201
|
Abstract
CRH is the key physiological mediator of the endocrine, autonomic, and behavioral responses to stress. The recent characterization of urocortin, a new mammalian CRH-like ligand, adds to the complexity of the CRH system. Both CRH and urocortin mediate their endocrine and/or synaptic effects via two classes of CRH receptors. Similarly, both CRH and urocortin bind to the CRH-binding protein (CRH-BP). This secreted binding protein is smaller than the CRH receptors, but binds CRH and urocortin with an affinity equal to or greater than that of the receptors, and blocks CRH-mediated ACTH release in vitro. Several regions of CRH-BP expression colocalize with sites of CRH synthesis or release, suggesting that this binding protein may have a profound impact on the biological activity of CRH (or urocortin). While in vitro and in vivo studies have characterized the biochemical properties and regulation of the CRH-BP, animal models of altered CRH-BP expression can provide additional information on the in vivo role of this important modulatory protein. This review focuses on three mouse models of CRH-BP overexpression or deficiency. These animal models show numerous physiological changes in the HPA axis and in energy balance, with additional alterations in anxiogenic behavior. These changes are consistent with the hypothesis that CRH-BP plays an important in vivo modulatory role by regulating levels of "free" CRH and other CRH-like peptides in the pituitary and central nervous system.
Collapse
Affiliation(s)
- A F Seasholtz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
202
|
Cibelli G, Corsi P, Diana G, Vitiello F, Thiel G. Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways. Eur J Neurosci 2001; 13:1339-48. [PMID: 11298794 DOI: 10.1046/j.0953-816x.2001.01510.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corticotropin-releasing factor (CRF), a neuropeptide of 41 amino acids, acts as the major physiological regulator of the basal and stress-induced release of corticotropin (ACTH), beta-endorphin and other proopiomelanocortin-derived peptides from the anterior pituitary gland. In addition to its endocrine activity, CRF displays extrahypophysiotropic effects, mainly as a regulator of stress responses. We show here that CRF may additionally function as a differentiating factor in immortalized noradrenergic neuronal CATH.a cells that express CRF receptor type I and resemble locus coeruleus-derived neurons. CRF triggers morphological changes in CATH.a cells including the appearance of extended long, slender neurites with prominent growth cones. CRF-treated CATH.a cells exhibit a morphology similar to locus coeruleus neurons in primary culture. CRF-induced neurite outgrowth of CATH.a cells was blocked by addition of inhibitors for cAMP-dependent protein kinase or extracellular signal-regulated protein kinase (ERK), a subtype of the mitogen-activated protein kinases. The participation of ERK within the CRF signalling cascade was further confirmed by Western blot experiments, with antibodies directed against the phosphorylated form of ERK, and also with transcription-based assays. We conclude that CRF functions as a differentiating factor of CATH.a cells via the cAMP and the MAP kinase signalling pathways.
Collapse
Affiliation(s)
- G Cibelli
- Department of Pharmacology and Human Physiology, Medical Faculty, University of Bari, I-70124 Bari, Italy
| | | | | | | | | |
Collapse
|
203
|
Bishop GA, Seelandt CM, King JS. Cellular localization of corticotropin releasing factor receptors in the adult mouse cerebellum. Neuroscience 2001; 101:1083-92. [PMID: 11113357 DOI: 10.1016/s0306-4522(00)00413-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticotropin releasing factor is a 41 amino acid peptide that is present in afferent systems that project to the cerebellum. In the adult, this peptide modulates the activity of Purkinje cells by enhancing their responsiveness to excitatory amino acids. Two different types of corticotropin releasing factor receptors, designated type 1 and type 2, have been identified. The purpose of this study is to use immunohistochemistry to identify which corticotropin releasing factor receptors are present in the cerebellum of the adult mouse and to determine their cellular distribution. Receptor type 1 immunostaining is present throughout all lobules of the cerebellar cortex. Distinct labeling is present over the somas of most, if not all, Purkinje cells as well as the primary dendrites of Purkinje cells located at the base of vermal folia. In vermal lobules V, VI, VIII and IX numerous glial fibrillary acidic protein immunoreactive processes, oriented radially in the molecular layer, also are immunoreactive for receptor type 1. In the granule cell layer, scattered type 1 immunoreactive puncta are present throughout most cerebellar lobules. Receptor type 2 immunoreactive puncta are present throughout the molecular layer in all lobules. In addition, scattered basket and/or stellate cells, identified with a GABA antibody, are immunopositive for the type 2 receptor. In the Purkinje cell layer, the type 2 receptor immunolabeling is confined to the basal pole of the Purkinje cell including the initial axonal segment. In the granule cell layer, labeling is present over large cell bodies, and their initial axonal segments. These are likely to be Golgi cells, based on their co-staining with GABA. Finally, numerous elongated processes within the white matter, which are likely to be axons, also are type 2 immunoreactive. These data indicate that both types of corticotropin releasing factor receptor are present in the mouse cerebellum. However, the unique distribution of the two types of receptor strongly suggests a differential role for corticotropin releasing factor in modulating the activity of neurons, axons and glial cells via cell-specific ligand-receptor interactions.
Collapse
Affiliation(s)
- G A Bishop
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
204
|
Lee S, Smith GW, Vale W, Lee KF, Rivier C. Mice That Lack Corticotropin-Releasing Factor (CRF) Receptors Type 1 Show a Blunted ACTH Response to Acute Alcohol Despite Up-Regulated Constitutive Hypothalamic CRF Gene Expression. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02231.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
205
|
Abstract
Adult male rats were used to determine whether high circulating levels of the pro-inflammatory cytokine interleukin-6 (IL-6) were capable of releasing ACTH independently of endogenous corticotropin-releasing factor (CRF). On one hand, CRF antibodies or a potent CRF antagonist significantly decreased, but did not totally abolish the ACTH response to the intravenous(i.v.) injection of recombinant rat IL-6. These results suggest that this cytokine might act either directly on the pituitary, or can release ACTH through mechanisms that do not involve CRF. On the other hand, the CRF antagonist or antibodies significantly (but not totally) blocked ACTH secretion due to the i.v. injection of endotoxin (LPS) while enhancing the ability of this immune stimulus to increase serum IL-6 concentrations. These results indicate that during endotoxemia, even very elevated circulating IL-6 concentrations were notable to release large amounts of ACTH in the absence of CRF drive. These data also illustrate the ability of a CRF antagonist or CRF antibodies to significantly augment IL-6 secretion,which indicates an inhibitory influence of the endogenous peptide in the paradigm we used.As comparable findings were obtained in adrenal-intact and adrenalectomized rats, they suggest that endogenous CRF is involved in the IL-6 response to LPS independently of circulating corticosteroids or other adrenal factors.
Collapse
Affiliation(s)
- C Rivier
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
206
|
Higelin J, Py-Lang G, Paternoster C, Ellis GJ, Patel A, Dautzenberg FM. 125I-Antisauvagine-30: a novel and specific high-affinity radioligand for the characterization of corticotropin-releasing factor type 2 receptors. Neuropharmacology 2001; 40:114-22. [PMID: 11077077 DOI: 10.1016/s0028-3908(00)00105-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Corticotropin-releasing factor (CRF) receptors type 1 (CRF(1)) and type 2 (CRF(2)) differ from each other in their pharmacological properties. The human and ovine CRF versions bind to CRF(1) receptors with significantly higher affinity than to CRF(2) receptors. Recently antisauvagine-30, an N-terminally truncated version of the CRF analog sauvagine, was characterized as a specific antagonist to mouse CRF(2B). We have synthesized the radiolabeled version (125)I-antisauvagine-30 and tested it for its affinity at human CRF(1) (hCRF(1)), hCRF(2A), Xenopus CRF(1) (xCRF(1)) and xCRF(2) receptors. In control binding studies (125)I-labeled hCRF, sauvagine and astressin were also bound to these receptors. (125)I-antisauvagine-30 exclusively bound to hCRF(2A) and xCRF(2) but not to hCRF(1) and xCRF(1) receptors. (125)I-antisauvagine-30 binding to hCRF(2A) and xCRF(2) receptors was saturable and of high affinity (hCRF(2A): K(d)=125 pM; xCRF(2): K(d)=1.1 nM). In displacement binding experiments using (125)I-antisauvagine-30 as radioligand several CRF analogs bound to hCRF(2A) and xCRF(2) receptors with similar rank orders as reported with other CRF radioligands. Finally, preliminary studies using (125)I-antisauvagine-30 binding to membrane homogenates prepared from different rat brain structures showed that the peptide bound specifically to brain areas expressing CRF(2) receptors. These data demonstrate that (125)I-antisauvagine-30 is the first high-affinity ligand to specifically label CRF(2) receptors.
Collapse
Affiliation(s)
- J Higelin
- F. Hoffmann-La Roche Ltd, Pharma Division, Preclinical Research, Building 70, Room 307, Grenzacher Strasse 124, 4070, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
207
|
Martarello L, Kilts CD, Ely T, Owens MJ, Nemeroff CB, Camp M, Goodman MM. Synthesis and characterization of fluorinated and iodinated pyrrolopyrimidines as PET/SPECT ligands for the CRF1 receptor. Nucl Med Biol 2001; 28:187-95. [PMID: 11295429 DOI: 10.1016/s0969-8051(00)00199-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorine-18 labeled fluorobutyl[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo [2,3-d] pyrimidin-4-yl]ethylamine (FBPPA) and iodine-123 labeled butyl[2,5-dimethyl-7-(4-iodo-2,6-dimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]ethyl-amine (IBPPA) were synthesized in the development of a CRF receptor ligand. The methods of synthesis, in vitro binding assays, radiolabeling and in vivo tissue distribution in rats are described. Fluorine-18 labeled FBPPA was prepared with high specific activity (3 x 10(4) Ci/mmol) by nucleophilic displacement with an average radiochemical yield of 6% (EOB). Iodine-123 labeled IBPPA was prepared by electrophilic iododestannylation with good yield (60%) and high specific activity (3.3 x 10(3) Ci/mmol). The retention of FBPPA and IBPPA in the pituitary was good (1.16% i.d./g and 2.35% i.d./g respectively at 60 min). However, the accumulation of radioactivity in the brain for both radiotracers was very low at all time points of the study, which demonstrated the difficulties for these radiopharmaceuticals to penetrate the blood brain barrier (BBB).
Collapse
Affiliation(s)
- L Martarello
- Department of Radiology, Emory Center for Positron Emission Tomography, Emory University School of Medicine, 1634 Clifton Road N.E., Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
208
|
O'Brien D, Skelton KH, Owens MJ, Nemeroff CB. Are CRF receptor antagonists potential antidepressants? Hum Psychopharmacol 2001; 16:81-87. [PMID: 12404602 DOI: 10.1002/hup.187] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Corticotropin-releasing factor (CRF) is the major regulator of the hypothalamic-pituitary-adrenal (HPA) axis, and plays a key role in coordinating the endocrine, as well as autonomic and behavioral responses of an organism to stress. Direct CNS administration of CRF to laboratory animals produces an aggregate of effects that mimic the mammalian stress response. Impeding CRF function with CNS administration of a peptidergic CRF antagonist can block these manifestations of the stress response whether produced by exogenous CRF or occurring naturally in response to a stressor. A role for hypersecretion of CRF in the pathophysiology of depression is suggested by the finding that CNS administration of CRF mirrors many of the signs and symptoms utilized as diagnostic criteria for major depression. In addition, a large body of clinical evidence points to excess hypothalamic secretion of CRF and an accompanying HPA axis hyperactivity in patients with major depression. The recent development of selective, small molecule CRF(1) receptor antagonists, which block the effects of CRF both in vitro and in vivo, suggest that these compounds may be effective in the treatment of affective and anxiety disorders. Early evidence indicates that these agents possess anxiolytic and antidepressant activity in animal behavioral models. Copyright 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Donna O'Brien
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
209
|
Abstract
The study of the neural substrates underlying stress and anxiety has in recent years been enriched by a burgeoning pool of genetic information gathered from rodent studies. Two general approaches have been used to characterize the interaction of genetic and environmental factors in stress regulation: the evaluation of stress-related behavioral and endocrine responses in animals with targeted deletion or overexpression of specific genes and the evaluation of changes in central nervous system gene expression in response to environmental perturbations. We review recent studies that have used molecular biology and genetic engineering techniques such as in situ hybridization, transgenic animal, and antisense oligonucleotide gene-targeting methodologies to characterize the function of corticotropin-releasing hormone (CRH) system genes in stress. The effects of genetic manipulations of each element of the CRH system (CRH, its two receptors, and its binding protein) on stress-related responses are summarized. In addition, the effects of stress (acute, repeated, or developmental) on CRH system gene expression are described. The results from these studies indicate that experimentally engineered or stress-induced dysregulation of gene expression within the CRH system is associated with aberrant responses to environmental contingencies. These results are discussed in the context of how CRH system dysfunction might contribute to stress-related psychopathology and are presented in conjunction with clinical findings of CRH system dysregulation in psychiatric illness. Finally, future research strategies (i.e., high-throughput gene screening and novel gene-targeting methodologies) that may be used to gain a fuller understanding of how CRH system gene expression affects stress-related functioning are discussed.
Collapse
Affiliation(s)
- V P Bakshi
- Department of Psychiatry, School of Medicine, University of Wisconsin, Madison, Wisconsin 53719, USA
| | | |
Collapse
|
210
|
Abstract
A number of primary diseases of the pituitary with adrenocorticotropin dysregulation have been recognized. A few genetic defects have been identified as causes of secondary adrenocortical insufficiency. Much less is known about the ontogeny of corticotrophic tumours leading to a hypercorticolaemic state. To improve the diagnosis and treatment of these disorders, a better understanding of the mechanisms of corticotrophic pituitary cell differentiation and regulation is of clear interest. Studies using molecular tools have enhanced our knowledge over recent years, and a few reports of considerable relevance are summarized in this review.
Collapse
Affiliation(s)
- S Petersenn
- IHF Institute for Hormone and Fertility Research, Hamburg, Germany.
| | | |
Collapse
|
211
|
Abstract
Urocortin (UCN) is a recently isolated 40 amino acid-containing neuropeptide that is the second endogenous mammalian ligand for the corticotropin-releasing factor (CRF) receptors. While UCN and CRF both display a similar high affinity for the CRF(1) receptor, the affinity of UCN for the CRF(2) receptor is more than 10-fold higher than that of rat/human CRF. UCN mRNA expression is highest in the Edinger-Westphal nucleus and lateral superior olive, with the most prominent terminal fields found in the lateral septum. Because of the higher relative affinity of UCN for the CRF(2) receptor and the corresponding neuroanatomical distribution of the highest density of UCN expression and innervation to brain regions preferentially expressing the CRF(2) receptor subtype, it has been hypothesized that UCN is the preferred endogenous ligand for the CRF(2) receptor. Following central administration, UCN has been demonstrated to produce behavioral and physiological effects that are qualitatively similar to CRF. Quantitatively, however, UCN appears to be a more potent suppressor of ingestive behavior (food and water intake) and a less potent inducer of anxiogenic behavior than CRF.
Collapse
Affiliation(s)
- K H Skelton
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1639 Pierce Dr., Suite 4000, 30322, Atlanta, GA, USA
| | | | | |
Collapse
|
212
|
Dunn AJ. Footshock-induced changes in brain catecholamines and indoleamines are not mediated by CRF or ACTH. Neurochem Int 2000; 37:61-9. [PMID: 10781846 DOI: 10.1016/s0197-0186(99)00163-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stressful treatments have long been associated with increased activity of brain catecholaminergic and serotonergic neurons. An intracerebroventricular (icv) injection of the corticotropin-releasing factor (CRF) also activates brain catecholaminergic neurons. Because brain CRF-containing neurons appear to be activated during stress, it is possible that CRF mediates the catecholaminergic activation. This hypothesis has been tested by assessing the responses in brain catecholamines and indoleamines to footshock in mice pretreated icv with a CRF receptor antagonist, and in mice lacking the gene for CRF (CRFko mice). Consistent with earlier results, icv administration of CRF increased catabolites of dopamine and norepinephrine, but failed to alter tryptophan concentrations or serotonin catabolism. A brief period of footshock increased plasma corticosterone and the concentrations of tryptophan and the catabolites of dopamine, norepinephrine and serotonin in several brain regions. Mice injected icv with 25 microg alpha-helical CRF(9-41) prior to footshock had neurochemical responses that were indistinguishable from controls injected with vehicle, while the increase in plasma corticosterone was slightly attenuated in some experiments. CRFko mice exhibited neurochemical responses to footshock that were indistinguishable from wild-type mice. However, whereas wild-type mice showed the expected increase in plasma corticosterone, there was no such increase in CRFko mice. Similarly, hypophysectomized mice also showed normal neurochemical responses to footshock, but no increase in plasma corticosterone. Hypophysectomy itself elevated brain tryptophan and catecholamine and serotonin metabolism. Treatment with ACTH icv or peripherally failed to induce any changes in cerebral catecholamines and indoleamines. These results suggest that CRF and its receptors, and ACTH and other pituitary hormones, are not involved in the catecholamine and serotonin responses to a brief period of footshock.
Collapse
Affiliation(s)
- A J Dunn
- Department of Pharmacology and Therapeutics, Louisiana State University, Medical Center, Shreveport 71130-3932, USA.
| |
Collapse
|
213
|
Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 2000; 80:979-1020. [PMID: 10893429 DOI: 10.1152/physrev.2000.80.3.979] [Citation(s) in RCA: 568] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The skin is a known target organ for the proopiomelanocortin (POMC)-derived neuropeptides alpha-melanocyte stimulating hormone (alpha-MSH), beta-endorphin, and ACTH and also a source of these peptides. Skin expression levels of the POMC gene and POMC/corticotropin releasing hormone (CRH) peptides are not static but are determined by such factors as the physiological changes associated with hair cycle (highest in anagen phase), ultraviolet radiation (UVR) exposure, immune cytokine release, or the presence of cutaneous pathology. Among the cytokines, the proinflammatory interleukin-1 produces important upregulation of cutaneous levels of POMC mRNA, POMC peptides, and MSH receptors; UVR also stimulates expression of all the components of the CRH/POMC system including expression of the corresponding receptors. Molecular characterization of the cutaneous POMC gene shows mRNA forms similar to those found in the pituitary, which are expressed together with shorter variants. The receptors for POMC peptides expressed in the skin are functional and include MC1, MC5 and mu-opiate, although most predominant are those of the MC1 class recognizing MSH and ACTH. Receptors for CRH are also present in the skin. Because expression of, for example, the MC1 receptor is stimulated in a similar dose-dependent manner by UVR, cytokines, MSH peptides or melanin precursors, actions of the ligand peptides represent a stochastic (predictable) nonspecific response to environmental/endogenous stresses. The powerful effects of POMC peptides and probably CRH on the skin pigmentary, immune, and adnexal systems are consistent with stress-neutralizing activity addressed at maintaining skin integrity to restrict disruptions of internal homeostasis. Hence, cutaneous expression of the CRH/POMC system is highly organized, encoding mediators and receptors similar to the hypothalamic-pituitary-adrenal (HPA) axis. This CRH/POMC skin system appears to generate a function analogous to the HPA axis, that in the skin is expressed as a highly localized response which neutralizes noxious stimuli and attendant immune reactions.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | | | |
Collapse
|
214
|
Tian YE, Wu LH, Mueller WT, Chung FZ. A Screening Strategy Based on Differential Binding of Ligand to Receptor and to Binding Proteins: Screening for Compounds Interacting with Corticotrophin-Releasing Factor-Binding Protein. JOURNAL OF BIOMOLECULAR SCREENING 2000; 4:319-326. [PMID: 10838429 DOI: 10.1177/108705719900400607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ligand-receptor interaction has been commonly used in development of high throughput screening assays for new drugs. In some cases, an endogenous ligand interacts not only with membrane receptors but also with soluble binding proteins. Corticotrophin-releasing factor (CRF) is an important stress neurotransmitter/hormone involved in both the central and peripheral nervous systems. CRF exerts its function by interacting with CRFR1 and CRFR2 receptors. In addition, CRF-binding protein (CRF-BP) binds CRF with high affinity. Accordingly, CRF-BP has been suggested to play an important role in modulating CRF function. Based on the potential involvement of CRF-BP in many neurological disorders, it is desirable to develop a screening assay to look for drugs that either mimic or interfere with CRF binding to CRF-BP. An assay was developed to monitor the interactions of radiolabeled CRF with human/rat CRF-BP and the mouse CRFR1 (mCRFR1) receptor. By carefully examining the binding characteristics of radiolabeled CRF to mCRFR1, the assay was able to identify compounds that bind to CRF-BP with high affinity and have little or no affinity for mCRFR1 receptors. Based on a mathematical model, we have verified the screening system with several well-characterized CRF ligands that all have different affinities for CRF receptors and CRF-BP.
Collapse
Affiliation(s)
- YE Tian
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI
| | | | | | | |
Collapse
|
215
|
Gilligan PJ, Robertson DW, Zaczek R. Corticotropin releasing factor (CRF) receptor modulators: progress and opportunities for new therapeutic agents. J Med Chem 2000; 43:1641-60. [PMID: 10794681 DOI: 10.1021/jm990590f] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P J Gilligan
- DuPont Pharmaceuticals Company, Experimental Station, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA.
| | | | | |
Collapse
|
216
|
Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000; 34:171-81. [PMID: 10867111 DOI: 10.1016/s0022-3956(00)00016-9] [Citation(s) in RCA: 484] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Clinical and preclinical data suggest that unrestrained secretion of corticoctropin-releasing hormone (CRH) in the CNS produces several signs and symptoms of depression and anxiety disorders through continuous activation of CRH(1) receptors. This led to the development of drugs that selectively antagonize CRH(1) receptors suppressing anxiety-like behavior in rats and also in monkey models of anxiety. These findings led to a clinical development program exploring the antidepressive potential of R121919, a water-soluble pyrrolopyrimidine that binds with high affinity to human CRH(1) receptors and is well absorbed in humans. This compound was administered to 24 patients with a major depressive episode primarily in order to investigate whether its endocrine mode of action compromises the stress-hormone system or whether other safety and tolerability issues exist. The patients were enrolled in two dose-escalation panels: one group (n=10) where the dose range increased from 5-40 mg and another group (n=10) where the dose escalated from 40 to 80 mg within 30 days each. Four patients dropped out because of withdrawal of consent to participate (three cases) or worsening of depressive symptomatoloy in one case. We found that R121919 was safe and well tolerated by the patients during the observation period. Moreover, the data suggested that CRH(1)-receptor blockade does not impair the corticotropin and cortisol secretory activity either at baseline or following an exogenous CRH challenge. We also observed significant reductions in depression and anxiety scores using both, patient and clinician ratings. These findings, along with the observed worsening of affective symptomatology after drug discontinuation, suggests that the pharmacological principle of CRH(1)-receptor antagonism has considerable therapeutic potential in the treatment and the prevention of diseases where exaggerated central CRH activity is present at baseline or following stress exposure.
Collapse
Affiliation(s)
- A W Zobel
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, D-80804 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
217
|
Slominski AT, Roloff B, Zbytek B, Wei ET, Fechner K, Curry J, Wortsman J. Corticotropin releasing hormone and related peptides can act as bioregulatory factors in human keratinocytes. In Vitro Cell Dev Biol Anim 2000; 36:211-6. [PMID: 10777063 DOI: 10.1290/1071-2690(2000)036<0211:crharp>2.0.co;2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following previous findings in human skin of the functional expression of genes for the corticotropin releasing hormone (CRH) receptor type 1 (CRH-R1) and CRH itself, we searched for local phenotypic effects for peptides related to CRH. We now report that CRH, sauvagine, and urocortin inhibit proliferation of human HaCaT keratinocytes in a dose-dependent manner. The peptides produced variable cyclic adenosine 3':5'-monophosphate stimulation, with CRH having the highest potency. Binding of iodine 125 CRH to intact keratinocytes was inhibited by increasing doses of CRH, sauvagine, or urocortin, all showing equal inhibitory potency. Immunocytochemistry identified CRH-R1 immunoreactivity in HaCaT keratinocytes. In conclusion, CRH (exogenous or produced locally) and the related urocortin and sauvagine peptides can modify human keratinocyte phenotype through a receptor-mediated pathway.
Collapse
Affiliation(s)
- A T Slominski
- Department of Pathology, Medical Center, Loyola University, Maywood, Illinois 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
218
|
Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur J Pharmacol 2000; 390:51-9. [PMID: 10708706 DOI: 10.1016/s0014-2999(99)00915-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The endogenous expression in human embryonic kidney 293 (HEK293) cells of corticotropin-releasing factor (CRF) receptors was detected. High-affinity binding sites for human CRF (K(i)=3.6 nM), ovine CRF (K(i)=4.6 nM), rat urocortin (K(i)=2.2 nM), sauvagine (K(i)=2.4 nM) and astressin (K(i)=4.3 nM) with the pharmacological characteristics for CRF type 1 (CRF(1)) receptors and B(max) values of approximately 30 fmol/mg protein were determined. The four CRF receptor agonists nonselectively stimulated cAMP production in HEK293 cells at low agonist concentrations, whereas the antagonist astressin shifted the dose-response curve for ovine CRF significantly rightward. Transfection of the pcDNA3 vector into HEK293 cells strongly reduced the expression of the endogenous CRF receptor. Northern blot analysis revealed the expression of a CRF(1) transcript in human neuronal tissues, HEK293, human NTera-2 (NT2) carcinoma, Y-79 retinoblastoma and African green monkey kidney (COS-7) cells. Neither by Northern blot analysis nor by reverse transcriptase PCR (RT-PCR), the expression of CRF(2) could be detected. In cAMP stimulation experiments, functional CRF receptors were detected in these cell lines. These data show that HEK293 and other cell lines endogenously express CRF(1) receptors.
Collapse
Affiliation(s)
- F M Dautzenberg
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche, 4070, Basel, Switzerland.
| | | | | |
Collapse
|
219
|
Beyermann M, Rothemund S, Heinrich N, Fechner K, Furkert J, Dathe M, Winter R, Krause E, Bienert M. A role for a helical connector between two receptor binding sites of a long-chain peptide hormone. J Biol Chem 2000; 275:5702-9. [PMID: 10681555 DOI: 10.1074/jbc.275.8.5702] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conformational freedom of single-chain peptide hormones, such as the 41-amino acid hormone corticotropin releasing factor (CRF), is a major obstacle to the determination of their biologically relevant conformation, and thus hampers insights into the mechanism of ligand-receptor interaction. Since N- and C-terminal truncations of CRF lead to loss of biological activity, it has been thought that almost the entire peptide is essential for receptor activation. Here we show the existence of two segregated receptor binding sites at the N and C termini of CRF, connection of which is essential for receptor binding and activation. Connection of the two binding sites by highly flexible epsilon-aminocaproic acid residues resulted in CRF analogues that remained full, although weak agonists (EC(50): 100-300 nM) independent of linker length. Connection of the two sites by an appropriate helical peptide led to a very potent analogue, which adopted, in contrast to CRF itself, a stable, monomer conformation in aqueous solution. Analogues in which the two sites were connected by helical linkers of different lengths were potent agonists; their significantly different biopotencies (EC(50): 0.6-50 nM), however, suggest the relative orientation between the two binding sites rather than the maintenance of a distinct distance between them to be essential for a high potency.
Collapse
Affiliation(s)
- M Beyermann
- Forschungsinstitut für Molekulare Pharmakologie, Alfred-Kowalke-Str. 4, D-10315 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Chronic administration of the triazolobenzodiazepine alprazolam produces opposite effects on corticotropin-releasing factor and urocortin neuronal systems. J Neurosci 2000. [PMID: 10648728 DOI: 10.1523/jneurosci.20-03-01240.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In view of the substantial preclinical evidence that supports a seminal role of central corticotropin-releasing factor (CRF) neuronal systems in the physiology and pathophysiology of stress and anxiety, it is reasonable to suggest that the anxiolytic properties of benzodiazepines are mediated, at least in part, via regulation of CRFergic function. To begin to test this complex hypothesis, we examined the effects of acute and chronic administration of the triazolobenzodiazepine agonist alprazolam on CRF peptide concentrations, receptor-binding density, and mRNA expression in the CNS. Additionally, we measured mRNA expression for urocortin, a recently discovered neuropeptide that is generally considered to be a second endogenous ligand for CRF receptors. Both acute and chronic alprazolam administration was found to decrease CRF concentrations within the locus coeruleus. Furthermore, chronic alprazolam decreased basal activity of the hypothalamic-pituitary-adrenal axis, CRF mRNA expression in the central nucleus of the amygdala, and CRF(1) mRNA expression and receptor binding in the basolateral amygdala. In marked contrast, urocortin mRNA expression in the Edinger-Westphal nucleus and CRF(2A) receptor binding in the lateral septum and ventromedial hypothalamus were increased. Similar findings of an inverse relationship between the CRF(1) and CRF(2A) receptor systems have been reported in an anxiety model based on adverse early-life experience, suggesting the intriguing possibility that CRF neuronal systems may be comprised of two separate, but interrelated, subdivisions that can be coordinately and inversely regulated by stress, anxiety, or anxiolytic drugs.
Collapse
|
221
|
Wang L, Martínez V, Vale W, Taché Y. Fos induction in selective hypothalamic neuroendocrine and medullary nuclei by intravenous injection of urocortin and corticotropin-releasing factor in rats. Brain Res 2000; 855:47-57. [PMID: 10650129 DOI: 10.1016/s0006-8993(99)02200-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CRF and urocortin, administrated systemically, exert peripheral biological actions which may be mediated by brain pathways. We identified brain neuronal activation induced by intravenous (i.v.) injection of CRF and urocortin in conscious rats by monitoring Fos expression 60 min later. Both peptides (850 pmol/kg, i.v.) increased the number of Fos immunoreactive cells in the paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala, nucleus tractus solitarius and area postrema compared with vehicle injection. Urocortin induced a 4-fold increase in the number of Fos-positive cells in the supraoptic nucleus and a 3.4-fold increase in the lateral magnocellular part of the paraventricular nucleus compared with CRF. Urocortin also elicited Fos expression in the accessory hypothalamic neurosecretory nuclei, ependyma lining the ventricles and choroid plexus which was not observed after CRF. The intensity and pattern of the Fos response were dose-related (85, 255 and 850 pmol/kg, i.v.) and urocortin was more potent than CRF. Neither CRF nor urocortin induced Fos expression in the lateral septal nucleus, Edinger-Westphal nucleus, dorsal raphe nucleus, locus coeruleus, or hypoglossal nucleus. These results show that urocortin, and less potently CRF, injected into the circulation at picomolar doses activate selective brain nuclei involved in the modulation of autonomic/endocrine function; in addition, urocortin induces a distinct activation of hypothalamic neuroendocrine neurons.
Collapse
Affiliation(s)
- L Wang
- CURE: Digestive Diseases Research Center, V.A. Medical Center, Bldg. 115, Rm. 203, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| | | | | | | |
Collapse
|
222
|
Lee S, Schmidt D, Tilders F, Cole M, Smith A, Rivier C. Prolonged Exposure to Intermittent Alcohol Vapors Blunts Hypothalamic Responsiveness to Immune and Non-Immune Signals. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04560.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
223
|
Abstract
Corticotropin-releasing factor (CRF) is a peptide that is released from the hypothalamus and in widespread areas of the brain following exposure to stressors. It is considered to be a mediator of many of the effects of stress, and its analgesic properties have been demonstrated in many studies. However, for primarily methodological reasons, the effects of CRF in the central nervous system have been neglected whereas the peripheral effects of CRF have been overemphasized. We present evidence that: (1) CRF can act at all levels of the neuraxis to produce analgesia; (2) the release of beta-endorphin does not explain the analgesia following intravenous or intracranial CRF administration; (3) inflammation must be present for local CRF to evoke analgesia and (4) the analgesic effects of CRF show specificity for prolonged pain. These findings suggest that CRF may have a significant role in chronic pain syndromes associated with hypothalamic-pituitary-adrenal axis abnormalities. Furthermore, CRF may represent a new class of analgesics that merits further study. Implications for the relationship between stress and pain are discussed.
Collapse
Affiliation(s)
- William R Lariviere
- Department of Psychology, McGill University, 1205 Docteur Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
224
|
CHAPTER X Multiple brain corticotropin-releasing factor receptors and binding protein. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
225
|
Parrott RF, Vellucci SV, Goode JA. Behavioral and hormonal effects of centrally injected "anxiogenic" neuropeptides in growing pigs. Pharmacol Biochem Behav 2000; 65:123-9. [PMID: 10638645 DOI: 10.1016/s0091-3057(99)00134-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Records of behavior (alertness, posture, oro-nasal responses, activity level, and vocalization pattern) were made in prepubertal pigs (n = 6) during a 60-min period following central injections of equimolar (21 nmol) doses of porcine CRH (pCRH), urocortin (UCN), octadecaneuropeptide (ODN), or saline vehicle (SAL). Blood samples were also collected at 15-min intervals before, during, and after the test, and used to determine plasma cortisol, prolactin, and growth hormone concentrations. The pigs became excited and highly active after pCRH, and to a lesser extent following UCN administration, but were subdued when given ODN or SAL. None of the peptides significantly affected prolactin or growth hormone release, but both UCN, and especially pCRH, increased cortisol concentrations. The emotional responses induced by pCRH and UCN are consistent with observations in rodents, which indicate that centrally administered CRH-like peptides have anxiogenic effects. In contrast, ODN, which inhibits benzodiazepine binding at the GABA(A) receptor and is anxiogenic in rodents, lowered plasma cortisol and had no overt behavioral effects. Hence, at the dose administered, there was no evidence to indicate that ODN acted as an anxiogen in this species.
Collapse
Affiliation(s)
- R F Parrott
- MAFF Welfare and Behaviour Laboratory, Department of Neurobiology, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
226
|
Tilders FJ, Schmidt ED, Hoogendijk WJ, Swaab DF, Hoogedijk WJ. Delayed effects of stress and immune activation. BAILLIERE'S BEST PRACTICE & RESEARCH. CLINICAL ENDOCRINOLOGY & METABOLISM 1999; 13:523-40. [PMID: 10903812 DOI: 10.1053/beem.1999.0040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stress responses play a crucial adaptive role but impose potentially subversive demands on the organism. The same holds for the symptoms of illness as seen after immune activation by pathogens or tissue damage. The responses to immune stimuli and stressors show remarkable similarities and rely on similar control mechanisms in the brain: i.e. they involve neuropeptides of the corticotropin releasing factor (CRF) family. Immune and non-immune challenges lead to responses that normally show a temporal relationship with the duration and intensity of the stimulus and the (re)activity of the stress-responsive systems return to their pre-challenged state within hours or days. However, exposure of animals or man to specific stimuli can induce delayed and long-lasting (weeks, months) alternation in stress responsive systems, resulting in a prolonged period of increased stress vulnerability. Immune stimuli are particularly powerful in eliciting such a stress vulnerable state. Various adaptive changes in the (neuro)biological substrate as seen during this stress vulnerable state also occur in depression, and may be causally related to the depressive symptoms that are often associated with infectious and inflammatory diseases.
Collapse
Affiliation(s)
- F J Tilders
- Department of Pharmacology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
227
|
Abstract
Stress has been linked to the pathophysiology and pathogenesis of mood and anxiety disorders. Over the past few years, our understanding of the brain and neuroendocrine circuits that are linked to the stress response have increased dramatically. This article reviews a series of animal and human studies aimed at understanding what are the pathways by which stress is perceived, processed, and transduced into a neuroendocrine response. We focus on the classic stress circuit: the limbic-hypothalamic-pituitary-adrenal (LHPA) axis. These studies indicate that the LHPA stress circuit is a complex system with multiple control mechanisms and that these mechanisms are altered in pathological states, such as chronic stress and depression. These studies also suggest that the interactions between the LHPA and other neurotransmitters, such as serotonin, may provide the neurobiological substrate by which stress may affect mood.
Collapse
Affiliation(s)
- J F López
- Department of Psychiatry, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
228
|
Heinrichs SC, De Souza EB. Corticotropin-releasing factor antagonists, binding-protein and receptors: implications for central nervous system disorders. BAILLIERE'S BEST PRACTICE & RESEARCH. CLINICAL ENDOCRINOLOGY & METABOLISM 1999; 13:541-54. [PMID: 10903813 DOI: 10.1053/beem.1999.0042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Corticotrophin-releasing factor (CRF; interchangeable with corticotrophin-releasing hormone, CRH) is a neurohormone family of peptides which implements endocrine, physiological and behavioural responses to stressor exposure. Built-in biological diversity and selectivity of CRF system function is provided by multiple endogenous ligands and receptors which are heterogeneously distributed in both brain and peripheral tissues across species. At present, there are at least five distinct targets for CRF with unique cDNA sequences, pharmacology and localization. These fall into three distinct classes, encoded by three different genes and have been termed the CRF1 and CRF2 receptors and the CRF-binding protein. Significant gains in knowledge about the physiological role of CRF binding sites in brain have emerged recently due to the proliferation of novel, high-affinity, receptor-selective pharmacological tools as well as multiple knock-out and knock-in mutant mouse models. These results support a role for CRF binding sites in co-ordinating stress reactivity, emotionality and energy balance over the life-span of the organism.
Collapse
Affiliation(s)
- S C Heinrichs
- Boston College, Psychology Department, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
229
|
Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 1999; 46:1509-22. [PMID: 10599479 DOI: 10.1016/s0006-3223(99)00224-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The relative contribution of genetic and environmental factors to the development of the major psychiatric disorders has long been debated. Recently, considerable attention has been given to the observations that adverse experiences early in life predispose individuals to the development of affective and anxiety disorders in adulthood. Corticotropin-releasing factor (CRF) is the central coordinator of the endocrinologic, autonomic, immunologic, and behavioral stress responses. When centrally administered, CRF produces many physiologic and behavioral changes reminiscent of both acute stress and depression. Moreover, CRF has also been implicated in the pathogenesis of a variety of anxiety disorders, mainly through CRF neurocircuits connecting the amygdala and the locus ceruleus. Clinical studies have provided convincing evidence for central CRF hypersecretion in depression, and, to a lesser extent, in some anxiety disorders. Evidence mainly from preclinical studies suggests that stress early in life results in persistent central CRF hyperactivity and increased stress reactivity in adulthood. Thus, genetic disposition coupled with early stress in critical phases of development may result in a phenotype that is neurobiologically vulnerable to stress and may lower an individual's threshold for developing depression and anxiety upon further stress exposure. This pathophysiologic model may provide novel approaches to the prevention and treatment of psychopathology associated with stress early in life.
Collapse
Affiliation(s)
- C Heim
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
230
|
Jezova D, Ochedalski T, Glickman M, Kiss A, Aguilera G. Central corticotropin-releasing hormone receptors modulate hypothalamic-pituitary-adrenocortical and sympathoadrenal activity during stress. Neuroscience 1999; 94:797-802. [PMID: 10579570 DOI: 10.1016/s0306-4522(99)00333-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of brain corticotropin-releasing hormone receptors in modulating hypothalamic-pituitary-adrenal and sympathoadrenal responses to acute immobilization stress was studied in conscious rats under central corticotropin-releasing hormone receptor blockade by intracerebroventricular injection of a peptide corticotropin-releasing hormone receptor antagonist. Blood for catecholamines, adrenocorticotropic hormone and corticosterone levels was collected through vascular catheters, and brains were removed at 3 h for in situ hybridization for tyrosine hydroxylase messenger RNA in the locus coeruleus, and corticotropin-releasing hormone and corticotropin-releasing hormone receptor messenger RNA in the hypothalamic paraventricular nucleus. Central corticotropin-releasing hormone receptor blockade reduced the early increases in plasma epinephrine and dopamine, but not norepinephrine, during stress. Immobilization stress increased tyrosine hydroxylase messenger RNA levels in the locus coeruleus by 36% in controls, but not in corticotropin-releasing hormone antagonist-injected rats. In control rats, corticotropin-releasing hormone messenger RNA and type 1 corticotropin-releasing hormone receptor messenger RNA in the paraventricular nucleus increased after stress (P<0.01), and these responses were attenuated by central corticotropin-releasing hormone receptor blockade. In contrast, central corticotropin-releasing hormone antagonist potentiated plasma adrenocorticotropic hormone responses, but slightly attenuated plasma corticosterone responses to stress. The inhibition of plasma catecholamine and locus coeruleus tyrosine hydroxylase messenger RNA responses to stress by central corticotropin-releasing hormone receptor blockade supports the notion that central corticotropin-releasing hormone regulates sympathoadrenal responses during stress. The attenuation of stress-induced corticotropin-releasing hormone and corticotropin-releasing hormone receptor messenger RNA responses by central corticotropin-releasing hormone receptor blockade suggests direct or indirect positive feedback effects of corticotropin-releasing hormone receptor ligands on corticotropin-releasing hormone expression, whereas additional mechanisms potentiate adrenocorticotropic hormone responses at the pituitary level. In addition, changes in neural activity by central corticotropin-releasing hormone are likely to modulate adrenocortical responsiveness during stress.
Collapse
Affiliation(s)
- D Jezova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava
| | | | | | | | | |
Collapse
|
231
|
Abstract
Following a search lasting nearly three decades, corticotropin-releasing factor (CRF), a 41 amino acid-containing peptide, was isolated and characterised in 1981. In the preceding 18 years, a concatenation was developed that appears to show that CRF integrates not only the endocrine, but also the autonomic, immunologic and behavioural responses of mammalian organisms to stress. Direct CNS administration of CRF to laboratory animals produces actions similar to those observed after exposure to stress. Moreover, CNS administration of peptidergic CRF antagonists blocks many of the behavioural responses to stress. Since both early untoward life events as well as recently experienced stress have been implicated in the pathophysiology of affective disorders, and because there is substantial evidence for CRF neuronal hyperactivity in patients with affective disorders, small molecule, lipophilic CRF antagonists have been hypothesised to possess antidepressant and/or anxiolytic activity. Within the last few years, a number of pharmaceutical companies have developed selective, small molecule CRF(1) receptor antagonists. These compounds block the effects of CRF both in vitro and in vivo. There is also evidence that these agents possess anxiolytic and antidepressant activity in animal behavioural models. Compounds that act upon the CRF system have been hypothesised to be of value not only for certain psychiatric disorders, but also in neurodegenerative and inflammatory disorders. Some of these CRF(1) receptor antagonists are currently undergoing clinical trials to determine their efficacy and tolerability in patients with mood and anxiety disorders.
Collapse
|
232
|
Heinrichs SC, Richard D. The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 1999; 33:350-9. [PMID: 10657512 DOI: 10.1054/npep.1999.0047] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Participation of the hypothalamo-pituitary-adrenocortical axis, and its primary brain trigger, corticotropin-releasing factor (CRF) in the control of ingestive behavior can be inferred from data suggesting that CRF and its homologue urocortin act in brain to limit appetite following administration in rodents. Moreover, levels of endogenous CRF, CRF(1)and CRF(2)receptors and CRF-binding protein, which sequesters CRF and urocortin, are altered by changes in nutritional status brought about by food restriction/repletion. Mediation of the anorexic effects of CRF and urocortin appear not to privilege CRF(1)receptors, unlike the anxiogenic effects of CRF which are primarily a consequence of CRF(1)receptor activation. Such fear-like consequences of CRF system activation constitute a non-specific mechanism whereby the emergence of behaviors incompatible with food intake may appear to suppress appetite without affecting hunger per se. However, enhanced appetite following administration of CRF receptor antagonists and the involvement of CRF systems in sexual appetite and drug-seeking behavior all suggest a role for CRF in ingestive behavior. In particular, available evidence suggests that physiologically relevant suppression of appetite may accompany CRF system activation occurring as a consequence of stressor exposure induced by nutrient imbalance, for example, or under conditions of excessive intake or consumption of unfamiliar foodstuffs.
Collapse
Affiliation(s)
- S C Heinrichs
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA.
| | | |
Collapse
|
233
|
Karolyi IJ, Burrows HL, Ramesh TM, Nakajima M, Lesh JS, Seong E, Camper SA, Seasholtz AF. Altered anxiety and weight gain in corticotropin-releasing hormone-binding protein-deficient mice. Proc Natl Acad Sci U S A 1999; 96:11595-600. [PMID: 10500222 PMCID: PMC18079 DOI: 10.1073/pnas.96.20.11595] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) is widely recognized as the primary mediator of the neuroendocrine and behavioral responses to stress, including stress-induced anxiety. The biological activity of CRH and other mammalian CRH-like peptides, such as urocortin, may be modulated by CRH-binding protein (CRH-BP). To assess directly the CRH-BP function, we created a mouse model of CRH-BP deficiency by gene targeting. Basal adrenocorticotropic hormone and corticosterone levels are unchanged in the CRH-BP-deficient mice, and the animals demonstrate a normal increase in adrenocorticotropic hormone and corticosterone after restraint stress. In contrast, adult male CRH-BP-deficient mice show significantly reduced body weight when compared with wild-type controls. CRH-BP-deficient mice also exhibit a significant increase in anxiogenic-like behavior as assessed by the elevated plus maze and defensive withdrawal tests. The increased anorectic and anxiogenic-like behavior most likely is caused by increased "free" CRH and/or urocortin levels in the brain of CRH-BP-deficient animals, suggesting an important role for CRH-BP in maintaining appropriate levels of these peptides in the central nervous system.
Collapse
Affiliation(s)
- I J Karolyi
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | | | | | | | |
Collapse
|
234
|
McClennen SJ, Seasholtz AF. Transcriptional regulation of corticotropin-releasing hormone-binding protein gene expression in astrocyte cultures. Endocrinology 1999; 140:4095-103. [PMID: 10465281 DOI: 10.1210/endo.140.9.6978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular mechanisms involved in regulation of CRH-binding protein (CRH-BP) gene expression were examined using primary rat astrocyte cultures. The cells were treated with various regulators, and CRH-BP messenger RNA (mRNA) levels were determined using ribonuclease protection assays. Forskolin (Fsk, 10 microM) or 12-O-tetradecanoyl-phorbol 13-acetate (TPA, 100 nM) increases CRH-BP mRNA levels up to 30 times control level, and together they act synergistically to increase CRH-BP gene expression up to 100 times control levels. CRH can also positively regulate CRH-BP gene expression to 6.1 times control levels. All of these increases in steady-state CRH-BP mRNA levels can be repressed by dexamethasone, a synthetic glucocorticoid. To determine whether these changes in steady-state CRH-BP mRNA levels are caused by altered transcription or RNA stability, heteronuclear (hn) CRH-BP species were examined using ribonuclease protection assays. CRH-BP hnRNA transcripts can be detected transiently after the addition of Fsk or TPA, and dexamethasone can repress Fsk- or TPA-induced CRH-BP hnRNA levels in this assay. These results demonstrate that CRH, glucocorticoids, and the protein kinase A and protein kinase C signaling pathways are involved in regulation of CRH-BP gene expression in astrocyte cultures, and that this regulation is caused, at least in part, by altered transcription of the gene.
Collapse
Affiliation(s)
- S J McClennen
- Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
235
|
Smart D, Coppell A, Rossant C, Hall M, McKnight AT. Characterisation using microphysiometry of CRF receptor pharmacology. Eur J Pharmacol 1999; 379:229-35. [PMID: 10497910 DOI: 10.1016/s0014-2999(99)00506-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have assessed the utility of the Cytosensor microphysiometer for studying the pharmacology of recombinant CRF receptors. Chinese hamster ovary cells stably expressing the human CRF1 or CRF2 receptor were perfused in the Cytosensor with bicarbonate-free Hams F12 (pH 7.4) containing 0.2% bovine serum albumin. The rank order of potencies of agonist peptides were CRF = sauvagine = urocortin = urotensin at CRF1 (pEC50 values 11.16 +/- 0.17, 11.37 +/- 0.14, 11.43 +/- 0.09 and 11.46 +/- 0.13; n = 4), and urocortin = sauvagine > urotensin > CRF at CRF2 (pEC50 values 10.88 +/- 0.12, 10.44 +/- 0.05, 9.36 +/- 0.12 and 8.53 +/- 0.07; n = 7-9). alpha-Helical CRF (9-41) was a competitive antagonist at the CRF2 receptor (pK(B) = 6.99 +/- 0.08, n = 4), but was a partial agonist at the CRF1 receptor (pEC50 = 6.85 +/- 0.08, Emax = 33%, n = 3). CP 154,526 was a competitive antagonist at the CRF1 receptor (pK(B) = 8.17 +/- 0.05, n = 6), but was inactive at the CRF2 receptor. These data are consistent with established CRF receptor pharmacology and show that the Cytosensor is a viable method for assessing the functional activity of CRF-receptor agonists and antagonists.
Collapse
Affiliation(s)
- D Smart
- Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, UK.
| | | | | | | | | |
Collapse
|
236
|
Rubin DA, Hellman P, Zon LI, Lobb CJ, Bergwitz C, Jüppner H. A G protein-coupled receptor from zebrafish is activated by human parathyroid hormone and not by human or teleost parathyroid hormone-related peptide. Implications for the evolutionary conservation of calcium-regulating peptide hormones. J Biol Chem 1999; 274:23035-42. [PMID: 10438471 DOI: 10.1074/jbc.274.33.23035] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic and cDNA clones encoding portions of a putative catfish parathyroid hormone (PTH) 2 receptor (PTH2R) led to the isolation of a cDNA encoding a full-length zebrafish PTH2R (zPTH2R). The zPTH2R shared 63 and 60% amino acid sequence identity with human and rat PTH2Rs, respectively, 47-52% identity with mammalian and frog PTH/PTHrP receptors (PTH1R), and less than 37% with other members of this family of G protein-coupled receptors. COS-7 cells expressing zPTH2R(43), a 5' splice variant that lacked 17 amino acids in the amino-terminal extracellular domain, showed cAMP accumulation when challenged with [Tyr(34)]hPTH(1-34)-amide (hPTH) (EC(50), 1.64 +/- 0. 95 nM) and [Ile(5),Trp(23),Tyr(36)]hPTHrP-(1-36)-amide ([Ile(5), Trp(23)]hPTHrP) (EC(50), 46.8 +/- 12.1 nM) but not when stimulated with [Tyr(36)]hPTHrP-(1-36)-amide (hPTHrP), [Trp(23), Tyr(36)]hPTHrP-(1-36)-amide ([Trp(23)]hPTHrP), or [Ala(29),Glu(30), Ala(34),Glu(35),Tyr(36)]fugufish PTHrP-(1-36)amide (fuguPTHrP). FuguPTHrP also failed to activate the human PTH2R but had similar efficiency and efficacy as hPTH and hPTHrP when tested with cells expressing the human PTH1R. Agonist-dependent activation of zPTH2R was less efficient than that of zPTH2R(43), and both receptor variants showed no cAMP accumulation when stimulated with either secretin, growth hormone-releasing hormone, or calcitonin. The zPTH2R thus has ligand specificity similar to that of the human homolog, which raises the possibility that a PTH-like molecule exists in zebrafish, species which lack parathyroid glands.
Collapse
Affiliation(s)
- D A Rubin
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
237
|
Tilders FJ, Schmidt ED. Cross-sensitization between immune and non-immune stressors. A role in the etiology of depression? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 461:179-97. [PMID: 10442174 DOI: 10.1007/978-0-585-37970-8_11] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- F J Tilders
- Institute Neurosciences Vrije Universiteit Faculty of Medicine Department of Pharmacology, Amsterdam, The Netherlands
| | | |
Collapse
|
238
|
Dautzenberg FM, Kilpatrick GJ, Wille S, Hauger RL. The ligand-selective domains of corticotropin-releasing factor type 1 and type 2 receptor reside in different extracellular domains: generation of chimeric receptors with a novel ligand-selective profile. J Neurochem 1999; 73:821-9. [PMID: 10428081 DOI: 10.1046/j.1471-4159.1999.0730821.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nonselective human corticotropin-releasing factor (hCRF) receptor 1 (hCRFR1) and the ligand-selective Xenopus CRFR1 (xCRFR1), xCRFR2, and hCRFR2alpha were compared. To understand the interactions of hCRF, ovine CRF (oCRF), rat urocortin (rUcn), and sauvagine, ligands with different affinities for type 1 and type 2 CRFRs, chimeric and mutant receptors of hCRFR1, xCRFR1, hCRFR2alpha, and xCRFR2 were constructed. In cyclic AMP stimulation and CRF-binding assays, it was established that different extracellular regions of CRFR1 and CRFR2 conferred their ligand selectivities. The ligand selectivity of xCRFR1 resided in five N-terminal amino acids, whereas the N-terminus of both CRFR2 proteins did not contribute to their ligand selectivities. Chimeric receptors in which the first extracellular domain of hCRFR1 replaced that of hCRFR2alpha or xCRFR2 showed a similar pharmacological profile to the two parental CRFR2 molecules. Chimeric receptors carrying the N-terminal domain of xCRFR1 linked to hCRFR2alpha or xCRFR2 displayed a novel pharmacological profile. hCRF, rUcn, and sauvagine were bound with high affinity, whereas oCRF was bound with low affinity. Furthermore, when three or five residues of xCRFR1 (Gln76, Gly81, Val83, His88, Leu89; or Gln76, Gly81, Val83) were introduced into receptor chimeras carrying the N-terminus of hCRFR1 linked to xCRFR2, the same novel pharmacology was observed. These data indicate a compensation mechanism of two differentially selecting regions located in different domains of both xCRFR1 and CRFR2.
Collapse
Affiliation(s)
- F M Dautzenberg
- Preclinical Research, Pharma Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | |
Collapse
|
239
|
S�nchez MM, Young LJ, Plotsky PM, Insel TR. Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990607)408:3<365::aid-cne5>3.0.co;2-n] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
240
|
Jones DN, Kortekaas R, Hatcher PD, Middlemiss DN, White A, Hagan JJ. Influence of peptide CRF receptor antagonists upon the behavioural effects of human/rat CRF. Eur J Pharmacol 1999; 373:141-5. [PMID: 10414432 DOI: 10.1016/s0014-2999(99)00287-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of the corticotropin-releasing factor (CRF) receptor antagonists, alpha-helical CRF-(9-41), [D-Phe12,Nle21,38, CalphaMe-Leu37]humanCRF-(12-41) (D-PheCRF-(12-41)) and astressin ([cyclo(30-33)[D-Phe12,Nle21,38,Glu30,Lys33]h umanCRF-(12-41) upon hypophagic and motor activation response to human/ratCRF (h/rCRF) were investigated. All three antagonists (100 microg intracerebroventricular (i.c.v.)) blocked the effects of h/rCRF (1 microg i.c.v.) upon food intake and body weight change in food-deprived rats. In contrast, alpha-helical CRF-(9-41) and astressin (both at 100 microg i.c.v., but not lower doses), but not D-PheCRF-(12-41) (up to 100 microg i.c.v.), blocked h/rCRF (0.3 microg i.c.v.)-induced motor activation in rats in a familiar environment. The ability of D-PheCRF-(12-41) to block CRF-induced hypophagia, but not motor activation, suggests a selective action of this antagonist upon the behavioural effects of centrally administered h/rCRF.
Collapse
Affiliation(s)
- D N Jones
- Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Harlow, Essex, UK.
| | | | | | | | | | | |
Collapse
|
241
|
Valentino RJ, Miselis RR, Pavcovich LA. Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 1999; 20:253-60. [PMID: 10366869 DOI: 10.1016/s0165-6147(99)01332-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pathophysiology and pharmacological targets of disorders of the bladder and colon have focused predominantly on the periphery. However, these viscera are regulated by the CNS, which, in turn, must integrate their functions with compatible behaviours. This review focuses on the role of the pontine micturition centre, Barrington's nucleus, as a key to this integration. Through its efferent network this pontine centre links parasympathetic preganglionic neurones with forebrain-projecting nuclei, providing an anatomical substrate for coregulation of pelvic visceral and forebrain activity. Disorders characterized by multiple pelvic visceral symptoms and comorbidity with psychiatric disorders (for example functional bowel disorders) might have their roots in dysfunctions of this circuit, which could provide a novel target for pharmacological treatment.
Collapse
Affiliation(s)
- R J Valentino
- Department of Psychiatry, Medical College of Pennsylvania and Hahnemann University, Broad and Vine Sts, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
242
|
Aubry JM, Pozzoli G, Vale WW. Chronic treatment with the antidepressant amitriptyline decreases CRF-R1 receptor mRNA levels in the rat amygdala. Neurosci Lett 1999; 266:197-200. [PMID: 10465707 DOI: 10.1016/s0304-3940(99)00295-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using semi-quantitative in situ hybridization, corticotropin-releasing factor (CRF) and CRF receptor 1 (CRF-R1) mRNA levels were determined in the rat hypothalamus and amygdala after short-term (10 days) and chronic (4 weeks) treatment with the antidepressant amitriptyline. We found that chronic treatment with amitriptyline produced a significant decrease in CRF mRNA (to 33% of control) in the hypothalamic paraventricular nucleus (PVN). Short-term or chronic amitriptyline treatment had no effect on CRF-R1 mRNA levels in the PVN. However, after chronic treatment, there was a significant decrease of CRF-R1 mRNA levels in the lateral + basolateral (to 60% of control), and in the medial (to 70% of control) amygdala nuclei. These results suggest that the tricyclic antidepressant amitriptyline may exert part of its effects through modulation of hypothalamic CRF and of CRF-R1 gene expression in the amygdala.
Collapse
Affiliation(s)
- J M Aubry
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
243
|
Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999; 33:181-214. [PMID: 10367986 DOI: 10.1016/s0022-3956(98)90056-5] [Citation(s) in RCA: 509] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroendocrine studies strongly suggest that dysregulation of the hypothalamic pituitary-adrenocortical (HPA) system plays a causal role in the development and course of depression. Whereas the initial mechanism resulting in HPA hyperdrive remains to be elucidated, evidence has emerged that corticosteroid receptor function is impaired in many patients with depression and in many healthy individuals at increased genetic risk for an depressive disorder. Assuming such impaired receptor function, then central secretion of CRH would be enhanced in many brain areas, which would account for a variety of depressive symptoms. As shown in rats and also in transgenic mice with impaired glucocorticoid receptor function, antidepressants enhance the signaling through corticosteroid receptors. This mechanism of action can be amplified through blocking central mechanisms that drive the HPA system. Animal experiments using antisense oligodeoxynucleotides directed against the mRNA of both CRH receptor subtypes identified the CRH1 receptor as the mediator of the anxiogenic effects of CRH. Studies in mouse mutants in which this receptor subtype had been deleted extended these findings as the animals were less anxious than wild-type mice when experimentally stressed. Thus, patients with clinical conditions that are causally related to HPA hyperactivity may profit from treatment with a CRH1 receptor antagonist.
Collapse
Affiliation(s)
- F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
244
|
Cocuzza AJ, Hobbs FW, Arnold CR, Chidester DR, Yarem JA, Culp S, Fitzgerald L, Gilligan PJ. 4-Aryl-2-anilinopyrimidines as corticotropin-releasing hormone (CRH) antagonists. Bioorg Med Chem Lett 1999; 9:1057-62. [PMID: 10230640 DOI: 10.1016/s0960-894x(99)00132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of 4-aryl-2-(N-ethylanilino)pyrimidines has been synthesized as corticotropin-releasing hormone (CRH) inhibitors. The effect of substitution on each aromatic ring on receptor binding was investigated.
Collapse
Affiliation(s)
- A J Cocuzza
- DuPont Pharmaceuticals Company, Chemical and Physical Sciences Department, Experimental Station, Wilmington, DE 19880-0500, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Nozu T, Martinez V, Rivier J, Taché Y. Peripheral urocortin delays gastric emptying: role of CRF receptor 2. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G867-74. [PMID: 10198329 DOI: 10.1152/ajpgi.1999.276.4.g867] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Urocortin, a new mammalian member of the corticotropin-releasing factor (CRF) family has been proposed to be the endogenous ligand for CRF receptor 2 (CRF-R2). We studied the influence of intravenous urocortin on gastric emptying and the role of CRF-R2 in peptide action and postoperative gastric ileus in conscious rats. The intravenous doses of rat CRF and rat urocortin producing 50% inhibition of gastric emptying were 2.5 and 1.1 microgram/kg, respectively. At these intravenous doses, CRF and urocortin have their actions fully reversed by the CRF-R1/CRF-R2 antagonist astressin at antagonist/agonist ratios of 5:1 and 67:1, respectively. Astressin (12 microgram/kg iv) completely prevented abdominal surgery-induced 54% inhibition of gastric emptying 3 h after surgery while having no effect on basal gastric emptying. The selective nonpeptide CRF-R1 antagonists antalarmin (20 mg/kg ip) and NBI-27914 (400 microgram/kg iv) did not influence intravenous CRF-, urocortin- or surgery-induced gastric stasis. These results as well as earlier ones showing that alpha-helical CRF9-41 (a CRF-R2 more selective antagonist) partly prevented postoperative ileus indicate that peripheral CRF-R2 may be primarily involved in intravenous urocortin-, CRF-, and abdominal surgery-induced gastric stasis.
Collapse
Affiliation(s)
- T Nozu
- CURE: Digestive Diseases Research Center, West Los Angeles Veterans Affairs Medical Center, Department of Medicine, Los Angeles 90073
| | | | | | | |
Collapse
|
246
|
Abstract
Corticotropin-releasing hormone (CRH), the major regulator of hypothalamic-pituitary-adrenal (HPA) axis, was first isolated due to its ability to stimulate the release of adrenocorticotropic hormone from the anterior pituitary. Later, it was also found to have also a wide spectrum of actions within the central nervous system and the periphery. Studies with pharmacological administration of this peptide and/or antagonists and antibody neutralization techniques have yielded important information concerning the physiological relevance of CRH. The development of CRH knockout mice (CRH KO) has been an important tool for addressing the physiologic and pathologic roles of CRH. This review describes the phenotype of CRH-deficient mice, as well as the use of this model to study the roles of CRH on fetal development and postnatal life. The role of CRH in prenatal development and postnatal regulation of the HPA axis, in activation of the reproductive system during stress, and in modulation of the immune function will be discussed. The review concludes with a comparison of CRH KO mice with other models of CRH deficiency.
Collapse
Affiliation(s)
- M Venihaki
- Division of Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
247
|
Arvanitis AG, Gilligan PJ, Chorvat RJ, Cheeseman RS, Christos TE, Bakthavatchalam R, Beck JP, Cocuzza AJ, Hobbs FW, Wilde RG, Arnold C, Chidester D, Curry M, He L, Hollis A, Klaczkiewicz J, Krenitsky PJ, Rescinito JP, Scholfield E, Culp S, De Souza EB, Fitzgerald L, Grigoriadis D, Tam SW, Shen HL. Non-peptide corticotropin-releasing hormone antagonists: syntheses and structure-activity relationships of 2-anilinopyrimidines and -triazines. J Med Chem 1999; 42:805-18. [PMID: 10072679 DOI: 10.1021/jm980222w] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening of our chemical library using a rat corticotropin-releasing hormone (CRH) receptor assay led to the discovery that 2-anilinopyrimidine 15-1 weakly displaced [125I]-0-Tyr-oCRH from rat frontal cortex homogenates when compared to the known peptide antagonist alpha-helical CRH(9-41) (Ki = 5700 nM vs 1 nM). Furthermore, 15-1 weakly inhibited CRH-stimulated adenylate cyclase activity in the same tissue, but it was less potent than alpha-helical CRH(9-41) (IC50 = 20 000 nM vs 250 nM). Systematic structure-activity relationship studies, using the cloned human CRH1 receptor assay, defined the pharmacophore for optimal binding to hCRH1 receptors. Several high-affinity 2-anilinopyrimidines and -triazines were discovered, some of which had superior pharmacokinetic profiles in the rat. This paper describes the structure-activity studies which improved hCRH1 receptor binding affinity and pharmacokinetic parameters in the rat. Compound 28-17 (mean hCRH1 Ki = 32 nM) had a significantly improved pharmacokinetic profile in the rat (19% oral bioavailability at 30 mg/kg) as well as in the dog (20% oral bioavailability at 5 mg/kg) relative to the early lead structures.
Collapse
Affiliation(s)
- A G Arvanitis
- Department of Chemical and Physical Sciences, DuPont Pharmaceuticals Company, Experimental Station, P.O. Box 80500, Wilmington, Delaware 19880-0500, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Darlison MG, Richter D. Multiple genes for neuropeptides and their receptors: co-evolution and physiology. Trends Neurosci 1999; 22:81-8. [PMID: 10092048 DOI: 10.1016/s0166-2236(98)01333-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is now well established that neuropeptide receptors, which are present throughout the CNS and in peripheral tissues, frequently exist in a variety of different forms (called subtypes), each of which is encoded by a distinct gene. With the recent identification of new neuropeptide genes, it has become clear that families of neuropeptides also occur, which raises the possibility that specific peptide ligands activate particular receptor subtypes preferentially. This article reviews some of the recent advances in the neuropeptide field and provides evidence in support of three ideas: (1) that different receptor subtypes for a given ligand can be distinguished physiologically; (2) that neuropeptide genes probably arose before the corresponding receptor genes; and (3) that, despite the current wealth of information on neuropeptides and neuropeptide receptors, several new members are likely to be discovered before the beginning of the next millennium.
Collapse
Affiliation(s)
- M G Darlison
- Institut für Zellbiochemie und Klinische Neurobiologie, Universitäts-klinikum Hamburg-Eppendorf Universität Hamburg, Germany
| | | |
Collapse
|
249
|
Chapter 2. Recent Progress in Corticotropin-Releasing Factor Receptor Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s0065-7743(08)60564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
250
|
Di Paolo E, Vilardaga JP, Petry H, Moguilevsky N, Bollen A, Robberecht P, Waelbroeck M. Role of charged amino acids conserved in the vasoactive intestinal polypeptide/secretin family of receptors on the secretin receptor functionality. Peptides 1999; 20:1187-93. [PMID: 10573290 DOI: 10.1016/s0196-9781(99)00122-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The secretin receptor is a member of a large family of G-protein-coupled receptors that recognize polypeptide hormone and/or neuropeptides. Charged, conserved residues might play a key role in their function, either by interacting with the ligand or by stabilizing the receptor structure. Of the four charged amino acids that are conserved in the whole secretin receptor family, D49 and R83 (in the N-terminal domain) were probably important for the secretin receptor structure: replacement of D49 by H or R and of R83 by D severely reduced both the maximal response to secretin and its potency. No functional secretin receptor could be detected after replacement of R83 by L. Mutation of D49 to E, A, or N had no effect or reduced 5-fold the potency of secretin. The highly conserved positive charges found at the extracellular ends of TM III (K194) and IV (R255) were important for the secretin receptor function, as K194 mutation to A or Q and R255 mutation to Q or D decreased the secretin's affinity 15- to 1000-fold, respectively. Six extracellular charged residues are conserved in closely related receptors but not in the whole family. K121 (TM I) and R277 (TM V) were not important for functional secretin receptor expression. D174 (TM II) was necessary to stabilize the active receptor structure: the D174N mutant receptors were unable to stimulate normally the adenylate cyclase in response to secretin, and functional D174A receptors could not be found. Mutation of R255, E259 (second extracellular loop), and E351 (third extracellular loop) to uncharged residues reduced only 10- to 100-fold the secretin potency without changing its efficacy: these residues either stabilized the active receptor conformation or formed hydrogen rather than ionic bonds with secretin. Mutation of K121 (TM I) to Q or L and of R277 (TM V) to E or Q did not affect the receptor functional properties.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Amino Acid Sequence
- Amino Acids/physiology
- Animals
- CHO Cells
- Conserved Sequence
- Cricetinae
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Secondary
- Rats
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/physiology
- Secretin/metabolism
Collapse
Affiliation(s)
- E Di Paolo
- Department of Biochemistry and Nutrition, Faculty of Medicine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|