201
|
Stahlberg MA, Ramakrishnan C, Willig KI, Boyden ES, Deisseroth K, Dean C. Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics. NEUROPHOTONICS 2019; 6:015007. [PMID: 30854405 PMCID: PMC6393647 DOI: 10.1117/1.nph.6.1.015007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Optogenetics has revolutionized the study of circuit function in the brain, by allowing activation of specific ensembles of neurons by light. However, this technique has not yet been exploited extensively at the subcellular level. Here, we test the feasibility of a focal stimulation approach using stimulated emission depletion/reversible saturable optical fluorescence transitions-like illumination, whereby switchable light-gated channels are focally activated by a laser beam of one wavelength and deactivated by an overlapping donut-shaped beam of a different wavelength, confining activation to a center focal region. This method requires that activated channelrhodopsins are inactivated by overlapping illumination of a distinct wavelength and that photocurrents are large enough to be detected at the nanoscale. In tests of current optogenetic tools, we found that ChR2 C128A/H134R/T159C and CoChR C108S and C108S/D136A-activated with 405-nm light and inactivated by coillumination with 594-nm light-and C1V1 E122T/C167S-activated by 561-nm light and inactivated by 405-nm light-were most promising in terms of highest photocurrents and efficient inactivation with coillumination. Although further engineering of step-function channelrhodopsin variants with higher photoconductances will be required to employ this approach at the nanoscale, our findings provide a framework to guide future development of this technique.
Collapse
Affiliation(s)
- Markus A. Stahlberg
- European Neuroscience Institute, Trans-Synaptic Signaling Group, Goettingen, Germany
| | - Charu Ramakrishnan
- Stanford University, Howard Hughes Medical Institute, Department of Bioengineering, Department of Psychiatry, CNC Program, Stanford, California, United States
| | - Katrin I. Willig
- University Medical Center, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen, Germany
| | - Edward S. Boyden
- MIT Media Lab and McGovern Institute, Departments of Brain and Cognitive Science and Biological Engineering, Cambridge, Massachusetts, United States
| | - Karl Deisseroth
- Stanford University, Howard Hughes Medical Institute, Department of Bioengineering, Department of Psychiatry, CNC Program, Stanford, California, United States
| | - Camin Dean
- European Neuroscience Institute, Trans-Synaptic Signaling Group, Goettingen, Germany
| |
Collapse
|
202
|
Li G, Yang J, Wang Y, Wang W, Liu L. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities. NANOSCALE 2018; 10:21046-21051. [PMID: 30276394 DOI: 10.1039/c8nr05014g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optogenetic techniques have changed the landscape of neuroscience by offering high temporal and spatial mapping of the activities of genetically defined population of cells with optical controlling tools. The mapping of optogenetic activities demands optogenetic indicators whose optical properties change in response to cellular activities, but the existing optogenetic indicators only specifically characterize limited optogenetic activities. Here, we propose a novel optogenetic indicator based on cellular deformation to characterize the activities of optogenetically engineered cells. The cellular activities triggered by light stimulation lead to changes in the cell membrane structure and result in cellular deformation, which is measured by atomic force microscopy. The deformation recordings of the cells expressing channelrhodopsin-2 (ChR2) and the corresponding control experiments together confirm that the deformation is generated generally when the cells are exposed to light, which is also validated indirectly via the change in the Young's modulus of the cells before and after absorption of photons. The activities of cells expressing different subtypes of opsins were also recorded using the optogenetic indicator of cellular deformation. This study provides a novel and general optogenetic indicator based on cellular deformation for monitoring the activities of optogenetically engineered cells. Moreover, this new optogenetic indicator offers ever-better tools for the applications of optogenetic activity mapping and neural and brain imaging.
Collapse
Affiliation(s)
- Gongxin Li
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
203
|
Oranth A, Schultheis C, Tolstenkov O, Erbguth K, Nagpal J, Hain D, Brauner M, Wabnig S, Steuer Costa W, McWhirter RD, Zels S, Palumbos S, Miller III DM, Beets I, Gottschalk A. Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network. Neuron 2018; 100:1414-1428.e10. [DOI: 10.1016/j.neuron.2018.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 01/02/2023]
|
204
|
Yu AJ, McDiarmid TA, Ardiel EL, Rankin CH. High-Throughput Analysis of Behavior Under the Control of Optogenetics in Caenorhabditis elegans. ACTA ACUST UNITED AC 2018; 86:e57. [DOI: 10.1002/cpns.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alex J. Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia; Vancouver British Columbia Canada
| | - Troy A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia; Vancouver British Columbia Canada
| | - Evan L. Ardiel
- Department of Molecular Biology, Massachusetts General Hospital; Boston Massachusetts
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia; Vancouver British Columbia Canada
- Department of Psychology, University of British Columbia; Vancouver, British Columbia Canada
| |
Collapse
|
205
|
Kennedy T, Broadie K. Newly Identified Electrically Coupled Neurons Support Development of the Drosophila Giant Fiber Model Circuit. eNeuro 2018; 5:ENEURO.0346-18.2018. [PMID: 30627638 PMCID: PMC6325540 DOI: 10.1523/eneuro.0346-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
The Drosophila giant fiber (GF) escape circuit is an extensively studied model for neuron connectivity and function. Researchers have long taken advantage of the simple linear neuronal pathway, which begins at peripheral sensory modalities, travels through the central GF interneuron (GFI) to motor neurons, and terminates on wing/leg muscles. This circuit is more complex than it seems, however, as there exists a complex web of coupled neurons connected to the GFI that widely innervates the thoracic ganglion. Here, we define four new neuron clusters dye coupled to the central GFI, which we name GF coupled (GFC) 1-4. We identify new transgenic Gal4 drivers that express specifically in these neurons, and map both neuronal architecture and synaptic polarity. GFC1-4 share a central site of GFI connectivity, the inframedial bridge, where the neurons each form electrical synapses. Targeted apoptotic ablation of GFC1 reveals a key role for the proper development of the GF circuit, including the maintenance of GFI connectivity with upstream and downstream synaptic partners. GFC1 ablation frequently results in the loss of one GFI, which is always compensated for by contralateral innervation from a branch of the persisting GFI axon. Overall, this work reveals extensively coupled interconnectivity within the GF circuit, and the requirement of coupled neurons for circuit development. Identification of this large population of electrically coupled neurons in this classic model, and the ability to genetically manipulate these electrically synapsed neurons, expands the GF system capabilities for the nuanced, sophisticated circuit dissection necessary for deeper investigations into brain formation.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
206
|
Beck S, Yu-Strzelczyk J, Pauls D, Constantin OM, Gee CE, Ehmann N, Kittel RJ, Nagel G, Gao S. Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition. Front Neurosci 2018; 12:643. [PMID: 30333716 PMCID: PMC6176052 DOI: 10.3389/fnins.2018.00643] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 01/21/2023] Open
Abstract
Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.
Collapse
Affiliation(s)
- Sebastian Beck
- Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | | | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine E Gee
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Georg Nagel
- Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
207
|
Baker CK, Flannery JG. Innovative Optogenetic Strategies for Vision Restoration. Front Cell Neurosci 2018; 12:316. [PMID: 30297985 PMCID: PMC6160748 DOI: 10.3389/fncel.2018.00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
The advent of optogenetics has ushered in a new era in neuroscience where spatiotemporal control of neurons is possible through light application. These tools used to study neural circuits can also be used therapeutically to restore vision. In order to recapitulate the broad spectral and light sensitivities along with high temporal sensitivity found in human vision, researchers have identified and developed new optogenetic tools. There are two major kinds of optogenetic effectors employed in vision restoration: ion channels and G-protein coupled receptors (GPCRs). Ion channel based optogenetic therapies require high intensity light that can be unsafe at lower wavelengths, so work has been done to expand and red-shift the excitation spectra of these channels. Light activatable GPCRs are much more sensitive to light than their ion channel counterparts but are slower kinetically in terms of both activation and inactivation. This review article examines the latest optogenetic ion channel and GPCR candidates for vision restoration based on light and temporal sensitivity.
Collapse
Affiliation(s)
- Cameron K. Baker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John G. Flannery
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
208
|
Tolstenkov O, Van der Auwera P, Steuer Costa W, Bazhanova O, Gemeinhardt TM, Bergs AC, Gottschalk A. Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. eLife 2018; 7:34997. [PMID: 30204083 PMCID: PMC6173582 DOI: 10.7554/elife.34997] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
Collapse
Affiliation(s)
- Oleg Tolstenkov
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| | - Petrus Van der Auwera
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Department of Biology, Functional Genomics and Proteomics Unit, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Olga Bazhanova
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Tim M Gemeinhardt
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Amelie Cf Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany.,Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Frankfurt, Germany
| |
Collapse
|
209
|
Hoi H, Qi Z, Zhou H, Montemagno CD. Enhanced overexpression, purification of a channelrhodopsin and a fluorescent flux assay for its functional characterization. J Biotechnol 2018; 281:99-105. [PMID: 29981447 DOI: 10.1016/j.jbiotec.2018.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Channelrhodopsins (ChRs) are a group of membrane proteins that allow cation flux across the cellular membrane when stimulated by light. They have been emerged as important tools in optogenetics where light is used to trigger a change in the membrane potential of live cells which induces downstream physiological cascades. There is also increased interest in their applications for generating light-responsive biomaterials. Here we have used a two-step screening protocol to develop a Pichia pastoris strain that produces superior yields of an enhance variant of CaChR2 (from Chlamydomonas reinhardtii), called ChIEF. We have also studied the effect of the co-factor, namely all-trans retinal (ATR), on the recombinant overexpression, folding, and function of the protein. We found that both ChIEF-mCitrine and CaChR2 can be overexpressed and properly trafficked to the plasma membrane in yeast regardless of the presence of the ATR. The purified protein was reconstituted into large unilamellar lipid vesicle using the detergent-assisted method. Using 9-amino-6-chloro-2-methoxyacridine (ACMA) as the fluorescent proton indicator, we have developed a flux assay to verify the light-activated proton flux in the ChIEF-mCitrine vesicles. Hence such vesicles are effectively light-responsive nano-compartments. The results presented in this work lays foundations for creating bio-mimetic materials with a light-responsive function using channelrhodopsins.
Collapse
Affiliation(s)
- Hiofan Hoi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Ingenuity Lab., Edmonton, Alberta T6G 2M9, Canada.
| | - Zhigang Qi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Ingenuity Lab., Edmonton, Alberta T6G 2M9, Canada
| | - Hang Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Ingenuity Lab., Edmonton, Alberta T6G 2M9, Canada
| | - Carlo D Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; Ingenuity Lab., Edmonton, Alberta T6G 2M9, Canada; National Institute for Nanotechnology, Edmonton, Alberta T6G 2M9, Canada.
| |
Collapse
|
210
|
Protein structures guide the design of a much-needed tool for neuroscience. Nature 2018; 561:312-313. [DOI: 10.1038/d41586-018-06670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
211
|
Noel A, Makrakis D, Eckford AW. Distortion Distribution of Neural Spike Train Sequence Matching With Optogenetics. IEEE Trans Biomed Eng 2018; 65:2814-2826. [PMID: 29993402 DOI: 10.1109/tbme.2018.2819200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This paper uses a simple optogenetic model to compare the timing distortion between a randomly-generated target spike sequence and an externally-stimulated neuron spike sequence. Optogenetics is an emerging field of neuroscience where neurons are genetically modified to express light-sensitive receptors that enable external control when the neurons fire. METHODS Two different measures are studied to determine the timing distortion. The first measure is the delay in externally-stimulated spikes. The second measure is the root-mean-square-error between the filtered outputs of the target and stimulated spike sequences. RESULTS The mean and the distribution of the distortion are derived in closed form when the target sequence generation rate is sufficiently low. The derived results are verified with simulations. CONCLUSION The proposed model and distortion measures can be used to measure the deviation between neuron spike sequences that are prescribed and what can be achieved via external stimulation. SIGNIFICANCE Given the prominence of neuronal signaling within the brain and throughout the body, optogenetics has significant potential to improve the understanding of the nervous system and to develop treatments for neurological diseases. This work is a step towards an analytical model to predict whether different spike trains were observed from the same external stimulus, and the broader goal of understanding the quantity and reliability of information that can be carried by neurons.
Collapse
|
212
|
Tanaka S, Okusa MD. Optogenetics in Understanding Mechanisms of Acute Kidney Injury. Nephron Clin Pract 2018; 140:152-155. [PMID: 29990991 DOI: 10.1159/000491498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND No approved pharmacological agents are available for the treatment and prevention of acute kidney injury (AKI). The nervous system has been reported to play an important role, directly or indirectly via the immune system, in the pathophysiology of AKI. Neuromodulation, such as vagus nerve stimulation and pulsed ultrasound, is emerging as an innovative therapeutic treatment for various diseases including AKI. However, lack of effective methods to selectively stimulate or inhibit neurons has hampered the complete understanding of the roles of the nervous system in AKI because electrical stimulation is nonspecific for cell types. SUMMARY A novel technique called optogenetics optically controls cells in living tissues, typically neurons, which have been genetically modified to express light-sensitive opsins. For example, channelrhodopsin-2 (ChR2), an opsin, is a nonselective cation channel residing in a cell membrane, which rapidly opens its gate after exposing to monochromatic light in the "blue" wavelength. Unlike electrodes, blue light can selectively depolarize ChR2-expressing neurons, mainly via the Na+ entry, evoking an action potential. Optogenetics that use ChR2 and several variants to modulate kinetic properties and inhibitory opsins help in understanding the roles of the nervous system in AKI, thus leading to a clinical application of neuromodulation to AKI treatment.
Collapse
|
213
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
214
|
Spies J, Bringmann H. Automated detection and manipulation of sleep in C. elegans reveals depolarization of a sleep-active neuron during mechanical stimulation-induced sleep deprivation. Sci Rep 2018; 8:9732. [PMID: 29950594 PMCID: PMC6021397 DOI: 10.1038/s41598-018-28095-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022] Open
Abstract
Across species, sleep is characterized by a complex architecture. Sleep deprivation is a classic method to study the consequences of sleep loss, which include alterations in the activity of sleep circuits and detrimental consequences on well being. Automating the observation and manipulation of sleep is advantageous to study its regulation and functions. Caenorhabditis elegans shows sleep behavior similar to other animals that have a nervous system. However, a method for real-time automatic sleep detection that allows sleep-specific manipulations has not been established for this model animal. Also, our understanding of how sleep deprivation affects sleep neurons in this system is incomplete. Here we describe a system for real-time automatic sleep detection of C. elegans grown in microfluidic devices based on a frame-subtraction algorithm using a dynamic threshold. As proof of principle for this setup, we used automated mechanical stimulation to perturb sleep behavior and followed the activity of the sleep-active RIS neuron. We show that our system can automatically detect sleep bouts and deprive worms of sleep. We found that mechanical stimulation generally leads to the activation of the sleep-active RIS neuron, and this stimulation-induced RIS depolarization is most prominent during sleep deprivation.
Collapse
Affiliation(s)
- Jan Spies
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henrik Bringmann
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
215
|
Liu M, Sharma AK, Shaevitz JW, Leifer AM. Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation. eLife 2018; 7:e36419. [PMID: 29943731 PMCID: PMC6054533 DOI: 10.7554/elife.36419] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/10/2018] [Indexed: 11/13/2022] Open
Abstract
A quantitative understanding of how sensory signals are transformed into motor outputs places useful constraints on brain function and helps to reveal the brain's underlying computations. We investigate how the nematode Caenorhabditis elegans responds to time-varying mechanosensory signals using a high-throughput optogenetic assay and automated behavior quantification. We find that the behavioral response is tuned to temporal properties of mechanosensory signals, such as their integral and derivative, that extend over many seconds. Mechanosensory signals, even in the same neurons, can be tailored to elicit different behavioral responses. Moreover, we find that the animal's response also depends on its behavioral context. Most dramatically, the animal ignores all tested mechanosensory stimuli during turns. Finally, we present a linear-nonlinear model that predicts the animal's behavioral response to stimulus.
Collapse
Affiliation(s)
- Mochi Liu
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityNew JerseyUnited States
| | - Anuj K Sharma
- Department of PhysicsPrinceton UniversityNew JerseyUnited States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityNew JerseyUnited States
- Department of PhysicsPrinceton UniversityNew JerseyUnited States
| | - Andrew M Leifer
- Department of PhysicsPrinceton UniversityNew JerseyUnited States
- Princeton Neuroscience InstitutePrinceton UniversityNew JerseyUnited States
| |
Collapse
|
216
|
Christenson Wick Z, Krook-Magnuson E. Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Front Cell Neurosci 2018; 12:151. [PMID: 29962936 PMCID: PMC6010559 DOI: 10.3389/fncel.2018.00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is a powerful and rapidly expanding set of techniques that use genetically encoded light sensitive proteins such as opsins. Through the selective expression of these exogenous light-sensitive proteins, researchers gain the ability to modulate neuronal activity, intracellular signaling pathways, or gene expression with spatial, directional, temporal, and cell-type specificity. Optogenetics provides a versatile toolbox and has significantly advanced a variety of neuroscience fields. In this review, using recent epilepsy research as a focal point, we highlight how the specificity, versatility, and continual development of new optogenetic related tools advances our understanding of neuronal circuits and neurological disorders. We additionally provide a brief overview of some currently available optogenetic tools including for the selective expression of opsins.
Collapse
Affiliation(s)
- Zoé Christenson Wick
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
217
|
Engelhard C, Chizhov I, Siebert F, Engelhard M. Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chem Rev 2018; 118:10629-10645. [DOI: 10.1021/acs.chemrev.7b00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, OE8830 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 9, 79104 Freiburg, Germany
| | - Martin Engelhard
- Max Planck Institute for Molecular Physiology, Otto Hahn Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
218
|
Kampasi K, English DF, Seymour J, Stark E, McKenzie S, Vöröslakos M, Buzsáki G, Wise KD, Yoon E. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. MICROSYSTEMS & NANOENGINEERING 2018; 4:10. [PMID: 30766759 PMCID: PMC6220186 DOI: 10.1038/s41378-018-0009-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 05/08/2023]
Abstract
Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intra- and extra-cellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multi-site optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multi-site/multi-color optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.
Collapse
Affiliation(s)
- Komal Kampasi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Center for Micro and Nanotechnology, Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Daniel F. English
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - John Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - Eran Stark
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Sam McKenzie
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - Mihály Vöröslakos
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine, East River Science Park, Alexandria Center, 450 East 29th St, 9th Floor, New York, NY 10016 USA
| | - Kensall D. Wise
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| | - Euisik Yoon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105 USA
| |
Collapse
|
219
|
Vajanthri KY, Yadav P, Poddar S, Mahto SK. Development of optically sensitive liver cells. Tissue Cell 2018; 52:129-134. [DOI: 10.1016/j.tice.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
|
220
|
Rorsman NJG, Ta CM, Garnett H, Swietach P, Tammaro P. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2. Br J Pharmacol 2018; 175:2028-2045. [PMID: 29486056 PMCID: PMC5979753 DOI: 10.1111/bph.14183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/16/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Optogenetic control of electromechanical coupling in vascular smooth muscle cells (VSMCs) is emerging as a powerful research tool with potential applications in drug discovery and therapeutics. However, the precise ionic mechanisms involved in this control remain unclear. EXPERIMENTAL APPROACH Cell imaging, patch-clamp electrophysiology and muscle tension recordings were used to define these mechanisms over a wide range of light stimulations. KEY RESULTS Transgenic mice expressing a channelrhodopsin-2 variant [ChR2(H134R)] selectively in VSMCs were generated. Isolated VSMCs obtained from these mice demonstrated blue light-induced depolarizing whole-cell currents. Fine control of artery tone was attained by varying the intensity of the light stimulus. This arterial response was sufficient to overcome the endogenous, melanopsin-mediated, light-evoked, arterial relaxation observed in the presence of contractile agonists. Ca2+ entry through voltage-gated Ca2+ channels, and opening of plasmalemmal depolarizing channels (TMEM16A and TRPM) and intracellular IP3 receptors were involved in the ChR2(H134R)-dependent arterial response to blue light at intensities lower than ~0.1 mW·mm-2 . Light stimuli of greater intensity evoked a significant Ca2+ influx directly through ChR2(H134R) and produced marked intracellular alkalinization of VSMCs. CONCLUSIONS AND IMPLICATIONS We identified the range of light intensity allowing optical control of arterial tone, primarily by means of endogenous channels and without substantial alteration to intracellular pH. Within this range, mice expressing ChR2(H134R) in VSMCs are a powerful experimental model for achieving accurate and tuneable optical voltage-clamp of VSMCs and finely graded control of arterial tone, offering new approaches to the discovery of vasorelaxant drugs.
Collapse
Affiliation(s)
- Nils J G Rorsman
- Department of PharmacologyUniversity of OxfordOxfordUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordUK
| | - Chau M Ta
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - Pawel Swietach
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Paolo Tammaro
- Department of PharmacologyUniversity of OxfordOxfordUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordUK
| |
Collapse
|
221
|
Kopke DL, Broadie K. FM Dye Cycling at the Synapse: Comparing High Potassium Depolarization, Electrical and Channelrhodopsin Stimulation. J Vis Exp 2018:57765. [PMID: 29889207 PMCID: PMC6101380 DOI: 10.3791/57765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
FM dyes are used to study the synaptic vesicle (SV) cycle. These amphipathic probes have a hydrophilic head and hydrophobic tail, making them water-soluble with the ability to reversibly enter and exit membrane lipid bilayers. These styryl dyes are relatively non-fluorescent in aqueous medium, but insertion into the outer leaflet of the plasma membrane causes a >40X increase in fluorescence. In neuronal synapses, FM dyes are internalized during SV endocytosis, trafficked both within and between SV pools, and released with SV exocytosis, providing a powerful tool to visualize presynaptic stages of neurotransmission. A primary genetic model of glutamatergic synapse development and function is the Drosophila neuromuscular junction (NMJ), where FM dye imaging has been used extensively to quantify SV dynamics in a wide range of mutant conditions. The NMJ synaptic terminal is easily accessible, with a beautiful array of large synaptic boutons ideal for imaging applications. Here, we compare and contrast the three ways to stimulate the Drosophila NMJ to drive activity-dependent FM1-43 dye uptake/release: 1) bath application of high [K+] to depolarize neuromuscular tissues, 2) suction electrode motor nerve stimulation to depolarize the presynaptic nerve terminal, and 3) targeted transgenic expression of channelrhodopsin variants for light-stimulated, spatial control of depolarization. Each of these methods has benefits and disadvantages for the study of genetic mutation effects on the SV cycle at the Drosophila NMJ. We will discuss these advantages and disadvantages to assist the selection of the stimulation approach, together with the methodologies specific to each strategy. In addition to fluorescent imaging, FM dyes can be photoconverted to electron-dense signals visualized using transmission electron microscopy (TEM) to study SV cycle mechanisms at an ultrastructural level. We provide the comparisons of confocal and electron microscopy imaging from the different methods of Drosophila NMJ stimulation, to help guide the selection of future experimental paradigms.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Departments of Biological Sciences, Pharmacology, Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center;
| |
Collapse
|
222
|
Li X, Yamawaki N, Barrett JM, Körding KP, Shepherd GMG. Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse. Front Syst Neurosci 2018; 12:16. [PMID: 29867381 PMCID: PMC5962832 DOI: 10.3389/fnsys.2018.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo. Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5-10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
Collapse
Affiliation(s)
- Xiaojian Li
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - John M. Barrett
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Konrad P. Körding
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
223
|
Keplinger S, Beiderbeck B, Michalakis S, Biel M, Grothe B, Kunz L. Optogenetic Control of Neural Circuits in the Mongolian Gerbil. Front Cell Neurosci 2018; 12:111. [PMID: 29740286 PMCID: PMC5928259 DOI: 10.3389/fncel.2018.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
The Mongolian gerbil (Meriones unguiculatus) is widely used as a model organism for the human auditory system. Its hearing range is very similar to ours and it uses the same mechanisms for sound localization. The auditory circuits underlying these functions have been characterized. However, important mechanistic details are still under debate. To elucidate these issues, precise and reversible optogenetic manipulation of neuronal activity in this complex circuitry is required. However, genetic and genomic resources for the Mongolian gerbil are poorly developed. Here, we demonstrate a reliable gene delivery system using an AAV8(Y337F)-pseudotyped recombinant adeno-associated virus (AAV) 2-based vector in which the pan-neural human synapsin (hSyn) promoter drives neuron-specific expression of CatCH (Ca2+-permeable channelrhodopsin) or NpHR3.0 (Natronomonas pharaonis halorhodopsin). After stereotactic injection into the gerbil’s auditory brainstem (medial nucleus of the trapezoid body, dorsal nucleus of the lateral lemniscus) and midbrain [inferior colliculus (IC)], we characterized CatCH- and/or NpHR3.0-transduced neurons in acute brain slices by means of whole-cell patch-clamp recordings. As the response properties of optogenetic tools strongly depend on neuronal biophysics, this parameterization is crucial for their in vivo application. In a proof-of-principle experiment in anesthetized gerbils, we observed strong suppression of sound-evoked neural responses in the dorsal nucleus of the lateral lemniscus (DNLL) and IC upon light activation of NpHR3.0. The successful validation of gene delivery and optogenetic tools in the Mongolian gerbil paves the way for future studies of the auditory circuits in this model system.
Collapse
Affiliation(s)
- Stefan Keplinger
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Barbara Beiderbeck
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, GSN-LMU, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy, Center for Drug Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CiPSM), Department of Pharmacy, Center for Drug Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lars Kunz
- Division of Neurobiology, Department Biology II, Biocenter, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
224
|
High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat Commun 2018; 9:1750. [PMID: 29717130 PMCID: PMC5931537 DOI: 10.1038/s41467-018-04146-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 04/06/2018] [Indexed: 11/29/2022] Open
Abstract
Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum. We focus our functional analysis on the fast-switching, red light-activated Chrimson variants, because red light has lower light scattering and marginal phototoxicity in tissues. We show paradigmatically for neurons of the cerebral cortex and the auditory nerve that the fast Chrimson mutants enable neural stimulation with firing frequencies of several hundred Hz. They drive spiking at high rates and temporal fidelity with low thresholds for stimulus intensity and duration. Optical cochlear implants restore auditory nerve activity in deaf mice. This demonstrates that the mutants facilitate neuroscience research and future medical applications such as hearing restoration. Optogenetic applications would benefit from channelrhodopsins (ChRs) with faster photostimulation, increased tissue transparency and lower phototoxicity. Here, the authors develop fast red-shifted ChR variants and show the abilities for temporal precise spiking of cerebral interneurons and restoring auditory activity in deaf mice.
Collapse
|
225
|
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V. Structural insights into ion conduction by channelrhodopsin 2. Science 2018; 358:358/6366/eaan8862. [PMID: 29170206 DOI: 10.1126/science.aan8862] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/30/2017] [Indexed: 11/02/2022]
Abstract
The light-gated ion channel channelrhodopsin 2 (ChR2) from Chlamydomonas reinhardtii is a major optogenetic tool. Photon absorption starts a well-characterized photocycle, but the structural basis for the regulation of channel opening remains unclear. We present high-resolution structures of ChR2 and the C128T mutant, which has a markedly increased open-state lifetime. The structure reveals two cavities on the intracellular side and two cavities on the extracellular side. They are connected by extended hydrogen-bonding networks involving water molecules and side-chain residues. Central is the retinal Schiff base that controls and synchronizes three gates that separate the cavities. Separate from this network is the DC gate that comprises a water-mediated bond between C128 and D156 and interacts directly with the retinal Schiff base. Comparison with the C128T structure reveals a direct connection of the DC gate to the central gate and suggests how the gating mechanism is affected by subtle tuning of the Schiff base's interactions.
Collapse
Affiliation(s)
- Oleksandr Volkov
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Kirill Kovalev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen, Aachen, Germany
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | | | | | - Roman Astashkin
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Georg Büldt
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany. .,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
226
|
Agladze NN, Halaidych OV, Tsvelaya VA, Bruegmann T, Kilgus C, Sasse P, Agladze KI. Synchronization of excitable cardiac cultures of different origin. Biomater Sci 2018. [PMID: 28643840 DOI: 10.1039/c7bm00171a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, we investigated the synchronization of electrical activity in cultured cardiac cells of different origin put in direct contact. In the first set of experiments synchronization was studied in the primary culture cells of neonatal rats taken at different developmental ages, and in the second - in the neonatal rat cardiomyocytes and HL-1 cells. The electrical excitation of cells was recorded using the calcium transient marker Fluor-4. In the confluent cell layers created with the aid of a specially devised mask, the excitation waves and their propagation between areas occupied by cells of different origin were observed. On the level of individual cells, their contact and synchronization was monitored with the aid of scanning fluorescence microscopy. It was found that populations of cultured cells of different origin are able to synchronize, suggesting the formation of electrical coupling between them. The results obtained may be considered as a proof of concept that implanted alien grafted cells are able to create electrical coupling with the host cardiac tissue.
Collapse
Affiliation(s)
- N N Agladze
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | | | | | | | | | | | | |
Collapse
|
227
|
Abstract
Channelrhodopsin-2 (ChR2) is a light-sensitive ion channel widely used in optogenetics. Photoactivation triggers a trans-to-cis isomerization of a covalently bound retinal. Ensuing conformational changes open a cation-selective channel. We explore the structural dynamics in the early photocycle leading to channel opening by classical (MM) and quantum mechanical (QM) molecular simulations. With QM/MM simulations, we generated a protein-adapted force field for the retinal chromophore, which we validated against absorption spectra. In a 4-µs MM simulation of a dark-adapted ChR2 dimer, water entered the vestibules of the closed channel. Retinal all-trans to 13-cis isomerization, simulated with metadynamics, triggered a major restructuring of the charge cluster forming the channel gate. On a microsecond time scale, water penetrated the gate to form a membrane-spanning preopen pore between helices H1, H2, H3, and H7. This influx of water into an ion-impermeable preopen pore is consistent with time-resolved infrared spectroscopy and electrophysiology experiments. In the retinal 13-cis state, D253 emerged as the proton acceptor of the Schiff base. Upon proton transfer from the Schiff base to D253, modeled by QM/MM simulations, we obtained an early-M/P2390-like intermediate. Rapid rotation of the unprotonated Schiff base toward the cytosolic side effectively prevents its reprotonation from the extracellular side. From MM and QM simulations, we gained detailed insight into the mechanism of ChR2 photoactivation and early events in pore formation. By rearranging the network of charges and hydrogen bonds forming the gate, water emerges as a key player in light-driven ChR2 channel opening.
Collapse
Affiliation(s)
- Albert Ardevol
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
228
|
Bruegmann T, Beiert T, Vogt CC, Schrickel JW, Sasse P. Optogenetic termination of atrial fibrillation in mice. Cardiovasc Res 2018; 114:713-723. [PMID: 29293898 DOI: 10.1093/cvr/cvx250] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/21/2017] [Indexed: 11/12/2022] Open
Abstract
Aims The primary goal in the treatment of symptomatic atrial fibrillation/flutter (AF) is to restore sinus rhythm by cardioversion. Electrical shocks are highly effective, but have to be applied under analgo-sedation and can further harm the heart. In order to develop a novel pain-free and less harmful approach, we explored herein the optogenetic cardioversion by light-induced depolarization. Methods and results Hearts from mice expressing Channelrhodopsin-2 (ChR2) and the AF-promoting loss-of-function Connexin 40 Ala96Ser mutation were explanted and perfused with low K+ Tyrode's solution and an atrial KATP-channel activator. This new protocol shortened atrial refractoriness as well as slowed atrial conduction and thereby enabled the induction of sustained AF. AF episodes could be terminated by epicardial illumination of the atria with focussed blue light (470 nm, 0.4 mW/mm2) with an efficacy of ∼97% (n = 17 hearts). In > 80% of cases, light directly terminated the AF episode with onset of illumination. Because similar illumination intensity was able to locally inhibit atrial activity, we propose that a light-induced block of electrical activity is responsible for reliable AF termination. The success rate was strongly depending on the illuminated area, applied light intensity and duration of illumination. Importantly, we were also able to demonstrate optogenetic termination of AF in vivo, using epicardial illumination through the open chest (n = 3 hearts). To point towards a translational potential, we systemically injected an adeno-associated virus to express ChR2 in wild type hearts. After 6-8 months, we found robust ChR2 expression in the atria, enabling light-mediated AF termination in six of seven mice tested. Conclusion We provide the first evidence for optogenetic termination of atrial tachyarrhythmia in intact hearts from transgenic as well as wild type mice ex and in vivo. Thus, this report could lay the foundation for the development of implantable devices for pain-free termination of AF.
Collapse
Affiliation(s)
- Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Thomas Beiert
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph C Vogt
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Jan W Schrickel
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| |
Collapse
|
229
|
Forli A, Vecchia D, Binini N, Succol F, Bovetti S, Moretti C, Nespoli F, Mahn M, Baker CA, Bolton MM, Yizhar O, Fellin T. Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo. Cell Rep 2018; 22:3087-3098. [PMID: 29539433 PMCID: PMC5863087 DOI: 10.1016/j.celrep.2018.02.063] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Accepted: 02/14/2018] [Indexed: 12/01/2022] Open
Abstract
Sensory information is encoded within the brain in distributed spatiotemporal patterns of neuronal activity. Understanding how these patterns influence behavior requires a method to measure and to bidirectionally perturb with high spatial resolution the activity of the multiple neuronal cell types engaged in sensory processing. Here, we combined two-photon holography to stimulate neurons expressing blue light-sensitive opsins (ChR2 and GtACR2) with two-photon imaging of the red-shifted indicator jRCaMP1a in the mouse neocortex in vivo. We demonstrate efficient control of neural excitability across cell types and layers with holographic stimulation and improved spatial resolution by opsin somatic targeting. Moreover, we performed simultaneous two-photon imaging of jRCaMP1a and bidirectional two-photon manipulation of cellular activity with negligible effect of the imaging beam on opsin excitation. This all-optical approach represents a powerful tool to causally dissect how activity patterns in specified ensembles of neurons determine brain function and animal behavior.
Collapse
Affiliation(s)
- Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Noemi Binini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Francesco Nespoli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Mathias Mahn
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter 33458, FL, USA
| | - McLean M Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter 33458, FL, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova 16163, Italy.
| |
Collapse
|
230
|
Dai G, Geng X, Chaoluomeng, Tamogami J, Kikukawa T, Demura M, Kamo N, Iwasa T. Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species. Photochem Photobiol 2018. [PMID: 29512821 DOI: 10.1111/php.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspartic acid 103 (D103) of sensory rhodopsin II from Halobacterium salinarum (HsSRII, or also called phoborhodopsin) corresponds to D115 of bacteriorhodopsin (BR). This amino acid residue is functionally important in BR. This work reveals that a substitution of D103 with asparagine (D103N) or glutamic acid (D103E) can cause large changes in HsSRII photocycle. These changes include (1) shortened lifetime of the M intermediate in the following order: the wild-type > D103N > D103E; (2) altered decay pathway of a 13-cis O-like species. The 13-cis O-like species, tentatively named Px, was detected in HsSRII photocycle. Px appeared to undergo branched reactions at 0°C, leading to a recovery of the unphotolyzed state and formation of a metastable intermediate, named P370, that slowly decayed to the unphotolyzed state at room temperature. In wild-type HsSRII at 0°C, Px mainly decayed to the unphotolyzed state, and the decay reaction toward P370 was negligible. In mutant D103E at 0°C, Px decayed to P370, while the recovery of the unphotolyzed state became unobservable. In mutant D103N, the two reactions proceeded at comparable rates. Thus, D103 of HsSRII may play an important role in regulation of the photocycle of HsSRII.
Collapse
Affiliation(s)
- Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010018, China
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Chaoluomeng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Jun Tamogami
- College of Pharmaceutical Science, Matsuyama University, Matsuyama, 790-8578, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| |
Collapse
|
231
|
Deisseroth K, Hegemann P. The form and function of channelrhodopsin. Science 2018; 357:357/6356/eaan5544. [PMID: 28912215 PMCID: PMC5723383 DOI: 10.1126/science.aan5544] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Channelrhodopsins are light-gated ion channels that, via regulation of flagellar function, enable single-celled motile algae to seek ambient light conditions suitable for photosynthesis and survival. These plant behavioral responses were initially investigated more than 150 years ago. Recently, major principles of function for light-gated ion channels have been elucidated by creating channelrhodopsins with kinetics that are accelerated or slowed over orders of magnitude, by discovering and designing channelrhodopsins with altered spectral properties, by solving the high-resolution channelrhodopsin crystal structure, and by structural model-guided redesign of channelrhodopsins for altered ion selectivity. Each of these discoveries not only revealed basic principles governing the operation of light-gated ion channels, but also enabled the creation of new proteins for illuminating, via optogenetics, the fundamentals of brain function.
Collapse
Affiliation(s)
- Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Peter Hegemann
- Institute for Biology, Humboldt Universität zu Berlin, D-10115 Berlin, Germany. .,Experimental Biophysics, Humboldt Universität zu Berlin, D-10115 Berlin, Germany
| |
Collapse
|
232
|
Wolff SB, Ölveczky BP. The promise and perils of causal circuit manipulations. Curr Opin Neurobiol 2018; 49:84-94. [PMID: 29414070 DOI: 10.1016/j.conb.2018.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
The development of increasingly sophisticated methods for recording and manipulating neural activity is revolutionizing neuroscience. By probing how activity patterns in different types of neurons and circuits contribute to behavior, these tools can help inform mechanistic models of brain function and explain the roles of distinct circuit elements. However, in systems where functions are distributed over large networks, interpreting causality experiments can be challenging. Here we review common assumptions underlying circuit manipulations in behaving animals and discuss the strengths and limitations of different approaches.
Collapse
Affiliation(s)
- Steffen Be Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
233
|
Cardiac Optogenetics: 2018. JACC Clin Electrophysiol 2018; 4:155-167. [PMID: 29749932 DOI: 10.1016/j.jacep.2017.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Cardiac optogenetics is an emergent research area involving the delivery of light-sensitive proteins (opsins) to excitable heart tissue to enable optical modulation of cardiac electrical function. Optogenetic stimulation has many noteworthy advantages over conventional electrical methods, including selective electrophysiological modulation in specifically targeted cell subpopulations, high-resolution spatiotemporal control via patterned illumination, and use of different opsins to elicit inward or outward transmembrane current. This review summarizes developments achieved since the inception of cardiac optogenetics research, which has spanned nearly a decade. The authors first provide an overview of recent methodological advances in opsin engineering, light sensitization of cardiac tissue, strategies for illuminating the heart, and frameworks for simulating optogenetics in realistic computational models of patient hearts. They then review recent cardiac optogenetics applications, including: 1) all-optical, high-throughput, contactless assays for quantification of electrophysiological properties; 2) optogenetic perturbation of cardiac tissue to unveil mechanistic insights on the initiation, perpetuation, and termination of arrhythmia; and 3) disruptive translational innovations such as light-based pacemaking and defibrillation.
Collapse
|
234
|
Li G, Yang J, Yang W, Wang F, Wang Y, Wang W, Liu L. Label-free multidimensional information acquisition from optogenetically engineered cells using a graphene transistor. NANOSCALE 2018; 10:2285-2290. [PMID: 29334115 DOI: 10.1039/c7nr07264c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The optogenetic technique, which allows the manipulation of cellular activity patterns in space and time by light, has transformed the field of neuroscience. However, acquiring multidimensional optogenetic information remains challenging despite the fact that several cellular information detection methods have been proposed. Herein, we present a new method to acquire label-free multidimensional information from optogenetically engineered cells using a graphene transistor. Using a graphene film to form a strong densely packed layer with cells, the cellular action potentials were characterized as light-activated transistor conductance signals, which quantified the multidimensional optogenetic information. Based on this approach, some important cellular optogenetic information, including electrophysiological state, cell concentration, expression levels of opsin and response to variable light intensity, were also precisely detected. Furthermore, the graphene transistor was also used to distinguish cells expressing different channelrhodopsin-2 variants. Our study offers a general detection method of multidimensional optogenetic information for extending the applications of the optogenetic technique and provides a novel sensor for the development of future biological prosthetic devices.
Collapse
Affiliation(s)
- Gongxin Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, 110016, China.
| | | | | | | | | | | | | |
Collapse
|
235
|
Bergs A, Schultheis C, Fischer E, Tsunoda SP, Erbguth K, Husson SJ, Govorunova E, Spudich JL, Nagel G, Gottschalk A, Liewald JF. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS One 2018; 13:e0191802. [PMID: 29389997 PMCID: PMC5794093 DOI: 10.1371/journal.pone.0191802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
In optogenetics, rhodopsins were established as light-driven tools to manipulate neuronal activity. However, during long-term photostimulation using channelrhodopsin (ChR), desensitization can reduce effects. Furthermore, requirement for continuous presence of the chromophore all-trans retinal (ATR) in model systems lacking sufficient endogenous concentrations limits its applicability. We tested known, and engineered and characterized new variants of de- and hyperpolarizing rhodopsins in Caenorhabditis elegans. ChR2 variants combined previously described point mutations that may synergize to enable prolonged stimulation. Following brief light pulses ChR2(C128S;H134R) induced muscle activation for minutes or even for hours (‘Quint’: ChR2(C128S;L132C;H134R;D156A;T159C)), thus featuring longer open state lifetime than previously described variants. Furthermore, stability after ATR removal was increased compared to the step-function opsin ChR2(C128S). The double mutants C128S;H134R and H134R;D156C enabled increased effects during repetitive stimulation. We also tested new hyperpolarizers (ACR1, ACR2, ACR1(C102A), ZipACR). Particularly ACR1 and ACR2 showed strong effects in behavioral assays and very large currents with fast kinetics. In sum, we introduce highly light-sensitive optogenetic tools, bypassing previous shortcomings, and thus constituting new tools that feature high effectiveness and fast kinetics, allowing better repetitive stimulation or investigating prolonged neuronal activity states in C. elegans and, possibly, other systems.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- International Max Planck Research School in Structure and Function of Biological Membranes, Frankfurt, Germany
| | - Christian Schultheis
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Elisabeth Fischer
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Satoshi P. Tsunoda
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Karen Erbguth
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
| | - Steven J. Husson
- Systemic Physiological & Ecotoxicological Research (SPHERE), University of Antwerp, Antwerp, Belgium
| | - Elena Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, United States of America
| | - Georg Nagel
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| | - Jana F. Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany
- * E-mail: (AG); (JFL)
| |
Collapse
|
236
|
Gao S, Guan SA, Fouad AD, Meng J, Kawano T, Huang YC, Li Y, Alcaire S, Hung W, Lu Y, Qi YB, Jin Y, Alkema M, Fang-Yen C, Zhen M. Excitatory motor neurons are local oscillators for backward locomotion. eLife 2018; 7:e29915. [PMID: 29360035 PMCID: PMC5780044 DOI: 10.7554/elife.29915] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network.
Collapse
Affiliation(s)
- Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Sihui Asuka Guan
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Anthony D Fouad
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaUnited States
| | - Jun Meng
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Yung-Chi Huang
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Yi Li
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and Technology, Huazhong University of Science and TechnologyWuhanChina
| | - Salvador Alcaire
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| | - Yingchuan Billy Qi
- Neurobiology Section, Division of Biological SciencesUniversity of CaliforniaSan DiegoUnited States
| | - Yishi Jin
- Neurobiology Section, Division of Biological SciencesUniversity of CaliforniaSan DiegoUnited States
| | - Mark Alkema
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Christopher Fang-Yen
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaUnited States
- Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Department of PhysiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
237
|
Fouad AD, Teng S, Mark JR, Liu A, Alvarez-Illera P, Ji H, Du A, Bhirgoo PD, Cornblath E, Guan SA, Fang-Yen C. Distributed rhythm generators underlie Caenorhabditis elegans forward locomotion. eLife 2018; 7:e29913. [PMID: 29360037 PMCID: PMC5780042 DOI: 10.7554/elife.29913] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
Coordinated rhythmic movements are ubiquitous in animal behavior. In many organisms, chains of neural oscillators underlie the generation of these rhythms. In C. elegans, locomotor wave generation has been poorly understood; in particular, it is unclear where in the circuit rhythms are generated, and whether there exists more than one such generator. We used optogenetic and ablation experiments to probe the nature of rhythm generation in the locomotor circuit. We found that multiple sections of forward locomotor circuitry are capable of independently generating rhythms. By perturbing different components of the motor circuit, we localize the source of secondary rhythms to cholinergic motor neurons in the midbody. Using rhythmic optogenetic perturbation, we demonstrate bidirectional entrainment of oscillations between different body regions. These results show that, as in many other vertebrates and invertebrates, the C. elegans motor circuit contains multiple oscillators that coordinate activity to generate behavior.
Collapse
Affiliation(s)
- Anthony D Fouad
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Shelly Teng
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Julian R Mark
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Alice Liu
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Pilar Alvarez-Illera
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Hongfei Ji
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Angelica Du
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Priya D Bhirgoo
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Eli Cornblath
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
| | - Sihui Asuka Guan
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
238
|
Streit J, Kleinlogel S. Dynamic all-optical drug screening on cardiac voltage-gated ion channels. Sci Rep 2018; 8:1153. [PMID: 29348631 PMCID: PMC5773578 DOI: 10.1038/s41598-018-19412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated ion channels (VGCs) are prime targets for the pharmaceutical industry, but drug profiling on VGCs is challenging, since drug interactions are confined to specific conformational channel states mediated by changes in transmembrane potential. Here we combined various optogenetic tools to develop dynamic, high-throughput drug profiling assays with defined light-step protocols to interrogate VGC states on a millisecond timescale. We show that such light-induced electrophysiology (LiEp) yields high-quality pharmacological data with exceptional screening windows for drugs acting on the major cardiac VGCs, including hNav1.5, hKv1.5 and hERG. LiEp-based screening remained robust when using a variety of optogenetic actuators (ChR2, ChR2(H134R), CatCh, ChR2-EYFP-βArchT) and different types of organic (RH421, Di-4-ANBDQPQ, BeRST1) or genetic voltage sensors (QuasAr1). The tractability of LiEp allows a versatile and precise alternative to state-of-the-art VGC drug screening platforms such as automated electrophysiology or FLIPR readers.
Collapse
Affiliation(s)
- Jonas Streit
- Institute of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.
| |
Collapse
|
239
|
McDiarmid TA, Yu AJ, Rankin CH. Beyond the response-High throughput behavioral analyses to link genome to phenome in Caenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2018; 17:e12437. [DOI: 10.1111/gbb.12437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- T. A. McDiarmid
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - A. J. Yu
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - C. H. Rankin
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
240
|
Hansen MG, Ledri LN, Kirik D, Kokaia M, Ledri M. Preserved Function of Afferent Parvalbumin-Positive Perisomatic Inhibitory Synapses of Dentate Granule Cells in Rapidly Kindled Mice. Front Cell Neurosci 2018; 11:433. [PMID: 29375319 PMCID: PMC5767181 DOI: 10.3389/fncel.2017.00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin- (PV-) containing basket cells constitute perisomatic GABAergic inhibitory interneurons innervating principal cells at perisomatic area, a strategic location that allows them to efficiently control the output and synchronize oscillatory activity at gamma frequency (30–90 Hz) oscillations. This oscillatory activity can convert into higher frequency epileptiform activity, and therefore could play an important role in the generation of seizures. However, the role of endogenous modulators of seizure activity, such as Neuropeptide Y (NPY), has not been fully explored in at PV input and output synapses. Here, using selective optogenetic activation of PV cells in the hippocampus, we show that seizures, induced by rapid kindling (RK) stimulations, enhance gamma-aminobutyric acid (GABA) release from PV cells onto dentate gyrus (DG) granule cells (GC). However, PV-GC synapses did not differ between controls and kindled animals in terms of GABA release probability, short-term plasticity and sensitivity to NPY. Kinetics of gamma-aminobutyric acid A (GABA-A) mediated currents in postsynaptic GC were also unaffected. When challenged by repetitive high-frequency optogenetic stimulations, PV synapses in kindled animals responded with enhanced GABA release onto GC. These results unveil a mechanism that might possibly contribute to the generation of abnormal synchrony and maintenance of epileptic seizures.
Collapse
Affiliation(s)
- Marita G Hansen
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Litsa N Ledri
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
241
|
Wu Q, Han Y, Tong Q. Current Genetic Techniques in Neural Circuit Control of Feeding and Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1090:211-233. [PMID: 30390293 DOI: 10.1007/978-981-13-1286-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The current epidemic of obesity and its associated metabolic syndromes imposes unprecedented challenges to our society. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. The obesity development is due to a disturbed homeostatic control of feeding and energy expenditure, both of which are controlled by an intricate neural network in the brain. Given the inherent complexity of brain networks in controlling feeding and energy expenditure, the understanding of brain-based pathophysiology for obesity development is limited. One key limiting factor in dissecting neural pathways for feeding and energy expenditure is unavailability of techniques that can be used to effectively reduce the complexity of the brain network to a tractable paradigm, based on which a strong hypothesis can be tested. Excitingly, emerging techniques have been involved to be able to link specific groups of neurons and neural pathways to behaviors (i.e., feeding and energy expenditure). In this chapter, novel techniques especially those based on animal models and viral vector approaches will be discussed. We hope that this chapter will provide readers with a basis that can help to understand the literatures using these techniques and with a guide to apply these exciting techniques to investigate brain mechanisms underlying feeding and energy expenditure.
Collapse
Affiliation(s)
- Qi Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,Children's Nutrition Research Center, Research Service of Department of Agriculture of USA, Houston, TX, USA.
| | - Yong Han
- Department of Pediatrics, Baylor College of Medicine, USDA-ARS, Houston, TX, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
242
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
243
|
Eickelbeck D, Karapinar R, Herlitze S, Spoida K. Optogenetic Approaches for Controlling Neuronal Activity and Plasticity. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
244
|
Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7751-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
245
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
246
|
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.
Collapse
Affiliation(s)
- Zhijie Chen
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
| | - Tan M. Truong
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
247
|
Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2017; 192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Optogenetics has emerged as an important tool in neuroscience, especially in central nervous system research. It allows for the study of the brain's highly complex network with high temporal and spatial resolution. The enteric nervous system (ENS), the brain in the gut, plays critical roles for life. Although advanced progress has been made, the neural circuits of the ENS remain only partly understood because the appropriate research tools are lacking. In this review, I highlight the potential application of optogenetics in ENS research. Firstly, I describe the development of optogenetics with focusing on its three main components. I discuss the applications in vitro and in vivo, and summarize current findings in the ENS research field obtained by optogenetics. Finally, the challenges for the application of optogenetics to the ENS research will be discussed.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
248
|
Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017; 96:572-603. [PMID: 29096074 DOI: 10.1016/j.neuron.2017.09.047] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Collapse
|
249
|
Mohamed GA, Cheng RK, Ho J, Krishnan S, Mohammad F, Claridge-Chang A, Jesuthasan S. Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins. BMC Biol 2017; 15:103. [PMID: 29100505 PMCID: PMC5670698 DOI: 10.1186/s12915-017-0430-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay. Results When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm2 of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light-induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of intracellular calcium increased following light offset. Conclusions These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property can provide insight into the effects of transiently stimulating a circuit. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0430-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gadisti Aisha Mohamed
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joses Ho
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
250
|
On-demand optogenetic activation of human stem-cell-derived neurons. Sci Rep 2017; 7:14450. [PMID: 29089561 PMCID: PMC5663899 DOI: 10.1038/s41598-017-14827-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
The widespread application of human stem-cell-derived neurons for functional studies is impeded by complicated differentiation protocols, immaturity, and deficient optogene expression as stem cells frequently lose transgene expression over time. Here we report a simple but precise Cre-loxP-based strategy for generating conditional, and thereby stable, optogenetic human stem-cell lines. These cells can be easily and efficiently differentiated into functional neurons, and optogene expression can be triggered by administering Cre protein to the cultures. This conditional expression system may be applied to stem-cell-derived neurons whenever timed transgene expression could help to overcome silencing at the stem-cell level.
Collapse
|