201
|
Pawlikowska M, Piotrowski J, Jędrzejewski T, Kozak W, Slominski AT, Brożyna AA. Coriolus versicolor-derived protein-bound polysaccharides trigger the caspase-independent cell death pathway in amelanotic but not melanotic melanoma cells. Phytother Res 2019; 34:173-183. [PMID: 31515931 DOI: 10.1002/ptr.6513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
We have investigated the potential cell death mechanism promoted by Coriolus versicolor fungus-derived protein-bound polysaccharides (PBPs) in melanoma cells. Knowing that melanogenesis has the potential to affect the tumor behavior and melanoma therapy outcome, the cytotoxic effects of PBPs were evaluated in human SKMel-188 melanoma cell line, whose phenotype, amelanotic versus pigmented, depends on the concentration of melanin precursors in the culture medium. Our results showed that inhibitory effect of PBPs (100 and 200 μg/ml) towards melanoma cells is inversely associated with the pigmentation level. This cytotoxicity induced in nonpigmented melanoma cells by PBPs was caspase-independent; however, it was accompanied by an increased intracellular reactive oxygen species (ROS) generation. The ROS production was controlled by c-Jun N-terminal kinase (JNK) because SP600125, a JNK inhibitor, significantly reduced ROS generation and protected cells against PBPs-induced death. We also found that PBPs-induced lactate dehydrogenase release in amelanotic melanoma cells was abolished by co-treatment with receptor-interacting serine/threonine-protein kinase 1 inhibitor, implying engagement of this kinase in PBPs-induced death pathway. The results suggest that PBPs induce an alternative programmed cell death, regulated by receptor-interacting protein-1 and ROS and that this process is modified by melanin content in melanoma cells. These findings are remarkable when considering the use of commercially available Coriolus versicolor by patients who suffer from melanoma cancer.
Collapse
Affiliation(s)
- Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Wiesław Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama.,Laboratory Service of the VA Medical Center, Birmingham, Alabama
| | - Anna A Brożyna
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
202
|
Feng Z, Yang R, Wu L, Tang S, Wei B, Guo L, He L, Feng Y. Atractylodes macrocephala polysaccharides regulate the innate immunity of colorectal cancer cells by modulating the TLR4 signaling pathway. Onco Targets Ther 2019; 12:7111-7121. [PMID: 31564895 PMCID: PMC6733773 DOI: 10.2147/ott.s219623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background It has been well-recognized that the polysaccharides from Atractylodes macrocephala (PAM) are immune system enhancers, which can facilitate the proliferation of lymphocytes and stimulate immune cells. Nevertheless, the antitumor effects of PAM and their molecular mechanisms remain unclear. Aim Our research aimed to evaluate the anti-cancer effects of PAM on colorectal cancer (CRC). Methods We tested the effects of PAM on the growth and proliferation of CRC cells and macrophages by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The pro-inflammatory cytokines expression and secretion was analyzed by real-time RT-PCR and ELISA assay. We also used MC38 cells xenograft model to test the anti-cancer effects of PAM in vivo. Results We found that although PAM treatment did not significantly affect the growth of CRC cells or enhance the proliferation of bone marrow-derived macrophages (BMDMs), it could enhance the phagocytosis of BMDMs by CRC cells. Biochemical tests and immunoblotting assays revealed that exposing BMDMs to PAM promoted the production of interleukin-6 (IL-6), interferon λ (IFN λ), tumor necrosis factor α (TNF-α), and nitric oxide (NO) through the MyD88/TLR4-dependent signaling pathway. One noteworthy observation is that PAM treatment could significantly prevent tumorigenesis of MC38 cells in C57BL/6J mice and increase the survival duration of mice with tumors, without influence on the weight of those mice. However, the anti-cancer effects of PAM were compromised in TLR4 KO mice, further suggesting that TLR4 signaling plays a vital role in the anti-cancer effects of PAM. Conclusion Therefore, PAM may prove to be a potential candidate in cancer immunotherapy.
Collapse
Affiliation(s)
- Zifang Feng
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Ruibin Yang
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Liusong Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Shihua Tang
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Bin Wei
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Lijia Guo
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Ling He
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Yonghuai Feng
- Department of Haematology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
203
|
Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A. The Preparation and Structure Analysis Methods of Natural Polysaccharides of Plants and Fungi: A Review of Recent Development. Molecules 2019; 24:molecules24173122. [PMID: 31466265 PMCID: PMC6749352 DOI: 10.3390/molecules24173122] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Polysaccharides are ubiquitous biomolecules found in nature that contain various biological and pharmacological activities that are employed in functional foods and therapeutic agents. Natural polysaccharides are obtained mainly by extraction and purification, which may serve as reliable procedures to enhance the quality and the yield of polysaccharide products. Moreover, structural analysis of polysaccharides proves to be promising and crucial for elucidating structure–activity relationships. Therefore, this report summarizes the recent developments and applications in extraction, separation, purification, and structural analysis of polysaccharides of plants and fungi.
Collapse
Affiliation(s)
- Yan Ren
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China.
| | - Yueping Bai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Zhidan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
204
|
Lu ZX, He JF, Zhang YC, Bing DJ. Composition, physicochemical properties of pea protein and its application in functional foods. Crit Rev Food Sci Nutr 2019; 60:2593-2605. [PMID: 31429319 DOI: 10.1080/10408398.2019.1651248] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Field pea is one of the most important leguminous crops over the world. Pea protein is a relatively new type of plant proteins and has been used as a functional ingredient in global food industry. Pea protein includes four major classes (globulin, albumin, prolamin, and glutelin), in which globulin and albumin are major storage proteins in pea seeds. Globulin is soluble in salt solutions and can be further classified into legumin and vicilin. Albumin is soluble in water and regarded as metabolic and enzymatic proteins with cytosolic functions. Pea protein has a well-balanced amino acid profile with high level of lysine. The composition and structure of pea protein, as well as the processing conditions, significantly affect its physical and chemical properties, such as hydration, rheological characteristics, and surface characteristics. With its availability, low cost, nutritional values and health benefits, pea protein can be used as a novel and effective alternative to substitute for soybean or animal proteins in functional food applications.
Collapse
Affiliation(s)
- Z X Lu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - J F He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, P.R. China
| | - Y C Zhang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D J Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| |
Collapse
|
205
|
Koul A, Garg S, Mohan V. Chemopreventive role of arabinogalactan against experimentally induced pulmonary carcinogenesis: a study in relation to its initiation phase. Drug Chem Toxicol 2019; 44:642-654. [PMID: 31379226 DOI: 10.1080/01480545.2019.1643877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study is to divulge the chemopreventive potential of arabinogalactan (AG) on benzo(a)pyrene [B(a)P] induced initiation of lung carcinogenesis. AG is one of the naturally occurring bioactive polysaccharides which is widely found in medicinal plants. Male Balb/c mice were divided into four experimental groups. Group I served as control. Group II animals were injected with B(a)P (50 mg/kg b. wt. i.p.). Group III animals were administered with AG (7.5 mg/kg b.wt.) orally. Group IV animals received B(a)P and AG as in group II and group III, respectively. B(a)P treatment in mice resulted in imbalance of carcinogen metabolizing enzymes and respiratory marker enzymes at 2nd, 6th and 10th week of the experimental protocol. Also, it leads to the increased protein synthesis as depicted by increased argyrophilic nucleolar organizer regions (AgNOR) positive cells and altered histopathological features. Studies on bronchoalveolar lavage fluid (balf) of B(a)P exposed animals revealed increase in surface tension when compared with control counterparts. Apart from target tissue (lung), B(a)P also led to the clastogenic damage in other tissues (spleen and bone marrow) as depicted by increase in percentage of micronucleus cells at different time intervals. Treatment with AG efficiently counteracted all the above anomalies and restored cellular homeostasis. These observations suggest that AG has the potential to modulate B(a)P induced changes in the pulmonary tissue as well as other tissues which could have implications in delaying the initiation of carcinogenesis, however, further investigations are required to explore its complete mechanism of action.
Collapse
Affiliation(s)
- Ashwani Koul
- Department of Biophysics, Basic Medical Science Block II, Panjab University, Chandigarh, India
| | - Shaffy Garg
- Department of Biophysics, Basic Medical Science Block II, Panjab University, Chandigarh, India
| | - Vandana Mohan
- Department of Biophysics, Basic Medical Science Block II, Panjab University, Chandigarh, India
| |
Collapse
|
206
|
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019; 8:E304. [PMID: 31374889 PMCID: PMC6723881 DOI: 10.3390/foods8080304] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
207
|
Panax quinquefolius (North American ginseng) cell suspension culture as a source of bioactive polysaccharides: Immunostimulatory activity and characterization of a neutral polysaccharide AGC1. Int J Biol Macromol 2019; 139:221-232. [PMID: 31376448 DOI: 10.1016/j.ijbiomac.2019.07.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/31/2023]
Abstract
In this study, we propose the use of a plant tissue culture-based system for the production of polysaccharides with consistent chemical characteristics and reduced endotoxin content. Polysaccharides were isolated from suspension cultures of Panax quinquefolius (American ginseng), a widely used medicinal herb. A neutral fraction, AGC1, purified by anion exchange and size exclusion chromatography, displayed immunostimulatory activity in vitro and ex vivo. AGC1 (average molecular weight: 5.2kDa) was predominantly composed of galactose (>60%) along with the presence of several other neutral sugars such as arabinose, xylose, glucose, mannose and rhamnose in minor amounts. The major glycosidic linkages were found to be 3-Galp (48.5%), 3,6-Galp (10.2%), t-Galp (5.2%), 6-Galp (4.4%), 4-Glcp (5.7%), 4-Arap/5-Araf (4.0%) and t-Araf (4.5%). AGC1 significantly (p<0.05) stimulated the expression of a range of proinflammatory mediators in RAW 264.7 murine macrophages such as IL-6, TNF-α, MCP-1 and GM-CSF. Additionally, AGC1 treatment of RAW 264.7 cells stimulated NOS2 gene expression, leading to increased levels of iNOS and downstream NO. Consistent with this, AGC1 was able to act as an immunostimulant in primary murine splenocytes, enhancing cell proliferation, as well as NO and TNF-α production. Our results also indicate the partial role of NF-κB pathway in the immunostimulatory response.
Collapse
|
208
|
Polysaccharide from Rubus chingii Hu affords protection against palmitic acid-induced lipotoxicity in human hepatocytes. Int J Biol Macromol 2019; 133:1063-1071. [DOI: 10.1016/j.ijbiomac.2019.04.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
|
209
|
Flores C, Lima RT, Adessi A, Sousa A, Pereira SB, Granja PL, De Philippis R, Soares P, Tamagnini P. Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. Int J Biol Macromol 2019; 136:1219-1227. [PMID: 31233798 DOI: 10.1016/j.ijbiomac.2019.06.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Abstract
Cyanobacterial extracellular carbohydrate polymers are particularly attractive for biotechnological applications. Previously, we determined the monosaccharidic composition of the polymer of a Synechocystis ΔsigF overproducing mutant. Here, we further characterized this polymer, demonstrated that it is possible to recover it in high yields, and successfully use it for biomedical research. This amorphous polymer is formed by a mesh of fibrils/lamellar structures with high porosity, is constituted by high molecular mass fractions, is highly sulfated and displays low viscosity, even in highly concentrated aqueous solutions. FTIR analysis confirmed the presence of several functional groups. We demonstrated that the ΔsigF polymer has strong biological activity, decreasing the viability of melanoma, thyroid and ovary carcinoma cells by inducing high levels of apoptosis, through p53 and caspase-3 activation. Therefore, the ΔsigF Synechocystis mutant is a promising platform for the sustainable production of biological active carbohydrate polymer(s) with the desired characteristics for biomedical applications.
Collapse
Affiliation(s)
- Carlos Flores
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Raquel T Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FMUP - Faculty of Medicine, Department of Pathology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Alessandra Adessi
- DAGRI - Department of Agriculture, Food, Environment and Forestry, University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Sara B Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Roberto De Philippis
- DAGRI - Department of Agriculture, Food, Environment and Forestry, University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FMUP - Faculty of Medicine, Department of Pathology, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.
| |
Collapse
|
210
|
Su S, Ding X, Fu L, Hou Y. Structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Int J Mol Med 2019; 44:713-724. [PMID: 31173162 DOI: 10.3892/ijmm.2019.4219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/07/2019] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the structural characterization and immune regulation of a novel polysaccharide from Maerkang Lactarius deliciosus Gray. Chemical methods, high performance gel permeation chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance spectrum and gas chromatography‑mass spectrometry were used to characterize the polysaccharide structure. The immunomodulatory abilities of the Maerkang L. deliciosus Gray polysaccharide (LDG‑M) were also investigated. LDG‑M was primarily composed of β‑D‑glucose and α‑D‑lyxose with the ratio of 2:1. The possible structure of LDG‑M had a backbone of 1,6‑linked‑β‑D‑glucose and 1,4,6‑linked‑β‑D‑glucose, with branches primarily composed of one (1→4)‑linked‑α‑D‑lyxose residue. The immunoregulatory activity results demonstrated that LDG‑M promoted the proliferation and phagocytosis of macrophages, and induced cytokine release. LDG‑M also promoted the proliferation of B cells by affecting the G0/G1, S and G2/M phases. The present study introduced LDG‑M as a valuable source with unique immunoregulatory properties.
Collapse
Affiliation(s)
- Siyuan Su
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Lei Fu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
211
|
Ji HY, Yu J, Dong XD, Liu AJ. Preparation of soluble dietary fibers from Gracilaria lemaneiformis and its antitumor activity in vivo. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00073-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
212
|
Xiang B, Yu X, Li B, Xiong Y, Long M, He Q. Characterization, antioxidant, and anticancer activities of a neutral polysaccharide from Duchesnea indica (Andr.) Focke. J Food Biochem 2019; 43:e12899. [PMID: 31353707 DOI: 10.1111/jfbc.12899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/30/2022]
Abstract
A neutral polysaccharide (DIP-1) from Duchesnea indica (Andr.) Focke was obtained by hot water extraction, ethanol precipitation and chromatographic separation (DEAE-52 cellulose anion-exchange column and Sephadex G-100 gel column). The physicochemical properties of DIP-1 were elucidated by gel permeation chromatography, monosaccharide composition, Fourier transform infrared spectrometry, UV-visible spectrophotometry, scanning electron microscope and Congo red test. The results indicated that DIP-1 was consisted of mannose, glucosamine, glucose, galactose and arabinose in a ratio of 1.00:0.42:18.36:14.17:0.81, and its molecular weight was 218.3 kDa. Meanwhile, DIP-1 presented a straight hexahedron structure, but no triple-helical conformation. In antioxidant activity tests, DIP-1 exhibited powerful scavenging activities on hydroxyl, DPPH, ABTS radicals and reducing power in a dose-dependent manner. Especially, DIP-1 demonstrated high inhibitory activities against SKOV-3 and Hep-G2 cells in vitro, with IC50 values of 1.42 and 1.23 mg/ml, respectively. PRACTICAL APPLICATIONS: D. indica has been used for a long time as a Chinese medicine for therapy of many diseases, including cancer, inflammation, leprosy, fever, bleeding and so on. At present, polysaccharides have attracted comprehensive attention because of a large range of pharmacological and biological properties, including antitumor, antidiabetic, antioxidant and immunomodulatory activity. In the present study, we purified and characterized a neutral polysaccharide from D. indica for the first time. Moreover, the neutral polysaccharide exhibits significant antioxidant and antitumor activities. Therefore, the present study laid a foundation for the high-value application of D. indica polysaccharides in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Bolin Xiang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education; Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education; Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Bo Li
- School of Education, Chongqing Normal University, Chongqing, China
| | - Yan Xiong
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education; Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Min Long
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education; Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education; Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
213
|
Lappaconitine sulfate induces apoptosis in human colon cancer HT-29 cells and down-regulates PI3K/AKT/GSK3β signaling pathway. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02346-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
214
|
Viktor Z, Farcet C, Moire C, Brothier F, Pfukwa H, Pasch H. Comprehensive two-dimensional liquid chromatography for the characterization of acrylate-modified hyaluronic acid. Anal Bioanal Chem 2019; 411:3321-3330. [DOI: 10.1007/s00216-019-01799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/25/2022]
|
215
|
Isolation, structure elucidation, and immunostimulatory activity of polysaccharide fractions from Boswellia carterii frankincense resin. Int J Biol Macromol 2019; 133:76-85. [PMID: 30981779 DOI: 10.1016/j.ijbiomac.2019.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022]
Abstract
Frankincense has a long history in religious, cultural, and medicinal use. In this study polysaccharides were extracted from frankincense from Boswellia carterii. The polysaccharides were purified by anion exchange chromatography on a DEAE-Sepharose Fast Flow 16/10 FPLC column. Six fractions were obtained and the three most active immunomodulatory fractions were further purified by size exclusion chromatography on a Superdex-200 column. The composition showed the monosaccharides present were predominantly galactose, arabinose, and glucuronic acid along with small amounts of rhamnose and glucose. The monosaccharide composition and glycosyl linkage analysis revealed the polysaccharides belong to the type II arabinogalactans. Fourier-transform infrared spectroscopy and bicinchoninic acid assay showed that the amount of protein in the samples was <1 wt%. One-dimensional 1H NMR were consistent with high molecular weight compounds. The monosaccharides were primarily in the β conformation. The three fractions exhibited an immunostimulatory effect on RAW 264.7 murine macrophage cells. The most active immunostimulatory fraction FA2, stimulated a range of pro-inflammatory mediators including iNOS, NO, TNF-α, and IL-6 in RAW 264.7 cells. The fractions were effective in proliferating primary murine splenocytes. The results indicate that the polysaccharides isolated from frankincense have the potential to be used as an immunological stimulant or nutraceutical.
Collapse
|
216
|
Guo Z, Zang Y, Zhang L. The efficacy of Polyporus Umbellatus polysaccharide in treating hepatitis B in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:329-360. [PMID: 31030753 DOI: 10.1016/bs.pmbts.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyporus umbellatus polysaccharide (PUPS) has been identified as the major bioactive component in the mushroom Polyporus umbellatus that has immuno-enhancing, anti-tumor, anti-inflammatory, and hepatoprotective activities. Both PUPS capsule and injection are Chinese Food and Drug Administration (SFDA) approved drugs, which have been used alone or in combination with a variety of clinical drugs for treating Hepatitis B, lung and liver cancers in China since 1990. Our aim was to review both the efficacy and problem associated with PUPS mono- and combination therapy conducted in China and the underlying molecular mechanisms. To this end, the term Polyporus umbellatus polysaccharide both in English and in Chinese was used to conduct a systematic search of PubMed, VIP (Chongqing VIP Chinese Scientific Journals Database), CNKI (China National Knowledge Infrastructure), and Wanfang database. A total 11,703 clinically reported cases in China from over 100 publications during the past 27 years were evaluated, translated into English, and summarized into 3 figures and 13 tables to provide a general view of efficacy of PUPS during mono- and combination therapy. The published data showed the effectiveness of PUPS for treating hepatitis B in most reported cases. Moreover, the combined therapies for PUPS plus hepatitis B vaccine, PUPS plus interferon, PUPS plus acyclovir, and PUPS plus iRNA are better than when treated with either drug alone. Overall, when PUPS is used alone or in combination with other drugs for prevention and treatment of hepatitis B-affected patients, the efficacy is convincible.
Collapse
Affiliation(s)
- Zhihua Guo
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yunjin Zang
- Department of Liver Transplantation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
217
|
Polysaccharide-Rich Fractions from Rosa rugosa Thunb.-Composition and Chemopreventive Potential. Molecules 2019; 24:molecules24071354. [PMID: 30959857 PMCID: PMC6480326 DOI: 10.3390/molecules24071354] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
The huge health-beneficial potential of polysaccharides encourages the search for novel sources and applications of these compounds. One poorly explored source of polysaccharides is the rose. The content and biological activity of polysaccharides in rose organs is an almost completely unaddressed topic, therefore, polysaccharide-rich extracts (crude polysaccharides, CPLs) from petals, leaves, hips, and achenes of Rosa rugosa Thunb. were studied for their composition and the influence on various cellular processes involved in the development of cancer and other civilization diseases. The study revealed the presence of water-soluble and -insoluble polysaccharides (including β-glucans) and protein-polysaccharide conjugates in rose organs. Rose hips were found to be the most abundant source of polysaccharides. Different polysaccharide-rich extracts showed the ability to inhibit pro-inflammatory enzymes (COX-1, COX-2, hyaluronidase), a radical scavenging effect (against DPPH• and ABTS•+), and antiproliferative activity (in the A549 lung and SW480 colon cancer cell lines) in in vitro assays. Therefore, rose crude polysaccharides are very promising and can potentially be used as natural chemopreventive agents.
Collapse
|
218
|
Polysaccharides as potential anticancer agents—A review of their progress. Carbohydr Polym 2019; 210:412-428. [PMID: 30732778 DOI: 10.1016/j.carbpol.2019.01.064] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
|
219
|
Meyenberg Cunha-de Padua M, Noleto GR, de Oliveira Petkowicz CL, Cadena SMSC, Bost F, Pouysségur J, Mazure NM. Hypoxia protects against the cell death triggered by oxovanadium-galactomannan complexes in HepG2 cells. Cell Mol Biol Lett 2019; 24:18. [PMID: 30949212 PMCID: PMC6421655 DOI: 10.1186/s11658-019-0135-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polysaccharides from various sources have been used in traditional medicine for centuries. The beneficial pharmacological effects of plant-derived polysaccharides include anti-tumor activity. METHODS Here, we evaluated the anti-cancer effect of the MSAGM:VO complex under hypoxic conditions (1% oxygen). MSAGM:VO is a complex of the hydrolysate of galactomannan (MSAGM) from Schizolobium amazonicum with oxovanadium (IV/V). The hepatocellular carcinoma (HCC) cell line HepG2 was selected as HCC are one of the most hypoxic solid tumors. RESULTS Our results showed that the strong apoptotic activity of MSAGM:VO observed in HepG2 cells under normoxic conditions was completely lost under hypoxic conditions. We found a dynamic balance between the pro- and anti-apoptotic members of the Bcl-2 protein family. The expressions of anti-apoptotic Mcl-1 and Bcl-XL increased in hypoxia, whereas the expression of pro-apoptotic Bax decreased. MSAGM:VO strongly induced autophagy, which was previously characterized as a pro-survival mechanism in hypoxia. These results demonstrate total elimination of the anti-cancer activity of MSAGM:VO with activation of autophagy under conditions of hypoxia. CONCLUSION Although this study is a proof-of-concept of the impact of hypoxia on the potential of polysaccharides, further study is encouraged. The anti-tumor activity of polysaccharides could be achieved in normoxia or through raising the activity of the immune system. In addition, combination strategies for therapy with anti-autophagic drugs could be proposed.
Collapse
Affiliation(s)
- Monique Meyenberg Cunha-de Padua
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil
- Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave. de Valombrose, 06189 Nice, France
- Present Address: INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
| | | | | | | | - Frédéric Bost
- Present Address: INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
| | - Jacques Pouysségur
- Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave. de Valombrose, 06189 Nice, France
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Nathalie M. Mazure
- Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-Inserm U1081, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, 33 Ave. de Valombrose, 06189 Nice, France
- Present Address: INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice Cedex 03, France
| |
Collapse
|
220
|
Yang D, Zhou Z, Zhang L. An overview of fungal glycan-based therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:135-163. [PMID: 31030746 DOI: 10.1016/bs.pmbts.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Edible medicinal mushrooms have been traditionally used for health promotion and longevity in China and other East Asian countries for centuries. Structural and pharmacological studies revealed that fungal glycans show multiple physiological and healthy promoting effects including immunomodulation, anti-tumor, anti-aging, anti-oxidation, hypoglycemic, hypolipidemic, anti-radiation, and other effects. Fungal glycans isolated from different kinds of medicinal mushrooms are partially purified and clinically tested. Without serious safety concerns of mostly glycans from edible mushrooms and/or the cultured mycelium, eight of them are approved by Chinese Food and Drug Administration (SFDA) and used clinically in China since 1980s. In this chapter, 185 independent studies involving in biochemical, pharmacological and clinical studies of fungal glycans during the past four decades (1977-2019) from PubMed, CNKI (China National Knowledge Infrastructure) and Wanfang databases are summarized. In future, understanding the fungal glycan-based drugs at molecular biological level would be needed to comprehend the clinical efficacy of glycan-based drugs.
Collapse
Affiliation(s)
- Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zijing Zhou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
221
|
Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs 2019; 17:E183. [PMID: 30897733 PMCID: PMC6471298 DOI: 10.3390/md17030183] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
The marine acid polysaccharide fucoidan has attracted attention from both the food and pharmaceutical industries due to its promising therapeutic effects. Fucoidan is a polysaccharide that mainly consists of L-fucose and sulphate groups. Its excellent biological function is attributed to its unique biological structure. Classical activities include antitumor, antioxidant, anticoagulant, antithrombotic, immunoregulatory, antiviral and anti-inflammatory effects. More recently, fucoidan has been shown to alleviate metabolic syndrome, protect the gastrointestinal tract, benefit angiogenesis and bone health. This review focuses on the progress in our understanding of the biological activities of fucoidan, highlighting its benefits for the treatment of human disease. We hope that this review can provide some theoretical basis and inspiration for the product development of fucoidan.
Collapse
Affiliation(s)
- Yu Wang
- Marine College, Shandong University, Weihai 264209, China.
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
222
|
Apios americana Medikus tuber polysaccharide exerts anti-inflammatory effects by activating autophagy. Int J Biol Macromol 2019; 130:892-902. [PMID: 30840871 DOI: 10.1016/j.ijbiomac.2019.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
Abstract
The tubers of Apios americana Medikus possess high nutritional value and have been used as food in many countries for a long time. However, few researches have focused on the tuber polysaccharides. In the present study, a purified polysaccharide (ATP-1) was isolated with the average molecular weights of 12.16 kDa. ATP-1 significantly suppressed the release of nitric oxide (NO) and inflammatory cytokines from LPS-induced RAW 264.7 cells, as well as oxidative stress and mitochondrial dysfunction. Meanwhile, ATP-1 reduced oxidative damage via the NF-κB, MAPKs and Nrf2-Keap1 signaling pathways in RAW264.7 macrophages. Furthermore, autophagy was activated by HMGB1-Beclin1, Sirt1-FoxO1 and Akt-mTOR signaling pathways, leading to a relief of oxidative stress, mitochondrial dysfunction, inflammation and an expression enhancement of autophagy-related proteins, such as LC3, Beclin1, Atg4, Atg5, and Atg7. In summary, our results suggested that ATP-1 might help to activate the anti-inflammation system,resulting in prevention of LPS-induced damage in RAW264.7 cells.
Collapse
|
223
|
Sun QL, Li YX, Cui YS, Jiang SL, Dong CX, Du J. Structural characterization of three polysaccharides from the roots of Codonopsis pilosula and their immunomodulatory effects on RAW264.7 macrophages. Int J Biol Macromol 2019; 130:556-563. [PMID: 30831168 DOI: 10.1016/j.ijbiomac.2019.02.165] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/26/2023]
Abstract
Three polysaccharides were isolated from the roots of Codonopsis pilosula by ion-exchange and gel-filtration chromatography. They were named RCNP, RCAP-1, and RCAP-2, and had apparent molecular weights of 1.14 × 104, 5.09 × 104, and 2.58 × 105, respectively. Their structures were characterized by HPGPC, chemical derivative analysis, GC-MS and NMR analyses. Results showed that RCNP contained arabinan and arabinogalactan regions. The arabinan region had a main chain comprising (1 → 5)-linked Araf residues, and the side chains branched at the O-3 position by the single Araf residues. The arabinogalactan region comprised alternating (1 → 4)-, (1 → 6)- or (1 → 3)-linked Galp along with small amounts of branches mainly at the O-3 position of the (1 → 6)-linked Galp or O-6 position of the (1 → 3)-linked Galp residues by terminally linked Araf residues. RCAP-1 and RCAP-2 were highly methyl-esterified pectin-type polysaccharides with long homogalacturonan regions interrupted by a short rhamnogalacturonan I (RG-I) region. The side chains of the RG-I region consisted of (1 → 2)-linked Rha residues attached to the position O-4 of rhamnose. Their degrees of methyl-esterification were approximately 60.6% and 68.1%, respectively. Bioactivity tests showed that RCAP-1 and RCAP-2 exerted a significant immunostimulatory effect based on NO production from RAW264.7 macrophages. These results suggested that these two pectin-type polysaccharides were potential immunostimulation agents.
Collapse
Affiliation(s)
- Qi-Li Sun
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yi-Xuan Li
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yong-Sheng Cui
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Si-Liang Jiang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
224
|
Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
225
|
Liu X, Hou R, Xu K, Chen L, Wu X, Lin W, Zheng M, Fu J. Extraction, characterization and antioxidant activity analysis of the polysaccharide from the solid-state fermentation substrate of Inonotus hispidus. Int J Biol Macromol 2019; 123:468-476. [PMID: 30445081 DOI: 10.1016/j.ijbiomac.2018.11.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 11/12/2018] [Indexed: 01/11/2023]
Abstract
A polysaccharide from Inonotus hispidus was prepared by solid-state fermentation (SSF), and an efficient ultrasound-assisted extraction method was used to optimize the extraction process of Inonotus hispidus solid-state fermentation polysaccharide (IHSFP). The optimal extraction parameters were as follows: solid-liquid ratio of 1:40, ultrasound time of 34 min, ultrasound power of 350 W and ultrasound temperature of 70 °C. The yield of IHSFP was 51.06 ± 0.34% under the optimal conditions. Two types of polysaccharide fractions (IHSFP-1 and IHSFP-2) were isolated by DEAE-52 and Sephadex G-200 columns. IHSFP-2 had stronger antioxidant activity than IHSFP-1, and it can reduce H2O2-induced oxidative damage to cells in vitro. Therefore, the properties of IHSFP-2 were further characterized. The results showed that the molecular weight of IHSFP-2 was 14.44 kDa, it was composed of glucose (Glc), mannose (Man), galactose (Gal), glucuronic acid (GlcUA), galactosamine (GalN), arabinose (Ara) and ribose (Rib), and the contents of these monosaccharides were 51%, 21%, 20%, 3%, 2%, 2% and 1%, respectively. The results of this study may contribute to the efficient production of the polysaccharide of Inonotus hispidus, and provide new ideas for its application in functional foods and cosmetics.
Collapse
Affiliation(s)
- Xin Liu
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruolin Hou
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaiqiang Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoping Wu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
226
|
Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int J Biol Macromol 2019; 123:280-290. [DOI: 10.1016/j.ijbiomac.2018.11.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/22/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
|
227
|
Functional characterization of a potent anti-tumor polysaccharide in a mouse model of gastric cancer. Life Sci 2019; 219:11-19. [DOI: 10.1016/j.lfs.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/07/2022]
|
228
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
229
|
Yang A, Fan H, Zhao Y, Chen X, Zhu Z, Zha X, Zhao Y, Chai X, Li J, Tu P, Hu Z. An immune-stimulating proteoglycan from the medicinal mushroom Huaier up-regulates NF-κB and MAPK signaling via Toll-like receptor 4. J Biol Chem 2019; 294:2628-2641. [PMID: 30602571 DOI: 10.1074/jbc.ra118.005477] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/31/2018] [Indexed: 12/21/2022] Open
Abstract
Trametes robiniophila Murr. (Huaier) is a mushroom with a long history of use as a medicinal ingredient in China and exhibits good clinical efficacy in cancer management. However, the antitumor components of Huaier and the underlying molecular mechanisms remain poorly understood. Here, we isolated a proteoglycan with a molecular mass of ∼5.59 × 104 Da from Huaier aqueous extract. We named this proteoglycan TPG-1, and using FTIR and additional biochemical analyses, we determined that its total carbohydrate and protein compositions are 43.9 and 41.2%, respectively. Using biochemical assays and immunoblotting, we found that exposing murine RAW264.7 macrophages to TPG-1 promotes the production of nitric oxide (NO), tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) through Toll-like receptor 4 (TLR4)-dependent activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling. Of note, the TPG-1 treatment significantly inhibited the tumorigenesis of human hepatoma HepG2 cells likely at least in part by increasing serum levels of TNFα and promoting leukocyte infiltration into tumors in nude mice. TPG-1 also exhibited good antitumor activity in hepatoma H22-bearing mice and had no obvious adverse effects in these mice. We conclude that TPG-1 exerts antitumor activity partially through an immune-potentiating effect due to activation of the TLR4-NF-κB/MAPK signaling cassette. Therefore, TPG-1 may be a promising candidate drug for cancer immunotherapy. This study has identified the TPG-1 proteoglycan as an antitumor agent and provided insights into TPG-1's molecular mechanism, suggesting a potential utility for applying this agent in cancer therapy.
Collapse
Affiliation(s)
- Ailin Yang
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Haitao Fan
- the College of Bioengineering, Beijing Polytechnic, Beijing 100029, China, and
| | - Yanan Zhao
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xiaonan Chen
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Zhixiang Zhu
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xiaojun Zha
- the Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yunfang Zhao
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Xingyun Chai
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Jun Li
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Pengfei Tu
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China,
| | - Zhongdong Hu
- From the Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Third Ring Road, Chaoyang District, Beijing 100029, China,
| |
Collapse
|
230
|
Wu J, Li H, Wang X, Zhang X, Liu W, Wang Y, Zhang Y, Pan H, Wang Q, Han Y. Effect of polysaccharide from Undaria pinnatifida on proliferation, migration and apoptosis of breast cancer cell MCF7. Int J Biol Macromol 2019; 121:734-742. [PMID: 30342943 DOI: 10.1016/j.ijbiomac.2018.10.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 02/04/2023]
Abstract
Sulfated polysaccharide from Undaria pinnatifida (SPUP) has significant anti-breast cancer activity. However, its anticarcinogenic mechanism still remains unclear. The aim of this article is to observe the effect of SPUP on proliferation, migration and apoptosis of human breast cancer cell line MCF7. Firstly, the effect of SPUP on proliferation was evaluated through MTT assay, plate clonality assay and immunofluorescence test of PCNA. The results showed that SPUP could significantly reduce MCF7 cells proliferation in a time- and dose-dependent manner. Based on transwell and scratch wound healing assays, then, inhibitory action of SPUP for MCF7 cells migration was observed. Finally, apoptosis and cycle arrest of SPUP for MCF7 cells also were found by the results from both flow cytometry analysis and Hoechst 33342 staining of apoptotic cells. Overall, these results showed anti-breast cancer mechanism of SPUP could be possibly related to inhibit migration, proliferation and induce apoptosis of cancer cells.
Collapse
Affiliation(s)
- Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China; School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, Shangdong, PR China
| | - Hailun Li
- Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Xinyue Wang
- Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, PR China
| | - Xiaolei Zhang
- Jiangsu Vocational College of Nursing, Huai'an 223003, Jiangsu, China
| | - Weiping Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Yumei Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Yongbin Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Yun Han
- School of Integrated Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shangdong, PR China.
| |
Collapse
|
231
|
Moga MA, Bălan A, Anastasiu CV, Dimienescu OG, Neculoiu CD, Gavriș C. An Overview on the Anticancer Activity of Azadirachta indica (Neem) in Gynecological Cancers. Int J Mol Sci 2018; 19:ijms19123898. [PMID: 30563141 PMCID: PMC6321405 DOI: 10.3390/ijms19123898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, a wide range of studies have pointed out the importance of nutraceuticals as reservoirs of therapeutic compounds for several diseases, including cancer. This study is centered on the role of some nutraceuticals as anticancer agents and on their efficiency in the oncological gynecological field. Gynecological cancers include cervical, ovarian, and breast neoplasia and these are the major causes of morbidity and mortality in the female population. Cervical neoplasia affects sexually active women aged between 30 and 40 years and is considered the second leading cause of death for women worldwide. Epidemiological studies have shown a strong association of this cancer with human papilloma virus (HPV) infection, independent of any others risk factors. Ovarian cancer represents about 4% of all women’s cancers and breast neoplasia registers 52.8 new cases per 100,000 women annually. Since ancient times, herbal therapies have shown a wide range of beneficial effects and a high potential for safeguarding human health. Azadirachta indica (Neem) is a medicinal plant of Indian origin, a tree with more of 140 isolated compounds and at least 35 biologically active principles that have shown an important influence as tumor suppressors by interfering with the carcinogenesis process. Used for centuries in Asia as a natural remedy for cancer, neem compounds present in bark, leaves, flowers, and seed oil have been shown to possess properties such as chemopreventive capacity, apoptotic activities, immunomodulatory effects, and induction of p53-independent apoptosis. The current study is a systematic literature review based on the anticarcinogenic potential of neem compounds in gynecological cancers.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Andreea Bălan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Costin Vlad Anastasiu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Carmen Daniela Neculoiu
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania Braşov, 500019 Brasov, Romania.
| | - Claudia Gavriș
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| |
Collapse
|
232
|
Kokoulin MS, Kuzmich AS, Romanenko LA, Menchinskaya ES, Mikhailov VV, Chernikov OV. Sulfated O-polysaccharide with anticancer activity from the marine bacterium Poseidonocella sedimentorum KMM 9023T. Carbohydr Polym 2018; 202:157-163. [DOI: 10.1016/j.carbpol.2018.08.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
|
233
|
Zhang Q, Xia Y, Luo H, Huang S, Wang Y, Shentu Y, Mahaman YAR, Huang F, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Wang X. Codonopsis pilosula Polysaccharide Attenuates Tau Hyperphosphorylation and Cognitive Impairments in hTau Infected Mice. Front Mol Neurosci 2018; 11:437. [PMID: 30542264 PMCID: PMC6277749 DOI: 10.3389/fnmol.2018.00437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/12/2018] [Indexed: 01/25/2023] Open
Abstract
Codonopsis pilosula polysaccharide (CPPs), a natural products with potentially lower toxicity and better bioavailability has been used in traditional Chinese medicine for 1000s of years and a neuroprotective polysaccharide mitigates tau pathology in Alzheimer’s disease (AD) mouse model. However, whether CPPs can relieve AD pathology and cognitive defects remains poorly understood. Here we reported that CPPs remarkably increased the cell viability and PP2A activity, decreased tau phosphorylation in HEK 293/tau cells. Next, we employed an adeno-associated virus serotype 2 (AAV2)-induced expression of human full length tau (hTau) in C57/BL6 mice to mimic AD tau pathology. One month intragastric administration of CPPs significantly increased PP2A activity and reduced tau phosphorylation at Ser199, Ser202/Thr205 (AT8) and Thr231 in hippocampus of AAV2-hTau infected mice. Furthermore, behavioral tests revealed that CPPs rescued hTau overexpression induced cognitive defects while CPPs significantly increased the fEPSP slope and synaptic proteins including synaptotagmin and synaptophysin. Together, our data suggest that CPPs might prevent AD-like tau hyperphosphorylation via activation of PP2A and attenuates AD-like cognitive impairments through restoring the synaptic plasticity and synaptogenesis. In conclusion, our findings suggest that CPPs might be a potential candidate compound for the treatment of tau related diseases.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyuan Xia
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbin Luo
- Medical College, Hubei University for Nationalities, Enshi, China
| | - Sheng Huang
- Medical College, Hubei University for Nationalities, Enshi, China
| | - Yongjun Wang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yangping Shentu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
234
|
Yang X, Wang S, Trangle SS, Li Y, White WL, Li J, Ying T, Kong Q, Zhao Y, Lu J. Investigation of Different Molecular Weight Fucoidan Fractions Derived from New Zealand Undaria pinnatifida in Combination with GroA Therapy in Prostate Cancer Cell Lines. Mar Drugs 2018; 16:E454. [PMID: 30453677 PMCID: PMC6266598 DOI: 10.3390/md16110454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various antioxidant, anticoagulant, antiviral, and anticancer functions. In this study, we focused on low molecular weight fucoidan (LMWF) which was extracted from New Zealand Undaria pinnatifida, and investigated its anti-proliferative effects, combined with a quadruplex-forming oligonucleotide aptamer (GroA, AS1411), a powerful cell surface Nucleolin inhibitor, in prostate cancer cells. We examined LMWF (<10 kDa) and compared it with laboratory grade Fucoidan purchased from Sigma (FS), all extracted from the same seaweed species U. pinnatifida. We found that LMWF significantly improved the anti-proliferative effect of GroA, as it decreased cancer cell growth and viability and increased cell death. This research may provide the foundation for LMWF to be used against prostate cancers as a supplement therapy in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Sheng Wang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | | | - Yan Li
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China.
| | - Qingjun Kong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1010, New Zealand.
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518071, China.
| |
Collapse
|
235
|
Structure identification of an arabinogalacturonan in Citrus reticulata Blanco ‘Chachiensis’ peel. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
236
|
Jiao Y, Hua D, Huang D, Zhang Q, Yan C. Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food Funct 2018; 9:3997-4007. [PMID: 29975387 DOI: 10.1039/c8fo00790j] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psidium guajava fruit is a subtropical fruit, functional food and traditional medicine for the adjuvant treatment of diabetes mellitus in China. To investigate the active components responsible for its health benefits, a novel heteropolysaccharide GP70-3 was purified by water extraction, ethanol precipitation and column chromatography. Structural characterization of GP70-3 was elucidated for the first time by monosaccharide composition assay, Fourier transform-infrared spectroscopy (FT-IR), methylation analysis, gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). The data revealed that GP70-3 contained a backbone of 1→3,6)-linked β-d-Galp, 1→5)-linked α-l-Araf, 1→6)-linked β-d-Galp and 1→3)-linked β-d-Galp, branched with 1→2,3,5)-linked α-l-Araf, 1→3)-linked α-l-Araf, 1→3)-linked α-l-Rhap, 1→3)-linked β-d-GlcpA, 1→3)-linked β-d-GalpA and terminated with →1)-linked β-d-Galp. Advanced structure studies showed GP70-3 consisted of irregular flakes with rounded-spherical pores. Moreover, GP70-3 exhibited outstanding α-glucosidase inhibitory activity in vitro, with an IC50 value of 2.539 ± 0.144 μM, which was 1867 times higher than that of the positive control acarbose (IC50 value of 4.744 ± 0.026 mM). Therefore, consumption of guava polysaccharides may be beneficial as an α-glucosidase inhibitor for reducing the postprandial blood glucose level and treating type II diabetes.
Collapse
Affiliation(s)
- Yukun Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
237
|
Hu Q, Du H, Ma G, Pei F, Ma N, Yuan B, Nakata PA, Yang W. Purification, identification and functional characterization of an immunomodulatory protein from Pleurotus eryngii. Food Funct 2018; 9:3764-3775. [PMID: 29897364 DOI: 10.1039/c8fo00604k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pleurotus eryngii contains bioactive compounds that can activate the immune system. Here we report the identification, purification, and functional characterization of the bioactive P. eryngii protein (PEP) 1b. PEP 1b was discovered to be a 21.9 kDa protein with the ability to induce the M1-polarization of the macrophage cell line RAW 264.7 cells. Biochemical measurements showed that PEP 1b stimulated nitric oxide (NO), IL-1β, IL-6 and TNF-α production and regulated inducible NO synthase. Phosphorylation and inhibitor studies revealed that PEP 1b promoted the translocation of NF-kB from the cytosol to the nucleus allowing the induction of target gene expression and NO production. The phosphorylation of JNK and ERK1/2 was found to be necessary for NO production. Each phosphorylation pathway was found to require a Toll-like receptor (TLR) 4 as a prerequisite for PEP 1b-induced NO production. This study suggests that PEP 1b is an immunomodulatory protein that can boost cellular immune responses through the activation of the TLR4-NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Ji X, Shen Y, Guo X. Isolation, Structures, and Bioactivities of the Polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino: A Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6285134. [PMID: 30410935 PMCID: PMC6206586 DOI: 10.1155/2018/6285134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022]
Abstract
Polysaccharides obtained from Gynostemma pentaphyllum (Thunb.) Makino have promising prospects in functional food and nutraceuticals due to its broad range of biological activities including antioxidant, immunomodulatory, antitumor, hepatoprotective, neuroprotective, and antifatigue activities. These beneficial biological activities are related to chemical composition and structure of the G. pentaphyllum polysaccharides. The molecular weight, monosaccharide composition, and chemical structures could be influenced by both different extraction/purification techniques employed to obtain polysaccharide enriched products. The purpose of this article is to review previous and current literature regarding the extraction, purification, structural characterization, and biological activity of G. pentaphyllum polysaccharides. This review provides a useful bibliography for the further investigation, production, and application of G. pentaphyllum polysaccharides as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaolong Ji
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, China
| | - Yingbin Shen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xudan Guo
- Basic Medical College, Hebei University of Chinese Medicine, 050200 Shijiazhuang, China
| |
Collapse
|
239
|
Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L, Huang S, Wang X, Hou S, Xu T, Chen J, Zhang D, Shi Y, Li H, Li S. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr 2018; 60:48-63. [PMID: 30285473 DOI: 10.1080/10408398.2018.1512472] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The further development of fishery resources is a hotspot in the development of the fishery industry. However, how to develop aquatic animal resources deeply is a key point to be solved in the fishery industry. Over the past decades, numerous aquatic animals have gained great attention in the development and utilization of their bioactive molecules which are of therapeutic applications as nutraceuticals and pharmaceuticals. Recent research revealed that aquatic animals are composed of many vital moieties, such as polysaccharides and proteins, which provide health benefits beyond basic nutrition. In particular, aquatic animal polysaccharides are gaining worldwide popularity owing to their high content, ease of extraction, specific structure, few side effects, prominent therapeutic potential and incorporation in functional foods and dietary supplements. Thus, tremendous research on the isolation, identification and bioactivities of polysaccharides has been carried out. This review presents comprehensive viewpoints on extraction, separation, purification, structural characterization and bioactivity of various polysaccharides from aquatic animals, such as sea cucumber, abalone, oyster and mussels. In addition, this review profiled a brief knowledge on both current challenges and future scope in aquatic animal polysaccharides field. The review will be a direction of deep processing in fishery resources, which is a hotspot, but technical bottleneck. Furthermore, the review could be served as a useful reference material for further investigation, production and application of polysaccharides from aquatic animals in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingping Xiong
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China.,Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhuoyue Song
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Weihui Hu
- Division of Life Science, Center for Chinese Medicine, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Jian Liang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Lian He
- School of Nursing, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, PR China
| | - Song Huang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Xiaoli Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Shaozhen Hou
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Tingting Xu
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Jing Chen
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Danyan Zhang
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yingying Shi
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Hailun Li
- Nephrological Department, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, PR China
| | - Shijie Li
- Mathematical Engineering Academy of Chinese Medicine, and School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
240
|
Duan H, Donovan M, Foucher A, Schultze X, Lecommandoux S. Multivalent and multifunctional polysaccharide-based particles for controlled receptor recognition. Sci Rep 2018; 8:14730. [PMID: 30283149 PMCID: PMC6170371 DOI: 10.1038/s41598-018-32994-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
Polysaccharides represent a versatile class of building blocks that are used in macromolecular design. By choosing the appropriate saccharide block, various physico-chemical and biological properties can be introduced both at the level of the polymer chains and the resulting self-assembled nanostructures. Here, we synthetized amphiphilic diblock copolymers combining a hydrophobic and helical poly(γ-benzyl-L-glutamate) PBLG and two polysaccharides, namely hyaluronic acid (HA) and laminarin (LAM). The copolymers could self-assemble to form particles in water by nanoprecipitation. In addition, hybrid particles containing both HA and LAM in different ratios were obtained by co-nanoprecipitation of the two copolymers. By controlling the self-assembly process, five particle samples with different morphologies and compositions were developed. The interaction between the particles and biologically relevant proteins for HA and LAM, namely CD44 and Dectin-1 respectively, was evaluated by surface plasmon resonance (SPR). We demonstrated that the particle-protein interaction could be modulated by the particle structure and composition. It is therefore suggested that this method based on nanoprecipitation is a practical and versatile way to obtain particles with controllable interactions with proteins, hence with the appropriate biological properties for biomedical applications such as drug delivery.
Collapse
Affiliation(s)
- Haohao Duan
- L'Oréal recherche avancée, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux INP/ENSCBP, 16 avenue Pey Berland, 33600, Pessac, France
| | - Mark Donovan
- L'Oréal recherche avancée, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
| | - Aude Foucher
- L'Oréal recherche avancée, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
| | - Xavier Schultze
- L'Oréal recherche avancée, 1 avenue Eugène Schueller, 93600, Aulnay-sous-Bois, France
| | - Sebastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux INP/ENSCBP, 16 avenue Pey Berland, 33600, Pessac, France.
| |
Collapse
|
241
|
Tamiello CS, Adami ER, de Oliveira NMT, Acco A, Iacomini M, Cordeiro LM. Structural features of polysaccharides from edible jambo (Syzygium jambos) fruits and antitumor activity of extracted pectins. Int J Biol Macromol 2018; 118:1414-1421. [DOI: 10.1016/j.ijbiomac.2018.06.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023]
|
242
|
Silva AZ, Costa FP, Souza IL, Ribeiro MC, Giordani MA, Queiroz DA, Luvizotto RA, Nascimento AF, Bomfim GF, Sugizaki MM, Dekker RF, Barbosa-Dekker AM, Queiroz EA. Botryosphaeran reduces obesity, hepatic steatosis, dyslipidaemia, insulin resistance and glucose intolerance in diet-induced obese rats. Life Sci 2018; 211:147-156. [DOI: 10.1016/j.lfs.2018.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 01/11/2023]
|
243
|
Isolation, Characterization and Antitumor Effect on DU145 Cells of a Main Polysaccharide in Pollen of Chinese Wolfberry. Molecules 2018; 23:molecules23102430. [PMID: 30248961 PMCID: PMC6222688 DOI: 10.3390/molecules23102430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
Modern studies have shown that pollen has a certain role in the treatment of prostate-related diseases. In the present study, pollen polysaccharides from Chinese wolfberry (WPPs) were extracted by hot-water extraction and ethanol precipitation, further purified by chromatography on a DEAE-cellulose column and Sephadex G-100 column. Homogeneous polysaccharide CF1 of WPPS was obtained, the molecular weight of which was estimated to be 1540.10 ± 48.78 kDa by HPGPC-ELSD. HPLC with PMP derivatization analysis indicated that the monosaccharide compositions of CF1 were mannose, glucuronic acid, galacturonic acid, xylose, galactose, arabinose, and trehalose, in a molar ratio of 0.68:0.59:0.27:0.24:0.22:0.67:0.08. The antitumor effects of CF1 upon MTT, Tunel assay and flow cytometry assay were investigated in vitro. The results showed that CF1 exhibited a dose-dependent antiproliferative effect, with an IC50 value of 374.11 μg/mL against DU145 prostate cancer cells. Tunel assay and flow cytometry assay showed that the antitumor activity of CF1 was related to apoptosis in vitro. The present study suggested that the CF1 of WPPs might be a potential source of antitumor functional food or agent.
Collapse
|
244
|
Jiang L, Huang D, Nie S, Xie M. Polysaccharide isolated from seeds of Plantago asiatica L. induces maturation of dendritic cells through MAPK and NF-κB pathway. Saudi J Biol Sci 2018; 25:1202-1207. [PMID: 30174523 PMCID: PMC6117183 DOI: 10.1016/j.sjbs.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 11/15/2022] Open
Abstract
Plantago species are used as traditional medicine in Asian and Europe. Polysaccharide isolated from the seeds of Plantago asiatica L. could stimulate maturation transformation of bone-marrow derived dendritic cells (DCs). We found that blocking p38, ERK1/2 and JNK MAPK signal transduction could significantly decreased the PLP-2 induced expression of MHC II, CD86 surface molecules on DCs. Blocking p38 and JNK signal also significantly inhibited the cytokine secretion of TNF-α and IL-12p70 as well, while blocking ERK1/2 signal only decreased the secretion of TNF-α. Meanwhile, DCs in the three MAPK signal-blocking groups showed dramatically attenuated effects on stimulating proliferation of T lymphocytes. Similarly, blocking signal transduction of NF-κB pathway also significantly impaired the phenotypic and functional maturation development of DCs induced by PLP-2. These data suggest that MAPK and NF-κB pathway mediates the PLP-induced maturation on DCs. Especially, among the three MAPK pathways, activation of JNK signal transduction is the most important for DCs development after PLP-2 incubation. And PLP-2 may activate the MAPK and NF-κB pathway by triggering toll-like receptor 4 on DCs.
Collapse
Key Words
- CD, cluster of differentiation
- DCs, dendritic cells
- Dendritic cell
- ERK, extracellular signal regulated kinases
- IL, interleukin
- JNK, c-Jun amino-terminal kinases
- MAPK
- MAPK, mitogen-activated protein kinase
- NF-κB
- NF-κB, nuclear factor κB
- PAMPs, pathogen-associated molecular patterns
- PDTC, pyrrolidine dithiocarbamate
- PLP, polysaccharide from the seeds of Plantago asiatica L.
- PRR, pattern recognition receptors
- Plantago asiatica L.
- Polysaccharides
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Toll-like receptor
Collapse
Affiliation(s)
| | | | | | - MingYong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
245
|
Wang DD, Pan WJ, Mehmood S, Cheng XD, Chen Y. Polysaccharide isolated from Sarcodon aspratus induces RAW264.7 activity via TLR4-mediated NF-κB and MAPK signaling pathways. Int J Biol Macromol 2018; 120:1039-1047. [PMID: 30171950 DOI: 10.1016/j.ijbiomac.2018.08.147] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/16/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
Our previous report showed that the novel polysaccharide SAP isolated from the fruiting bodies of Sarcodon aspratus induced Hela cells apoptosis via mitochondrial dysfunction. In this study we found that SAP enhanced immunostimulatory activities of RAW264.7 cells, which was characterized by increased the production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and phagocytic. However, SAP-induced macrophage activation was abolished when Toll-like receptor 4 (TLR4) signaling was blocked by anti-TLR4 antibodies. Moreover, according to the Western blot analysis and use of specific inhibitors against the MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor-κB), we speculated that SAP activated RAW264.7 cells through TLR4-mediated activation of NF-κB and MAPKs pathways. Thus, Sarcodon aspratus is a potential immunomodulator that can be used as healthcare food.
Collapse
Affiliation(s)
- Dan-Dan Wang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Wen-Juan Pan
- School of Life Sciences, Anhui University, Hefei 230601, China.
| | | | - Xiao-Du Cheng
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, China.
| |
Collapse
|
246
|
Yedjou CG, Sims JN, Njiki S, Tsabang N, Ogungbe IV, Tchounwou PB. VERNONIA AMYGDALINA DELILE EXHIBITS A POTENTIAL FOR THE TREATMENT OF ACUTE PROMYELOCYTIC LEUKEMIA. GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES 2018; 5:1-9. [PMID: 30310827 DOI: 10.5281/zenodo.1343591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The World Health Organization (WHO) has been on front line to encourage developing countries to identify medicinal plants that are safe and easily available to patients. Traditional medicine represents the first-treatment choice for the healthcare of approximately 80% of people living in developing countries. Also, its use in the United States has increased by 38% during within the last decade of the 20th century alone. Therefore, the aim of the present study was to explore the efficacy of a medicinal plant, Vernonia amygdalina Delile (VAD), as a new targeted therapy for the management of acute promyelocytic leukemia (APL), using HL-60 cells as a test model. To address our specific aim, HL-60 promyelocytic leukemia cells were treated with VAD. Live and dead cells were determined by acridine orange and propidium iodide (AO/PI) dye using the Cellometer Vision. The extent of DNA damage was evaluated by the comet assay. Cell apoptosis was evaluated by flow cytometry assessment. Data obtained from the AO/PI assay indicated that VAD significantly reduced the number of live cells in a dose-dependent manner, showing a gradual increase in the loss of viability in VAD-treated cells. We observed a significant increase in DNA damage in VAD-treated cells compared to the control group. Flow cytometry data demonstrated that VAD induced apoptosis in treated cells compared to the control cells. These results suggest that induction of cell death, DNA damage, and cell apoptosis are involved in the therapeutic efficacy of VAD. Because VAD exerts anticancer activity in vitro, it would be interesting to perform clinical trials to confirm its effectiveness as an anticancer agent towards the treatment of APL patients.
Collapse
Affiliation(s)
- Clement G Yedjou
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS, USA
| | - Jennifer N Sims
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS, USA
| | - Sylvianne Njiki
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS, USA
| | - Nole Tsabang
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS, USA
| | - Ifedayo V Ogungbe
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS, USA
| | - Paul B Tchounwou
- Natural Chemotherapeutics Research Laboratory, NIH-RCMI Center for Environmental Health College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS, USA
| |
Collapse
|
247
|
Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:465-471. [PMID: 30274079 DOI: 10.1016/j.msec.2018.08.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023]
Abstract
Silver nanoparticles (Ag NPs) serve numerous chief functions in cosmetics, engineering, textile, food technology and medicine. These nanoparticles are also utilized in the pharmaceutical industry particularly in the production of novel antimicrobial agents. However, despite the various studies of Ag NPs induced toxicity, there is a lack of information concerning cellular toxicity mechanisms of these nanoparticles on human cells. In the current project, we investigate the anti-cancer effects of Ag NPs in HepG2 (liver hepatocellular adenocarcinoma) cells. The mean particle size and morphology for the prepared nanoparticles were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. Cell viability, reactive oxygen species (ROS) formation, cytochrome c amount and expression level of BAX/CASP 3/CASP 8/CASP 9 were assayed in HepG2 cells after incubation with Ag NPs. The prepared nanoparticles showed the mean particle size of 30.71 nm with polydispersity index (PDI) of 0.21. Our results revealed decreased cell viability in a concentration-dependent manner and the IC50 of 75 μg/mL for Ag NPs. Ag NPs cytotoxicity was associated with induction of ROS and cell apoptosis in HepG2 cell line. According to our findings, Ag NPs could be considered as potential chemotherapeutic agents in the treatment of liver hepatocellular carcinoma.
Collapse
|
248
|
Li W, Wang J, Chen Z, Gao X, Chen Y, Xue Z, Guo Q, Ma Q, Chen H. Physicochemical properties of polysaccharides from Lentinus edodes under high pressure cooking treatment and its enhanced anticancer effects. Int J Biol Macromol 2018; 115:994-1001. [DOI: 10.1016/j.ijbiomac.2018.04.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
|
249
|
Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. INT J POLYM SCI 2018. [DOI: 10.1155/2018/1708172] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chitosan is obtained from alkaline deacetylation of chitin, and acetamide groups are transformed into primary amino groups during the deacetylation. The diverse biological activities of chitosan and its derivatives are extensively studied that allows to widening the application fields in various sectors especially in biomedical science. The biological properties of chitosan are strongly depending on the solubility in water and other solvents. Deacetylation degree (DDA) and molecular weight (MW) are the most decisive parameters on the bioactivities since the primary amino groups are the key functional groups of chitosan where permits to interact with other molecules. Higher DDA and lower MW of chitosan and chitosan derivatives demonstrated higher antimicrobial, antioxidant, and anticancer capacities. Therefore, the chitosan oligosaccharides (COS) with a low polymerization degree are receiving a great attention in medical and pharmaceutical applications as they have higher water solubility and lower viscosity than chitosan. In this review articles, the antimicrobial, antioxidant, anticancer, anti-inflammatory activities of chitosan and its derivatives are highlighted. The influences of physicochemical parameters of chitosan like DDA and MW on bioactivities are also described.
Collapse
|
250
|
Braga DL, Mota STS, Zóia MAP, Lima PMAP, Orsolin PC, Vecchi L, Nepomuceno JC, Fürstenau CR, Maia YCP, Goulart LR, Araújo TG. Ethanolic Extracts from Azadirachta indica Leaves Modulate Transcriptional Levels of Hormone Receptor Variant in Breast Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19071879. [PMID: 29949923 PMCID: PMC6073126 DOI: 10.3390/ijms19071879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer (BC) encompasses numerous entities with different biological and behavioral characteristics, favored by tumor molecular complexity. Azadirachta indica (neem) presents phenolic compounds, indicating its potential as an antineoplastic compound. The present study aimed to evaluate the cellular response of MCF10, MCF7, and MDA-MB-231 breast cell lines to ethanolic extracts of neem leaves (EENL) obtained by dichloromethane (DCM) and ethyl acetate (EA) solvent. Extracts’ antiproliferative activities were evaluated against MCF 10A, MCF7, and MDA-MB-231 for 24 and 48 h using MTT assay. ESR1, ESR2, AR, AR-V1, AR-V4, and AR-V7 transcripts were quantified through qPCR for 0.03125 μg/mL of DCM and 1.0 μg/mL for EA for 48 h. The EENL was tested on Drosophila melanogaster as a sole treatment and then also together with doxorubicin. Antiproliferative effect on tumor cell lines without affecting MCF 10A were 1.0 µg/mL (P < 0.001) for EA, and 0.03125 µg/mL (P < 0.0001) for DCM, both after 48 h. Transcriptional levels of AR-V7 increased after treatment. In vivo assays demonstrated that EENL induced fewer tumors at a higher concentration with doxorubicin (DXR). The behavior of AR-V7 in the MDA-MB-231 tumor lineage indicates new pathways involved in tumor biology and this may have therapeutic value for cancer.
Collapse
Affiliation(s)
- Deisi L Braga
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
| | - Sara T S Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Mariana A P Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Paula M A P Lima
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas-MG 38700-207, Brazil.
| | - Priscila C Orsolin
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas-MG 38700-207, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Júlio C Nepomuceno
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas-MG 38700-207, Brazil.
| | - Cristina R Fürstenau
- Laboratory of Animal Cell Culture, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
| | - Yara C P Maia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
- University of California Davis, Dept. of Medical Microbiology and Immunology, Davis, CA 95616, USA.
| | - Thaise G Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| |
Collapse
|