201
|
Wang Y, Song E, Bai B, Vanhoutte PM. Toll-like receptors mediating vascular malfunction: Lessons from receptor subtypes. Pharmacol Ther 2015; 158:91-100. [PMID: 26702901 DOI: 10.1016/j.pharmthera.2015.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLR) are a subfamily of pattern recognition receptors (PRR) implicated in a variety of vascular abnormalities. However, the pathophysiological role and the interplay between different TLR-mediated innate and adaptive immune responses during the development of vascular diseases remain largely unspecified. TLR are widely distributed in both immune and nonimmune cells in the blood vessel wall. The expressions and locations of TLR are dynamically regulated in response to distinct molecular patterns derived from pathogens or damaged host cells. As a result, the outcome of TLR signaling is agonist- and cell type-dependent. A better understanding of discrete TLR signaling pathways in the vasculature will provide unprecedented opportunities for the discovery of novel therapies in many inflammatory vascular diseases. The present brief review discusses the role of individual TLR in controlling cellular functions of the vascular system, by focusing on the inflammatory responses within the blood vessel wall which contribute to the development of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| | - Erfei Song
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
202
|
Delgado-Roche L, Brito V, Acosta E, Pérez A, Fernández JR, Hernández-Matos Y, Griñán T, Soto Y, León OS, Marleau S, Vázquez AM. Arresting progressive atherosclerosis by immunization with an anti-glycosaminoglycan monoclonal antibody in apolipoprotein E-deficient mice. Free Radic Biol Med 2015; 89:557-66. [PMID: 26454078 DOI: 10.1016/j.freeradbiomed.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/01/2022]
Abstract
Atherogenesis is associated with the early retention of low-density lipoproteins (LDL) in the arterial intima by interaction with glycosaminoglycan (GAG)-side chains of proteoglycans. Retained LDL undergo reactive oxygen species-mediated oxidation. Oxidized LDL trigger oxidative stress (OS) and inflammation, contributing to atherosclerosis development. Recently, we reported the preventive anti-atherogenic properties of the chimeric mouse/human monoclonal antibody (mAb) chP3R99-LALA, which were related to the induction of anti-chondroitin sulfate antibody response able to inhibit chondroitin sulfate dependent LDL-enhanced oxidation. In the present work, we aimed at further investigating the impact of chP3R99-LALA mAb vaccination on progressive atherosclerosis in apolipoprotein E-deficient mice (apoE(-/-)) fed with a high-fat high-cholesterol diet receiving 5 doses (50 µg) of the antibody subcutaneously, when ~5% of the aortic area was covered by lesions. Therapeutic immunization with chP3R99-LALA mAb halted atherosclerotic lesions progression. In addition, aortic OS was modulated, as shown by a significant (p<0.05) reduction of lipid and protein oxidation, preservation of antioxidant enzymes activity and reduced glutathione, together with a decrease of nitric oxide levels. chP3R99-LALA mAb immunization also regulated aortic NF-κB activation, diminishing the proinflammatory IL1-β and TNF-α gene expression as well as the infiltration of macrophages into the arterial wall. The therapeutic immunization of apoE(-/-) with progressive atheromas and persistent hypercholesterolemia using chP3R99-LALA mAb arrested further development of lesions, accompanied by a decrease of aortic OS and NF-κB-regulated pro-inflammatory cytokine gene expression. These results contribute to broaden the potential use of this anti-GAG antibody-based immunotherapy as a novel approach to target atherosclerosis at different phases of progression.
Collapse
Affiliation(s)
- Livan Delgado-Roche
- Department of Pharmacology, Center of Marine Bioproducts, Havana 10600, Cuba
| | - Víctor Brito
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Emilio Acosta
- Center of Advanced Studies of Cuba, La Lisa, Havana 13600, Cuba
| | - Arlenis Pérez
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Julio R Fernández
- Department of Genomic, Center for Genetic Engineering and Biotechnology, Havana 11600, Cuba
| | - Yanet Hernández-Matos
- Department of Pharmacology and Toxicology, Pharmacy and Food Sciences Institute, University of Havana, Havana 13600, Cuba
| | - Tania Griñán
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Yosdel Soto
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Olga S León
- Department of Pharmacology and Toxicology, Pharmacy and Food Sciences Institute, University of Havana, Havana 13600, Cuba
| | - Sylvie Marleau
- Faculty de of Pharmacy Université de Montréal, Montréal, Québec, Canada
| | - Ana M Vázquez
- Innovation Managing Direction, Center of Molecular Immunology, Havana 11600, Cuba.
| |
Collapse
|
203
|
Mukohda M, Stump M, Ketsawatsomkron P, Hu C, Quelle FW, Sigmund CD. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress. Am J Physiol Heart Circ Physiol 2015; 310:H39-48. [PMID: 26566726 DOI: 10.1152/ajpheart.00490.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1β-mediated NF-κB activity.
Collapse
Affiliation(s)
- Masashi Mukohda
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Madeliene Stump
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Chunyan Hu
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Frederick W Quelle
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
204
|
Luo H, Wang J, Qiao C, Ma N, Liu D, Zhang W. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4-NF-κB pathway. Exp Mol Med 2015; 47:e191. [PMID: 26492950 PMCID: PMC4673476 DOI: 10.1038/emm.2015.74] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide and is characterized by lipid-laden foam cell formation. Recently, pycnogenol (PYC) has drawn much attention because of its prominent effect on cardiovascular disease (CVD). However, its protective effect against atherosclerosis and the underlying mechanism remains undefined. Here PYC treatment reduced areas of plaque and lipid deposition in atherosclerotic mice, concomitant with decreases in total cholesterol and triglyceride levels and increases in HDL cholesterol levels, indicating a potential antiatherosclerotic effect of PYC through the regulation of lipid levels. Additionally, PYC preconditioning markedly decreased foam cell formation and lipid accumulation in lipopolysaccharide (LPS)-stimulated human THP-1 monocytes. A mechanistic analysis indicated that PYC decreased the lipid-related protein expression of adipose differentiation-related protein (ADRP) and adipocyte lipid-binding protein (ALBP/aP2) in a dose-dependent manner. Further analysis confirmed that PYC attenuated LPS-induced lipid droplet formation via ADRP and ALBP expression through the Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) pathway, because pretreatment with anti-TLR4 antibody or a specific inhibitor of NF-κB (PDTC) strikingly mitigated the LPS-induced increase in ADRP and ALBP. Together, our results provide insight into the ability of PYC to attenuate bacterial infection-triggered pathological processes associated with atherosclerosis. Thus PYC may be a potential lead compound for the future development of antiatherosclerotic CVD therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Jing Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Chenhui Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Ning Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Donghai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Weihua Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
205
|
Ridder DA, Wenzel J, Müller K, Töllner K, Tong XK, Assmann JC, Stroobants S, Weber T, Niturad C, Fischer L, Lembrich B, Wolburg H, Grand'Maison M, Papadopoulos P, Korpos E, Truchetet F, Rades D, Sorokin LM, Schmidt-Supprian M, Bedell BJ, Pasparakis M, Balschun D, D'Hooge R, Löscher W, Hamel E, Schwaninger M. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. ACTA ACUST UNITED AC 2015; 212:1529-49. [PMID: 26347470 PMCID: PMC4577837 DOI: 10.1084/jem.20150165] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
Ridder et al. show that deletion of NEMO, a component of NF-kB signaling, in brain endothelial cells results in increased cerebral vascular permeability and endothelial cell death, and recapitulates the neurological symptoms observed in the genetic disease incontinentia pigmenti. Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP.
Collapse
Affiliation(s)
- Dirk A Ridder
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Kristin Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Xin-Kang Tong
- Montreal Neurological Institute, McGill University, Montreal QC H3A 0G4, Canada
| | - Julian C Assmann
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Tobias Weber
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Cristina Niturad
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Lisanne Fischer
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Beate Lembrich
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | | | - Dirk Rades
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Marc Schmidt-Supprian
- Department of Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Barry J Bedell
- Montreal Neurological Institute, McGill University, Montreal QC H3A 0G4, Canada
| | | | - Detlef Balschun
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Edith Hamel
- Montreal Neurological Institute, McGill University, Montreal QC H3A 0G4, Canada
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology and Department of Radiation Oncology, University of Lübeck, 23562 Lübeck, Germany German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
206
|
Bozic M, Álvarez Á, de Pablo C, Sanchez-Niño MD, Ortiz A, Dolcet X, Encinas M, Fernandez E, Valdivielso JM. Impaired Vitamin D Signaling in Endothelial Cell Leads to an Enhanced Leukocyte-Endothelium Interplay: Implications for Atherosclerosis Development. PLoS One 2015; 10:e0136863. [PMID: 26322890 PMCID: PMC4556440 DOI: 10.1371/journal.pone.0136863] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Endothelial cell activation leading to leukocyte recruitment and adhesion plays an essential role in the initiation and progression of atherosclerosis. Vitamin D has cardioprotective actions, while its deficiency is a risk factor for the progression of cardiovascular damage. Our aim was to assess the role of basal levels of vitamin D receptor (VDR) on the early leukocyte recruitment and related endothelial cell-adhesion-molecule expression, as essential prerequisites for the onset of atherosclerosis. Knockdown of VDR in endothelial cells (shVDR) led to endothelial cell activation, characterized by upregulation of VCAM-1, ICAM-1 and IL-6, decreased peripheral blood mononuclear cell (PBMC) rolling velocity and increased PBMC rolling flux and adhesion to the endothelium. shVDR cells showed decreased IκBα levels and accumulation of p65 in the nucleus compared to shRNA controls. Inhibition of NF-κB activation with super-repressor IκBα blunted all signs of endothelial cell activation caused by downregulation of VDR in endothelial cells. In vivo, deletion of VDR led to significantly larger aortic arch and aortic root lesions in apoE-/- mice, with higher macrophage content. apoE-/-VDR-/-mice showed higher aortic expression of VCAM-1, ICAM-1 and IL-6 when compared to apoE-/-VDR+/+ mice. Our data demonstrate that lack of VDR signaling in endothelial cells leads to a state of endothelial activation with increased leukocyte-endothelial cell interactions that may contribute to the more severe plaque accumulation observed in apoE-/-VDR-/- mice. The results reveal an important role for basal levels of endothelial VDR in limiting endothelial cell inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Milica Bozic
- Nephrology Research Department, IRB Lleida, Lleida, Spain
| | - Ángeles Álvarez
- Department of Pharmacology and CIBERehd, University of Valencia, Valencia, Spain
| | - Carmen de Pablo
- Department of Pharmacology and CIBERehd, University of Valencia, Valencia, Spain
| | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, UAM and IRSIN, Madrid, Spain
| | - Xavier Dolcet
- Pathology Group, Pathology and Molecular Genetics Department, Hospital Universitari Arnau de Vilanova, University of Lleida and IRB Lleida, Spain
| | - Mario Encinas
- Department of Experimental Medicine, University of Lleida and IRB Lleida, Lleida, Spain
| | | | | |
Collapse
|
207
|
Affiliation(s)
- Jason E Fish
- From the Toronto General Research Institute, University Health Network, Toronto, Canada (J.E.F., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada (J.E.F., M.I.C.); and Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada (J.E.F., M.I.C.).
| | - Myron I Cybulsky
- From the Toronto General Research Institute, University Health Network, Toronto, Canada (J.E.F., M.I.C.); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada (J.E.F., M.I.C.); and Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada (J.E.F., M.I.C.).
| |
Collapse
|
208
|
Cheng L, Pan GF, Zhang XD, Wang JL, Wang WD, Zhang JY, Wang H, Liang RX, Sun XB. Yindanxinnaotong, a Chinese compound medicine, synergistically attenuates atherosclerosis progress. Sci Rep 2015; 5:12333. [PMID: 26196108 PMCID: PMC4508829 DOI: 10.1038/srep12333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/22/2015] [Indexed: 12/18/2022] Open
Abstract
Yindanxinnaotong (YD), a traditional Chinese medicine, has been introduced to clinical medicine for more than a decade, while its pharmacological properties are still not to be well addressed. This report aimed to explore the anti-atherosclerosis properties and underlying mechanisms of YD. We initially performed a computational prediction based on a network pharmacology simulation, which clued YD exerted synergistically anti-atherosclerosis properties by vascular endothelium protection, lipid-lowering, anti-inflammation, and anti-oxidation. These outcomes were then validated in atherosclerosis rats. The experiments provided evidences indicating YD's contribution in this study included, (1) significantly reduced the severity of atherosclerosis, inhibited reconstruction of the artery wall and regulated the lipid profile; (2) enhanced antioxidant power, strengthened the activity of antioxidant enzymes, and decreased malondialdhyde levels; (3) significantly increased the viability of umbilical vein endothelial cells exposed to oxidative stress due to pretreatment with YD; (4) significantly reduced the level of pro-inflammatory cytokines; (5) significantly down-regulated NF-kB/p65 and up-regulated IkB in the YD-treated groups. Overall, these results demonstrated that YD intervention relieves atherosclerosis through regulating lipids, reducing lipid particle deposition in the endothelial layer of artery, enhancing antioxidant power, and repressing inflammation activity by inhibiting the nuclear factor-kappa B signal pathway.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization
of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, 100193, P. R.
China
| | - Guo-feng Pan
- Department of Traditional Chinese Medicine, Beijing Shijitan
Hospital affiliated with Capital Medical University, Beijing,
100038, P. R. China
| | - Xiao-dong Zhang
- Center for Drug Evaluation, China Food and Drug
Administration, Beijing, 100038, P. R.
China
| | - Jian-lu Wang
- Institute of Medicia Materia, China Academy of Chinese Medical
Sciences, Beijing, 100700, P. R.
China
| | - Wan-dan Wang
- Institute of Medicia Materia, China Academy of Chinese Medical
Sciences, Beijing, 100700, P. R.
China
| | - Jian-yong Zhang
- Zunyi Medical University, Zunyi,
Guizhou
563003, P. R. China
| | - Hui Wang
- Guang’anmen Hospital, China Academy of Chinese
Medical Sciences, Beijing, 100053, P. R.
China
| | - Ri-xin Liang
- Institute of Medicia Materia, China Academy of Chinese Medical
Sciences, Beijing, 100700, P. R.
China
| | - Xiao-bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization
of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, 100193, P. R.
China
| |
Collapse
|
209
|
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5:358-366. [PMID: 26133261 PMCID: PMC4501559 DOI: 10.1016/j.redox.2015.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. Nox is a unique class of enzymes whose sole function is the generation of ROS. Nox-derived ROS play a major role in cell physiology. Enhanced expression and activation of Nox has been reported in numerous pathologies. Nox expression is regulated via complex transcription factor-epigenetic mechanisms. Understanding of Nox regulation is essential to counteract ROS-induced cell damage.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Shlomo Sasson
- The Institute for Drug Research, Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
210
|
L-cystathionine inhibits oxidized low density lipoprotein-induced THP-1-derived macrophage inflammatory cytokine monocyte chemoattractant protein-1 generation via the NF-κB pathway. Sci Rep 2015; 5:10453. [PMID: 26020416 PMCID: PMC4447071 DOI: 10.1038/srep10453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
This study aimed to explore whether and how L-cystathionine had any regulatory effect on the inflammatory response in THP-1-derived macrophages cultured in vitro under oxidized low-density lipoprotein (ox-LDL) stimulation. The human monocyte line THP-1 cell was cultured in vitro and differentiated into macrophages after 24 hours of PMA induction. Macrophages were pretreated with L-cystathionine and then treated with ox-LDL. The results showed that compared with the controls, ox-LDL stimulation significantly upregulated the expression of THP-1-derived macrophage MCP-1 by enhancing NF-κB p65 phosphorylation, nuclear translocation and DNA binding with the MCP-1 promoter. Compared with the ox-LDL group, 0.3 mmol/L and 1.0 mmol/L L-cystathionine significantly inhibited the expression of THP-1-derived macrophage MCP-1. Mechanistically, 0.3 mmol/L and 1.0 mmol/L L-cystathionine suppressed phosphorylation and nuclear translocation of the NF-κB p65 protein, as well as the DNA binding activity and DNA binding level of NF-κB with the MCP-1 promoter, which resulted in a reduced THP-1-derived macrophage MCP-1 generation. This study suggests that L-cystathionine could inhibit the expression of MCP-1 in THP-1-derived macrophages induced by ox-LDL via inhibition of NF-κB p65 phosphorylation, nuclear translocation, and binding of the MCP-1 promoter sequence after entry into the nucleus.
Collapse
|
211
|
Hartmann P, Schober A, Weber C. Chemokines and microRNAs in atherosclerosis. Cell Mol Life Sci 2015; 72:3253-66. [PMID: 26001902 PMCID: PMC4531138 DOI: 10.1007/s00018-015-1925-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
The crucial role of chemokines in the initiation and progression of atherosclerosis has been widely recognized. Through essential functions in leukocyte recruitment, chemokines govern the infiltration with mononuclear cells and macrophage accumulation in atherosclerotic lesions. Beyond recruitment, chemokines also provide homeostatic functions supporting cell survival and mediating the mobilization and homing of progenitor cells. As a new regulatory layer, several microRNAs (miRNAs) have been found to modulate the function of endothelial cells (ECs), smooth muscle cells and macrophages by controlling the expression levels of chemokines and thereby affecting different stages in the progression of atherosclerosis. For instance, the expression of CXCL1 can be down-regulated by miR-181b, which inhibits nuclear factor-κB activation in atherosclerotic endothelium, thus attenuating the adhesive properties of ECs and exerting early atheroprotective effects. Conversely, CXCL12 expression can be induced by miR-126 in ECs through an auto-amplifying feedback loop to facilitate endothelial regeneration, thus limiting atherosclerosis and mediating plaque stabilization. In contrast, miR-155 plays a pro-atherogenic role by promoting the expression of CCL2 in M1-type macrophages, thereby enhancing vascular inflammation. Herein, we will review novel aspects of chemokines and their regulation by miRNAs during atherogenesis. Understanding the complex cross-talk of miRNAs controlling chemokine expression may open novel therapeutic options to treat atherosclerosis.
Collapse
Affiliation(s)
- Petra Hartmann
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | | |
Collapse
|
212
|
Youn SW, Park KK. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci 2015; 16:11804-11833. [PMID: 26006249 PMCID: PMC4463731 DOI: 10.3390/ijms160511804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| |
Collapse
|
213
|
Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Adv Clin Chem 2015; 70:1-30. [PMID: 26231484 DOI: 10.1016/bs.acc.2015.03.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall with lipid-laden lesions, involving a complex interaction between multiple different cell types and cytokine networks. Inflammatory responses mark all stages of atherogenesis: from lipid accumulation in the intima to plaque formation and eventual rupture. One of the most important regulators of inflammation is the transcription factor nuclear factor-κB (NF-κB), which is activated through the canonical and noncanonical pathways in response to various stimuli. NF-κB has long been regarded as a proatherogenic factor, because it is implicated in multiple pathological processes during atherogenesis, including foam cell formation, vascular inflammation, proliferation of vascular smooth muscle cells, arterial calcification, and plaque progression. In contrast, inhibition of NF-κB signaling has been shown to protect against atherosclerosis. This chapter aims to discuss recent progress on the roles of NF-κB in lipid metabolism and atherosclerosis and also to highlight its potential therapeutic benefits.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, Calgary, Alberta, Canada
| | - Chao-Ke Tang
- Key Laboratory for Atherosclerology of Hunan Province, Molecular Target New Drug Discovery and Cooperative Innovation Center of Hunan Province, Life Science Research Center, University of South China, Hengyang, PR China.
| |
Collapse
|
214
|
Buckley ML, Ramji DP. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1498-510. [PMID: 25887161 DOI: 10.1016/j.bbadis.2015.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the underlying cause of myocardial infarction and thrombotic cerebrovascular events, is responsible for the majority of deaths in westernized societies. Mortality from this disease is also increasing at a marked rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as interleukins-1 and -33, transforming growth factor-β and interferon-γ, orchestrates the inflammatory response in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling pathways that control the inflammatory response. This review will discuss the molecular basis of atherosclerosis with particular emphasis on the roles of the immune cells and cytokines along with the dysfunctional lipid homeostasis and cell signaling associated with this disease.
Collapse
Affiliation(s)
- Melanie L Buckley
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
215
|
Farrar EJ, Huntley GD, Butcher J. Endothelial-derived oxidative stress drives myofibroblastic activation and calcification of the aortic valve. PLoS One 2015; 10:e0123257. [PMID: 25874717 PMCID: PMC4395382 DOI: 10.1371/journal.pone.0123257] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/20/2015] [Indexed: 01/14/2023] Open
Abstract
Aims Oxidative stress is present in and contributes to calcification of the aortic valve, but the driving factors behind the initiation of valve oxidative stress are not well understood. We tested whether the valve endothelium acts as an initiator and propagator of oxidative stress in aortic valve disease. Methods and Results Calcified human aortic valves showed side-specific elevation of superoxide in the endothelium, co-localized with high VCAM1 expression, linking oxidative stress, inflammation, and valve degeneration. Treatment with inflammatory cytokine TNFα increased superoxide and oxidative stress and decreased eNOS and VE-cadherin acutely over 48 hours in aortic valve endothelial cells (VEC) and chronically over 21 days in ex vivo AV leaflets. Co-treatment of VEC with tetrahydrobiopterin (BH4) but not apocynin mitigated TNFα-driven VEC oxidative stress. Co-treatment of ex vivo AV leaflets with TNFα+BH4 or TNFα+peg-SOD rescued endothelial function and mitigated inflammatory responses. Both BH4 and peg-SOD rescued valve leaflets from the pro-osteogenic effects of TNFα treatment, but only peg-SOD was able to mitigate the fibrogenic effects, including increased collagen and αSMA expression. Conclusions Aortic valve endothelial cells are a novel source of oxidative stress in aortic valve disease. TNFα-driven VEC oxidative stress causes loss of endothelial protective function, chronic inflammation, and fibrogenic and osteogenic activation, mitigated differentially by BH4 and peg-SOD. These mechanisms identify new targets for tailored antioxidant therapy focused on mitigation of oxidative stress and restoration of endothelial protection.
Collapse
Affiliation(s)
- Emily J. Farrar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Geoffrey D. Huntley
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jonathan Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
216
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
217
|
Elliott KJ, Eguchi S. Phosphorylation Regulation by Kinases and Phosphatases in Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
218
|
Zhang X, Hu W, Wu F, Yuan X, Hu J. Shikonin inhibits TNF-α-induced growth and invasion of rat aortic vascular smooth muscle cells. Can J Physiol Pharmacol 2015; 93:615-24. [PMID: 26042337 DOI: 10.1139/cjpp-2014-0464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Shikonin is a naphthoquinone compound extracted from the Chinese herb purple gromwell. Shikonin has broad antibacterial, anti-inflammatory, and antitumor activities. The tumor necrosis factor-α (TNF-α)-induced proliferation and invasion of vascular smooth muscle cells (VSMCs) is an important factor that contributes to atherosclerosis. The effects of shikonin on the proliferation and apoptosis of VSMCs have been reported; however, the function of shikonin on TNF-α-mediated growth and invasion of VSMCs during atherosclerosis remains unclear. In this study, we used Western blot, flow cytometry, real-time quantitative PCR, and enzyme-linked immunosorbent assay to investigate the effect of shikonin on the TNF-α-induced growth and invasion of VSMCs and to determine the underlying mechanism. Our results showed that shikonin inhibits the TNF-α-mediated growth and invasion. Further study revealed that shikonin regulates the activation of nuclear factor kappa B and phosphatidyl inositol 3-kinase signaling pathways; modulates the expression of cyclin D1, cyclin E, B-cell lymphoma 2, and Bax; activates caspase-3 and caspase-9; induces cell cycle arrest; and promotes the apoptosis of VSMCs. Together, our results indicate that shikonin may become a promising agent for the treatment of atherosclerosis and they also establish foundation for the development of anti-atherosclerosis drugs.
Collapse
Affiliation(s)
- Xuemin Zhang
- a Department of Cardiology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, People's Republic of China
| | - Wenyu Hu
- a Department of Cardiology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, People's Republic of China
| | - Fang Wu
- b Department of Cardiology, The First People's Hospital of Shenyang City, Shenyang 110041, People's Republic of China
| | - Xue Yuan
- b Department of Cardiology, The First People's Hospital of Shenyang City, Shenyang 110041, People's Republic of China
| | - Jian Hu
- a Department of Cardiology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, People's Republic of China
| |
Collapse
|
219
|
Wang M, Shah AM. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J Mol Cell Cardiol 2015; 83:101-11. [PMID: 25665458 PMCID: PMC4459900 DOI: 10.1016/j.yjmcc.2015.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/12/2023]
Abstract
The aging population is increasing dramatically. Aging–associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Biomedical Research Center (BRC), 251 Bayview Blvd, Baltimore, MD 21224, USA.
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
220
|
Akbar N, Nanda S, Belch J, Cohen P, Khan F. An important role for A20-binding inhibitor of nuclear factor-kB-1 (ABIN1) in inflammation-mediated endothelial dysfunction: an in vivo study in ABIN1 (D485N) mice. Arthritis Res Ther 2015; 17:22. [PMID: 25648164 PMCID: PMC4342941 DOI: 10.1186/s13075-015-0543-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/23/2015] [Indexed: 01/28/2023] Open
Abstract
Introduction The link between cardiovascular disease (CVD) and patients with chronic inflammation is not clearly understood. We examined a knock-in mouse expressing a poly-ubiquitin-binding-defective mutant of the protein ABIN1 (ABIN1(D485N)), which develops a systemic lupus erythematosus-like autoimmune disease because of the hyperactivation of IκB kinases (IκKs) and mitogen-activated protein kinases (MAPKs). These mice were used to determine the potential role of these signaling pathways in inflammation-mediated CVD development. Methods Laser Doppler imaging in combination with the iontophoresis of vasoactive chemicals were used to assess endothelium-dependent vasodilatation in vivo in ABIN1 (D485N)) mutant defective (n = 29) and wild-type (WT) control (n = 26) mice. Measurements were made at baseline, and animals were subdivided to receive either chow or a proatherogenic diet for 4 weeks, after which, follow-up assessments were made. Paired and unpaired t tests, and ANOVA with post hoc Bonferroni correction were used for statistical significance at P <0.05. Results Endothelium-dependent vasodilatation to acetylcholine was attenuated at 4 weeks in ABIN1(D485N)-chow-fed mice compared with age-matched WT-chow-fed mice (P <0.05). The magnitude of attenuation was similar to that observed in WT-cholesterol-fed animals (versus WT-chow, P <0.01). ABIN1(D485N)-cholesterol-fed mice had the poorest endothelium-dependent responses compared with other groups (P <0.001). ABIN1(D485N)-chow-fed mice had increased plasma interleukin-6 (IL-6) levels (versus WT-chow, P <0.001), and this was further elevated in ABIN1(D485N)-cholesterol-fed mice (versus ABIN1(D485N)-chow; P <0.05). IL-1α was significantly greater in all groups compared with WT-chow (P <0.01). ABIN1(D485N) mice showed significant cardiac hypertrophy (P <0.05). Conclusions The ABIN(D485N) mice display endothelial dysfunction and cardiac hypertrophy, which is possibly mediated through IL-6 and, to a lesser degree, IL-1α. These results suggest that the ABIN1-mediated hyperactivation of IKKs and MAPKs might mediate chronic inflammation and CVD development.
Collapse
Affiliation(s)
- Naveed Akbar
- Vascular and Inflammatory Diseases Research Unit, Medical Research Institute, Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| | - Sambit Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.
| | - Jill Belch
- Vascular and Inflammatory Diseases Research Unit, Medical Research Institute, Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.
| | - Faisel Khan
- Vascular and Inflammatory Diseases Research Unit, Medical Research Institute, Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
221
|
Cheng WL, Wang PX, Wang T, Zhang Y, Du C, Li H, Ji Y. Regulator of G-protein signalling 5 protects against atherosclerosis in apolipoprotein E-deficient mice. Br J Pharmacol 2015; 172:5676-89. [PMID: 25363362 DOI: 10.1111/bph.12991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a chronic inflammatory disease, in which 'vulnerable plaques' have been recognized as the underlying risk factor for coronary disease. Regulator of G-protein signalling (RGS) 5 controls endothelial cell function and inflammation. In this study, we explored the effect of RGS5 on atherosclerosis and the potential underlying mechanisms. EXPERIMENTAL APPROACH RGS5(-/-) apolipoprotein E (ApoE)(-/-) and ApoE(-/-) littermates were fed a high-fat diet for 28 weeks. Total aorta surface and lipid accumulation were measured by Oil Red O staining and haematoxylin-eosin staining was used to analyse the morphology of atherosclerotic lesions. Inflammatory cell infiltration and general inflammatory mediators were examined by immunofluorescence staining. Apoptotic endothelial cells and macrophages were assayed with TUNEL. Expression of RGS5 and adhesion molecules, and ERK1/2 phosphorylation were evaluated by co-staining with CD31. Expression of mRNA and protein were determined by quantitative real-time PCR and Western blotting respectively. KEY RESULTS Atherosclerotic phenotypes were significantly accelerated in RGS5(-/-) ApoE(-/-) mice, as indicated by increased inflammatory mediator expression and apoptosis of endothelial cells and macrophages. RGS5 deficiency enhanced instability of vulnerable plaques by increasing infiltration of macrophages in parallel with the accumulation of lipids, and decreased smooth muscle cell and collagen content. Mechanistically, increased activation of NF-κB and MAPK/ERK 1/2 could be responsible for the accelerated development of atherosclerosis in RGS5-deficient mice. CONCLUSIONS AND IMPLICATIONS RGS5 deletion accelerated development of atherosclerosis and decreased the stability of atherosclerotic plaques partly through activating NF-κB and the MEK-ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Du
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Key Laboratory of Human Functional Genomics, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, China
| |
Collapse
|
222
|
Cheng HS, Njock MS, Khyzha N, Dang LT, Fish JE. Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation. Front Genet 2014; 5:422. [PMID: 25540650 PMCID: PMC4261819 DOI: 10.3389/fgene.2014.00422] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases such as atherosclerosis are one of the leading causes of morbidity and mortality worldwide. The clinical manifestations of atherosclerosis, which include heart attack and stroke, occur several decades after initiation of the disease and become more severe with age. Inflammation of blood vessels plays a prominent role in atherogenesis. Activation of the endothelium by inflammatory mediators leads to the recruitment of circulating inflammatory cells, which drives atherosclerotic plaque formation and progression. Inflammatory signaling within the endothelium is driven predominantly by the pro-inflammatory transcription factor, NF-κB. Interestingly, activation of NF-κB is enhanced during the normal aging process and this may contribute to the development of cardiovascular disease. Importantly, studies utilizing mouse models of vascular inflammation and atherosclerosis are uncovering a network of noncoding RNAs, particularly microRNAs, which impinge on the NF-κB signaling pathway. Here we summarize the literature regarding the control of vascular inflammation by microRNAs, and provide insight into how these microRNA-based pathways might be harnessed for therapeutic treatment of disease. We also discuss emerging areas of endothelial cell biology, including the involvement of long noncoding RNAs and circulating microRNAs in the control of vascular inflammation.
Collapse
Affiliation(s)
- Henry S Cheng
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Nadiya Khyzha
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Lan T Dang
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| | - Jason E Fish
- Toronto General Research Institute, University Health Network Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research Toronto, ON, Canada
| |
Collapse
|
223
|
Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model. Immunol Lett 2014; 163:76-83. [PMID: 25435215 DOI: 10.1016/j.imlet.2014.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 12/11/2022]
Abstract
Disturbance of the circadian clock by sleep deprivation has been proposed to be involved in the regulation of inflammation. However, the underlying mechanism of circadian oscillator components in regulating the pro-inflammatory process during sleep deprivation remains poorly understood. Using a sleep deprivation mouse model, we showed here that sleep deprivation increased the expression of pro-inflammatory cytokines expression and decreased the expression of cryptochrome 1 (CRY1) in vascular endothelial cells. Furthermore, the adhesion molecules including intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin were elevated in vascular endothelial cells and the monocytes binding to vascular endothelial cells were also increased by sleep deprivation. Interestingly, overexpression of CRY1 in a mouse model by adenovirus vector significantly inhibited the expression of inflammatory cytokines and adhesion molecules, and NF-κB signal pathway activation, as well as the binding of monocytes to vascular endothelial cells. Using a luciferase reporter assay, we found that CRY1 could repress the transcriptional activity of nuclear factor (NF)-κB in vitro. Subsequently, we demonstrated that overexpression of CRY1 inhibited the basal concentration of cyclic adenosine monophosphate (cAMP), leading to decreased protein kinase A activity, which resulted in decreased phosphorylation of p65. Taken together, these results suggested that the overexpression of CRY1 inhibited sleep deprivation-induced vascular inflammation that might be associated with NF-κB and cAMP/PKA pathways.
Collapse
|
224
|
MicroRNAs in vascular aging and atherosclerosis. Ageing Res Rev 2014; 17:68-78. [PMID: 24681293 DOI: 10.1016/j.arr.2014.03.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/03/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022]
Abstract
Lipid dysfunction, inflammation, immune response and advanced aging are major factors involved in the initiation and progression of atherosclerosis. MicroRNAs (miRNAs) have emerged as important regulators of gene expression that post transcriptionally modify cellular responses and function. MiRNA's are crucially involved in several vascular pathologies which show a clear association with increasing age (Dimmeler and Nicotera, 2013). Several studies have demonstrated that miRNA dysregulation has a crucial role in the development of atherosclerotic disease, encompassing every step from plaque formation to destabilization and rupture. This review will present the recent advances in the elucidation of the complex pathophysiological mechanisms in vascular aging by which miRNAs regulate the different phases of atherosclerotic process with a focus on endothelial cells and both, innate and adaptive immune systems. Furthermore, the future areas of research and potential clinical strategies will be discussed.
Collapse
|
225
|
TAK1 control of cell death. Cell Death Differ 2014; 21:1667-76. [PMID: 25146924 DOI: 10.1038/cdd.2014.123] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death, a physiologic process for removing cells, is critically important in normal development and for elimination of damaged cells. Conversely, unattended cell death contributes to a variety of human disease pathogenesis. Thus, precise understanding of molecular mechanisms underlying control of cell death is important and relevant to public health. Recent studies emphasize that transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of cell death and is activated through a diverse set of intra- and extracellular stimuli. The physiologic importance of TAK1 and TAK1-binding proteins in cell survival and death has been demonstrated using a number of genetically engineered mice. These studies uncover an indispensable role of TAK1 and its binding proteins for maintenance of cell viability and tissue homeostasis in a variety of organs. TAK1 is known to control cell viability and inflammation through activating downstream effectors such as NF-κB and mitogen-activated protein kinases (MAPKs). It is also emerging that TAK1 regulates cell survival not solely through NF-κB but also through NF-κB-independent pathways such as oxidative stress and receptor-interacting protein kinase 1 (RIPK1) kinase activity-dependent pathway. Moreover, recent studies have identified TAK1's seemingly paradoxical role to induce programmed necrosis, also referred to as necroptosis. This review summarizes the consequences of TAK1 deficiency in different cell and tissue types from the perspective of cell death and also focuses on the mechanism by which TAK1 complex inhibits or promotes programmed cell death. This review serves to synthesize our current understanding of TAK1 in cell survival and death to identify promising directions for future research and TAK1's potential relevance to human disease pathogenesis.
Collapse
|
226
|
Ito TK, Yokoyama M, Yoshida Y, Nojima A, Kassai H, Oishi K, Okada S, Kinoshita D, Kobayashi Y, Fruttiger M, Aiba A, Minamino T. A crucial role for CDC42 in senescence-associated inflammation and atherosclerosis. PLoS One 2014; 9:e102186. [PMID: 25057989 PMCID: PMC4109913 DOI: 10.1371/journal.pone.0102186] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/16/2014] [Indexed: 12/19/2022] Open
Abstract
Risk factors for atherosclerosis accelerate the senescence of vascular endothelial cells and promote atherogenesis by inducing vascular inflammation. A hallmark of endothelial senescence is the persistent up-regulation of pro-inflammatory genes. We identified CDC42 signaling as a mediator of chronic inflammation associated with endothelial senescence. Inhibition of CDC42 or NF-κB signaling attenuated the sustained up-regulation of pro-inflammatory genes in senescent human endothelial cells. Endothelium-specific activation of the p53/p21 pathway, a key mediator of senescence, also resulted in up-regulation of pro-inflammatory molecules in mice, which was reversed by Cdc42 deletion in endothelial cells. Likewise, endothelial-specific deletion of Cdc42 significantly attenuated chronic inflammation and plaque formation in atherosclerotic mice. While inhibition of NF-κB suppressed the pro-inflammatory responses in acute inflammation, the influence of Cdc42 deletion was less marked. Knockdown of cdc-42 significantly down-regulated pro-inflammatory gene expression and restored the shortened lifespan to normal in mutant worms with enhanced inflammation. These findings indicate that the CDC42 pathway is critically involved in senescence-associated inflammation and could be a therapeutic target for chronic inflammation in patients with age-related diseases without compromising host defenses.
Collapse
Affiliation(s)
- Takashi K. Ito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masataka Yokoyama
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aika Nojima
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidetoshi Kassai
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kengo Oishi
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daisuke Kinoshita
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Atsu Aiba
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
227
|
Danilov A, Shaposhnikov M, Plyusnina E, Kogan V, Fedichev P, Moskalev A. Selective anticancer agents suppress aging in Drosophila. Oncotarget 2014; 4:1507-26. [PMID: 24096697 PMCID: PMC3824538 DOI: 10.18632/oncotarget.1272] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mutations of the PI3K, TOR, iNOS, and NF-κB genes increase lifespan of model organisms and reduce the risk of some aging-associated diseases. We studied the effects of inhibitors of PI3K (wortmannin), TOR (rapamycin), iNOS (1400W), NF-κB (pyrrolidin dithiocarbamate and QNZ), and the combined effects of inhibitors: PI3K (wortmannin) and TOR (rapamycin), NF-κB (pyrrolidin dithiocarbamates) and PI3K (wortmannin), NF-κB (pyrrolidine dithiocarbamates) and TOR (rapamycin) on Drosophila melanogaster lifespan and quality of life (locomotor activity and fertility). Our data demonstrate that pharmacological inhibition of PI3K, TOR, NF-κB, and iNOS increases lifespan of Drosophila without decreasing quality of life. The greatest lifespan expanding effect was achieved by a combination of rapamycin (5 μM) and wortmannin (5 μM) (by 23.4%). The bioinformatic analysis (KEGG, REACTOME.PATH, DOLite, and GO.BP) showed the greatest aging-suppressor activity of rapamycin, consistent with experimental data.
Collapse
Affiliation(s)
- Anton Danilov
- Institute of Biology, Komi Science Center, Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | | | | | | | | | | |
Collapse
|
228
|
Pateras I, Giaginis C, Tsigris C, Patsouris E, Theocharis S. NF-κB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links. Expert Opin Ther Targets 2014; 18:1089-101. [DOI: 10.1517/14728222.2014.938051] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
229
|
Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, Shaul PW. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab 2014; 20:172-82. [PMID: 24954418 PMCID: PMC4098728 DOI: 10.1016/j.cmet.2014.05.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/11/2014] [Accepted: 05/05/2014] [Indexed: 01/25/2023]
Abstract
Oxysterols are cholesterol metabolites that serve multiple functions in lipid metabolism, including as liver X receptor (LXR) ligands. 27-hydroxycholesterol (27HC) is an abundant oxysterol metabolized by CYP7B1. How 27HC impacts vascular health is unknown. We show that elevations in 27HC via cyp7b1 deletion promote atherosclerosis in apoe(-/-) mice without altering lipid status; furthermore, estrogen-related atheroprotection is attenuated. In wild-type mice, leukocyte-endothelial cell adhesion is increased by 27HC via estrogen receptor (ER)-dependent processes. In monocytes/macrophages, 27HC upregulates proinflammatory genes and increases adhesion via ERα. In endothelial cells, 27HC is also proadhesive via ERα, and in contrast to estrogen, which blunts NF-κB activation, 27HC stimulates NF-κB activation via Erk1,2 and JNK-dependent IκBα degradation. Whereas 27HC administration to apoe(-/-) mice increases atherosclerosis, apoe(-/-);erα(-/-) are unaffected. Thus, 27HC promotes atherosclerosis via proinflammatory processes mediated by ERα, and it attenuates estrogen-related atheroprotection. Strategies to lower 27HC may complement approaches targeting cholesterol to prevent vascular disease.
Collapse
Affiliation(s)
- Michihisa Umetani
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pritam Ghosh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tomonori Ishikawa
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junko Umetani
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
230
|
Sui Y, Park SH, Xu J, Monette S, Helsley RN, Han SS, Zhou C. IKKβ links vascular inflammation to obesity and atherosclerosis. ACTA ACUST UNITED AC 2014; 211:869-86. [PMID: 24799533 PMCID: PMC4010900 DOI: 10.1084/jem.20131281] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IKKβ functions in smooth muscle cells to regulate vascular inflammatory responses and atherosclerosis development. IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of NF-κB, has been implicated in vascular pathologies, but its role in atherogenesis remains elusive. Here, we demonstrate that IKKβ functions in smooth muscle cells (SMCs) to regulate vascular inflammatory responses and atherosclerosis development. IKKβ deficiency in SMCs driven by a SM22Cre-IKKβ-flox system rendered low density lipoprotein receptor-null mice resistant to vascular inflammation and atherosclerosis induced by high-fat feeding. Unexpectedly, IKKβ-deficient mice were also resistant to diet-induced obesity and metabolic disorders. Cell lineage analysis revealed that SM22Cre is active in primary adipose stromal vascular cells and deficiency of IKKβ diminished the ability of these cells to differentiate, leading to accumulation of adipocyte precursor cells in adipose tissue. Mechanistically, reduction of IKKβ expression or pharmacological inhibition of IKKβ inhibited proteasome-mediated β-catenin ubiquitination and degradation in murine preadipocytes, resulting in elevated β-catenin levels and impaired adipocyte differentiation. Further, chronic treatment of mice with a potent IKKβ inhibitor decreased adipogenesis and ameliorated diet-induced obesity. Our findings demonstrate a pivotal role of IKKβ in linking vascular inflammation to atherosclerosis and adipose tissue development, and provide evidence for using appropriate IKKβ inhibitors in the treatment of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yipeng Sui
- Graduate Center for Nutritional Sciences, 2 Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | | | | | | | | | | | | |
Collapse
|
231
|
Bryan MT, Duckles H, Feng S, Hsiao ST, Kim HR, Serbanovic-Canic J, Evans PC. Mechanoresponsive networks controlling vascular inflammation. Arterioscler Thromb Vasc Biol 2014; 34:2199-205. [PMID: 24947523 DOI: 10.1161/atvbaha.114.303424] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of arteries that develops preferentially at branches and bends that are exposed to disturbed blood flow. Vascular function is modified by flow, in part, via the generation of mechanical forces that alter multiple physiological processes in endothelial cells. Shear stress has profound effects on vascular inflammation; high uniform shear stress prevents leukocyte recruitment to the vascular wall by reducing endothelial expression of adhesion molecules and other inflammatory proteins, whereas low oscillatory shear stress has the opposite effects. Here, we review the molecular mechanisms that underpin the effects of shear stress on endothelial inflammatory responses. They include shear stress regulation of inflammatory mitogen-activated protein kinase and nuclear factor-κB signaling. High shear suppresses these pathways through the induction of several negative regulators of inflammation, whereas low shear promotes inflammatory signaling. Furthermore, we summarize recent studies indicating that inflammatory signaling is highly sensitive to pulse wave frequencies, magnitude, and direction of flow. Finally, the importance of systems biology approaches (including omics studies and functional screening) to identify novel mechanosensitive pathways is discussed.
Collapse
Affiliation(s)
- Matthew T Bryan
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Hayley Duckles
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Shuang Feng
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah T Hsiao
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Hyejeong R Kim
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Paul C Evans
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
232
|
He B, Hao J, Sheng W, Xiang Y, Zhang J, Zhu H, Tian J, Zhu X, Feng Y, Xia H. Fistular onion stalk extract exhibits anti-atherosclerotic effects in rats. Exp Ther Med 2014; 8:785-792. [PMID: 25120600 PMCID: PMC4113633 DOI: 10.3892/etm.2014.1790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022] Open
Abstract
Fistular onion stalk is used as a traditional herbal medicine, and its extract exhibits certain beneficial effects on cardiovascular disease. In this study, the effects of fistular onion stalk extract on the pathological features, circulating inflammatory cytokines, local renin-angiotensin-aldosterone system (RAAS) and signaling pathway activities were examined using an in vivo model of atherosclerosis. Atherosclerosis of the aorta was induced by loading Sprague Dawley rats with a high-fat diet and vitamin D2. Fistular onion stalk extract administration began five weeks after the induction of atherosclerosis and continued for 12 weeks. Rats treated with fistular onion stalk extract showed a significant reduction in the pathological region compared with the vehicle-treated controls. Inhibition of atherosclerosis was associated with preservation of the vascular wall and immune cell infiltration. The extract also reduced the levels of the local inflammatory cytokines interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 and tumor necrosis factor-α. Furthermore, the extract downregulated the local activity of the RAAS. In addition, extract treatment inhibited several inflammatory signaling pathways by preventing phosphorylation, including the nuclear factor κB, Janus kinase/signal transducers and activators of transcription and mitogen-activated protein kinase pathways. These data indicate that fistular onion stalk extract may be useful for the attenuation of atherosclerosis, and the mechanism includes the regulation of the local inflammatory response.
Collapse
Affiliation(s)
- Benhong He
- Department of Cardiovascular Medicine, Lichuan Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Lichuan, Hubei 445418, P.R. China
| | - Jianjun Hao
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weiwei Sheng
- Department of Cardiovascular Medicine, The Central Hospital of Enshi Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Yuancai Xiang
- Department of Cardiovascular Medicine, Lichuan Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Lichuan, Hubei 445418, P.R. China
| | - Jiemeia Zhang
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao Zhu
- Department of Cardiovascular Medicine, Lichuan Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Lichuan, Hubei 445418, P.R. China
| | - Jingcheng Tian
- Department of Cardiovascular Medicine, Lichuan Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Lichuan, Hubei 445418, P.R. China
| | - Xu Zhu
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yunxia Feng
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao Xia
- Department of Cardiovascular Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
233
|
Abstract
The vascular endothelium, a thin layer of endothelial cells (ECs) that line the inner surface of blood vessels, is a critical interface between blood and all tissues. EC activation, dysfunction, and vascular inflammation occur when the endothelium is exposed to various insults such as proinflammatory cytokines, oxidative stress, hypertension, hyperglycemia, aging, and shear stress. These insults lead to the pathogenesis of a range of disease states, including atherosclerosis. Several signaling pathways, especially nuclear factor κB mediated signaling, play crucial roles in these pathophysiological processes. Recently, microRNAs (miRNAs) have emerged as important regulators of EC function by fine-tuning gene expression. In this review, we discuss how miRNAs regulate EC function and vascular inflammation in response to a variety of pathophysiologic stimuli. An understanding of the role of miRNAs in EC activation and dysfunction may provide novel targets and therapeutic opportunities for controlling atherosclerosis and other chronic inflammatory disease states.
Collapse
|
234
|
Hahn RT, Hoppstädter J, Hirschfelder K, Hachenthal N, Diesel B, Kessler SM, Huwer H, Kiemer AK. Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation. Atherosclerosis 2014; 234:391-400. [PMID: 24747114 DOI: 10.1016/j.atherosclerosis.2014.03.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/28/2014] [Accepted: 03/23/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Glucocorticoid-induced leucine zipper (GILZ) represents an anti-inflammatory mediator, whose downregulation has been described in various inflammatory processes. Aim of our study was to decipher the regulation of GILZ in vascular inflammation. APPROACH AND RESULTS Degenerated aortocoronary saphenous vein bypass grafts (n = 15), which exhibited inflammatory cell activation as determined by enhanced monocyte chemoattractrant protein 1 (MCP-1, CCL2) and Toll-like receptor 2 (TLR2) expression, showed significantly diminished GILZ protein and mRNA levels compared to healthy veins (n = 23). GILZ was also downregulated in human umbilical vein endothelial cells (HUVEC) and macrophages upon treatment with the inflammatory cytokine TNF-α in a tristetraprolin (ZFP36, TTP)- and p38 MAPK-dependent manner. To assess the functional implications of decreased GILZ expression, we determined NF-κB activation after GILZ knockdown by siRNA and found that NF-κB activity and inflammatory gene expression were significantly enhanced. Importantly, ZFP36 is induced in TNF-α-activated HUVEC as well as in degenerated vein bypasses. When atheroprotective laminar shear stress was employed, GILZ levels in HUVEC increased on mRNA and protein level. Laminar flow also counteracted TNF-α-induced ZFP36 expression and GILZ downregulation. MAP kinase phosphatase 1 (MKP-1, DUSP1), a negative regulator of ZFP36 expression, was distinctly upregulated under laminar shear stress conditions and downregulated in degenerated vein bypasses. CONCLUSION Our data show a diminished expression of the anti-inflammatory mediator GILZ in the inflamed vasculature and indicate that GILZ downregulation requires the mRNA binding protein ZFP36. We suggest that reduced GILZ levels play a role in cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca T Hahn
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Kerstin Hirschfelder
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Nina Hachenthal
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
235
|
Killeen MJ, Linder M, Pontoniere P, Crea R. NF-κβ signaling and chronic inflammatory diseases: exploring the potential of natural products to drive new therapeutic opportunities. Drug Discov Today 2014; 19:373-8. [DOI: 10.1016/j.drudis.2013.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023]
|
236
|
Abstract
Mechanical forces influence many biological processes via activation of signaling molecules, including the family of Rho GTPases. Within the endothelium, the mechanical force of fluid shear stress regulates the spatiotemporal activation of Rho GTPases, including Rac1. Shear stress-induced Rac1 activation is required for numerous essential biological processes, including changes in permeability, alignment of the actin cytoskeleton, redox signaling, and changes in gene expression. Thus, identifying mechanisms of Rac1 activation and the spatial cues that direct proper localization of the GTPase is essential in order to gain a comprehensive understanding the role of Rac1 in shear stress responses. This commentary will highlight our current understanding of how Rac1 activity is regulated in response to shear stress, as well as the downstream consequences of Rac1 activation.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Ellie Tzima
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
237
|
Tilstam PV, Gijbels MJ, Habbeddine M, Cudejko C, Asare Y, Theelen W, Zhou B, Döring Y, Drechsler M, Pawig L, Simsekyilmaz S, Koenen RR, de Winther MPJ, Lawrence T, Bernhagen J, Zernecke A, Weber C, Noels H. Bone marrow-specific knock-in of a non-activatable Ikkα kinase mutant influences haematopoiesis but not atherosclerosis in Apoe-deficient mice. PLoS One 2014; 9:e87452. [PMID: 24498325 PMCID: PMC3911989 DOI: 10.1371/journal.pone.0087452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022] Open
Abstract
Background The Ikkα kinase, a subunit of the NF-κB-activating IKK complex, has emerged as an important regulator of inflammatory gene expression. However, the role of Ikkα-mediated phosphorylation in haematopoiesis and atherogenesis remains unexplored. In this study, we investigated the effect of a bone marrow (BM)-specific activation-resistant Ikkα mutant knock-in on haematopoiesis and atherosclerosis in mice. Methods and Results Apolipoprotein E (Apoe)-deficient mice were transplanted with BM carrying an activation-resistant Ikkα gene (IkkαAA/AAApoe−/−) or with Ikkα+/+Apoe−/− BM as control and were fed a high-cholesterol diet for 8 or 13 weeks. Interestingly, haematopoietic profiling by flow cytometry revealed a significant decrease in B-cells, regulatory T-cells and effector memory T-cells in IkkαAA/AAApoe−/− BM-chimeras, whereas the naive T-cell population was increased. Surprisingly, no differences were observed in the size, stage or cellular composition of atherosclerotic lesions in the aorta and aortic root of IkkαAA/AAApoe−/− vs Ikkα+/+Apoe−/− BM-transplanted mice, as shown by histological and immunofluorescent stainings. Necrotic core sizes, apoptosis, and intracellular lipid deposits in aortic root lesions were unaltered. In vitro, BM-derived macrophages from IkkαAA/AAApoe−/− vs Ikkα+/+Apoe−/− mice did not show significant differences in the uptake of oxidized low-density lipoproteins (oxLDL), and, with the exception of Il-12, the secretion of inflammatory proteins in conditions of Tnf-α or oxLDL stimulation was not significantly altered. Furthermore, serum levels of inflammatory proteins as measured with a cytokine bead array were comparable. Conclusion Our data reveal an important and previously unrecognized role of haematopoietic Ikkα kinase activation in the homeostasis of B-cells and regulatory T-cells. However, transplantation of IkkαAA mutant BM did not affect atherosclerosis in Apoe−/− mice. This suggests that the diverse functions of Ikkα in haematopoietic cells may counterbalance each other or may not be strong enough to influence atherogenesis, and reveals that targeting haematopoietic Ikkα kinase activity alone does not represent a therapeutic approach.
Collapse
Affiliation(s)
- Pathricia V. Tilstam
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Marion J. Gijbels
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mohamed Habbeddine
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Céline Cudejko
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Yaw Asare
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Wendy Theelen
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Baixue Zhou
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maik Drechsler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lukas Pawig
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Sakine Simsekyilmaz
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Rory R. Koenen
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Menno P. J. de Winther
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
- August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alma Zernecke
- Rudolf Virchow Center and Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
- Department of Vascular Surgery, Klinikum rechts der Isar Technical University Munich, Munich, Germany
- German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
- * E-mail: (CW); (HN)
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
- * E-mail: (CW); (HN)
| |
Collapse
|
238
|
Effect of low extracellular pH on NF-κB activation in macrophages. Atherosclerosis 2014; 233:537-544. [PMID: 24530961 PMCID: PMC3989994 DOI: 10.1016/j.atherosclerosis.2014.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 12/12/2013] [Accepted: 01/08/2014] [Indexed: 02/02/2023]
Abstract
Objective Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Methods Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0–7.4 and inflammatory cytokine secretion and NF-κB activity were measured. Results A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. Conclusion A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans. Low extracellular pH decreased cytokine secretion by mouse macrophages. IκBα, which inhibits NF-κB, fell but low pH prevented its later increase. Low pH prolonged anti-inflammatory p50:p50 homodimer binding to an NF-κB promoter. Overexpression of p50 increased p50:p50 DNA-binding and inhibited TNF secretion. A modest decrease in pH can have marked effects on NF-κB activation.
Collapse
|
239
|
Claude S, Boby C, Rodriguez-Mateos A, Spencer JPE, Gérard N, Morand C, Milenkovic D. Flavanol metabolites reduce monocyte adhesion to endothelial cells through modulation of expression of genes via p38-MAPK and p65-Nf-kB pathways. Mol Nutr Food Res 2014; 58:1016-27. [PMID: 24425450 DOI: 10.1002/mnfr.201300658] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022]
Abstract
SCOPE Consumption of flavanol-rich foods is associated with an improvement in endothelial function. However, the specific biologically active flavanol metabolites involved in this benefit, as well as their molecular mechanisms of action have not been identified. The aim of this work was to examine the effect of plasma flavanol metabolites on adhesion of monocytes to TNF-α-activated endothelial cells and identify potential underlying mechanisms. METHODS AND RESULTS 4'-O-methyl(-)-epicatechin, 4'-O-methyl(-)-epicatechin-7-β-d-glucuronide, and (-)-epicatechin-4'-sulfate decreased the adhesion of monocytes to endothelial cells at physiologically relevant concentrations, from 0.2 to 1 μM. Transcriptomic studies showed that each of the flavanol metabolites affected the expression of different genes in endothelial cells. However, these genes are involved in the cellular processes that control adhesion and migration of monocytes to vascular endothelium, most notably those regulating cell adhesion, cell-cell junctions, focal adhesion, and cytoskeleton remodeling. Gene expression profiles obtained suggest lower monocyte recruitment, in agreement with results from cell adhesion assays. The nutrigenomic effect of metabolites seems to be mediated through their capacity to modulate phosphorylation of p65 and p38 cell-signaling proteins. CONCLUSION Our study provides findings into the molecular mechanisms by which plasma flavanol metabolites could be efficient to preserve vascular endothelium integrity in nutritionally relevant conditions.
Collapse
Affiliation(s)
- Sylvain Claude
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
240
|
Cole JE, Mitra AT, Monaco C. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 2014; 8:1619-35. [DOI: 10.1586/erc.10.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
241
|
Morrison M, van der Heijden R, Heeringa P, Kaijzel E, Verschuren L, Blomhoff R, Kooistra T, Kleemann R. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo. Atherosclerosis 2014; 233:149-56. [PMID: 24529136 DOI: 10.1016/j.atherosclerosis.2013.12.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular emphasis on the cardiovascular risk factors dyslipidaemia and inflammation. METHODS ApoE*3-Leiden mice were fed a cholesterol-containing atherogenic diet with or without epicatechin (0.1% w/w) to study effects on early- and late-stage atherosclerosis (8 w and 20 w). In vivo effects of epicatechin on diet-induced inflammation were studied in human-CRP transgenic mice and NFκB-luciferase reporter mice. RESULTS Epicatechin attenuated atherosclerotic lesion area in ApoE*3-Leiden mice by 27%, without affecting plasma lipids. This anti-atherogenic effect of epicatechin was specific to the severe lesion types, with no effect on mild lesions. Epicatechin mitigated diet-induced increases in plasma SAA (in ApoE*3-Leiden mice) and plasma human-CRP (in human-CRP transgenic mice). Microarray analysis of aortic gene expression revealed an attenuating effect of epicatechin on several diet-induced pro-atherogenic inflammatory processes in the aorta (e.g. chemotaxis of cells, matrix remodelling), regulated by NFκB. These findings were confirmed immunohistochemically by reduced lesional neutrophil content in HCE, and by inhibition of diet-induced NFκB activity in epicatechin-treated NFκB-luciferase reporter mice. CONCLUSION Epicatechin attenuates development of atherosclerosis and impairs lesion progression from mild to severe lesions in absence of an effect on dyslipidaemia. The observed reduction of circulating inflammatory risk factors by epicatechin (e.g. SAA, human-CRP), as well as its local anti-inflammatory activity in the vessel wall, provide a rationale for epicatechin's anti-atherogenic effects.
Collapse
Affiliation(s)
- Martine Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK Leiden, The Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands.
| | - Roel van der Heijden
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
| | - Eric Kaijzel
- Molecular Endocrinology and Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Lars Verschuren
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Teake Kooistra
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK Leiden, The Netherlands
| |
Collapse
|
242
|
Kowalski PS, Zwiers PJ, Morselt HWM, Kuldo JM, Leus NGJ, Ruiters MHJ, Molema G, Kamps JAAM. Anti-VCAM-1 SAINT-O-Somes enable endothelial-specific delivery of siRNA and downregulation of inflammatory genes in activated endothelium in vivo. J Control Release 2014; 176:64-75. [PMID: 24389338 DOI: 10.1016/j.jconrel.2013.12.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023]
Abstract
The pivotal role of endothelial cells in the pathology of inflammatory diseases raised interest in the development of short interfering RNA (siRNA) delivery devices for selective pharmacological intervention in the inflamed endothelium. The current study demonstrates endothelial specific delivery of siRNAs and downregulation of inflammatory genes in activated endothelium in vivo by applying a novel type of targeted liposomes based on the cationic amphiphile SAINT-C18 (1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride). To create specificity for inflamed endothelial cells, these so-called SAINT-O-Somes were harnessed with antibodies against vascular cell adhesion protein 1 (VCAM-1). In TNFα challenged mice, intravenously administered anti-VCAM-1 SAINT-O-Somes exerted long circulation times and homed to VCAM-1 expressing endothelial cells in inflamed organs. The formulations were devoid of liver and kidney toxicity. Using anti-VCAM-1 SAINT-O-Somes we successfully delivered siRNA to knock down VE-cadherin mRNA in inflamed renal microvasculature, as demonstrated by using laser microdissection of different microvascular beds prior to analysis of gene expression. Using the same strategy, we demonstrated local attenuation of endothelial inflammatory response towards lipopolysaccharide in kidneys of mice treated with anti-VCAM-1 SAINT-O-Somes containing NFκB p65 specific siRNA. This study is the first demonstration of a novel, endothelial specific carrier that is suitable for selective in vivo delivery of siRNAs into inflamed microvascular segments and interference with disease associated endothelial activation.
Collapse
Affiliation(s)
- Piotr S Kowalski
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Peter J Zwiers
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Henriëtte W M Morselt
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Joanna M Kuldo
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Niek G J Leus
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Marcel H J Ruiters
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands; Synvolux Therapeutics, L.J. Zielstraweg 1, Groningen, The Netherlands
| | - Grietje Molema
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands
| | - Jan A A M Kamps
- University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, Groningen, The Netherlands.
| |
Collapse
|
243
|
Affiliation(s)
- Konstantinos Stellos
- From the Institute of Cardiovascular Regeneration, Centre of Molecular Medicine (K.S., S.D.), and Department of Cardiology (K.S.), J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- From the Institute of Cardiovascular Regeneration, Centre of Molecular Medicine (K.S., S.D.), and Department of Cardiology (K.S.), J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
244
|
Nohria A, Kinlay S, Buck JS, Redline W, Copeland-Halperin R, Kim S, Beckman JA. The effect of salsalate therapy on endothelial function in a broad range of subjects. J Am Heart Assoc 2014; 3:e000609. [PMID: 24390146 PMCID: PMC3959688 DOI: 10.1161/jaha.113.000609] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Inflammation is fundamental to the development of atherosclerosis. We examined the effect of anti‐inflammatory doses of salicylate on endothelium‐dependent vasodilation, a biomarker of cardiovascular risk, in a broad range of subjects. Methods and Results We performed a randomized, double‐blind, placebo‐controlled crossover trial evaluating the effects of 4 weeks of high‐dose salsalate (disalicylate) therapy on endothelium‐dependent flow‐mediated and endothelium‐independent vasodilation. Fifty‐eight subjects, including 17 with metabolic syndrome, 13 with atherosclerosis, and 28 healthy controls, were studied. Among all subjects, endothelium‐dependent flow‐mediated vasodilation decreased after salsalate compared with placebo therapy (P=0.01), whereas nitroglycerin‐mediated, endothelium‐independent vasodilation was unchanged (P=0.97). Endothelium‐dependent flow‐mediated vasodilation after salsalate therapy was impaired compared with placebo therapy in subjects with therapeutic salicylate levels (n=31, P<0.02) but not in subjects with subtherapeutic levels (P>0.2). Conclusions Salsalate therapy, particularly when therapeutic salicylate levels are achieved, impairs endothelium‐dependent vasodilation in a broad range of subjects. These data raise concern about the possible deleterious effects of anti‐inflammatory doses of salsalate on cardiovascular risk. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique Identifiers: NCT00760019 and NCT00762827.
Collapse
Affiliation(s)
- Anju Nohria
- Cardiovascular Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | |
Collapse
|
245
|
Pelham CJ, Agrawal DK. Emerging roles for triggering receptor expressed on myeloid cells receptor family signaling in inflammatory diseases. Expert Rev Clin Immunol 2013; 10:243-56. [PMID: 24325404 DOI: 10.1586/1744666x.2014.866519] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Innate immune receptors represent important therapeutic targets for inflammatory disorders. In particular, the Toll-like receptor (TLR) family has emerged as a promoter of chronic inflammation that contributes to obesity, insulin resistance and atherosclerosis. Importantly, triggering receptor expressed on myeloid cells-1 (TREM-1) has been characterized as an 'amplifier' of TLR2 and TLR4 signaling. TREM-1- and TREM-2-dependent signaling, as opposed to TREM-like transcript-1 (TLT-1 or TREML1), are mediated through association with the transmembrane adaptor DNAX activation protein of 12 kDa (DAP12). Recessive inheritance of rare mutations in DAP12 or TREM-2 results in a disorder called polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, and surprisingly these subjects are not immunocompromised. Recent progress into the roles of TREM/DAP12 signaling is critically reviewed here with a focus on metabolic, cardiovascular and inflammatory diseases. The expanding repertoire of putative ligands for TREM receptors is also discussed.
Collapse
Affiliation(s)
- Christopher J Pelham
- Department of Biomedical Sciences and Center for Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | |
Collapse
|
246
|
Abstract
Physiological and pathological roles for small non-encoding miRNAs (microRNAs) in the cardiovascular system have recently emerged and are now widely studied. The discovery of widespread functions of miRNAs has increased the complexity of gene-regulatory processes and networks in both the cardiovascular system and cardiovascular diseases. Indeed, it has recently been shown that miRNAs are implicated in the regulation of many of the steps leading to the development of cardiovascular disease. These findings represent novel aspects in miRNA biology and, therefore, our understanding of the role of these miRNAs during the pathogenesis of cardiovascular disease is critical for the development of novel therapies and diagnostic interventions. The present review will focus on understanding how miRNAs are involved in the onset and development of cardiovascular diseases.
Collapse
|
247
|
Hadi NR, Yousif NG, Abdulzahra MS, Mohammad BI, al-amran FG, Majeed ML, Yousif MG. Role of NF-κβ and Oxidative Pathways in Atherosclerosis: Cross-Talk Between Dyslipidemia and Candesartan. Cardiovasc Ther 2013; 31:381-7. [DOI: 10.1111/1755-5922.12033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Najah R. Hadi
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Nasser Ghaly Yousif
- Department of Medicine and Surgery; University of Colorado Denver; Aurora CO 80045 USA
| | - Mohammed S. Abdulzahra
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Bassim I. Mohammad
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Fadhil G. al-amran
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Murooge L. Majeed
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Maitham G. Yousif
- Department of Biology; College of Science; Al-Qadysia University; Al Diwaniyah Iraq
| |
Collapse
|
248
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
249
|
Heger K, Seidler B, Vahl JC, Schwartz C, Kober M, Klein S, Voehringer D, Saur D, Schmidt-Supprian M. CreER(T2) expression from within the c-Kit gene locus allows efficient inducible gene targeting in and ablation of mast cells. Eur J Immunol 2013; 44:296-306. [PMID: 24127407 DOI: 10.1002/eji.201343731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023]
Abstract
Mast cells are abundantly situated at contact sites between the body and its environment, such as the skin and, especially during certain immune responses, at mucosal surfaces. They mediate allergic reactions and degrade toxins as well as venoms. However, their roles during innate and adaptive immune responses remain controversial and it is likely that major functions remain to be discovered. Recent developments in mast cell-specific conditional gene targeting in the mouse promise to enhance our understanding of these fascinating cells. To complete the genetic toolbox to study mast cell development, homeostasis and function, it is imperative to inducibly manipulate their gene expression. Here, we report the generation of a novel knock-in mouse line expressing a tamoxifen-inducible version of the Cre recombinase from within the endogenous c-Kit locus. We demonstrate highly efficient and specific inducible expression of a fluorescent reporter protein in mast cells both in vivo and in vitro. Furthermore, induction of diphtheria toxin A expression allowed selective and efficient ablation of mast cells at various anatomical locations, while other hematopoietic cells remain unaffected. This novel mouse strain will hence be very valuable to study mast cell homeostasis and how specific genes influence their functions in physiology and pathology.
Collapse
Affiliation(s)
- Klaus Heger
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci 2013; 14:19987-20018. [PMID: 24113581 PMCID: PMC3821599 DOI: 10.3390/ijms141019987] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022] Open
Abstract
Large-scale analyses of mammalian transcriptomes have identified a significant number of different RNA molecules that are not translated into protein. In fact, the use of new sequencing technologies has identified that most of the genome is transcribed, producing a heterogeneous population of RNAs which do not encode for proteins (ncRNAs). Emerging data suggest that these transcripts influence the development of cardiovascular disease. The best characterized non-coding RNA family is represented by short highly conserved RNA molecules, termed microRNAs (miRNAs), which mediate a process of mRNA silencing through transcript degradation or translational repression. These microRNAs (miRNAs) are expressed in cardiovascular tissues and play key roles in many cardiovascular pathologies, such as coronary artery disease (CAD) and heart failure (HF). Potential links between other ncRNAs, like long non-coding RNA, and cardiovascular disease are intriguing but the functions of these transcripts are largely unknown. Thus, the functional characterization of ncRNAs is essential to improve the overall understanding of cellular processes involved in cardiovascular diseases in order to define new therapeutic strategies. This review outlines the current knowledge of the different ncRNA classes and summarizes their role in cardiovascular development and disease.
Collapse
|