurgical Institute, Beijing, China
| |
Collapse
|