201
|
Mena-Gutiérrez S, Maiza-Razkin E, Pascual-Colino J, Araúzo-Bravo MJ, Beobide G, Castillo O, Castellanos-Rubio A, Gerovska D, Luque A, Pérez-Yáñez S. Drug-delivery and biological activity in colorectal cancer of a supramolecular porous material assembled from heptameric chromium-copper-adenine entities. J Mater Chem B 2024; 12:11156-11164. [PMID: 39376154 DOI: 10.1039/d4tb01521e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The therapeutic application of drugs often faces challenges due to non-specific distribution, inadequate dosification and degradation, which limits their efficacy. Two primary strategies are employed to overcome these issues: the use of derivatives of the active substances and incorporation of those into porous materials. The latter, involving materials such as zeolites, metal-organic frameworks (MOFs), and hydrogels, has shown promising results in protecting the active ingredients from degradation and enabling a controlled release. This study focuses on supramolecular metal-organic frameworks (SMOFs), which leverage supramolecular interactions for enhanced pore size control. [Cu6Cr(μ-adeninato-κN3:κN9)6(μ3-OH)6(μ-OH2)6](SO4)1.5·nH2O (Cu6Cr) was chosen for its flexible porous structure, water-stability, and paramagnetic properties. Magnetic sustentation studies showed that this compound was able to capture several drug molecules: 5-fluorouracil (5-FU), 5-aminosalicylic acid (5-ASA), 4-aminosalicylic acid (4-ASA) and theophylline (THEO). Their release follows a pseudo-first-order kinetics with desorption half-lives ranging from 2.2 to 4.7 hours. In this sense, a novel approach is proposed using bulkier raffinose and cholesterol as pore-blocking molecules. Cholesterol exhibited the best performance as a blocking molecule increasing the desorption half-life up to 8.2 hours. Cytotoxicity and RNA-seq transcriptomic assays carried out on human colorectal cancer cell cultures showed, on one hand, that the Cu6Cr porous material exhibits a proliferative effect, probably coming from the over-expression of MIR1248 and SUMO2 genes, and on the other hand, that there is a delay in the emergence of the cytotoxicity of 5-FU as expected for a slower release.
Collapse
Affiliation(s)
- Sandra Mena-Gutiérrez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
| | - Ekain Maiza-Razkin
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
| | - Jon Pascual-Colino
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Marcos J Araúzo-Bravo
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Spain
| | - Garikoitz Beobide
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Oscar Castillo
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
- Biobizkaia Research Institute, E-480903 Barakaldo, Bizkaia, Spain
- Departamento de Genetica, Antropologia Fisica y Fisiologia Animal, UPV-EHU, E-48940 Leioa, Bizkaia, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain
| | - Antonio Luque
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Sonia Pérez-Yáñez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| |
Collapse
|
202
|
Elia N, Prinelli F, Peli V, Conti S, Barilani M, Mei C, Castaldi S, Lazzari L. Public attitudes toward the use of human induced pluripotent stem cells: insights from an Italian adult population. Front Public Health 2024; 12:1491257. [PMID: 39568604 PMCID: PMC11576450 DOI: 10.3389/fpubh.2024.1491257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs), derived from reprogrammed adult somatic cells, hold significant promise for disease modelling, personalized medicine, drug discovery, and regenerative therapies. Public awareness and understanding of hiPSCs are crucial for advancing research in this field. However, limited data exists on the general population's knowledge and attitudes toward their use. Methods This study aimed to assess the awareness and perceptions of hiPSCs among Italian adults through a web-based survey conducted via the EUSurvey platform, using a snowball sampling approach. The survey included demographic information and mandatory questions on knowledge, awareness, and concerns regarding hiPSC technology, with responses collected on a 3-point scale. Statistical analysis was performed using chi-squared tests, with significance set at p ≤ 0.05. Results Out of 1874 respondents, the majority were aged 18-35 years (40.5%), female (63.4%), and university-educated (67.2%). Among those familiar with hiPSCs (54.1%, n = 1,201), 95.3% expressed willingness to donate blood samples for hiPSC generation to treat individuals with incurable diseases. Concerns about current research and therapeutic applications were low (less than 20%), but nearly half of the respondents were hesitant or opposed to the use of hiPSCs in animal experiments and their commercialization by pharmaceutical companies. Increased skepticism was observed in older, less educated, religious individuals, and those who were not blood donors. Overall, the Italian public shows strong support for hiPSC-based therapies, though reservations exist around specific ethical and economic issues. Discussion These findings underscore the importance of addressing public concerns through targeted educational campaigns, not only in Italy but globally, to foster a more informed and supportive environment for advancing stem cell research and its clinical applications worldwide. Similar studies have been conducted in Japan, the United States, and Sweden, but there remains a need for all countries to engage with their citizens to better understand how stem cell research is perceived locally. Such engagement is crucial for guiding international strategies in personalized medicine and regenerative therapies, ensuring that emerging technologies are met with both ethical integrity and public trust.
Collapse
Affiliation(s)
- Noemi Elia
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Prinelli
- Epidemiology and Public Health Unit, Institute of Biomedical Technologies - National Research Council, Segrate (MI), Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Conti
- Epidemiology and Public Health Unit, Institute of Biomedical Technologies - National Research Council, Segrate (MI), Italy
| | - Mario Barilani
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Mei
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvana Castaldi
- Quality Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
203
|
Wang S, Yang JG, Rong K, Li HH, Wu C, Tang W. Structure-Tissue Exposure/Selectivity Relationship (STR) on Carbamates of Cannabidiol. Int J Mol Sci 2024; 25:11888. [PMID: 39595958 PMCID: PMC11593952 DOI: 10.3390/ijms252211888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The structure-tissue exposure/selectivity relationship (STR) aids in lead optimization to improve drug candidate selection and balance clinical dose, efficacy, and toxicity. In this work, butyrocholinesterase (BuChE)-targeted cannabidiol (CBD) carbamates were used to study the STR in correlation with observed efficacy/toxicity. CBD carbamates with similar structures and same molecular target showed similar/different pharmacokinetics. L2 and L4 had almost same plasma exposure, which was not correlated with their exposure in the brain, while tissue exposure/selectivity was correlated with efficacy/safety. Structural modifications of CBD carbamates not only changed drug plasma exposure, but also altered drug tissue exposure/selectivity. The secondary amine of carbamate can be metabolized into CBD, while the tertiary amine is more stable. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters can be used to predict STR. Therefore, STR can alter drug tissue exposure/selectivity in normal tissues, impacting efficacy/toxicity. The drug optimization process should balance the structure-activity relationship (SAR) and STR of drug candidates for improving clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjian Tang
- Center for Scientific Research, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (S.W.); (J.-G.Y.); (K.R.); (H.-H.L.); (C.W.)
| |
Collapse
|
204
|
Jacob M, Reddy RP, Garcia RI, Reddy AP, Khemka S, Roghani AK, Pattoor V, Sehar U, Reddy PH. Harnessing Artificial Intelligence for the Detection and Management of Colorectal Cancer Treatment. Cancer Prev Res (Phila) 2024; 17:499-515. [PMID: 39077801 PMCID: PMC11534518 DOI: 10.1158/1940-6207.capr-24-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Currently, eight million people in the United States suffer from cancer and it is a major global health concern. Early detection and interventions are urgently needed for all cancers, including colorectal cancer. Colorectal cancer is the third most common type of cancer worldwide. Based on the diagnostic efforts to general awareness and lifestyle choices, it is understandable why colorectal cancer is so prevalent today. There is a notable lack of awareness concerning the impact of this cancer and its connection to lifestyle elements, as well as people sometimes mistaking symptoms for a different gastrointestinal condition. Artificial intelligence (AI) may assist in the early detection of all cancers, including colorectal cancer. The usage of AI has exponentially grown in healthcare through extensive research, and since clinical implementation, it has succeeded in improving patient lifestyles, modernizing diagnostic processes, and innovating current treatment strategies. Numerous challenges arise for patients with colorectal cancer and oncologists alike during treatment. For initial screening phases, conventional methods often result in misdiagnosis. Moreover, after detection, determining the course of which colorectal cancer can sometimes contribute to treatment delays. This article touches on recent advancements in AI and its clinical application while shedding light on why this disease is so common today.
Collapse
Affiliation(s)
- Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Ricardo I Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aananya P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Frenship High School, Lubbock, Texas
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- University of South Florida, Tampa, Florida
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
205
|
Manders EA, van den Berg S, de Visser SJ, Hollak CEM. Drug pricing models, no 'one-size-fits-all' approach: a systematic review and critical evaluation of pricing models in an evolving pharmaceutical landscape. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024:10.1007/s10198-024-01731-w. [PMID: 39495345 DOI: 10.1007/s10198-024-01731-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Access to new medicines is crucial for patients but increasingly sparks discussion due to high prices. Simultaneously, the growing emphasis on specialized products and uncertainty surrounding the long-term effectiveness of new drug classes brought to the market underscore the need for innovative pricing approaches. A systematic literature review of pharmaceutical pricing models, accompanied by a critical appraisal, was conducted to offer insights contributing to novel approaches balancing sustainable pharmaceutical innovation with affordability and accessibility for patients. Six different pricing models are identified: value based pricing, basic cost-based pricing, and four more comprehensive pricing models incorporating numerous elements: the cancer-drug-pricing model, AIM model, (Nuijtens) discounted cash flow, and the real-option rate of return method. Although there are many similarities among the models, each has unique assumptions for implementation. For instance, all models except for the standard incremental cost-effectiveness ratio and basic cost-based pricing consider the number of eligible patients and the remaining patent period. Only the AIM model and the Nuijtens discounted cash flow model use lump sums. Both the latter and the real-option rate of return method explicitly include the cost of capital as a major cost-based component. Recognizing the diverse applications of each model highlights the need for more differential and dynamic pricing tailored to the characteristics and therapeutic areas of each drug. Additionally, the study underscores the importance of cost transparency in achieving this goal. Consequently, these findings can help stakeholders develop sustainable and affordable drug pricing mechanisms that address the complexities of the ever-changing pharmaceutical landscape.
Collapse
Affiliation(s)
- Evert A Manders
- Medicine for Society, Platform at Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Sibren van den Berg
- Medicine for Society, Platform at Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Saco J de Visser
- Medicine for Society, Platform at Amsterdam University Medical Center, Amsterdam, The Netherlands
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Carla E M Hollak
- Medicine for Society, Platform at Amsterdam University Medical Center, Amsterdam, The Netherlands.
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
206
|
Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, Stavros S, Zachariou A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int J Mol Sci 2024; 25:11802. [PMID: 39519353 PMCID: PMC11547078 DOI: 10.3390/ijms252111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects. Apoptosis and cell signaling are two beneficial physiological processes that are affected by excessive supplementation. Other negative effects include paradoxical enhancement of oxidative stress and unbalanced cellular redox potential. Overdosing on particular antioxidants has been associated with increased medication interactions, cancer progression, and fatality risks. Additionally, the complex impacts they may have on fertility might be both useful and adverse, depending on the quantity and duration of usage. This review delves into the dual role of antioxidants and emphasizes the importance of employing antioxidants in moderation. Antioxidant overconsumption may disrupt the oxidative balance necessary for normal sperm and oocyte function, which is one of the potential negative effects of antioxidants on fertility in both males and females that are also investigated. Although modest usage of antioxidants is generally safe and useful, high levels of antioxidants can upset hormonal balance, impair sperm motility, and negatively impact the outcomes of assisted reproductive technologies (ART). The findings emphasize the need to use antioxidant supplements in a balanced way, the importance of further research to optimize their use in fertility treatments, and the importance of supporting reproductive health to avoid adverse effects.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
207
|
Eyal S. When Non-Promising Findings Also Go From Aquarium to Bedside: The Importance of Rigorous Preclinical Analyses of ASM Candidates. Epilepsy Curr 2024; 24:426-428. [PMID: 39540124 PMCID: PMC11556285 DOI: 10.1177/15357597241279758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Testing of Putative Antiseizure Medications in a Preclinical Dravet Syndrome Zebrafish Model Whyte-Fagundes PA, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Brain Commun . 2024;6(3):fcae135. Dravet syndrome is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications. Preclinical Dravet syndrome animal models are a valuable tool to identify candidate anti-seizure medications for these patients. Among these, scn1lab mutant zebrafish, exhibiting spontaneous seizure-like activity, are particularly amenable to large-scale drug screening. Thus far, we have screened more than 3000 drug candidates in scn1lab zebrafish mutants, identifying valproate, stiripentol, and fenfluramine e.g. Food and Drug Administration-approved drugs, with clinical application in the Dravet syndrome population. Successful phenotypic screening in scn1lab mutant zebrafish is rigorous and consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behaviour and (ii) an electrophysiology-based assay, using in vivo local field potential recordings, to quantify electrographic seizure-like events. Historically, nearly 90% of drug candidates fail during translation from preclinical models to the clinic. With such a high failure rate, it becomes necessary to address issues of replication and false positive identification. Leveraging our scn1lab zebrafish assays is one approach to address these problems. Here, we curated a list of nine anti-seizure drug candidates recently identified by other groups using preclinical Dravet syndrome models: 1-Ethyl-2-benzimidazolinone, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-Ethyl-2-benzimidazolinone, chlorzoxazone and lisuride. However, second-stage local field potential recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of anti-seizure medications.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Clinical Pharmacy, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem
| |
Collapse
|
208
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
209
|
Aghavali R, Roberts EG, Kurokawa YK, Mak E, Chan MYC, Wong AOT, Li RA, Costa KD. Enhanced drug classification using machine learning with multiplexed cardiac contractility assays. Pharmacol Res 2024; 209:107459. [PMID: 39396765 DOI: 10.1016/j.phrs.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Cardiac screening of newly discovered drugs remains a longstanding challenge for the pharmaceutical industry. While therapeutic efficacy and cardiotoxicity are evaluated through preclinical biochemical and animal testing, 90 % of lead compounds fail to meet safety and efficacy benchmarks during human clinical trials. A preclinical model more representative of the human cardiac response is needed; heart tissue engineered from human pluripotent stem cell derived cardiomyocytes offers such a platform. In this study, three functionally distinct and independently validated engineered cardiac tissue assays are exposed to increasing concentrations of known compounds representing 5 classes of mechanistic action, creating a robust electrophysiology and contractility dataset. Combining results from six individual models, the resulting ensemble algorithm can classify the mechanistic action of unknown compounds with 86.2 % predictive accuracy. This outperforms single-assay models and offers a strategy to enhance future clinical trial success aligned with the recent FDA Modernization Act 2.0.
Collapse
Affiliation(s)
- Reza Aghavali
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | - Erin G Roberts
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | | | - Erica Mak
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | | | - Andy O T Wong
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | - Ronald A Li
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| | - Kevin D Costa
- Novoheart, Medera Inc., 6 Tide St., Boston, MA 02210, USA.
| |
Collapse
|
210
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
211
|
Chilamakuru NB, Singirisetty T, Bodapati A, Kallam SDM, Nelson VK, Suryadevara PR, Thangaswamy S. Schiff Base Mediated Synthesis of Novel Imidazolidine-4-One Derivatives for Potential Antimicrobial and Anthelmintic Activities. LUMINESCENCE 2024; 39:e70026. [PMID: 39529222 DOI: 10.1002/bio.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of -7.839 and -7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, and Candida albicans, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against E. coli. S2 also demonstrated impressive activity against S. aureus (MIC 3.12 μg/mL), and S4 exhibited potent activity against C. albicans (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.
Collapse
Affiliation(s)
- Naresh Babu Chilamakuru
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Triveni Singirisetty
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Anoop Bodapati
- Department of Pharmaceutical Sciences Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Selvankumar Thangaswamy
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
212
|
Bannigan P, Hickman RJ, Aspuru‐Guzik A, Allen C. The Dawn of a New Pharmaceutical Epoch: Can AI and Robotics Reshape Drug Formulation? Adv Healthc Mater 2024; 13:e2401312. [PMID: 39155417 PMCID: PMC11582498 DOI: 10.1002/adhm.202401312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Over the last four decades, pharmaceutical companies' expenditures on research and development have increased 51-fold. During this same time, clinical success rates for new drugs have remained unchanged at about 10 percent, predominantly due to lack of efficacy and/or safety concerns. This persistent problem underscores the need to innovate across the entire drug development process, particularly in drug formulation, which is often deprioritized and under-resourced.
Collapse
Affiliation(s)
- Pauric Bannigan
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
| | - Riley J. Hickman
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
| | - Alán Aspuru‐Guzik
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoONM5S 3E5Canada
- Acceleration ConsortiumUniversity of TorontoTorontoONM5S 3H6Canada
- Department of ChemistryUniversity of TorontoTorontoONM5S 3H6Canada
| | - Christine Allen
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoONM5S 3E5Canada
- Acceleration ConsortiumUniversity of TorontoTorontoONM5S 3H6Canada
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONM5S 3M2Canada
| |
Collapse
|
213
|
Addario G, Fernández‐Pérez J, Formica C, Karyniotakis K, Herkens L, Djudjaj S, Boor P, Moroni L, Mota C. 3D Humanized Bioprinted Tubulointerstitium Model to Emulate Renal Fibrosis In Vitro. Adv Healthc Mater 2024; 13:e2400807. [PMID: 39152919 PMCID: PMC11582511 DOI: 10.1002/adhm.202400807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Chronic kidney disease (CKD) leads to a gradual loss of kidney function, with fibrosis as pathological endpoint, which is characterized by extracellular matrix (ECM) deposition and remodeling. Traditionally, in vivo models are used to study interstitial fibrosis, through histological characterization of biopsy tissue. However, ethical considerations and the 3Rs (replacement, reduction, and refinement) regulations emphasizes the need for humanized 3D in vitro models. This study introduces a bioprinted in vitro model which combines primary human cells and decellularized and partially digested extracellular matrix (ddECM). A protocol was established to decellularize kidney pig tissue and the ddECM was used to encapsulate human renal cells. To investigate fibrosis progression, cells were treated with transforming growth factor beta 1 (TGF-β1), and the mechanical properties of the ddECM hydrogel were modulated using vitamin B2 crosslinking. The bioprinting perfusable model replicates the renal tubulointerstitium. Results show an increased Young's modulus over time, together with the increase of ECM components and cell dedifferentiation toward myofibroblasts. Multiple fibrotic genes resulted upregulated, and the model closely resembled fibrotic human tissue in terms of collagen deposition. This 3D bioprinted model offers a more physiologically relevant platform for studying kidney fibrosis, potentially improving disease progression research and high-throughput drug screening.
Collapse
Affiliation(s)
- Gabriele Addario
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | - Julia Fernández‐Pérez
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | - Chiara Formica
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | | | - Lea Herkens
- Institute of PathologyRWTH University of Aachen52074AachenGermany
| | - Sonja Djudjaj
- Institute of PathologyRWTH University of Aachen52074AachenGermany
| | - Peter Boor
- Institute of PathologyRWTH University of Aachen52074AachenGermany
- Electron Microscopy FacilityRWTH University of Aachen52074AachenGermany
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| | - Carlos Mota
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ETThe Netherlands
| |
Collapse
|
214
|
Babbo CCR, Mellet J, van Rensburg J, Pillay S, Horn AR, Nakwa FL, Velaphi SC, Kali GTJ, Coetzee M, Masemola MYK, Ballot DE, Pepper MS. Neonatal encephalopathy due to suspected hypoxic ischemic encephalopathy: pathophysiology, current, and emerging treatments. World J Pediatr 2024; 20:1105-1114. [PMID: 39237728 PMCID: PMC11582131 DOI: 10.1007/s12519-024-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Neonatal encephalopathy (NE) due to suspected hypoxic-ischemic encephalopathy (HIE), referred to as NESHIE, is a clinical diagnosis in late preterm and term newborns. It occurs as a result of impaired cerebral blood flow and oxygen delivery during the peripartum period and is used until other causes of NE have been discounted and HIE is confirmed. Therapeutic hypothermia (TH) is the only evidence-based and clinically approved treatment modality for HIE. However, the limited efficacy and uncertain benefits of TH in some low- to middle-income countries (LMICs) and the associated need for intensive monitoring have prompted investigations into more accessible and effective stand-alone or additive treatment options. DATA SOURCES This review describes the rationale and current evidence for alternative treatments in the context of the pathophysiology of HIE based on literatures from Pubmed and other online sources of published data. RESULTS The underlining mechanisms of neurotoxic effect, current clinically approved treatment, various categories of emerging treatments and clinical trials for NE are summarized in this review. Melatonin, caffeine citrate, autologous cord blood stem cells, Epoetin alfa and Allopurinal are being tested as potential neuroprotective agents currently. CONCLUSION This review describes the rationale and current evidence for alternative treatments in the context of the pathophysiology of HIE. Neuroprotective agents are currently only being investigated in high- and middle-income settings. Results from these trials will need to be interpreted and validated in LMIC settings. The focus of future research should therefore be on the development of inexpensive, accessible monotherapies and should include LMICs, where the highest burden of NESHIE exists.
Collapse
Affiliation(s)
- Carina Corte-Real Babbo
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa
| | - Juanita Mellet
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa
| | - Jeanne van Rensburg
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa
| | - Shakti Pillay
- Department of Paediatrics and Child Health, Division of Neonatology, Groote Schuur Hospital, University of Cape Town, Neonatal Unit, Cape Town, South Africa
| | - Alan Richard Horn
- Department of Paediatrics and Child Health, Division of Neonatology, Groote Schuur Hospital, University of Cape Town, Neonatal Unit, Cape Town, South Africa
| | - Firdose Lambey Nakwa
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Sithembiso Christopher Velaphi
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Melantha Coetzee
- Department of Paediatrics and Child Health, Division of Neonatology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mogomane Yvonne Khomotso Masemola
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Kalafong Hospital, University of Pretoria, Pretoria, South Africa
| | - Daynia Elizabeth Ballot
- Department of Paediatrics and Child Health, Faculty of Health Sciences, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael Sean Pepper
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, University of Pretoria, Room 5-64, Level 5, Pathology Building, 15 Bophelo Road (Cnr. Steve Biko and Dr. Savage Streets), Prinshof Campus, Gezina, Pretoria, South Africa.
| |
Collapse
|
215
|
Chen CH. Membrane-active peptides for anticancer therapies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:67-116. [PMID: 40122653 DOI: 10.1016/bs.pmbts.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Membrane-active peptides are found in many living organisms and play a critical role in their immune systems by combating various infectious diseases. These host defense peptides employ multiple mechanisms against different microorganisms and possess unique functions, such as anti-inflammatory and immunomodulatory effects, often working in synergy with other antimicrobial agents. Despite extensive research over the past few decades and the identification of thousands of sequences, only a few have been successfully applied in clinical settings and received approval from the U.S. Food and Drug Administration. In this chapter, we explore all peptide therapeutics that have reached the market, as well as candidates in preclinical and clinical trials, to understand their success and potential applications in cancer therapy. Our findings indicate that at least four membrane-active peptide drugs have progressed to preclinical or clinical phases, dmonstrating promising results for cancer treatment. We summarize our insights in this chapter, highlighting the potential of membrane-active anticancer peptide therapeutics and their applications as targeting ligands in various biomedical fields.
Collapse
Affiliation(s)
- Charles H Chen
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States.
| |
Collapse
|
216
|
Zemnou Tepap C, Anissi J, Bounou S, Berton Zanchi F. In Silico Approach for Assessment of the Anti-Tumor Potential of Cannabinoid Compounds by Targeting Glucose-6-Phosphate Dehydrogenase Enzyme. Chem Biodivers 2024; 21:e202401338. [PMID: 39109709 DOI: 10.1002/cbdv.202401338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 10/09/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a pentose phosphate pathway (PPP) enzyme that generates NADPH, which is required for cellular redox equilibrium and reductive biosynthesis. It has been demonstrated that abnormal G6PD activation promotes cancer cell proliferation and metastasis. To date, no G6PD inhibitor has passed clinical testing successfully enough to be launched as a medicine. As a result, in this investigation, cannabinoids were chosen to evaluate their anticancer potential by targeting G6PD. Molecular docking indicated that three molecules, Tetrahydrocannabinolic acid (THCA), Cannabichromenic acid (CBCA), and tetrahydrocannabivarin (THCV), have the highest binding affinities for G6PD of -8.61, -8.39, and 8.01 Kcal mol. ADMET analysis found that all of them were safe prospective drug candidates. Molecular dynamics (MD) simulation and MM-PBSA analysis confirm the structural compactness and lower conformational variation of protein-ligand complexes, thereby maintaining structural stability and rigidity. Thus, our in silico investigation exhibited all three cannabinoids as potential competitive inhibitors of G6PD.
Collapse
Affiliation(s)
| | | | | | - Fernando Berton Zanchi
- Laboratório de Bioinformática e Química Medicinal (LABIOQUIM), Fundação Oswaldo Cruz Rondônia,Porto Velho, RO, Brasil
| |
Collapse
|
217
|
Din S, Segal J, Blackwell J, Gros B, Black CJ, Ford AC. Harms with placebo in trials of biological therapies and small molecules as induction therapy in inflammatory bowel disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2024; 9:1020-1029. [PMID: 39307145 DOI: 10.1016/s2468-1253(24)00264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Randomised placebo-controlled trials are the gold standard to assess novel drugs in ulcerative colitis and Crohn's disease. However, there might be risks associated with receiving placebo. We aimed to examine the harms associated with receiving placebo in trials of licensed biologics and small molecules for the induction of remission in ulcerative colitis and luminal Crohn's disease in a meta-analysis. METHODS We performed a systematic review and meta-analysis. We searched MEDLINE, Embase, Embase Classic, and the Cochrane Central Register of Controlled Trials from database inception to May 30, 2024, for randomised placebo-controlled trials of licensed biologics and small molecules for induction of remission in adults (≥18 years) with moderately to severely active ulcerative colitis or luminal Crohn's disease reporting data on adverse events over a minimum treatment period of 4 weeks. There were no prespecified study exclusion criteria. We extracted summary data and pooled data using a random-effects model for any treatment-emergent adverse event, any drug-related adverse event, infection, worsening of inflammatory bowel disease (IBD) activity, withdrawal due to adverse events, serious adverse events, serious infection, serious worsening of IBD activity, or venous thromboembolic events (VTEs), reporting relative risks (RRs) with 95% CIs. The protocol for this meta-analysis was registered with PROSPERO (CRD42024527341). FINDINGS The search identified 10 826 citations, of which 47 trials including 20 987 patients (14 267 [68·0%] receiving active drug and 6720 [32·0%] receiving placebo) were eligible. The risk of any treatment-emergent adverse event was no different with active drug than with placebo (7660/14 267 [53·7%] patients on active drug vs 3758/6720 [55·9%] on placebo; RR 0·97, 95% CI 0·94-1·00; I2 =36%). However, the risks of worsening of IBD activity (563/13 473 [4·2%] vs 530/6252 [8·5%]; 0·48, 0·40-0·59; I2 =54%), withdrawal due to adverse event (401/13 363 [3·0%] vs 299/6267 [4·8%]; 0·62, 0·48-0·79; I2 =46%), serious adverse event (682/14 267 [4·8%] vs 483/6720 [7·2%]; 0·69, 0·59-0·80; I2 =30%), serious infection (140/14 194 [1·0%] vs 91/6647 [1·4%]; 0·67, 0·50-0·89; I2 =0%), serious worsening of IBD activity (187/11 271 [1·7%] vs 189/5056 [3·7%]; 0·45, 0·34-0·60; I2 =27%), or VTEs (13/7542 [0·2%] vs 12/2981 [0·4%]; 0·45, 0·21-0·94; I2 =0%) were all significantly lower with active drug than placebo. Numbers needed to treat with active drug to avoid these potentially serious adverse events ranged from 23 for worsening of IBD activity to 452 for VTEs. 27 randomised controlled trials were judged as low risk of bias across all domains. INTERPRETATION Patients with moderately to severely active IBD receiving placebo are more likely to experience significant worsening of IBD activity and some serious adverse events, which might relate to a reduction in risk of these events with active drug. Patients should be counselled about these potential harms, and alternative trial designs to mitigate these harms should be considered. FUNDING None.
Collapse
Affiliation(s)
- Shahida Din
- Edinburgh Inflammatory Bowel Diseases Unit, Western General Hospital, Edinburgh, UK; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonathan Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan Blackwell
- Edinburgh Inflammatory Bowel Diseases Unit, Western General Hospital, Edinburgh, UK
| | - Beatriz Gros
- Department of Gastroenterology, Reina Sofía University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, Cordoba, Spain
| | - Christopher J Black
- Leeds Gastroenterology Institute, St James's University Hospital, Leeds, UK; Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Alexander C Ford
- Leeds Gastroenterology Institute, St James's University Hospital, Leeds, UK; Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| |
Collapse
|
218
|
Kanjanasirirat P, Saengsawang W, Ketsawatsomkron P, Asavapanumas N, Borwornpinyo S, Soodvilai S, Hongeng S, Charoensutthivarakul S. GDNF and cAMP significantly enhance in vitro blood-brain barrier integrity in a humanized tricellular transwell model. Heliyon 2024; 10:e39343. [PMID: 39492921 PMCID: PMC11530796 DOI: 10.1016/j.heliyon.2024.e39343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Blood-brain barrier (BBB) is a crucial membrane safeguarding neural tissue by controlling the molecular exchange between blood and the brain. However, assessing BBB permeability presents challenges for central nervous system (CNS) drug development. In vitro studies of BBB-permeable agents before animal testing are essential to mitigate failures. Improved in vitro models are needed to mimic physiologically relevant BBB integrity. Here, we established an in vitro human-derived triculture BBB model, coculturing hCMEC/D3 with primary astrocytes and pericytes in a transwell format. This study found that the triculture BBB model exhibited significantly higher paracellular tightness (TEER 147.6 ± 6.5 Ω × cm2) than its monoculture counterpart (106.3 ± 1.0 Ω × cm2). Additionally, BBB permeability in the triculture model was significantly lower. While GDNF and cAMP have been shown to promote BBB integrity in monoculture models, their effect in our model was previously unreported. Our study demonstrates that both GDNF and cAMP increased TEER values (around 200 Ω × cm2 for each; 237.6 ± 17.7 Ω × cm2 for co-treatment) compared to untreated control, and decreased BBB permeability, mediated by increased claudin-5 expression. In summary, this humanized triculture BBB model, enhanced by GDNF and cAMP, offers an alternative for exploring in vitro drug penetration into the human brain.
Collapse
Affiliation(s)
- Phongthon Kanjanasirirat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Witchuda Saengsawang
- Department of Basic Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sunhapas Soodvilai
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
219
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
220
|
Xu M, Sun D, An G. Exploring the Impact of Pharmacological Target-Mediated Low Plasma Exposure in Lead Compound Selection in Drug Discovery - A Modeling Approach. AAPS J 2024; 26:112. [PMID: 39467882 DOI: 10.1208/s12248-024-00979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Small-molecule drug development faces the challenge of low success rate. In this paper, we propose one potential cause that may occur in the preclinical phase and has rarely been brought up before - the neglected target-mediated low plasma exposure, and the subsequent lead compound mis-selection due to conventional pharmacokinetic criteria requiring sufficient plasma exposure and desired half-life. To evaluate the concept of target-mediate low plasma exposure, we established a minimal physiologically-based pharmacokinetic (mPBPK) model to evaluate the concentration-time profiles of a group of virtual lead series analogs in plasma and in tissues with and without pharmacological target expression. Simulation results demonstrated that the candidate with the highest target binding has the lowest plasma exposure due to target-mediated tissue retention. The traditional PK criteria, such as the requirement of sufficient plasma exposure and desired half-life, may potentially result in lead compound mis-selection by discarding the appropriate and best candidate(s). The mPBPK model was partially validated using 4 tyrosine kinase inhibitors based on our in-house PK and tissue distribution data obtained in animals. The association rate constant (Kass) was estimated to be 49.8 h-1, 31.4 h-1, 8.58 h-1, and 1.91 h-1 for afatinib, dasatinib, gefitinib, and sorafenib, respectively. Among these four model drugs, a strong correlation was observed between their Kass values and AUChigh-perfused tissue /AUCplasma ratios, a metric of tissue retention. Our mPBPK modeling and simulation results indicated that the concept of target-mediated low plasma exposure should be kept in mind during the lead compound selection process.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
221
|
Peixoto JF, Gonçalves-Oliveira LF, Dias-Lopes G, Souza-Silva F, Alves CR. Epoxy-a-lapachone in nanosystem: a prototype drug for leishmaniasis assessed in the binomial BALB/c - Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 2024; 119:e240115. [PMID: 39476028 PMCID: PMC11520661 DOI: 10.1590/0074-02760240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
This perspective presents and supports arguments for a new formulation of epoxy-α-lapachone loaded microemulsion (ELAP-ME), a nanosystem, as a prototype drug for the treatment of leishmaniasis. The benefits of ELAP as a multitarget compound, with properties that affect key physiological pathways of Leishmania spp. are discussed. ELAP-ME demonstrated efficacy in murine infection models, particularly with the binomial BALB/c-Leishmania (Leishmania) amazonensis. Furthermore, it is proposed that the technological maturity of ELAP-ME be classified as Technology Readiness Level 4 (TLR 4) within the context of innovative drugs for American Cutaneous Leishmaniasis (ACL).
Collapse
Affiliation(s)
| | - Luiz Filipe Gonçalves-Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ciências Biomédicas e Saúde, Cabo Frio, RJ, Brasil
| | - Franklin Souza-Silva
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
- Universidade Iguaçu, Nova Iguaçu, RJ, Brasil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
222
|
Debnath A, Mazumder R, Singh RK, Singh AK. Discovery of novel CDK4/6 inhibitors from fungal secondary metabolites. Int J Biol Macromol 2024; 282:136807. [PMID: 39447792 DOI: 10.1016/j.ijbiomac.2024.136807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The development of targeted therapies for breast cancer, particularly those focusing on cyclin-dependent kinases 4/6 (CDK4/6), has significantly improved patient outcomes. However, the currently approved CDK4/6 inhibitors are associated with various side effects, underscoring the need for novel compounds with enhanced efficacy and safety profiles. This study aimed to identify potential CDK4/6 inhibitors from MeFSAT, a database of fungal secondary metabolites using an in-silico screening approach. The virtual screening process incorporated drug-likeness filters, ADME and toxicity predictions, consensus molecular docking, and 200 ns molecular dynamics simulations. Out of 411 initial compounds, two molecules demonstrated favorable binding interactions and stability with the CDK4/6 protein complex. The MTT assay showed that MSID000025 had dose-dependent cytotoxicity against MCF7 breast cancer cells. This suggests that MSID000025 could be a good candidate CDK4/6 inhibitor for treating breast cancer. Our study highlights the potential of fungal secondary metabolites as a source of novel compounds for drug discovery. It provides a framework for identifying CDK4/6 inhibitors with improved therapeutic properties.
Collapse
Affiliation(s)
- Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida 201306, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida 201306, Uttar Pradesh, India.
| | - Rajesh Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
223
|
Manoharan S, Santhakumar A, Perumal E. Targeting STAT3, FOXO3a, and Pim-1 kinase by FDA-approved tyrosine kinase inhibitor-Radotinib: An in silico and in vitro approach. Arch Pharm (Weinheim) 2024:e2400429. [PMID: 39428846 DOI: 10.1002/ardp.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Cancer, a multifactorial pathological condition, is primarily caused due to mutations in multiple genes. Hepatocellular carcinoma (HCC) is a form of primary liver cancer that is often diagnosed at the advanced stage. Current treatment strategies for advanced HCC involve systemic therapies which are often hindered due to the emergence of resistance and toxicity. Therefore, a multitarget approach might prove more effective in HCC treatment. The present study focuses on targeting signal transducer and activator of transcription 3 (STAT3), forkhead box class O3a (FOXO3a), and proviral integration site for Moloney murine leukemia virus-1 (Pim-1) kinase, using a Food and Drug Administration (FDA)-approved anticancer drug library. Two compounds, namely, radotinib and capmatinib, were identified as top compounds using molecular docking. Among the two compounds, radotinib exhibited significant binding values towards the targeted proteins and their heterodimers. Furthermore, in vitro experiments involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live/dead, 4',6-diamidino-2-phenylindole, and clonogenic assays were performed to evaluate the effect of radotinib in human hepatoblastoma cell line/hepatocellular carcinoma cells. The gene expression data indicated reduced expression of FOXO3a and Pim-1, but no basal-level alteration of STAT3. The Western blot analysis assay showed that the phosphorylation level of STAT3 was significantly decreased upon radotinib treatment. Taken together, our findings suggest that radotinib, which is currently used in the treatment of chronic myeloid leukemia (CML), could be considered as a potential candidate for repurposing in the treatment of HCC.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
224
|
Luo X, Ding Y, Cao Y, Liu Z, Zhang W, Zeng S, Cheng SH, Li H, Haggarty SJ, Wang X, Zhang J, Shi P. Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery. iScience 2024; 27:110875. [PMID: 39319265 PMCID: PMC11419810 DOI: 10.1016/j.isci.2024.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
In this study, we present an approach to neuropharmacological research by integrating few-shot meta-learning algorithms with brain activity mapping (BAMing) to enhance the discovery of central nervous system (CNS) therapeutics. By utilizing patterns from previously validated CNS drugs, our approach facilitates the rapid identification and prediction of potential drug candidates from limited datasets, thereby accelerating the drug discovery process. The application of few-shot meta-learning algorithms allows us to adeptly navigate the challenges of limited sample sizes prevalent in neuropharmacology. The study reveals that our meta-learning-based convolutional neural network (Meta-CNN) models demonstrate enhanced stability and improved prediction accuracy over traditional machine-learning methods. Moreover, our BAM library proves instrumental in classifying CNS drugs and aiding in pharmaceutical repurposing and repositioning. Overall, this research not only demonstrates the effectiveness in overcoming data limitations but also highlights the significant potential of combining BAM with advanced meta-learning techniques in CNS drug discovery.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- National Center for Applied Mathematics Shenzhen, Shenzhen 518000, China
- Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanyun Ding
- National Center for Applied Mathematics Shenzhen, Shenzhen 518000, China
- Institute of Applied Mathematics, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yi Cao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Wenchong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Shangzhi Zeng
- National Center for Applied Mathematics Shenzhen, Shenzhen 518000, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Xin Wang
- Department of Surgery, Chinese University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jin Zhang
- National Center for Applied Mathematics Shenzhen, Shenzhen 518000, China
- Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- National Center for Applied Mathematics Shenzhen, Shenzhen 518000, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
225
|
Arora M, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Yadav JP, Verma A, Kumar P. Semisynthetic phytochemicals in cancer treatment: a medicinal chemistry perspective. RSC Med Chem 2024; 15:3345-3370. [PMID: 39430100 PMCID: PMC11484407 DOI: 10.1039/d4md00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is the uncontrolled proliferation of abnormal cells that invade other areas, spread to other organs, and cause metastases, which is the most common cause of death. A review of all FDA-approved new molecular entities (NMEs) shows that natural products and derivatives account for over one-third of all NMEs. Before 1940, unmodified products and derivatives accounted for 43% and 14% of NME registrations, respectively. Since then, the share of unmodified products has decreased to 9.5% of all approved NMEs, while the share of derivatives has increased to 28%. Since the 1940s, semi-synthetic and synthetic derivatives of natural substances have gained importance, and this trend continues to date. In this study, we have discussed in detail isolated phytoconstituents with chemical modifications that are either FDA-approved or under clinical trials, such as podophyllotoxin, Taxol (paclitaxel, docetaxel), vinca alkaloids (vincristine, vinblastine), camptothecin, genistein, cephalotaxine, rohitukine, and many more, which may act as essential leads to the development of novel anticancer agents. Furthermore, we have also discussed recent developments in the most potent semisynthetic phytoconstituents, their unique properties, and their importance in cancer treatment.
Collapse
Affiliation(s)
- Meghna Arora
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University Kanpur 209217 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
226
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Drug-Drug Interactions and Synergy: From Pharmacological Models to Clinical Application. Pharmacol Rev 2024; 76:1159-1220. [PMID: 39009470 DOI: 10.1124/pharmrev.124.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
This review explores the concept of synergy in pharmacology, emphasizing its importance in optimizing treatment outcomes through the combination of drugs with different mechanisms of action. Synergy, defined as an effect greater than the expected additive effect elicited by individual agents according to specific predictive models, offers a promising approach to enhance therapeutic efficacy while minimizing adverse events. The historical evolution of synergy research, from ancient civilizations to modern pharmacology, highlights the ongoing quest to understand and harness synergistic interactions. Key concepts, such as concentration-response curves, additive effects, and predictive models, are discussed in detail, emphasizing the need for accurate assessment methods throughout translational drug development. Although various mathematical models exist for synergy analysis, selecting the appropriate model and software tools remains a challenge, necessitating careful consideration of experimental design and data interpretation. Furthermore, this review addresses practical considerations in synergy assessment, including preclinical and clinical approaches, mechanism of action, and statistical analysis. Optimizing synergy requires attention to concentration/dose ratios, target site localization, and timing of drug administration, ensuring that the benefits of combination therapy detected bench-side are translatable into clinical practice. Overall, the review advocates for a systematic approach to synergy assessment, incorporating robust statistical analysis, effective and simplified predictive models, and collaborative efforts across pivotal sectors, such as academic institutions, pharmaceutical companies, and regulatory agencies. By overcoming critical challenges and maximizing therapeutic potential, effective synergy assessment in drug development holds promise for advancing patient care. SIGNIFICANCE STATEMENT: Combining drugs with different mechanisms of action for synergistic interactions optimizes treatment efficacy and safety. Accurate interpretation of synergy requires the identification of the expected additive effect. Despite innovative models to predict the additive effect, consensus in drug-drug interactions research is lacking, hindering the bench-to-bedside development of combination therapies. Collaboration among science, industry, and regulation is crucial for advancing combination therapy development, ensuring rigorous application of predictive models in clinical settings.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Clive Page
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Maria Gabriella Matera
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Mario Cazzola
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| | - Paola Rogliani
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (L.C.); Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, United Kingdom (C.P.); Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy (M.G.-M.); and Respiratory Medicine Unit, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy (M.C., P.R.)
| |
Collapse
|
227
|
Suzuki T, Ma D, Yasuo N, Sekijima M. Mothra: Multiobjective de novo Molecular Generation Using Monte Carlo Tree Search. J Chem Inf Model 2024; 64:7291-7302. [PMID: 39317969 PMCID: PMC11481094 DOI: 10.1021/acs.jcim.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
In the field of drug discovery, identifying compounds that satisfy multiple criteria, such as target protein affinity, pharmacokinetics, and membrane permeability, is challenging because of the vast chemical space. Until now, multiobjective optimization via generative models has often involved linear combinations of different reward functions. Linear combinations solve multiobjective optimization problems by turning multiobjective optimization into a single-objective task and causing problems with weighting for each objective. Herein, we propose a scalable multiobjective molecular generative model developed using deep learning techniques. This model integrates the capabilities of recurrent neural networks for molecular generation and Pareto multiobjective Monte Carlo tree search to determine the optimal search direction. Through this integration, our model can generate compounds using enhanced evaluation functions that include important aspects like target protein affinity, drug similarity, and toxicity. The proposed model addresses the limitations of previous linear combination methods, and its effectiveness is demonstrated via extensive experimentation. The improvements achieved in the evaluation metrics underscore the potential utility of our approach toward drug discovery applications. In addition, we provide the source code for our model such that researchers can easily access and use our framework in their own investigations. The source code and pretrained model for Mothra, developed in this study, along with the Docker image for the Pareto front explorer and compound picker, designed to streamline the selection and visualization of optimal chemical compounds, are released under the GNU General Public License v3.0 and available at https://github.com/sekijima-lab/Mothra.
Collapse
Affiliation(s)
- Takamasa Suzuki
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501Japan
| | - Dian Ma
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501Japan
| | - Nobuaki Yasuo
- Tokyo Tech Academy for Convergence of Materials and Informatics (TAC-MI), Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Masakazu Sekijima
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501Japan
| |
Collapse
|
228
|
Li F, Youn J, Millsop C, Tagkopoulos I. Predicting clinical trial success for Clostridium difficile infections based on preclinical data. Front Artif Intell 2024; 7:1487335. [PMID: 39444663 PMCID: PMC11496251 DOI: 10.3389/frai.2024.1487335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Preclinical models are ubiquitous and essential for drug discovery, yet our understanding of how well they translate to clinical outcomes is limited. In this study, we investigate the translational success of treatments for Clostridium difficile infection from animal models to human patients. Our analysis shows that only 36% of the preclinical and clinical experiment pairs result in translation success. Univariate analysis shows that the sustained response endpoint is correlated with translation failure (SRC = -0.20, p-value = 1.53 × 10-54), and explainability analysis of multi-variate random forest models shows that both sustained response endpoint and subject age are negative predictors of translation success. We have developed a recommendation system to help plan the right preclinical study given factors such as drug dosage, bacterial dosage, and preclinical/clinical endpoint. With an accuracy of 0.76 (F1 score of 0.71) and by using only 7 features (out of 68 total), the proposed system boosts translational efficiency by 25%. The method presented can extend to any disease and can serve as a preclinical to clinical translation decision support system to accelerate drug discovery and de-risk clinical outcomes.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- USDA/NSF AI Institute for Next Generation Food Systems, University of California, Davis, Davis, CA, United States
| | - Jason Youn
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- USDA/NSF AI Institute for Next Generation Food Systems, University of California, Davis, Davis, CA, United States
| | - Christian Millsop
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- USDA/NSF AI Institute for Next Generation Food Systems, University of California, Davis, Davis, CA, United States
| |
Collapse
|
229
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Norris S, Sperry J, Nakashima J, Tavanaie N, Winata H, Fitz-Gibbon ST, Yamaguchi TN, Jeong JH, Dry S, Singh AS, Chmielowski B, Crompton JG, Kalbasi AK, Eilber FC, Hornicek F, Bernthal NM, Nelson SD, Boutros PC, Federman NC, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. Cell Stem Cell 2024; 31:1524-1542.e4. [PMID: 39305899 DOI: 10.1016/j.stem.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Sarcomas are rare malignancies with over 100 distinct histological subtypes. Their rarity and heterogeneity pose significant challenges to identifying effective therapies, and approved regimens show varied responses. Novel, personalized approaches to therapy are needed to improve patient outcomes. Patient-derived tumor organoids (PDTOs) model tumor behavior across an array of malignancies. We leverage PDTOs to characterize the landscape of drug resistance and sensitivity in sarcoma, collecting 194 specimens from 126 patients spanning 24 distinct sarcoma subtypes. Our high-throughput organoid screening pipeline tested single agents and combinations, with results available within a week from surgery. Drug sensitivity correlated with clinical features such as tumor subtype, treatment history, and disease trajectory. PDTO screening can facilitate optimal drug selection and mirror patient outcomes in sarcoma. We could identify at least one FDA-approved or NCCN-recommended effective regimen for 59% of the specimens, demonstrating the potential of our pipeline to provide actionable treatment information.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jomjit Chantharasamee
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sara Sartini
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Y Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Diaz-Infante
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannah Cox
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Summer Norris
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helena Winata
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sorel T Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jae H Jeong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anusha K Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fritz C Eilber
- Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopedic Surgery, University of Miami, Miami, FL, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah C Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Department of Surgery, Division of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
230
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
231
|
Doga H, Bose A, Sahin ME, Bettencourt-Silva J, Pham A, Kim E, Andress A, Saxena S, Parida L, Robertus JL, Kawaguchi H, Soliman R, Blankenberg D. How can quantum computing be applied in clinical trial design and optimization? Trends Pharmacol Sci 2024; 45:880-891. [PMID: 39317621 DOI: 10.1016/j.tips.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024]
Abstract
Clinical trials are necessary for assessing the safety and efficacy of treatments. However, trial timelines are severely delayed with minimal success due to a multitude of factors, including imperfect trial site selection, cohort recruitment challenges, lack of efficacy, absence of reliable biomarkers, etc. Each of these factors possesses a unique computational challenge, such as data management, trial simulations, statistical analyses, and trial optimization. Recent advancements in quantum computing offer a promising opportunity to overcome these hurdles. In this opinion we uniquely explore the application of quantum optimization and quantum machine learning (QML) to the design and execution of clinical trials. We examine the current capabilities and limitations of quantum computing and outline its potential to streamline clinical trials.
Collapse
Affiliation(s)
- Hakan Doga
- IBM Quantum, Almaden Research Center, San Jose, CA, USA.
| | | | - M Emre Sahin
- The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington, UK
| | | | - Anh Pham
- Deloitte Consulting LLP, Atlanta, GA, USA
| | | | | | | | | | - Jan Lukas Robertus
- Imperial College London and Royal Brompton and Harefield Hospitals, London, UK
| | | | | | | |
Collapse
|
232
|
Zhou C, Cai CP, Huang XT, Wu S, Yu JL, Wu JW, Fang JS, Li GB. TarKG: a comprehensive biomedical knowledge graph for target discovery. Bioinformatics 2024; 40:btae598. [PMID: 39392404 PMCID: PMC11513019 DOI: 10.1093/bioinformatics/btae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
MOTIVATION Target discovery is a crucial step in drug development, as it directly affects the success rate of clinical trials. Knowledge graphs (KGs) offer unique advantages in processing complex biological data and inferring new relationships. Existing biomedical KGs primarily focus on tasks such as drug repositioning and drug-target interactions, leaving a gap in the construction of KGs tailored for target discovery. RESULTS We established a comprehensive biomedical KG focusing on target discovery, termed TarKG, by integrating seven existing biomedical KGs, nine public databases, and traditional Chinese medicine knowledge databases. TarKG consists of 1 143 313 entities and 32 806 467 relations across 15 entity categories and 171 relation types, all centered around 3 core entity types: Disease, Gene, and Compound. TarKG provides specialized knowledges for the core entities including chemical structures, protein sequences, or text descriptions. By using different KG embedding algorithms, we assessed the knowledge completion capabilities of TarKG, particularly for disease-target link prediction. In case studies, we further examined TarKG's ability to predict potential protein targets for Alzheimer's disease (AD) and to identify diseases potentially associated with the metallo-deubiquitinase CSN5, using literature analysis for validation. Furthermore, we provided a user-friendly web server (https://tarkg.ddtmlab.org) that enables users to perform knowledge retrieval and relation inference using TarKG. AVAILABILITY AND IMPLEMENTATION TarKG is accessible at https://tarkg.ddtmlab.org.
Collapse
Affiliation(s)
- Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chui-Pu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Xiao-Tian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Song Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian-Song Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
233
|
Wang W, Deng S, Lin J, Ouyang D. Modeling on in vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum mechanics/physiologically-based pharmacokinetic approaches. Acta Pharm Sin B 2024; 14:4591-4607. [PMID: 39525592 PMCID: PMC11544175 DOI: 10.1016/j.apsb.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
The lipid nanoparticle (LNP) has been so far proven as a strongly effective delivery system for mRNA and siRNA. However, the mechanisms of LNP's distribution, metabolism, and elimination are complicated, while the transportation and pharmacokinetics (PK) of LNP are just sparsely investigated and simply described. This study aimed to build a model for the transportation of RNA-LNP in Hela cells, rats, mice, and humans by physiologically based pharmacokinetic (PBPK) and quantum mechanics (QM) models with integrated multi-source data. LNPs with different ionizable lipids, particle sizes, and doses were modeled and compared by recognizing their critical parameters dominating PK. Some interesting results were found by the models. For example, the metabolism of ionizable lipids was first limited by the LNP disassembly rate instead of the hydrolyzation of ionizable lipids; the ability of RNA release from endosomes for three ionizable lipids was quantitively derived and can predict the probability of RNA release. Moreover, the biodegradability of three ionizable lipids was estimated by the QM method and the is generally consistent with the result of PBPK result. In summary, the transportation model of RNA LNP among various species for the first time was successfully constructed. Various in vitro and in vivo pieces of evidence were integrated through QM/PBPK multi-level modeling. The resulting new understandings are related to biodegradability, safety, and RNA release ability which are highly concerned issues of the formulation. This would benefit the design and research of RNA-LNP in the future.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Shiwei Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for mRNA Translational Research, Fudan University, Shanghai 200438, China
- Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
234
|
Kiaris H. Nontraditional models as research tools: the road not taken. Trends Mol Med 2024; 30:924-931. [PMID: 39069395 PMCID: PMC11466687 DOI: 10.1016/j.molmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Historical reasons resulted in the almost exclusive use of a few species, most prominently Mus musculus, as the mainstream models in biomedical research. This selection was not based on Mus's distinctive relevance to human disease but rather to the pre-existing availability of resources and tools for the species that were used as models, which has enabled their adoption for research in health sciences. Unless the utilization and range of nontraditional research models expand considerably, progress in biomedical research will remain restricted within the trajectory that has been set by the existing models and their ability to provide clinically relevant information.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
235
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
236
|
Mizenko RR, Feaver M, Bozkurt BT, Lowe N, Nguyen B, Huang K, Wang A, Carney RP. A critical systematic review of extracellular vesicle clinical trials. J Extracell Vesicles 2024; 13:e12510. [PMID: 39330928 PMCID: PMC11428870 DOI: 10.1002/jev2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
This systematic review examines the landscape of extracellular vesicle (EV)-related clinical trials to elucidate the field's trends in clinical applications and EV-related methodologies, with an additional focus on the acknowledgement of EV subpopulations. By analysing data from public reporting repositories, we catalogued 471 EV-related clinical trials to date, with indications for over 200 diseases. Diagnostics and companion diagnostics represented the bulk of EV-related clinical trials with cancer being the most frequent application. EV-related therapeutics trials mainly utilized mesenchymal stromal cell (MSC) EVs and were most frequently used for treatment of respiratory illnesses. Ultracentrifugation and RNA-sequencing were the most common isolation and characterization techniques; however, methodology for each was not frequently reported in study records. Most of the reported characterization relied on bulk characterization of EV isolates, with only 11% utilizing EV subpopulations in their experimental design. While this may be connected to a lack of available techniques suitable for clinical implementation, it also highlights the opportunity for use of EV subpopulations to improve translational efforts. As academic research identifies more chemically distinct subpopulations and technologies for their enrichment, we forecast to more refined EV trials in the near future. This review emphasizes the need for meticulous methodological reporting and consideration of EV subpopulations to enhance the translational success of EV-based interventions, pointing towards a paradigm shift in personalized medicine.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Madison Feaver
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Batuhan T. Bozkurt
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Neona Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Kuan‐Wei Huang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Aijun Wang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of SurgeryUniversity of CaliforniaDavisCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
237
|
Yu TWB. A phenotypic drug discovery approach by latent interaction in deep learning. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240720. [PMID: 40191531 PMCID: PMC11972434 DOI: 10.1098/rsos.240720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 04/09/2025]
Abstract
Contemporary drug discovery paradigms rely heavily on binding assays about the bio-physicochemical processes. However, this dominant approach suffers from overlooked higher-order interactions arising from the intricacies of molecular mechanisms, such as those involving cis-regulatory elements. It introduces potential impairments and restrains the potential development of computational methods. To address this limitation, I developed a deep learning model that leverages an end-to-end approach, relying exclusively on therapeutic information about drugs. By transforming textual representations of drug and virus genetic information into high-dimensional latent representations, this method evades the challenges arising from insufficient information about binding specificities. Its strengths lie in its ability to implicitly consider complexities such as epistasis and chemical-genetic interactions, and to handle the pervasive challenge of data scarcity. Through various modeling skills and data augmentation techniques, the proposed model demonstrates outstanding performance in out-of-sample validations, even in scenarios with unknown complex interactions. Furthermore, the study highlights the importance of chemical diversity for model training. While the method showcases the feasibility of deep learning in data-scarce scenarios, it reveals a promising alternative for drug discovery in situations where knowledge of underlying mechanisms is limited.
Collapse
Affiliation(s)
- Tat Wai Billy Yu
- Macao Polytechnic University, Macau SAR, People’s Republic of China
| |
Collapse
|
238
|
Kim TY, Choi JW, Park K, Kim S, Kim JF, Park TE, Seo J. Lubricant-Coated Organ-on-a-Chip for Enhanced Precision in Preclinical Drug Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402431. [PMID: 38934549 DOI: 10.1002/smll.202402431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis. Addressing this challenge, the precision drug testing organ chip (PreD chip) is introduced, an innovative platform engineered to minimize small molecule absorption while facilitating cell culture. This chip features a PDMS microchannel wall coated with a perfluoropolyether-based lubricant, providing slipperiness and antifouling properties. It also incorporates an ECM-coated semi-porous membrane that supports robust multicellular cultures. The PreD chip demonstrates its outstanding antifouling properties and resistance to various biological fluids, small molecule drugs, and plasma proteins. In simulating the human gut barrier, the PreD chip demonstrates highly enhanced sensitivity in tests for dexamethasone toxicity and is highly effective in assessing drug transport across the human blood-brain barrier. These findings emphasize the potential of the PreD chip in advancing organ chip-based drug testing methodologies.
Collapse
Affiliation(s)
- Tae Young Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kijun Park
- School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeungHwan Kim
- Department of Energy and Chemical Engineering, Incheon National University (INU), Incheon, 22012, South Korea
| | - Jeong F Kim
- Department of Energy and Chemical Engineering, Incheon National University (INU), Incheon, 22012, South Korea
- Innovation Center for Chemical Engineering, Incheon National University (INU), Incheon, 22012, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Lynk Solutec lnc, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
239
|
Llovera G, Langhauser F, Isla Cainzos S, Hoppen M, Abberger H, Mohamud Yusuf A, Mencl S, Heindl S, Ricci A, Haupeltshofer S, Kuchenbecker-Pöls L, Gunzer M, Hansen W, Hermann DM, Gelderblom M, Schmidt-Pogoda A, Minnerup J, Kleinschnitz C, Magnus T, Liesz A. Stroke of Consistency: Streamlining Multicenter Protocols for Enhanced Reproducibility of Infarct Volumes in Preclinical Stroke Research. Stroke 2024; 55:2522-2527. [PMID: 39315830 DOI: 10.1161/strokeaha.124.047232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND The discrepancy between experimental research and clinical trial outcomes is a persistent challenge in preclinical studies, particularly in stroke research. A possible factor contributing to this issue is the lack of standardization across experimental stroke models, leading to poor reproducibility in multicenter studies. This study addresses this gap by aiming to enhance reproducibility and the efficacy of multicenter studies through the harmonization of protocols and training of involved personnel. METHODS We established a set of standard operating procedures for various stroke models and the Neuroscore. These standard operating procedures were implemented across multiple research centers, followed by specialized, in-person training for all participants. We measured the variability in infarct volume both before and after the implementation of these standardized protocols and training sessions. RESULTS The standardization process led to a significant reduction in variability of infarct volume across different stroke models (40%-50% reduction), demonstrating the effectiveness of our harmonized protocols and training. Additionally, the implementation of the Neuroscore system across centers showed low variability and consistent results up to 28 days poststroke, underscoring its utility in chronic phase evaluations. CONCLUSIONS The harmonization of protocols and surgeon training significantly reduced variability in experimental outcomes across different centers. This improvement can increase the comparability of data between research groups and enhance the statistical power of multicenter studies. Our findings also establish the Neuroscore as a reliable tool for long-term assessment in stroke research, paving the way for more consistent and impactful multicenter preclinical studies.
Collapse
Affiliation(s)
- Gemma Llovera
- Institute for Stroke and Dementia Research, Ludwig Maximilians University (LMU) University Hospital, LMU Munich, Germany (G.L., S. Heindl, A.R., A.L.)
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (G.L., A.L.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Germany (F.L., A.M.Y., S.M., S. Haupeltshofer, D.M.H., C.K.)
| | - Sara Isla Cainzos
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (S.I.C., L.K.-P., M. Gelderblom, T.M.)
| | - Maike Hoppen
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany (M.H., A.S.-P., J.M.)
| | - Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen (H.A., W.H.), University of Duisburg-Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Germany (F.L., A.M.Y., S.M., S. Haupeltshofer, D.M.H., C.K.)
| | - Stine Mencl
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Germany (F.L., A.M.Y., S.M., S. Haupeltshofer, D.M.H., C.K.)
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, Ludwig Maximilians University (LMU) University Hospital, LMU Munich, Germany (G.L., S. Heindl, A.R., A.L.)
| | - Alessio Ricci
- Institute for Stroke and Dementia Research, Ludwig Maximilians University (LMU) University Hospital, LMU Munich, Germany (G.L., S. Heindl, A.R., A.L.)
| | - Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Germany (F.L., A.M.Y., S.M., S. Haupeltshofer, D.M.H., C.K.)
| | - Lennart Kuchenbecker-Pöls
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (S.I.C., L.K.-P., M. Gelderblom, T.M.)
| | - Matthias Gunzer
- Institute for experimental Immunology and Imaging (M. Gunzer), University of Duisburg-Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (M. Gunzer)
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen (H.A., W.H.), University of Duisburg-Essen, Germany
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Germany (F.L., A.M.Y., S.M., S. Haupeltshofer, D.M.H., C.K.)
| | - Matthias Gelderblom
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (S.I.C., L.K.-P., M. Gelderblom, T.M.)
| | - Antje Schmidt-Pogoda
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany (M.H., A.S.-P., J.M.)
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Germany (M.H., A.S.-P., J.M.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Germany (F.L., A.M.Y., S.M., S. Haupeltshofer, D.M.H., C.K.)
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (S.I.C., L.K.-P., M. Gelderblom, T.M.)
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Ludwig Maximilians University (LMU) University Hospital, LMU Munich, Germany (G.L., S. Heindl, A.R., A.L.)
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (G.L., A.L.)
| |
Collapse
|
240
|
Zupančič O, Matić J, Doğan A, Gaggero A, Khinast J, Paudel A. Comparing Low-Dose Carvedilol Continuous Manufacturing by Solid and Liquid Feeding in Self-Emulsifying Delivery Systems via Hot Melt EXtrusion (SEDEX). Pharmaceuticals (Basel) 2024; 17:1290. [PMID: 39458931 PMCID: PMC11510172 DOI: 10.3390/ph17101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This study compared two pilot scale continuous manufacturing methods of solid self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME). Methods: A model poorly water-soluble drug carvedilol in low dose (0.5-1.0% w/w) was processed in HME either in a conventional powder form or pre-dissolved in the liquid SEDDS. Results: HME yielded a processable final product with up to 20% w/w SEDDS. Addition of carvedilol powder resulted in a non-homogeneous drug distribution in the extrudates, whereas a homogeneous drug distribution was observed in pre-dissolved carvedilol. SEDDSs were shown to have a plasticizing effect, reducing the HME process torque up to 50%. Compatibility between excipients and carvedilol in the studied ratios after HME was confirmed via DSC and WAXS, demonstrating their amorphous form. Solid SEDDSs with Kollidon® VA64 self-emulsified in aqueous medium within 15 min with mean droplet sizes 150-200 nm and were independent of the medium temperature, whereas reconstitution of Soluplus® took over 60 min and mean droplet size increased 2-fold from 70 nm to 150 nm after temperature increased from 25 °C to 37 °C, indicating emulsion phase inversion at cloud point. Conclusions: In conclusion, using Kollidon® VA64 and pre-dissolved carvedilol in SEDDS has shown to yield a stabile HME process with a homogenous carvedilol content in the extrudate.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Josip Matić
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Aygün Doğan
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Alessio Gaggero
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; (J.M.); (A.D.); (A.G.); (J.K.)
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| |
Collapse
|
241
|
Venhorst J, Hanemaaijer R, Dulos R, Caspers MPM, Toet K, Attema J, de Ruiter C, Kalkman G, Rouhani Rankouhi T, de Jong JCBC, Verschuren L. Integrating text mining with network models for successful target identification: in vitro validation in MASH-induced liver fibrosis. Front Pharmacol 2024; 15:1442752. [PMID: 39399467 PMCID: PMC11466758 DOI: 10.3389/fphar.2024.1442752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
An in silico target discovery pipeline was developed by including a directional and weighted molecular disease network for metabolic dysfunction-associated steatohepatitis (MASH)-induced liver fibrosis. This approach integrates text mining, network biology, and artificial intelligence/machine learning with clinical transcriptome data for optimal translational power. At the mechanistic level, the critical components influencing disease progression were identified from the disease network using in silico knockouts. The top-ranked genes were then subjected to a target efficacy analysis, following which the top-5 candidate targets were validated in vitro. Three targets, including EP300, were confirmed for their roles in liver fibrosis. EP300 gene-silencing was found to significantly reduce collagen by 37%; compound intervention studies performed in human primary hepatic stellate cells and the hepatic stellate cell line LX-2 showed significant inhibition of collagen to the extent of 81% compared to the TGFβ-stimulated control (1 μM inobrodib in LX-2 cells). The validated in silico pipeline presents a unique approach for the identification of human-disease-mechanism-relevant drug targets. The directionality of the network ensures adherence to physiologically relevant signaling cascades, while the inclusion of clinical data boosts its translational power and ensures identification of the most relevant disease pathways. In silico knockouts thus provide crucial molecular insights for successful target identification.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical and Digital Health, The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Roeland Hanemaaijer
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Remon Dulos
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Karin Toet
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Gino Kalkman
- Biomedical and Digital Health, The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Tanja Rouhani Rankouhi
- Biomedical and Digital Health, The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jelle C. B. C. de Jong
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
242
|
Sun D, Macedonia C, Chen Z, Chandrasekaran S, Najarian K, Zhou S, Cernak T, Ellingrod VL, Jagadish HV, Marini B, Pai M, Violi A, Rech JC, Wang S, Li Y, Athey B, Omenn GS. Can Machine Learning Overcome the 95% Failure Rate and Reality that Only 30% of Approved Cancer Drugs Meaningfully Extend Patient Survival? J Med Chem 2024; 67:16035-16055. [PMID: 39253942 DOI: 10.1021/acs.jmedchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite implementing hundreds of strategies, cancer drug development suffers from a 95% failure rate over 30 years, with only 30% of approved cancer drugs extending patient survival beyond 2.5 months. Adding more criteria without eliminating nonessential ones is impractical and may fall into the "survivorship bias" trap. Machine learning (ML) models may enhance efficiency by saving time and cost. Yet, they may not improve success rate without identifying the root causes of failure. We propose a "STAR-guided ML system" (structure-tissue/cell selectivity-activity relationship) to enhance success rate and efficiency by addressing three overlooked interdependent factors: potency/specificity to the on/off-targets determining efficacy in tumors at clinical doses, on/off-target-driven tissue/cell selectivity influencing adverse effects in the normal organs at clinical doses, and optimal clinical doses balancing efficacy/safety as determined by potency/specificity and tissue/cell selectivity. STAR-guided ML models can directly predict clinical dose/efficacy/safety from five features to design/select the best drugs, enhancing success and efficiency of cancer drug development.
Collapse
Affiliation(s)
| | | | - Zhigang Chen
- LabBotics.ai, Palo Alto, California 94303, United States
| | | | | | - Simon Zhou
- Aurinia Pharmaceuticals Inc., Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | - Yan Li
- Translational Medicine and Clinical Pharmacology, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | | | | |
Collapse
|
243
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
244
|
Perdomo-Quinteiro P, Belmonte-Hernández A. Knowledge Graphs for drug repurposing: a review of databases and methods. Brief Bioinform 2024; 25:bbae461. [PMID: 39325460 PMCID: PMC11426166 DOI: 10.1093/bib/bbae461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Drug repurposing has emerged as a effective and efficient strategy to identify new treatments for a variety of diseases. One of the most effective approaches for discovering potential new drug candidates involves the utilization of Knowledge Graphs (KGs). This review comprehensively explores some of the most prominent KGs, detailing their structure, data sources, and how they facilitate the repurposing of drugs. In addition to KGs, this paper delves into various artificial intelligence techniques that enhance the process of drug repurposing. These methods not only accelerate the identification of viable drug candidates but also improve the precision of predictions by leveraging complex datasets and advanced algorithms. Furthermore, the importance of explainability in drug repurposing is emphasized. Explainability methods are crucial as they provide insights into the reasoning behind AI-generated predictions, thereby increasing the trustworthiness and transparency of the repurposing process. We will discuss several techniques that can be employed to validate these predictions, ensuring that they are both reliable and understandable.
Collapse
Affiliation(s)
- Pablo Perdomo-Quinteiro
- Grupo de Aplicación de Telecomunicaciones Visuales, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain
| | - Alberto Belmonte-Hernández
- Grupo de Aplicación de Telecomunicaciones Visuales, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Avenida Complutense 30, 28040 Madrid, Spain
| |
Collapse
|
245
|
Ovcharenko D, Mukhin D, Ovcharenko G. Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology. Pharmaceutics 2024; 16:1237. [PMID: 39339273 PMCID: PMC11435428 DOI: 10.3390/pharmaceutics16091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval. The complex relationship between patent protection and pharmaceutical innovation complicates cancer drug development and contributes to high mortality rates. Adjusting patent criteria for alternative cancer therapeutics could stimulate innovation, enhance treatment options, and ultimately improve outcomes for cancer patients. This article explores the potential of alternative cancer therapeutics, chemopreventive agents, natural products, off-patent drugs, generic unpatentable chemicals, and repurposed drugs in cancer treatment, emphasizing the mechanisms and therapeutic potential of these unconventional compounds as combinatorial cancer therapies. The biological pathways, therapeutic effects, and potential to enhance existing therapies are reviewed, demonstrating their cost-effective and accessible options as adjuvant cancer therapies.
Collapse
Affiliation(s)
| | - Dmitry Mukhin
- Altogen Labs, 11200 Menchaca Road, Austin, TX 78748, USA
| | | |
Collapse
|
246
|
Lucendo-Villarin B, Wang Y, Mallanna SK, Kimbrel EA, Hay DC. Screening a Compound Library to Identify Additives That Boost Cytochrome P450 Enzyme Function in Vascularised Liver Spheres. Cells 2024; 13:1594. [PMID: 39329775 PMCID: PMC11430506 DOI: 10.3390/cells13181594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
To accurately study human organ function and disease 'in the dish', it is necessary to develop reliable cell-based models that closely track human physiology. Our interest lay with the liver, which is the largest solid organ in the body. The liver is a multifunctional and highly regenerative organ; however, severe liver damage can have dire consequences for human health. A common cause of liver damage is adverse reactions to prescription drugs. Therefore, the development of predictive liver models that capture human drug metabolism patterns is required to optimise the drug development process. In our study, we aimed to identify compounds that could improve the metabolic function of stem cell-derived liver tissue. Therefore, we screened a compound library to identify additives that improved the maturity of in vitro-engineered human tissue, with the rationale that by taking such an approach, we would be able to fine-tune neonatal and adult cytochrome P450 metabolic function in stem cell-derived liver tissue.
Collapse
Affiliation(s)
- Baltasar Lucendo-Villarin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK; (B.L.-V.); (Y.W.)
| | - Yu Wang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK; (B.L.-V.); (Y.W.)
| | - Sunil K. Mallanna
- Astellas Institute for Regenerative Medicine, 9 Technology Drive, Westborough, MA 01581, USA;
- Satellite Biosciences, 580 Pleasant Street, Watertown, MA 02472, USA
| | - Erin A. Kimbrel
- Astellas Institute for Regenerative Medicine, 9 Technology Drive, Westborough, MA 01581, USA;
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK; (B.L.-V.); (Y.W.)
| |
Collapse
|
247
|
Keydel T, Link A. Synthetic Approaches, Properties, and Applications of Acylals in Preparative and Medicinal Chemistry. Molecules 2024; 29:4451. [PMID: 39339447 PMCID: PMC11434492 DOI: 10.3390/molecules29184451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Diesters of geminal diols (R-CH(O-CO-R')2, RR'C(OCOR″)2, etc. with R = H, aryl or alkyl) are termed acylals according to IUPAC recommendations (Rule P-65.6.3.6 Acylals) if the acids involved are carboxylic acids. Similar condensation products can be obtained from various other acidic structures as well, but these related "non-classical acylals", as one might call them, differ in various aspects from classical acylals and will not be discussed in this article. Carboxylic acid diesters of geminal diols play a prominent role in organic chemistry, not only in their application as protective groups for aldehydes and ketones but also as precursors in the total synthesis of natural compounds and in a variety of organic reactions. What is more, acylals are useful as a key structural motif in clinically validated prodrug approaches. In this review, we summarise the syntheses and chemical properties of such classical acylals and show what potentially under-explored possibilities exist in the field of drug design, especially prodrugs, and classify this functional group in medicinal chemistry.
Collapse
Affiliation(s)
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany;
| |
Collapse
|
248
|
Qiao F, Binkowski TA, Broughan I, Chen W, Natarajan A, Schiltz GE, Scheidt KA, Anderson WF, Bergan R. Protein Structure Inspired Discovery of a Novel Inducer of Anoikis in Human Melanoma. Cancers (Basel) 2024; 16:3177. [PMID: 39335149 PMCID: PMC11429909 DOI: 10.3390/cancers16183177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Drug discovery historically starts with an established function, either that of compounds or proteins. This can hamper discovery of novel therapeutics. As structure determines function, we hypothesized that unique 3D protein structures constitute primary data that can inform novel discovery. Using a computationally intensive physics-based analytical platform operating at supercomputing speeds, we probed a high-resolution protein X-ray crystallographic library developed by us. For each of the eight identified novel 3D structures, we analyzed binding of sixty million compounds. Top-ranking compounds were acquired and screened for efficacy against breast, prostate, colon, or lung cancer, and for toxicity on normal human bone marrow stem cells, both using eight-day colony formation assays. Effective and non-toxic compounds segregated to two pockets. One compound, Dxr2-017, exhibited selective anti-melanoma activity in the NCI-60 cell line screen. In eight-day assays, Dxr2-017 had an IC50 of 12 nM against melanoma cells, while concentrations over 2100-fold higher had minimal stem cell toxicity. Dxr2-017 induced anoikis, a unique form of programmed cell death in need of targeted therapeutics. Our findings demonstrate proof-of-concept that protein structures represent high-value primary data to support the discovery of novel acting therapeutics. This approach is widely applicable.
Collapse
Affiliation(s)
- Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | | | - Irene Broughan
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weining Chen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Raymond Bergan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
249
|
Zhang X, Xu B, Ni J, Xiang Y, He Z. Combined Chemo- and Photothermal Therapies of Non-Small Cell Lung Cancer Using Polydopamine/Au Hollow Nanospheres Loaded with Doxorubicin. Int J Nanomedicine 2024; 19:9597-9612. [PMID: 39296938 PMCID: PMC11409934 DOI: 10.2147/ijn.s473137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose The chemotherapeutic agent doxorubicin (DOX) is limited by its cardiotoxicity, posing challenges in its application for non-small cell lung cancer (NSCLC). This study aims to explore the efficacy of polydopamine/Au nanoparticles loaded with DOX for chemotherapy and photothermal therapy in NSCLC to achieve enhanced efficacy and reduced toxicity. Methods Hollow polydopamine (HPDA)/Au@DOX was synthesized via polydopamine chemical binding sacrificial template method. Morphology was characterized using transmission electron microscopy, particle size and potential were determined using dynamic light scattering, and photothermal conversion efficiency was assessed using near-infrared (NIR) thermal imaging. Drug loading rate and in vitro drug release were investigated. In vitro, anti-tumor experiments were conducted using CCK-8 assay, flow cytometry, and live/dead cell staining to evaluate the cytotoxicity of HPDA/Au@DOX on A549 cells. Uptake of HPDA/Au@DOX by A549 cells was detected using the intrinsic fluorescence of DOX. The in vivo anti-metastasis and anti-tumor effects of HPDA/Au@DOX were explored in mouse lung metastasis and subcutaneous tumor models, respectively. Results HPDA/Au@DOX with a particle size of (164.26±3.25) nm, a drug loading rate of 36.31%, and an encapsulation efficiency of 90.78% was successfully prepared. Under 808 nm laser irradiation, HPDA/Au@DOX accelerated DOX release and enhanced uptake by A549 cells. In vitro photothermal performance assessment showed excellent photothermal conversion capability and stability of HPDA/Au@DOX under NIR laser irradiation. Both in vitro and in vivo experiments demonstrated that the photothermal-chemotherapy combination group (HPDA/Au@DOX+NIR) exhibited stronger anti-metastatic and anti-tumor activities compared to the monotherapy group (DOX). Conclusion HPDA/Au@DOX nanosystem demonstrated excellent photothermal effect, inhibiting the growth and metastasis of A549 cells. This nanosystem achieves the combined effect of chemotherapy and photothermal, making it promising for NSCLC treatment.
Collapse
Affiliation(s)
- Xinbo Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bin Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yucheng Xiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhifeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
250
|
Yang Y, Gao X, Widdicombe B, Zhang X, Zielinski JL, Cheng T, Gunatilaka A, Leung KK, Plaxco KW, Rajasekharan Unnithan R, Stewart AG. Dual-Purpose Aptamer-Based Sensors for Real-Time, Multiplexable Monitoring of Metabolites in Cell Culture Media. ACS NANO 2024; 18. [PMID: 39255458 PMCID: PMC11441400 DOI: 10.1021/acsnano.4c06813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The availability of high-frequency, real-time measurements of the concentrations of specific metabolites in cell culture systems will enable a deeper understanding of cellular metabolism and facilitate the application of good laboratory practice standards in cell culture protocols. However, currently available approaches to this end either are constrained to single-time-point and single-parameter measurements or are limited in the range of detectable analytes. Electrochemical aptamer-based (EAB) biosensors have demonstrated utility in real-time monitoring of analytes in vivo in blood and tissues. Here, we characterize a pH-sensing capability of EAB sensors that is independent of the specific target analyte of the aptamer sequence. We applied this dual-purpose EAB to the continuous measurement of pH and phenylalanine in several in vitro cell culture settings. The miniature EAB sensor that we developed exhibits rapid response times, good stability, high repeatability, and biologically relevant sensitivity. We also developed and characterized a leak-free reference electrode that mitigates the potential cytotoxic effects of silver ions released from conventional reference electrodes. Using the resulting dual-purpose sensor, we performed hourly measurements of pH and phenylalanine concentrations in the medium superfusing cultured epithelial tumor cell lines (A549, MDA-MB-23) and a human fibroblast cell line (MRC-5) for periods of up to 72 h. Our scalable technology may be multiplexed for high-throughput monitoring of pH and multiple analytes in support of the broad metabolic qualification of microphysiological systems.
Collapse
Affiliation(s)
- Yiling Yang
- Department
of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| | - Xumei Gao
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| | - Bryce Widdicombe
- Department
of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xiaodan Zhang
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jana Lorraine Zielinski
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tianhong Cheng
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Avanka Gunatilaka
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kaylyn K. Leung
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ranjith Rajasekharan Unnithan
- Department
of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| | - Alastair G. Stewart
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Melbourne, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, Melbourne, Victoria 3010, Australia
| |
Collapse
|