201
|
L-asparaginase and 6-diazo-5-oxo-L-norleucine synergistically inhibit the growth of glioblastoma cells. J Neurooncol 2020; 146:469-475. [PMID: 32020477 DOI: 10.1007/s11060-019-03351-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE Glioblastoma is an aggressive central nervous system tumor with a 5-year survival rate of < 10%. The standard therapy for glioblastoma is maximal safe resection, followed by radiation therapy and chemotherapy with temozolomide. New approaches to treatment of glioblastoma, such as targeting metabolism, have been studied. The object of this study is to evaluate whether asparagine could be a new target for treatment of glioblastoma. METHODS We investigated a potential treatment for glioblastoma that targets the amino acid metabolism. U251, U87, and SF767 glioblastoma cells were treated with L-asparaginase and/or 6-diazo-5-oxo-L-norleucine (DON). L-asparaginase hydrolyzes asparagine into aspartate and depletes asparagine. L-asparaginase has been used for the treatment of acute lymphoblastic leukemia. DON is a glutamine analog that inhibits several glutamine-utilizing enzymes, including asparagine synthetase. RESULTS Cell viability was measured after 72 h of treatment. MTS assay showed that L-asparaginase suppressed the proliferation of U251, U87, and SF767 cells in a dose-dependent manner. DON also inhibited the proliferation of these cell lines in a dose-dependent manner. Combined treatment with these drugs had a synergistic antiproliferative effect in these cell lines. Exogenous asparagine rescued the effect of inhibition of proliferation by L-asparaginase and DON. The expression of asparagine synthetase mRNA was increased in cells treated with a combination of L-asparaginase and DON. This combined treatment also induced greater apoptosis and autophagy than did single-drug treatment. CONCLUSION The results suggest that the combination of L-asparaginase and DON could be a new therapeutic option for patients with glioblastoma.
Collapse
|
202
|
Meng D, Yang Q, Wang H, Melick CH, Navlani R, Frank AR, Jewell JL. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem 2020; 295:2890-2899. [PMID: 32019866 DOI: 10.1074/jbc.ac119.011578] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Nutrient sensing by cells is crucial, and when this sensing mechanism is disturbed, human disease can occur. mTOR complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Leucine, arginine, and methionine signal to mTORC1 through the well-characterized Rag GTPase signaling pathway. In contrast, glutamine activates mTORC1 through a Rag GTPase-independent mechanism that requires ADP-ribosylation factor 1 (Arf1). Here, using several biochemical and genetic approaches, we show that eight amino acids filter through the Rag GTPase pathway. Like glutamine, asparagine signals to mTORC1 through Arf1 in the absence of the Rag GTPases. Both the Rag-dependent and Rag-independent pathways required the lysosome and lysosomal function for mTORC1 activation. Our results show that mTORC1 is differentially regulated by amino acids through two distinct pathways.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qianmei Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Huanyu Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chase H Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rishika Navlani
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
203
|
Lieu EL, Nguyen T, Rhyne S, Kim J. Amino acids in cancer. Exp Mol Med 2020; 52:15-30. [PMID: 31980738 PMCID: PMC7000687 DOI: 10.1038/s12276-020-0375-3] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 01/22/2023] Open
Abstract
Over 90 years ago, Otto Warburg's seminal discovery of aerobic glycolysis established metabolic reprogramming as one of the first distinguishing characteristics of cancer1. The field of cancer metabolism subsequently revealed additional metabolic alterations in cancer by focusing on central carbon metabolism, including the citric acid cycle and pentose phosphate pathway. Recent reports have, however, uncovered substantial non-carbon metabolism contributions to cancer cell viability and growth. Amino acids, nutrients vital to the survival of all cell types, experience reprogrammed metabolism in cancer. This review outlines the diverse roles of amino acids within the tumor and in the tumor microenvironment. Beyond their role in biosynthesis, they serve as energy sources and help maintain redox balance. In addition, amino acid derivatives contribute to epigenetic regulation and immune responses linked to tumorigenesis and metastasis. Furthermore, in discussing the transporters and transaminases that mediate amino acid uptake and synthesis, we identify potential metabolic liabilities as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth L. Lieu
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Tu Nguyen
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Shawn Rhyne
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| | - Jiyeon Kim
- 0000 0001 2175 0319grid.185648.6Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
204
|
Rashidi A, Miska J, Lee-Chang C, Kanojia D, Panek WK, Lopez-Rosas A, Zhang P, Han Y, Xiao T, Pituch KC, Kim JW, Talebian M, Fares J, Lesniak MS. GCN2 is essential for CD8 + T cell survival and function in murine models of malignant glioma. Cancer Immunol Immunother 2020; 69:81-94. [PMID: 31844909 PMCID: PMC6952559 DOI: 10.1007/s00262-019-02441-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022]
Abstract
Amino acid deprivation is a strategy that malignancies utilize to blunt anti-tumor T-cell immune responses. It has been proposed that amino acid insufficiency in T-cells is detected by GCN2 kinase, which through phosphorylation of EIF2α, shuts down global protein synthesis leading to T-cell arrest. The role of this amino acid stress sensor in the context of malignant brain tumors has not yet been studied, and may elucidate important insights into the mechanisms of T-cell survival in this harsh environment. Using animal models of glioblastoma and animals with deficiency in GCN2, we explored the importance of this pathway in T-cell function within brain tumors. Our results show that GCN2 deficiency limited CD8+ T-cell activation and expression of cytotoxic markers in two separate murine models of glioblastoma in vivo. Importantly, adoptive transfer of antigen-specific T-cells from GCN2 KO mice did not control tumor burden as well as wild-type CD8+ T-cells. Our in vitro and in vivo data demonstrated that reduction in amino acid availability caused GCN2 deficient CD8+ T-cells to become rapidly necrotic. Mechanistically, reduced CD8+ T-cell activation and necrosis was due to a disruption in TCR signaling, as we observed reductions in PKCθ and phoshpo-PKCθ on CD8+ T-cells from GCN2 KO mice in the absence of tryptophan. Validating these observations, treatment of wild-type CD8+ T-cells with a downstream inhibitor of GCN2 activation also triggered necrosis of CD8+ T-cells in the absence of tryptophan. In conclusion, our data demonstrate the vital importance of intact GCN2 signaling on CD8+ T-cell function and survival in glioblastoma.
Collapse
Affiliation(s)
- Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Wojciech K Panek
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Julius W Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Mahsa Talebian
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
205
|
O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19:324-335. [PMID: 30820043 DOI: 10.1038/s41577-019-0140-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At the centre of the therapeutic dilemma posed by cancer is the question of how to develop more effective treatments that discriminate between normal and cancerous tissues. Decades of research have shown us that universally applicable principles are rare, but two well-accepted concepts have emerged: first, that malignant transformation goes hand in hand with distinct changes in cellular metabolism; second, that the immune system is critical for tumour control and clearance. Unifying our understanding of tumour metabolism with immune cell function may prove to be a powerful approach in the development of more effective cancer therapies. Here, we explore how nutrient availability in the tumour microenvironment shapes immune responses and identify areas of intervention to modulate the metabolic constraints placed on immune cells in this setting.
Collapse
Affiliation(s)
- David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,University of Freiburg, Freiburg, Germany.
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
206
|
Jiang J, Srivastava S, Seim G, Pavlova NN, King B, Zou L, Zhang C, Zhong M, Feng H, Kapur R, Wek RC, Fan J, Zhang J. Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion. J Biol Chem 2019; 294:18674-18684. [PMID: 31659118 PMCID: PMC6901317 DOI: 10.1074/jbc.ra119.010447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Tumor cells adapt to nutrient-limited environments by inducing gene expression that ensures adequate nutrients to sustain metabolic demands. For example, during amino acid limitations, ATF4 in the amino acid response induces expression of asparagine synthetase (ASNS), which provides for asparagine biosynthesis. Acute lymphoblastic leukemia (ALL) cells are sensitive to asparagine depletion, and administration of the asparagine depletion enzyme l-asparaginase is an important therapy option. ASNS expression can counterbalance l-asparaginase treatment by mitigating nutrient stress. Therefore, understanding the mechanisms regulating ASNS expression is important to define the adaptive processes underlying tumor progression and treatment. Here we show that DNA hypermethylation at the ASNS promoter prevents its transcriptional expression following asparagine depletion. Insufficient expression of ASNS leads to asparagine deficiency, which facilitates ATF4-independent induction of CCAAT-enhancer-binding protein homologous protein (CHOP), which triggers apoptosis. We conclude that chromatin accessibility is critical for ATF4 activity at the ASNS promoter, which can switch ALL cells from an ATF4-dependent adaptive response to ATF4-independent apoptosis during asparagine depletion. This work may also help explain why ALL cells are most sensitive to l-asparaginase treatment compared with other cancers.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Sankalp Srivastava
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Gretchen Seim
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53715
| | - Natalya N Pavlova
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Bryan King
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Lihua Zou
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois 60611
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Minghua Zhong
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hui Feng
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jing Fan
- Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53715
| | - Ji Zhang
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
207
|
Pathria G, Lee JS, Hasnis E, Tandoc K, Scott DA, Verma S, Feng Y, Larue L, Sahu AD, Topisirovic I, Ruppin E, Ronai ZA. Translational reprogramming marks adaptation to asparagine restriction in cancer. Nat Cell Biol 2019; 21:1590-1603. [PMID: 31740775 PMCID: PMC7307327 DOI: 10.1038/s41556-019-0415-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023]
Abstract
While amino acid restriction remains an attractive strategy for cancer therapy, metabolic adaptations limit its effectiveness. Here we demonstrate a role of translational reprogramming in the survival of asparagine-restricted cancer cells. Asparagine limitation in melanoma and pancreatic cancer cells activates RTK-MAPK as part of a feedforward mechanism involving mTORC1-dependent increase in MNK1 and eIF4E, resulting in enhanced translation of ATF4 mRNA. MAPK inhibition attenuates translational induction of ATF4 and the expression of its target asparagine biosynthesis enzyme ASNS, sensitizing melanoma and pancreatic tumors to asparagine restriction, reflected in their growth inhibition. Correspondingly, low ASNS expression is among the top predictors of response to MAPK signaling inhibitors in melanoma patients and is associated with favorable prognosis, when combined with low MAPK signaling activity. While unveiling a previously unknown axis of adaptation to asparagine deprivation, these studies offer the rationale for clinical evaluation of MAPK inhibitors in combination with asparagine restriction approaches.
Collapse
Affiliation(s)
- Gaurav Pathria
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Joo Sang Lee
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA.,Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Erez Hasnis
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kristofferson Tandoc
- Gerald Bronfman Department of Oncology, Lady Davis Institute, SMBD Jewish General Hospital, and Departments of Experimental Medicine and Biochemistry, McGill University, Montreal, Quebec, Canada
| | - David A Scott
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sachin Verma
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, INSERM U1021, Orsay, France.,Universitê Paris-Sud and Université Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Avinash D Sahu
- Harvard School of Public Health and Massachusetts General Hospital, Boston, MA, USA
| | - Ivan Topisirovic
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
208
|
Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019; 19:625-637. [PMID: 31515518 DOI: 10.1038/s41568-019-0187-8] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
Methionine uptake and metabolism is involved in a host of cellular functions including methylation reactions, redox maintenance, polyamine synthesis and coupling to folate metabolism, thus coordinating nucleotide and redox status. Each of these functions has been shown in many contexts to be relevant for cancer pathogenesis. Intriguingly, the levels of methionine obtained from the diet can have a large effect on cellular methionine metabolism. This establishes a link between nutrition and tumour cell metabolism that may allow for tumour-specific metabolic vulnerabilities that can be influenced by diet. Recently, a number of studies have begun to investigate the molecular and cellular mechanisms that underlie the interaction between nutrition, methionine metabolism and effects on health and cancer.
Collapse
Affiliation(s)
- Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
209
|
Cheng SC, Chen K, Chiu CY, Lu KY, Lu HY, Chiang MH, Tsai CK, Lo CJ, Cheng ML, Chang TC, Lin G. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. Metabolomics 2019; 15:146. [PMID: 31664624 DOI: 10.1007/s11306-019-1609-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Endometrial cancer (EC) is one of the most common gynecologic neoplasms in developed countries but lacks screening biomarkers. OBJECTIVES We aim to identify and validate metabolomic biomarkers in cervicovaginal fluid (CVF) for detecting EC through nuclear magnetic resonance (NMR) spectroscopy. METHODS We screened 100 women with suspicion of EC and benign gynecological conditions, and randomized them into the training and independent testing datasets using a 5:1 study design. CVF samples were analyzed using a 600-MHz NMR spectrometer equipped with a cryoprobe. Four machine learning algorithms-support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), random forest (RF), and logistic regression (LR), were applied to develop the model for identifying metabolomic biomarkers in cervicovaginal fluid for EC detection. RESULTS A total of 54 women were eligible for the final analysis, with 21 EC and 33 non-EC. From 29 identified metabolites in cervicovaginal fluid samples, the top-ranking metabolites chosen through SVM, RF and PLS-DA which existed in independent metabolic pathways, i.e. phosphocholine, malate, and asparagine, were selected to build the prediction model. The SVM, PLS-DA, RF, and LR methods all yielded area under the curve values between 0.88 and 0.92 in the training dataset. In the testing dataset, the SVM and RF methods yielded the highest accuracy of 0.78 and the specificity of 0.75 and 0.80, respectively. CONCLUSION Phosphocholine, asparagine, and malate from cervicovaginal fluid, which were identified and independently validated through models built using machine learning algorithms, are promising metabolomic biomarkers for the detection of EC using NMR spectroscopy.
Collapse
Affiliation(s)
- Shih-Chun Cheng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33305, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Kueian Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33305, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chih-Yung Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital at Keelung and Linkou, Chang Gung University, Taoyuan, 33305, Taiwan
- Community Medicine Research Centre, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33305, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Hsin-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33305, Taiwan
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Meng-Han Chiang
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Cheng-Kun Tsai
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, 33382, Taiwan
| | - Mei-Ling Cheng
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, 33382, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33382, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou and Chang University Medical College, 5 Fuhsing St., Guishan, Taoyuan, 33305, Taiwan.
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33305, Taiwan.
- Imaging Core Laboratory, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 33305, Taiwan.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan.
| |
Collapse
|
210
|
Sun J, Nagel R, Zaal EA, Ugalde AP, Han R, Proost N, Song J, Pataskar A, Burylo A, Fu H, Poelarends GJ, van de Ven M, van Tellingen O, Berkers CR, Agami R. SLC1A3 contributes to L-asparaginase resistance in solid tumors. EMBO J 2019; 38:e102147. [PMID: 31523835 PMCID: PMC6826201 DOI: 10.15252/embj.2019102147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
L-asparaginase (ASNase) serves as an effective drug for adolescent acute lymphoblastic leukemia. However, many clinical trials indicated severe ASNase toxicity in patients with solid tumors, with resistant mechanisms not well understood. Here, we took a functional genetic approach and identified SLC1A3 as a novel contributor to ASNase resistance in cancer cells. In combination with ASNase, SLC1A3 inhibition caused cell cycle arrest or apoptosis, and myriads of metabolic vulnerabilities in tricarboxylic acid (TCA) cycle, urea cycle, nucleotides biosynthesis, energy production, redox homeostasis, and lipid biosynthesis. SLC1A3 is an aspartate and glutamate transporter, mainly expressed in brain tissues, but high expression levels were also observed in some tumor types. Here, we demonstrate that ASNase stimulates aspartate and glutamate consumptions, and their refilling through SLC1A3 promotes cancer cell proliferation. Lastly, in vivo experiments indicated that SLC1A3 expression promoted tumor development and metastasis while negating the suppressive effects of ASNase by fueling aspartate, glutamate, and glutamine metabolisms despite of asparagine shortage. Altogether, our findings identify a novel role for SLC1A3 in ASNase resistance and suggest that restrictive aspartate and glutamate uptake might improve ASNase efficacy with solid tumors.
Collapse
Affiliation(s)
- Jianhui Sun
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Remco Nagel
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Alejandro Piñeiro Ugalde
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ruiqi Han
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA)The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Division of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Abhijeet Pataskar
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Artur Burylo
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Haigen Fu
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenGroningenThe Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenGroningenThe Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA)The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Olaf van Tellingen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- Department of Biochemistry and Cell BiologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Reuven Agami
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
211
|
Zhang YL, Duan XD, Jiang WD, Feng L, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Soybean glycinin decreased growth performance, impaired intestinal health, and amino acid absorption capacity of juvenile grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1589-1602. [PMID: 31256306 DOI: 10.1007/s10695-019-00648-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the influence of dietary soybean glycinin on growth performance, intestinal morphology, free intestinal amino acid (AA) content, and intestinal AA transporter (AAT) mRNA levels in juvenile grass carp (Ctenopharyngodon idella). Results were displayed as follows: (1) 8% dietary glycinin decreased growth performance, inhibited intestinal growth, and caused intestinal histology damage of grass carp; (2) dietary glycinin decreased the content of free neutral AAs including Val, Ser, Tyr, Ala, Pro, and Gln in all intestinal segments, and Thr, Ile, Leu, Phe, and Gly in the MI and DI while downregulated the mRNA levels of corresponding transporters including SLC38A2, SLC6A19b, and SLC6A14 in all intestinal segments, and SLC7A5, SLC7A8, and SLC1A5 in the MI and DI. Dietary glycinin decreased the content of free basic AAs including Arg in the MI and DI and His in all intestinal segments while downregulated cationic AAT SLC7A1 mRNA levels in the MI and DI. Dietary glycinin decreased the content of free acidic AAs including Glu in all intestinal segments and Asp in the MI and DI while decreased mRNA levels of corresponding transporters including SLC1A2a in all intestinal segments and SLC1A3 in the MI and DI; (3) the digestion trial showed that basic subunits of glycinin was hard to digest in the intestine of grass carp; (4) co-administration of glutamine with glycinin partially alleviated the negative effects. Overall, glycinin decreased intestinal AA absorption capacity partly contributed by decreased AATs' mRNA levels and the indigestibility of glycinin.
Collapse
Affiliation(s)
- Ya-Lin Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xu-Dong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
212
|
Albert AE, Adua SJ, Cai WL, Arnal-Estapé A, Cline GW, Liu Z, Zhao M, Cao PD, Mariappan M, Nguyen DX. Adaptive Protein Translation by the Integrated Stress Response Maintains the Proliferative and Migratory Capacity of Lung Adenocarcinoma Cells. Mol Cancer Res 2019; 17:2343-2355. [PMID: 31551255 DOI: 10.1158/1541-7786.mcr-19-0245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/01/2019] [Accepted: 09/20/2019] [Indexed: 12/25/2022]
Abstract
The integrated stress response (ISR) is a conserved pathway that is activated by cells that are exposed to stress. In lung adenocarcinoma, activation of the ATF4 branch of the ISR by certain oncogenic mutations has been linked to the regulation of amino acid metabolism. In the present study, we provide evidence for ATF4 activation across multiple stages and molecular subtypes of human lung adenocarcinoma. In response to extracellular amino acid limitation, lung adenocarcinoma cells with diverse genotypes commonly induce ATF4 in an eIF2α-dependent manner, which can be blocked pharmacologically using an ISR inhibitor. Although suppressing eIF2α or ATF4 can trigger different biological consequences, adaptive cell-cycle progression and cell migration are particularly sensitive to inhibition of the ISR. These phenotypes require the ATF4 target gene asparagine synthetase (ASNS), which maintains protein translation independently of the mTOR/PI3K pathway. Moreover, NRF2 protein levels and oxidative stress can be modulated by the ISR downstream of ASNS. Finally, we demonstrate that ASNS controls the biosynthesis of select proteins, including the cell-cycle regulator cyclin B1, which are associated with poor lung adenocarcinoma patient outcome. Our findings uncover new regulatory layers of the ISR pathway and its control of proteostasis in lung cancer cells. IMPLICATIONS: We reveal novel regulatory mechanisms by which the ISR controls selective protein translation and is required for cell-cycle progression and migration of lung cancer cells.
Collapse
Affiliation(s)
- Alexandra E Albert
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Sally J Adua
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Wesley L Cai
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Anna Arnal-Estapé
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.,Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Gary W Cline
- Department of Medicine (Internal Medicine), Yale School of Medicine, New Haven, Connecticut
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Minghui Zhao
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Paul D Cao
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut. .,Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.,Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
213
|
Dias MM, Adamoski D, Dos Reis LM, Ascenção CFR, de Oliveira KRS, Mafra ACP, da Silva Bastos AC, Quintero M, de G Cassago C, Ferreira IM, Fidelis CHV, Rocco SA, Bajgelman MC, Stine Z, Berindan-Neagoe I, Calin GA, Ambrosio ALB, Dias SMG. GLS2 is protumorigenic in breast cancers. Oncogene 2019; 39:690-702. [PMID: 31541193 DOI: 10.1038/s41388-019-1007-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
Many types of cancers have a well-established dependence on glutamine metabolism to support survival and growth, a process linked to glutaminase 1 (GLS) isoforms. Conversely, GLS2 variants often have tumor-suppressing activity. Triple-negative (TN) breast cancer (testing negative for estrogen, progesterone, and Her2 receptors) has elevated GLS protein levels and reportedly depends on exogenous glutamine and GLS activity for survival. Despite having high GLS levels, we verified that several breast cancer cells (including TN cells) express endogenous GLS2, defying its role as a bona fide tumor suppressor. Moreover, ectopic GLS2 expression rescued cell proliferation, TCA anaplerosis, redox balance, and mitochondrial function after GLS inhibition by the small molecule currently in clinical trials CB-839 or GLS knockdown of GLS-dependent cell lines. In several cell lines, GLS2 knockdown decreased cell proliferation and glutamine-linked metabolic phenotypes. Strikingly, long-term treatment of TN cells with another GLS-exclusive inhibitor bis-2'-(5-phenylacetamide-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) selected for a drug-resistant population with increased endogenous GLS2 and restored proliferative capacity. GLS2 was linked to enhanced in vitro cell migration and invasion, mesenchymal markers (through the ERK-ZEB1-vimentin axis under certain conditions) and in vivo lung metastasis. Of concern, GLS2 amplification or overexpression is linked to an overall, disease-free and distant metastasis-free worse survival prognosis in breast cancer. Altogether, these data establish an unforeseen role of GLS2 in sustaining tumor proliferation and underlying metastasis in breast cancer and provide an initial framework for exploring GLS2 as a novel therapeutic target.
Collapse
Affiliation(s)
- Marilia M Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Larissa M Dos Reis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Carolline F R Ascenção
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Krishina R S de Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Ana Carolina Paschoalini Mafra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Alliny Cristiny da Silva Bastos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.,Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Melissa Quintero
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Carolina de G Cassago
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Igor M Ferreira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Carlos H V Fidelis
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, 13083-970, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - Zachary Stine
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400337, Cluj-Napoca, Romania.,MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400349, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", 400015, Cluj-Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX, 77030, USA.,Center for RNA Inference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 1950, Houston, TX, 77030, USA
| | - Andre Luis Berteli Ambrosio
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil. .,Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, Sao Paulo, 13563-120, Brazil.
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
214
|
Castro I, Sampaio-Marques B, Ludovico P. Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells 2019; 8:cells8090967. [PMID: 31450562 PMCID: PMC6770240 DOI: 10.3390/cells8090967] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
The cancer metabolic reprogramming allows the maintenance of tumor proliferation, expansion and survival by altering key bioenergetics, biosynthetic and redox functions to meet the higher demands of tumor cells. In addition, several metabolites are also needed to perform signaling functions that further promote tumor growth and progression. These metabolic alterations have been exploited in different cancers, including acute myeloid leukemia, as novel therapeutic strategies both in preclinical models and clinical trials. Here, we review the complexity of acute myeloid leukemia (AML) metabolism and discuss how therapies targeting different aspects of cellular metabolism have demonstrated efficacy and how they provide a therapeutic window that should be explored to target the metabolic requirements of AML cells.
Collapse
Affiliation(s)
- Isabel Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal.
| |
Collapse
|
215
|
Thomas LW, Esposito C, Stephen JM, Costa ASH, Frezza C, Blacker TS, Szabadkai G, Ashcroft M. CHCHD4 regulates tumour proliferation and EMT-related phenotypes, through respiratory chain-mediated metabolism. Cancer Metab 2019; 7:7. [PMID: 31346464 PMCID: PMC6632184 DOI: 10.1186/s40170-019-0200-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mitochondrial oxidative phosphorylation (OXPHOS) via the respiratory chain is required for the maintenance of tumour cell proliferation and regulation of epithelial to mesenchymal transition (EMT)-related phenotypes through mechanisms that are not fully understood. The essential mitochondrial import protein coiled-coil helix coiled-coil helix domain-containing protein 4 (CHCHD4) controls respiratory chain complex activity and oxygen consumption, and regulates the growth of tumours in vivo. In this study, we interrogate the importance of CHCHD4-regulated mitochondrial metabolism for tumour cell proliferation and EMT-related phenotypes, and elucidate key pathways involved. RESULTS Using in silico analyses of 967 tumour cell lines, and tumours from different cancer patient cohorts, we show that CHCHD4 expression positively correlates with OXPHOS and proliferative pathways including the mTORC1 signalling pathway. We show that CHCHD4 expression significantly correlates with the doubling time of a range of tumour cell lines, and that CHCHD4-mediated tumour cell growth and mTORC1 signalling is coupled to respiratory chain complex I (CI) activity. Using global metabolomics analysis, we show that CHCHD4 regulates amino acid metabolism, and that CHCHD4-mediated tumour cell growth is dependent on glutamine. We show that CHCHD4-mediated tumour cell growth is linked to CI-regulated mTORC1 signalling and amino acid metabolism. Finally, we show that CHCHD4 expression in tumours is inversely correlated with EMT-related gene expression, and that increased CHCHD4 expression in tumour cells modulates EMT-related phenotypes. CONCLUSIONS CHCHD4 drives tumour cell growth and activates mTORC1 signalling through its control of respiratory chain mediated metabolism and complex I biology, and also regulates EMT-related phenotypes of tumour cells.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present Address: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Ana S. H. Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Box 197, Cambridge, CB2 0XZ UK
| | - Thomas S. Blacker
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| |
Collapse
|
216
|
Pant A, Cao S, Yang Z. Asparagine Is a Critical Limiting Metabolite for Vaccinia Virus Protein Synthesis during Glutamine Deprivation. J Virol 2019; 93:e01834-18. [PMID: 30996100 PMCID: PMC6580962 DOI: 10.1128/jvi.01834-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses actively interact with host metabolism because viral replication relies on host cells to provide nutrients and energy. Vaccinia virus (VACV; the prototype poxvirus) prefers glutamine to glucose for efficient replication to the extent that VACV replication is hindered in glutamine-free medium. Remarkably, our data show that VACV replication can be fully rescued from glutamine depletion by asparagine supplementation. By global metabolic profiling, as well as genetic and chemical manipulation of the asparagine supply, we provide evidence demonstrating that the production of asparagine, which exclusively requires glutamine for biosynthesis, accounts for VACV's preference of glutamine to glucose rather than glutamine's superiority over glucose in feeding the tricarboxylic acid (TCA) cycle. Furthermore, we show that sufficient asparagine supply is required for efficient VACV protein synthesis. Our study highlights that the asparagine supply, the regulation of which has been evolutionarily tailored in mammalian cells, presents a critical barrier to VACV replication due to a high asparagine content of viral proteins and a rapid demand of viral protein synthesis. The identification of asparagine availability as a critical limiting factor for efficient VACV replication suggests a new direction of antiviral strategy development.IMPORTANCE Viruses rely on their infected host cells to provide nutrients and energy for replication. Vaccinia virus, the prototypic member of the poxviruses, which comprise many significant human and animal pathogens, prefers glutamine to glucose for efficient replication. Here, we show that the preference is not because glutamine is superior to glucose as the carbon source to fuel the tricarboxylic acid cycle for vaccinia virus replication. Rather interestingly, the preference is because the asparagine supply for efficient viral protein synthesis becomes limited in the absence of glutamine, which is necessary for asparagine biosynthesis. We provide further genetic and chemical evidence to demonstrate that asparagine availability plays a critical role in efficient vaccinia virus replication. This discovery identifies a weakness of vaccinia virus and suggests a possible direction to intervene in poxvirus infection.
Collapse
Affiliation(s)
- Anil Pant
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
217
|
Verlande A, Masri S. Circadian Clocks and Cancer: Timekeeping Governs Cellular Metabolism. Trends Endocrinol Metab 2019; 30:445-458. [PMID: 31155396 PMCID: PMC6679985 DOI: 10.1016/j.tem.2019.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
The circadian clock is a biological mechanism that dictates an array of rhythmic physiological processes. Virtually all cells contain a functional clock whose disruption results in altered timekeeping and detrimental systemic effects, including cancer. Recent advances have connected genetic disruption of the clock with multiple transcriptional and signaling networks controlling tumor initiation and progression. An additional feature of this circadian control relies on cellular metabolism, both within the tumor microenvironment and the organism systemically. A discussion of major advances related to cancer metabolism and the circadian clock will be outlined, including new efforts related to metabolic flux of transformed cells, metabolic heterogeneity of tumors, and the implications of circadian control of these pathways.
Collapse
Affiliation(s)
- Amandine Verlande
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92867, USA; Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
218
|
Jiang J, Srivastava S, Zhang J. Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster? Cancers (Basel) 2019; 11:cancers11060804. [PMID: 31212591 PMCID: PMC6627209 DOI: 10.3390/cancers11060804] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Distinct from normal differentiated tissues, cancer cells reprogram nutrient uptake and utilization to accommodate their elevated demands for biosynthesis and energy production. A hallmark of these types of reprogramming is the increased utilization of, and dependency on glutamine, a nonessential amino acid, for cancer cell growth and survival. It is well-accepted that glutamine is a versatile biosynthetic substrate in cancer cells beyond its role as a proteinogenic amino acid. In addition, accumulating evidence suggests that glutamine metabolism is regulated by many factors, including tumor origin, oncogene/tumor suppressor status, epigenetic alternations and tumor microenvironment. However, despite the emerging understanding of why cancer cells depend on glutamine for growth and survival, the contribution of glutamine metabolism to tumor progression under physiological conditions is still under investigation, partially because the level of glutamine in the tumor environment is often found low. Since targeting glutamine acquisition and utilization has been proposed to be a new therapeutic strategy in cancer, it is central to understand how tumor cells respond and adapt to glutamine starvation for optimized therapeutic intervention. In this review, we first summarize the diverse usage of glutamine to support cancer cell growth and survival, and then focus our discussion on the influence of other nutrients on cancer cell adaptation to glutamine starvation as well as its implication in cancer therapy.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sankalp Srivastava
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
219
|
The Pleiotropic Effects of Glutamine Metabolism in Cancer. Cancers (Basel) 2019; 11:cancers11060770. [PMID: 31167399 PMCID: PMC6627534 DOI: 10.3390/cancers11060770] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolic programs are known to be altered in cancers arising from various tissues. Malignant transformation can alter signaling pathways related to metabolism and increase the demand for both energy and biomass for the proliferating cancerous cells. This scenario is further complexed by the crosstalk between transformed cells and the microenvironment. One of the most common metabolic alterations, which occurs in many tissues and in the context of multiple oncogenic drivers, is the increased demand for the amino acid glutamine. Many studies have attributed this increased demand for glutamine to the carbon backbone and its role in the tricarboxylic acid (TCA) cycle anaplerosis. However, an increasing number of studies are now emphasizing the importance of glutamine functioning as a proteogenic building block, a nitrogen donor and carrier, an exchanger for import of other amino acids, and a signaling molecule. Herein, we highlight the recent literature on glutamine’s versatile role in cancer, with a focus on nitrogen metabolism, and therapeutic implications of glutamine metabolism in cancer.
Collapse
|
220
|
Punekar S, Cho DC. Novel Therapeutics Affecting Metabolic Pathways. Am Soc Clin Oncol Educ Book 2019; 39:e79-e87. [PMID: 31099667 DOI: 10.1200/edbk_238499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cells are known to have distinct metabolic characteristics compared with normal cells, given the catabolic and anabolic demands of increased cell growth and proliferation. This altered metabolism in cancer cells imbues differential dependencies, and substantial effort has been invested in developing therapeutic strategies to exploit these potential vulnerabilities. Parallel to these efforts has been a growing appreciation for the presence of notable intratumoral metabolic heterogeneity. Although many novel agents are showing some promising results in targeting specific metabolic processes, the challenge moving forward will be to develop combination strategies to address the aforementioned metabolic heterogeneity and its interplay with both epigenetic and immune factors in the tumor microenvironment. In this review, we discuss recent developments in targeting tumor catabolism, lipid biosynthesis, glycolysis, and the citric acid cycle as well as efforts to combine these approaches with immunotherapy.
Collapse
Affiliation(s)
| | - Daniel C Cho
- 1 Perlmutter Cancer Center at NYU Langone, New York, NY
| |
Collapse
|
221
|
Lowman XH, Hanse EA, Yang Y, Ishak Gabra MB, Tran TQ, Li H, Kong M. p53 Promotes Cancer Cell Adaptation to Glutamine Deprivation by Upregulating Slc7a3 to Increase Arginine Uptake. Cell Rep 2019; 26:3051-3060.e4. [PMID: 30865893 PMCID: PMC6510239 DOI: 10.1016/j.celrep.2019.02.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/13/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cancer cells heavily depend on the amino acid glutamine to meet the demands associated with growth and proliferation. Due to the rapid consumption of glutamine, cancer cells frequently undergo glutamine starvation in vivo. We and others have shown that p53 is a critical regulator in metabolic stress resistance. To better understand the molecular mechanisms by which p53 activation promotes cancer cell adaptation to glutamine deprivation, we identified p53-dependent genes that are induced upon glutamine deprivation by using RNA-seq analysis. We show that Slc7a3, an arginine transporter, is significantly induced by p53. We also show that increased intracellular arginine levels following glutamine deprivation are dependent on p53. The influx of arginine has minimal effects on known metabolic pathways upon glutamine deprivation. Instead, we found arginine serves as an effector for mTORC1 activation to promote cell growth in response to glutamine starvation. Therefore, we identify a p53-inducible gene that contributes to the metabolic stress response.
Collapse
Affiliation(s)
- Xazmin H Lowman
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Thai Q Tran
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Haiqing Li
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA; Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
222
|
Charkoftaki G, Thompson DC, Golla JP, Garcia-Milian R, Lam TT, Engel J, Vasiliou V. Integrated multi-omics approach reveals a role of ALDH1A1 in lipid metabolism in human colon cancer cells. Chem Biol Interact 2019; 304:88-96. [PMID: 30851239 DOI: 10.1016/j.cbi.2019.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/16/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06250, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA; Yale MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, CT, 06510, USA
| | - Jasper Engel
- Biometris, Wageningen University & Research, Wagenigen, the Netherlands
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
223
|
Abstract
Cancer cells consume and utilize glucose at a higher rate than normal cells. However, some microenvironments limit the availability of nutrients and glucose. In 2018, researchers found that tumours depend on a variety of different nutrient sources, both locally and systemically, to overcome metabolic limitations and promote tumour progression and metastasis.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
224
|
Zhang Q, Qin Y, Zhao J, Tang Y, Hu X, Zhong W, Li M, Zong S, Li M, Tao H, Zhang Z, Chen S, Liu H, Yang L, Zhou H, Liu Y, Sun T, Yang C. Thymidine phosphorylase promotes malignant progression in hepatocellular carcinoma through pentose Warburg effect. Cell Death Dis 2019; 10:43. [PMID: 30674871 PMCID: PMC6426839 DOI: 10.1038/s41419-018-1282-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Tumor progression is dependent on metabolic reprogramming. Metastasis and vasculogenic mimicry (VM) are typical characteristics of tumor progression. The relationship among metastasis, VM, and metabolic reprogramming remains unclear. In this study, we identified the novel role of Twist1, a VM regulator, in the transcriptional regulation of thymidine phosphorylase (TP) expression. TP promoted the extracellular metabolism of thymidine into ATP and amino acids through the pentose Warburg effect by coupling the pentose phosphate pathway and glycolysis. Moreover, Twist1 relied on TP-induced metabolic reprogramming to promote hepatocellular carcinoma (HCC) metastasis and VM formation mediated by VE–Cad, VEGFR1, and VEGFR2 in vitro and in vivo. The TP inhibitor tipiracil reduced the effect of TP on promoting HCC VM formation and metastasis. Hence, TP, when transcriptionally activated by Twist1, promotes HCC VM formation and metastasis through the pentose Warburg effect and contributes to tumor progression.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuan Qin
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jianmin Zhao
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuanhao Tang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xuejiao Hu
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Weilong Zhong
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mimi Li
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shumin Zong
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Meng Li
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honglian Tao
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhen Zhang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Tao Sun
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Cheng Yang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
225
|
Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, Monteiro G, Rangel-Yagui CDO, Benyahia B, Junior AP. Development of L-Asparaginase Biobetters: Current Research Status and Review of the Desirable Quality Profiles. Front Bioeng Biotechnol 2019; 6:212. [PMID: 30687702 PMCID: PMC6335324 DOI: 10.3389/fbioe.2018.00212] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
L-Asparaginase (ASNase) is a vital component of the first line treatment of acute lymphoblastic leukemia (ALL), an aggressive type of blood cancer expected to afflict over 53,000 people worldwide by 2020. More recently, ASNase has also been shown to have potential for preventing metastasis from solid tumors. The ASNase treatment is, however, characterized by a plethora of potential side effects, ranging from immune reactions to severe toxicity. Consequently, in accordance with Quality-by-Design (QbD) principles, ingenious new products tailored to minimize adverse reactions while increasing patient survival have been devised. In the following pages, the reader is invited for a brief discussion on the most recent developments in this field. Firstly, the review presents an outline of the recent improvements on the manufacturing and formulation processes, which can severely influence important aspects of the product quality profile, such as contamination, aggregation and enzymatic activity. Following, the most recent advances in protein engineering applied to the development of biobetter ASNases (i.e., with reduced glutaminase activity, proteolysis resistant and less immunogenic) using techniques such as site-directed mutagenesis, molecular dynamics, PEGylation, PASylation and bioconjugation are discussed. Afterwards, the attention is shifted toward nanomedicine including technologies such as encapsulation and immobilization, which aim at improving ASNase pharmacokinetics. Besides discussing the results of the most innovative and representative academic research, the review provides an overview of the products already available on the market or in the latest stages of development. With this, the review is intended to provide a solid background for the current product development and underpin the discussions on the target quality profile of future ASNase-based pharmaceuticals.
Collapse
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Vitor Santos da Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tales Alexandre Costa-Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexsandra Conceição Apolinário
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Henrique Picado Madalena Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Eduardo Krebs Kleingesinds
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brahim Benyahia
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
226
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
227
|
Ricci JE, Chiche J. Metabolic Reprogramming of Non-Hodgkin's B-Cell Lymphomas and Potential Therapeutic Strategies. Front Oncol 2018; 8:556. [PMID: 30564554 PMCID: PMC6288288 DOI: 10.3389/fonc.2018.00556] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/09/2018] [Indexed: 11/13/2022] Open
Abstract
Metabolism is a wide and general term that refers to any intracellular pathways the cell utilizes in order to satisfy its energetic demand and to support cell viability and/or division. Along with phenotypic changes, all mammalian cells including immune cells modulate their metabolic program in order to reach their effector functions. Exacerbated metabolism and metabolic flexibility are also hallmarks of tumor initiation and of tumor cell progression in a complex tumor microenvironment. Metabolic reprogramming is mainly directed by the serine/threonine kinase mTOR (mammalian target of rapamycin). mTOR exists in two structurally and functionally distinct complexes, mTORC1 and mTORC2 that coordinate environmental signals and metabolic/anabolic pathways to provide macromolecules and energy needed for survival and growth. Activation of mTORC1 is required during development, differentiation and activation of immune cells. Aberrant and persistent activation of mTORC1 is often observed in malignant B cells such as Non-Hodgkin's (NH) B-cell lymphomas. Here, we review recent insights on cell metabolism and on basic mechanisms of mTORC1 regulation and metabolic functions. We highlight the distinct mechanisms driving mTORC1 activation in the three most-common types of NH B-cell lymphomas (Diffuse Large B Cell Lymphomas, Follicular Lymphomas, and Mantle Cell Lymphomas), for which the first generation of mTORC1 inhibitors (rapalogs) have been extensively evaluated in preclinical and clinical settings. Finally, we discuss the reasons for limited clinical success of this therapy and focus on potential therapeutic strategies targeting metabolic pathways, upstream and downstream of mTORC1, that can be combined to rapalogs in order to improve patient's outcome.
Collapse
Affiliation(s)
- Jean-Ehrland Ricci
- INSERM U1065, C3M, Team Metabolism, Cancer and Immune Responses, Universiteé Côte d'Azur, Nice, France
| | - Johanna Chiche
- INSERM U1065, C3M, Team Metabolism, Cancer and Immune Responses, Universiteé Côte d'Azur, Nice, France
| |
Collapse
|
228
|
Lane AN, Higashi RM, Fan TWM. NMR and MS-based Stable Isotope-Resolved Metabolomics and Applications in Cancer Metabolism. Trends Analyt Chem 2018; 120. [PMID: 32523238 DOI: 10.1016/j.trac.2018.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is considerable interest in defining metabolic reprogramming in human diseases, which is recognized as a hallmark of human cancer. Although radiotracers have a long history in specific metabolic studies, stable isotope-enriched precursors coupled with modern high resolution mass spectrometry and NMR spectroscopy have enabled systematic mapping of metabolic networks and fluxes in cells, tissues and living organisms including humans. These analytical platforms are high in information content, are complementary and cross-validating in terms of compound identification, quantification, and isotope labeling pattern analysis of a large number of metabolites simultaneously. Furthermore, new developments in chemoselective derivatization and in vivo spectroscopy enable tracking of labile/low abundance metabolites and metabolic kinetics in real-time. Here we review developments in Stable Isotope Resolved Metabolomics (SIRM) and recent applications in cancer metabolism using a wide variety of stable isotope tracers that probe both broad and specific aspects of cancer metabolism required for proliferation and survival.
Collapse
Affiliation(s)
- Andrew N Lane
- Center for Environmental and Systems Biochemistry, Dept. Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536 USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Dept. Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536 USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Dept. Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536 USA
| |
Collapse
|
229
|
Oberkersch RE, Santoro MM. Role of amino acid metabolism in angiogenesis. Vascul Pharmacol 2018; 112:17-23. [PMID: 30423448 DOI: 10.1016/j.vph.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
The role of endothelial metabolism represents a crucial element governing the formation and the differentiation of blood vessels, termed angiogenesis. Besides glycolysis and fatty acid oxidation, endothelial cells rely on specific amino acids to proliferate, migrate, and survive. In this review we focus on the metabolism of those amino acids and the intermediates that hold an established function within angiogenesis and endothelial pathophysiology. We also discuss recent work which provides a rationale for specific amino acid-restricted diets and its beneficial effects on vascular tissues, including extending the life span and preventing the development of a variety of diseases.
Collapse
|
230
|
Biosynthetic energy cost for amino acids decreases in cancer evolution. Nat Commun 2018; 9:4124. [PMID: 30297703 PMCID: PMC6175916 DOI: 10.1038/s41467-018-06461-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Rapidly proliferating cancer cells have much higher demand for proteinogenic amino acids than normal cells. The use of amino acids in human proteomes is largely affected by their bioavailability, which is constrained by the biosynthetic energy cost in living organisms. Conceptually distinct from gene-based analyses, we introduce the energy cost per amino acid (ECPA) to quantitatively characterize the use of 20 amino acids during protein synthesis in human cells. By analyzing gene expression data from The Cancer Genome Atlas, we find that cancer cells evolve to utilize amino acids more economically by optimizing gene expression profile and ECPA shows robust prognostic power across many cancer types. We further validate this pattern in an experimental evolution of xenograft tumors. Our ECPA analysis reveals a common principle during cancer evolution. Proliferating cancer cells have a high demand for amino acids. Here, Zhang et al. show that cancer cells evolve towards gene expression profiles that use amino acids with lower biosynthetic energy costs, and demonstrate the potential prognostic utility of quantifying the extent of this adaptation.
Collapse
|
231
|
Feng L, Jin F. Screening of differentially methylated genes in breast cancer and risk model construction based on TCGA database. Oncol Lett 2018; 16:6407-6416. [PMID: 30405777 PMCID: PMC6202521 DOI: 10.3892/ol.2018.9457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Differentially methylated genes in breast cancer were screened out and a prognostic risk model of breast cancer was constructed. RNA-seq data and methylation data for breast cancer-related level 3 were downloaded from The Cancer Genome Atlas (TCGA), and MethylMix R package was used to screen out differentially methylated genes in cancer tissues and normal tissues. DAVID was used to analyze the GO enrichment of differentially methylated genes, ConsensusPathDB to analyze the PATHWAY pathways of differentially methylated genes, the single factor, multivariate Cox analysis and Akaike Information Criterion (AIC) to construct the prognostic risk model of breast cancer, and the ROC curve to judge the clinical application value of the risk model. Two hundred and fifty-seven differentially methylated genes were successfully screened out in cancer tissues and normal tissues; 39 related to GO enrichments and 19 related to PATHWAY pathways were found; the best prognostic risk model was obtained, risk score = QRFP (degree of methylation) × (−3.657) + S100A16 × (−3.378) + TDRD1 × (−4.001) + SMO × (3.548); it was determined from each sample that the median value of the risk score was 0.936; using it as the cut-off value, the five-year survival rate in high-risk group of patients was 72.4% (95% CI, 62.7–83.6%), and that in low-risk group of patients was 86.6% (95% CI, 78.6–95.3%). The difference in the survival rate between the high-risk and low-risk groups was significant (P<0.001). The AUC of ROC curve was 0.791, so the model had a good clinical application value. This study successfully found multiple breast cancer-related methylation genes, the relationship between them and the course and prognosis of breast cancer was analyzed. Moreover, a prognostic risk model was constructed, which facilitated the expansion of the current study on the role of methylation in the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Liang Feng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
232
|
Latorre-Muro P, Baeza J, Armstrong EA, Hurtado-Guerrero R, Corzana F, Wu LE, Sinclair DA, López-Buesa P, Carrodeguas JA, Denu JM. Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. Mol Cell 2018; 71:718-732.e9. [PMID: 30193097 PMCID: PMC6188669 DOI: 10.1016/j.molcel.2018.07.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts the enzyme between gluconeogenic and anaplerotic activities. Under high glucose, p300-dependent hyperacetylation of PCK1 did not lead to protein degradation but instead increased the ability of PCK1 to perform the anaplerotic reaction, converting phosphoenolpyruvate to oxaloacetate. Lys91 acetylation destabilizes the active site of PCK1 and favors the reverse reaction. At low energy input, we demonstrate that SIRT1 deacetylates PCK1 and fully restores the gluconeogenic ability of PCK1. Additionally, we found that GSK3β-mediated phosphorylation of PCK1 decreases acetylation and increases ubiquitination. Biochemical evidence suggests that serine phosphorylation adjacent to Lys91 stimulates SIRT1-dependent deacetylation of PCK1. This work reveals an unexpected capacity of hyperacetylated PCK1 to promote anaplerotic activity, and the intersection of post-translational control of PCK1 involving acetylation, phosphorylation, and ubiquitination.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Eric A Armstrong
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Fundación ARAID, Government of Aragón, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Lindsay E Wu
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Genetics, Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Pascual López-Buesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - José A Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFIIQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI 53715, USA; Morgridge Institute for Research, Madison, WI 53715, USA.
| |
Collapse
|
233
|
Theodorou K, Boon RA. Endothelial Cell Metabolism in Atherosclerosis. Front Cell Dev Biol 2018; 6:82. [PMID: 30131957 PMCID: PMC6090045 DOI: 10.3389/fcell.2018.00082] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis and its sequelae, such as myocardial infarction and stroke, are the leading cause of death worldwide. Vascular endothelial cells (EC) play a critical role in vascular homeostasis and disease. Atherosclerosis as well as its independent risk factors including diabetes, obesity, and aging, are hallmarked by endothelial activation and dysfunction. Metabolic pathways have emerged as key regulators of many EC functions, including angiogenesis, inflammation, and barrier function, processes which are deregulated during atherogenesis. In this review, we highlight the role of glucose, fatty acid, and amino acid metabolism in EC functions during physiological and pathological states, specifically atherosclerosis, diabetes, obesity and aging.
Collapse
Affiliation(s)
- Kosta Theodorou
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany
| | - Reinier A Boon
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Rhine-Main, Berlin, Germany.,Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
234
|
Sullivan LB, Luengo A, Danai LV, Bush LN, Diehl FF, Hosios AM, Lau AN, Elmiligy S, Malstrom S, Lewis CA, Vander Heiden MG. Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol 2018; 20:782-788. [PMID: 29941931 PMCID: PMC6051729 DOI: 10.1038/s41556-018-0125-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Defining the metabolic limitations of tumour growth will help to develop cancer therapies1. Cancer cells proliferate slower in tumours than in standard culture conditions, indicating that a metabolic limitation may restrict cell proliferation in vivo. Aspartate synthesis can limit cancer cell proliferation when respiration is impaired2-4; however, whether acquiring aspartate is endogenously limiting for tumour growth is unknown. We confirm that aspartate has poor cell permeability, which prevents environmental acquisition, whereas the related amino acid asparagine is available to cells in tumours, but cancer cells lack asparaginase activity to convert asparagine to aspartate. Heterologous expression of guinea pig asparaginase 1 (gpASNase1), an enzyme that produces aspartate from asparagine5, confers the ability to use asparagine to supply intracellular aspartate to cancer cells in vivo. Tumours expressing gpASNase1 grow at a faster rate, indicating that aspartate acquisition is an endogenous metabolic limitation for the growth of some tumours. Tumours expressing gpASNase1 are also refractory to the growth suppressive effects of metformin, suggesting that metformin inhibits tumour growth by depleting aspartate. These findings suggest that therapeutic aspartate suppression could be effective to treat cancer.
Collapse
Affiliation(s)
- Lucas B Sullivan
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Alba Luengo
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura V Danai
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren N Bush
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frances F Diehl
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron M Hosios
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison N Lau
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Elmiligy
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott Malstrom
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
235
|
Abstract
Cancer cells frequently hijack normal metabolic pathways to promote their growth and metastasis. Two recent papers by Knott et al. (2018) and Pavlova et al. (2018) demonstrate that asparagine and glutamine work in concert to drive tumor growth and metastasis through modulation of cell survival, growth, and EMT regulatory pathways.
Collapse
Affiliation(s)
- Ming Luo
- University of Michigan Comprehensive Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael Brooks
- University of Michigan Comprehensive Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
236
|
Reina-Campos M, Shelton PM, Diaz-Meco MT, Moscat J. Metabolic reprogramming of the tumor microenvironment by p62 and its partners. Biochim Biophys Acta Rev Cancer 2018; 1870:88-95. [PMID: 29702207 DOI: 10.1016/j.bbcan.2018.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/20/2018] [Indexed: 12/30/2022]
Abstract
The concerted metabolic reprogramming across cancer and normal cellular compartments of the tumor microenvironment can favor tumorigenesis by increasing the survival and proliferating capacities of transformed cells. p62 has emerged as a critical signaling adaptor, beyond its role in autophagy, by playing an intricate context-dependent role in metabolic reprogramming of the cell types of the tumor and stroma, which shapes the tumor microenvironment to control tumor progression. Focusing on metabolic adaptations, we review the cellular processes upstream and downstream of p62 that regulate how distinct cell types adapt to the challenging and evolving environmental conditions during tumor initiation and progression. In addition, we describe partners of p62 that, in a collaborative or independent manner, can also rewire cell metabolism. Finally, we discuss the potential therapeutic implications of targeting p62 in cancer, considering its multifaceted roles in diverse cell types of the tumor microenvironment.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phillip M Shelton
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
237
|
Jiang J, Pavlova NN, Zhang J. Asparagine, a critical limiting metabolite during glutamine starvation. Mol Cell Oncol 2018; 5:e1441633. [PMID: 30250896 PMCID: PMC6149945 DOI: 10.1080/23723556.2018.1441633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/05/2022]
Abstract
A challenge of targeting glutamine metabolism in cancer is that tumor cells develop various strategies to adapt to glutamine limitation. We found that asparagine plays a critical role in supporting protein synthesis during glutamine starvation, highlighting a possible approach to optimize the therapeutic efficacy of targeting glutamine metabolism in cancer.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Natalya N Pavlova
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
238
|
Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small Molecule Catalysts with Therapeutic Potential. Molecules 2018; 23:E765. [PMID: 29584669 PMCID: PMC6017662 DOI: 10.3390/molecules23040765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
Abstract
Catalysts are employed in many areas of research and development where they combine high efficiency with often astonishing selectivity for their respective substrates. In biology, biocatalysts are omnipresent. Enzymes facilitate highly controlled, sophisticated cellular processes, such as metabolic conversions, sensing and signalling, and are prominent targets in drug development. In contrast, the therapeutic use of catalysts per se is still rather limited. Recent research has shown that small molecule catalytic agents able to modulate the redox state of the target cell bear considerable promise, particularly in the context of inflammatory and infectious diseases, stroke, ageing and even cancer. Rather than being "active" on their own in a more traditional sense, such agents develop their activity by initiating, promoting, enhancing or redirecting reactions between biomolecules already present in the cell, and their activity therefore depends critically on the predisposition of the target cell itself. Redox catalysts, for instance, preferably target cells with a distinct sensitivity towards changes in an already disturbed redox balance and/or increased levels of reactive oxygen species. Indeed, certain transition metal, chalcogen and quinone agents may activate an antioxidant response in normal cells whilst at the same time triggering apoptosis in cancer cells with a different pre-existing "biochemical redox signature" and closer to the internal redox threshold. In pharmacy, catalysts therefore stand out as promising lead structures, as sensor/effector agents which are highly effective, fairly selective, active in catalytic, i.e., often nanomolar concentrations and also very flexible in their structural design.
Collapse
Affiliation(s)
- Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|