201
|
Boerjan B, Verleyen P, Huybrechts J, Schoofs L, De Loof A. In search for a common denominator for the diverse functions of arthropod corazonin: a role in the physiology of stress? Gen Comp Endocrinol 2010; 166:222-33. [PMID: 19748506 DOI: 10.1016/j.ygcen.2009.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 02/01/2023]
Abstract
Corazonin (Crz) is an 11 amino acid C-terminally amidated neuropeptide that has been identified in most arthropods examined with the notable exception of beetles and an aphid. The Crz-receptor shares sequence similarity to the GnRH-AKH receptor family thus suggesting an ancestral function related to the control of reproduction and metabolism. In 1989, Crz was purified and identified as a potent cardioaccelerating agent in cockroaches (hence the Crz name based on "corazon", the Spanish word for "heart"). Since the initial assignment as a cardioacceleratory peptide, additional functions have been discovered, ranging from pigment migration in the integument of crustaceans and in the eye of locusts, melanization of the locust cuticle, ecdysis initiation and in various aspects of gregarization in locusts. The high degree of structural conservation of Crz, its well-conserved (immuno)-localization, mainly in specific neurosecretory cells in the pars lateralis, and its many functions, suggest that Crz is vital. Yet, Crz-deficient insects develop normally. Upon reexamining all known effects of Crz, a hypothesis was developed that the evolutionary ancient function of Crz may have been "to prepare animals for coping with the environmental stressors of the day". This function would then complement the role of pigment-dispersing factor (PDF), the prime hormonal effector of the clock, which is thought "to set a coping mechanism for the night".
Collapse
Affiliation(s)
- Bart Boerjan
- Functional Genomics and Proteomics, Department of Biology, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
202
|
Chatterjee A, Tanoue S, Houl JH, Hardin PE. Regulation of gustatory physiology and appetitive behavior by the Drosophila circadian clock. Curr Biol 2010; 20:300-9. [PMID: 20153192 DOI: 10.1016/j.cub.2009.12.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
Abstract
BACKGROUND Circadian regulation of chemosensory processes is common in animals, but little is known about how circadian clocks control chemosensory systems or the consequences of rhythms in chemosensory system function. Taste is a major chemosensory gate used to decide whether or not an animal will eat, and the main taste organ in Drosophila, the proboscis, harbors autonomous circadian oscillators. Here we examine gustatory physiology, tastant-evoked appetitive behavior, and food ingestion to understand clock-dependent regulation of the Drosophila gustatory system. RESULTS Here we report that single-unit responses from labellar gustatory receptor neurons (GRNs) to attractive and aversive tastants show diurnal and circadian rhythms in spike amplitude, frequency, and duration across different classes of gustatory sensilla. Rhythms in electrophysiological responses parallel behavioral rhythms in proboscis extension reflex. Molecular oscillators in GRNs are necessary and sufficient for rhythms in gustatory responses and drive rhythms in G protein-coupled receptor kinase 2 (GPRK2) expression that mediate rhythms in taste sensitivity. Eliminating clock function in certain GRNs increases feeding and locomotor activity, mimicking a starvation response. CONCLUSIONS Circadian clocks in GRNs control neuronal output and drive behavioral rhythms in taste responses that peak at a time of day when feeding is maximal in flies. Our results argue that oscillations in GPRK2 levels drive rhythms in gustatory physiology and behavior and that GRN clocks repress feeding. The similarity in gustatory system organization and feeding behavior in flies and mammals, as well as diurnal changes in taste sensitivity in humans, suggest that our results are relevant to the situation in humans.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
203
|
Abstract
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
Collapse
Affiliation(s)
- David K Welsh
- Department of Psychiatry, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
204
|
Abstract
Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this "simple" model organism.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
205
|
Shafer OT, Taghert PH. RNA-interference knockdown of Drosophila pigment dispersing factor in neuronal subsets: the anatomical basis of a neuropeptide's circadian functions. PLoS One 2009; 4:e8298. [PMID: 20011537 PMCID: PMC2788783 DOI: 10.1371/journal.pone.0008298] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/17/2009] [Indexed: 01/18/2023] Open
Abstract
Background In animals, neuropeptide signaling is an important component of circadian timekeeping. The neuropeptide pigment dispersing factor (PDF) is required for several aspects of circadian activity rhythms in Drosophila. Methodology/Principal Findings Here we investigate the anatomical basis for PDF's various circadian functions by targeted PDF RNA-interference in specific classes of Drosophila neuron. We demonstrate that PDF is required in the ventro-lateral neurons (vLNs) of the central brain and not in the abdominal ganglion for normal activity rhythms. Differential knockdown of PDF in the large or small vLNs indicates that PDF from the small vLNs is likely responsible for the maintenance of free-running activity rhythms and that PDF is not required in the large vLNs for normal behavior. PDF's role in setting the period of free-running activity rhythms and the proper timing of evening activity under light:dark cycles emanates from both subtypes of vLN, since PDF in either class of vLN was sufficient for these aspects of behavior. Conclusions/Significance These results reveal the neuroanatomical basis PDF's various circadian functions and refine our understanding of the clock neuron circuitry of Drosophila.
Collapse
Affiliation(s)
- Orie T Shafer
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America.
| | | |
Collapse
|
206
|
Kilman VL, Allada R. Genetic analysis of ectopic circadian clock induction in Drosophila. J Biol Rhythms 2009; 24:368-78. [PMID: 19755582 DOI: 10.1177/0748730409343761] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-autonomous feedback loops underlie the molecular oscillations that define circadian clocks. In Drosophila the transcription factor Clk activates multiple clock components of feedback loops many of which feed back and regulate Clk expression or activity. Previously the authors evoked similar molecular oscillations in putatively naïve neurons in Drosophila by ectopic expression of a single gene, Clk, suggesting a master regulator function. Using molecular oscillations of the core clock component PERIOD (PER), the authors observed dramatic and widespread molecular oscillations throughout the brain in flies expressing ectopic Clk. Consistent with the master regulator hypothesis, they found that Clk is uniquely capable of inducing ectopic clocks as ectopic induction of other clock components fails to induce circadian rhythms. Clk also induces oscillations even when expression is adult restricted, suggesting that ectopic clocks can even be induced in differentiated cells. However, if transgene expression is discontinued, PER expression disappears, indicating that Clk must be continually active to sustain ectopic clock function. In some cases Clk-mediated PER induction was observed without apparent synchronous cycling, perhaps due to desynchronization of rhythms between clocks or truly cell autonomous arrhythmic PER expression, indicating that additional factors may be necessary for coherent rhythms in cells ectopically expressing Clk. To determine minimal requirements for circadian clock induction by Clk, the authors determined the genetic requirements of ectopic clocks. No ectopic clocks are induced in mutants of Clk's heterodimeric partner cyc. In addition, noncycling PER is observed when ectopic Clk is induced in a cryb mutant background. While other factors may contribute, these results indicate that persistent Clock induction is uniquely capable of broadly inducing ectopic rhythms even in adults, consistent with a special role at the top of a clock gene hierarchy.
Collapse
Affiliation(s)
- Valerie L Kilman
- Department of Neurobiology and Physiology, Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
207
|
Sullivan JM, Genco MC, Marlow ED, Benton JL, Beltz BS, Sandeman DC. Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish. Chronobiol Int 2009; 26:1136-68. [PMID: 19731110 DOI: 10.3109/07420520903217960] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Freshwater crayfish have three known photoreceptive systems: the compound eyes, extraretinal brain photoreceptors, and caudal photoreceptors. The primary goal of the work described here was to explore the contribution of the brain photoreceptors to circadian locomotory activity and define some of the underlying neural pathways. Immunocytochemical studies of the brain photoreceptors in the parastacid (southern hemisphere) crayfish Cherax destructor reveal their expression of the blue light-sensitive photopigment cryptochrome and the neurotransmitter histamine. The brain photoreceptors project to two small protocerebral neuropils, the brain photoreceptor neuropils (BPNs), where they terminate among fibers expressing the neuropeptide pigment-dispersing hormone (PDH), a signaling molecule in arthropod circadian systems. Comparable pathways are also described in the astacid (northern hemisphere) crayfish Procambarus clarkii. Despite exhibiting markedly different diurnal locomotor activity rhythms, removal of the compound eyes and caudal photoreceptors in both C. destructor and P. clarkii (leaving the brain photoreceptors intact) does not abolish the normal light/dark activity cycle in either species, nor prevent the entrainment of their activity cycles to phase shifts of the light/dark period. These results suggest, therefore, that crayfish brain photoreceptors are sufficient for the entrainment of locomotor activity rhythms to photic stimuli, and that they can act in the absence of the compound eyes and caudal photoreceptors. We also demonstrate that the intensity of PDH expression in the BPNs varies in phase with the locomotor activity rhythm of both crayfish species. Together, these findings suggest that the brain photoreceptor cells can function as extraretinal circadian photoreceptors and that the BPN represents part of an entrainment pathway synchronizing locomotor activity to environmental light/dark cycles, and implicating the neuropeptide PDH in these functions.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | | | | | | | | | |
Collapse
|
208
|
Yoshii T, Vanin S, Costa R, Helfrich-Förster C. Synergic Entrainment of Drosophila’s Circadian Clock by Light and Temperature. J Biol Rhythms 2009; 24:452-64. [PMID: 19926805 DOI: 10.1177/0748730409348551] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Daily light and temperature cycles are considered the most important zeitgebers for circadian clocks in many organisms. The influence of each single zeitgeber on the clock has been well studied, but little is known about any synergistic effects of both zeitgebers on the clock. In nature, light and temperature show characteristic daily oscillations with the temperature rising during the light phase and reaching its maximum in the late afternoon. Here, we studied behavioral and molecular rhythms in Drosophila melanogaster under simulated natural low light-dark (LD) and temperature (T) cycles that typically occur during the September equinox. Wild-type flies were either subjected to simulated LD or T cycles alone or to a combination of both. Behavioral rhythms and molecular rhythms in the different clock neurons were assessed under the 3 different conditions. Although behavioral rhythms entrained to all conditions, the rhythms were most robust under the combination of LD and T cycles. The clock neurons responded differently to LD and T cycles. Some were not entrained by T cycles alone; others were only slightly entrained by LD cycles alone. The amplitude of the molecular cycling was not different between LD alone and T cycles alone; but LD alone could set the pacemaker neurons to similar phases, whereas T cycles alone could not. The combination of the 2 zeitgebers entrained all clock neurons not only with similar phase but also enhanced the amplitude of Timeless cycling in the majority of cells. Our results show that the 2 zeitgebers synergistically entrain behavioral and molecular rhythms of Drosophila melanogaster.
Collapse
Affiliation(s)
- Taishi Yoshii
- Institute of Zoology, University of Regensburg, Germany.
| | | | | | | |
Collapse
|
209
|
Abstract
In this issue of Neuron, Sehadova et al. show that synchronization of circadian clocks in the brains of Drosophila by daily temperature changes requires chordotonal organs, mechanosensory structures that function as stretch receptors in insects. This is strikingly different from the more direct path by which brain clocks perceive light.
Collapse
Affiliation(s)
- Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA.
| |
Collapse
|
210
|
Janssen T, Husson SJ, Meelkop E, Temmerman L, Lindemans M, Verstraelen K, Rademakers S, Mertens I, Nitabach M, Jansen G, Schoofs L. Discovery and characterization of a conserved pigment dispersing factor-like neuropeptide pathway inCaenorhabditis elegans. J Neurochem 2009; 111:228-41. [DOI: 10.1111/j.1471-4159.2009.06323.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
211
|
Nässel DR. Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? INVERTEBRATE NEUROSCIENCE 2009; 9:57-75. [PMID: 19756790 DOI: 10.1007/s10158-009-0090-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 12/15/2022]
Abstract
Neuropeptide signaling is functionally very diverse and one and the same neuropeptide may act as a circulating neurohormone, as a locally released neuromodulator or even as a cotransmitter of classical fast-acting neurotransmitters. Thus, neuropeptides are produced by a huge variety of neuron types in different parts of the nervous system. Within the central nervous system (CNS) there are numerous types of peptidergic interneurons, some with strictly localized and patterned branching morphologies, others with widespread and diffuse arborizations. From morphology alone it is often difficult to predict the sphere of influence of a peptidergic interneuron, especially since it has been shown that neuropeptides can diffuse over tens of micrometers within neuropils, and that peptides probably are released exclusively in perisynaptic (or non-synaptic) regions. This review addresses some questions related to peptidergic signaling in the insect CNS. How diverse are the spatial relations between peptidergic neurons and their target neurons and what determines the sphere of functional influence? At one extreme there is volume transmission and at the other targeted cotransmission at synapses. Also temporal aspects of peptidergic signaling are of interest: how transient are peptidergic messages? Factors important for these spatial and temporal aspects of peptidergic signaling are proximity between release sites and cognate receptors, distribution of peptidase activity that can terminate peptide action and colocalization of other neuroactive compounds in the presynaptic peptidergic neuron (and corresponding receptors in target neurons). Other factors such as expression of different channel types, receptor inactivation mechanisms and second messenger systems probably also contribute to the diversity in temporal properties of peptide signaling.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
212
|
Johard HA, Yoishii T, Dircksen H, Cusumano P, Rouyer F, Helfrich-Förster C, Nässel DR. Peptidergic clock neurons inDrosophila: Ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol 2009; 516:59-73. [DOI: 10.1002/cne.22099] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
213
|
Gatto CL, Broadie K. Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits 2009; 3:8. [PMID: 19738924 PMCID: PMC2737437 DOI: 10.3389/neuro.04.008.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/23/2009] [Indexed: 12/03/2022] Open
Abstract
Loss of fragile X mental retardation 1 (FMR1) gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP) is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs), a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning) occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University Nashville, TN, USA
| | | |
Collapse
|
214
|
Entrainment of Drosophila circadian clock to green and yellow light by Rh1, Rh5, Rh6 and CRY. Neuroreport 2009; 20:755-8. [PMID: 19398933 DOI: 10.1097/wnr.0b013e32832a7c4e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Light is one of the most important time cues for entrainment of the circadian clock. Drosophila circadian photoreception is mediated by cryptochrome in clock neurons and by rhodopsins in photic organs. We generated Rh5 mutants to elucidate circadian photoreception by rhodopsins. The Rh1, Rh5 and Rh6 mutants were combined with cry, and entrained to a 6-h delayed photoperiod. The cry, Rh1, Rh5 and Rh6 quadruple mutant became entrained by white light. In contrast, reentrainment to green and yellow light was abolished in the cry, Rh1, Rh5 and Rh6 quadruple mutant, and remarkably slowed in the cry, Rh1 and Rh6 triple mutant. These results suggest that cry, Rh1, Rh5 and Rh6 are essential for circadian photoentrainment to green and yellow light.
Collapse
|
215
|
Choi C, Fortin JP, McCarthy EV, Oksman L, Kopin AS, Nitabach MN. Cellular dissection of circadian peptide signals with genetically encoded membrane-tethered ligands. Curr Biol 2009; 19:1167-75. [PMID: 19592252 PMCID: PMC2719018 DOI: 10.1016/j.cub.2009.06.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/01/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuropeptides regulate many biological processes. Elucidation of neuropeptide function requires identifying the cells that respond to neuropeptide signals and determining the molecular, cellular, physiological, and behavioral consequences of activation of their cognate G protein-coupled receptors (GPCRs) in those cells. As a novel tool for addressing such issues, we have developed genetically encoded neuropeptides covalently tethered to a glycosylphosphatidylinositol (GPI) glycolipid anchor on the plasma membrane ("t-peptides"). RESULTS t-peptides cell-autonomously induce activation of their cognate GPCRs in cells that express both the t-peptide and its receptor. In the neural circuit controlling circadian rest-activity rhythms in Drosophila melanogaster, rhythmic secretion of the neuropeptide pigment-dispersing factor (PDF) and activation of its GPCR (PDFR) are important for intercellular communication of phase information and coordination of clock neuron oscillation. Broad expression of t-PDF in the circadian control circuit overcomes arrhythmicity induced by pdf(01) null mutation, most likely as a result of activation of PDFR in PDFR-expressing clock neurons that do not themselves secrete PDF. More restricted expression of t-PDF suggests that activation of PDFR accelerates cellular timekeeping in some clock neurons while decelerating others. CONCLUSIONS The activation of PDFR in pdf(01) null mutant flies--which lack PDF-mediated intercellular transfer of phase information--induces strong rhythmicity in constant darkness, thus establishing a distinct role for PDF signaling in the circadian control circuit independent of the intercellular communication of temporal phase information. The t-peptide technology should provide a useful tool for cellular dissection of bioactive peptide signaling in a variety of organisms and physiological contexts.
Collapse
Affiliation(s)
- Charles Choi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Jean-Philippe Fortin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Ellena v. McCarthy
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lea Oksman
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Alan S. Kopin
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
216
|
Helfrich-Förster C. Does the Morning and Evening Oscillator Model Fit Better for Flies or Mice? J Biol Rhythms 2009; 24:259-70. [DOI: 10.1177/0748730409339614] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The morning and evening dual oscillator model can explain the adaptation of animals to different photoperiods and other phenomena as bimodal activity patterns, aftereffects, and internal desynchronization of the activity rhythm into 2 free-running components. This review summarizes evidence for and against the existence of morning and evening oscillator cells in the core circadian pacemaker centers of mice and fruit flies.
Collapse
|
217
|
Rieger D, Wülbeck C, Rouyer F, Helfrich-Förster C. Period Gene Expression in Four Neurons Is Sufficient for Rhythmic Activity of Drosophila melanogaster under Dim Light Conditions. J Biol Rhythms 2009; 24:271-82. [DOI: 10.1177/0748730409338508] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The clock gene expressing lateral neurons (LN) is crucial for Drosophila 's rhythmic locomotor activity under constant conditions. Among the LN, the PDF expressing small ventral lateral neurons (s-LNv) are thought to control the morning activity of the fly (M oscillators) and to drive rhythmic activity under constant darkness. In contrast, a 5th PDF-negative s-LN v and the dorsal lateral neurons (LNd) appeared to control the fly's evening activity (E oscillators) and to drive rhythmic activity under constant light. Here, the authors restricted period gene expression to 4 LN—the 5th s-LNv and 3 LNd— that are all thought to belong to the E oscillators and tested them in low light conditions. Interestingly, such flies showed rather normal bimodal activity patterns under light moonlight and constant moonlight conditions, except that the phase of M and E peaks was different. This suggests that these 4 neurons behave as ″M″ and ″E″ cells in these conditions. Indeed, they found by PER and TIM immunohistochemistry that 2 LNd advanced their phase upon moonlight as predicted for M oscillators, whereas the 5th s-LNv and 1 LNd delayed their activity upon moonlight as predicted for E oscillators. Their results suggest that the M or E characteristic of clock neurons is rather flexible. M and E oscillator function may not be restricted to certain anatomically defined groups of clock neurons but instead depends on the environmental conditions.
Collapse
Affiliation(s)
- Dirk Rieger
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Corinna Wülbeck
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Francois Rouyer
- Institut de Neurobiologie Alfred Fessard, CNRS UPR2216, Gif-sur-Yvette, France
| | | |
Collapse
|
218
|
Huang Y, Howlett E, Stern M, Jackson FR. Altered LARK expression perturbs development and physiology of the Drosophila PDF clock neurons. Mol Cell Neurosci 2009; 41:196-205. [PMID: 19303442 PMCID: PMC2693285 DOI: 10.1016/j.mcn.2009.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 02/25/2009] [Indexed: 11/22/2022] Open
Abstract
The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment-Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Eric Howlett
- Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 Main Street, Houston, TX 77251-1892
| | - Michael Stern
- Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 Main Street, Houston, TX 77251-1892
| | - F. Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| |
Collapse
|
219
|
Weiss R, Dov A, Fahrbach SE, Bloch G. Body size-related variation in Pigment Dispersing Factor-immunoreactivity in the brain of the bumblebee Bombus terrestris (Hymenoptera, Apidae). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:479-487. [PMID: 19232530 DOI: 10.1016/j.jinsphys.2009.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 01/12/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Large bumblebee (Bombus terrestris) workers typically visit flowers to collect pollen and nectar during the day and rest in the nest at night. Small workers are less likely to forage, but instead stay in the nest and tend brood around the clock. Because Pigment Dispersing Factor (PDF) has been identified as a neuromodulator in the circadian network of insects, we used an antiserum that recognizes this peptide to compare patterns of PDF-immunoreactivity (PDF-ir) in the brains of large and small workers. Our study provides the first description of PDF distribution in the bumblebee brain, and shows a pattern that is overall similar to that of the honey bee, Apis mellifera. The brains of large bumblebee workers contained a slightly but significantly higher number of PDF-ir neurons than did the brains of small sister bees. Body size was positively correlated with area of the PDF-ir somata and negatively correlated with the maximal staining intensity. These results provide a neuronal correlate to the previously reported body size-associated variation in behavioral circadian rhythmicity. These differences in PDF-ir are consistent with the hypothesis that body size-based division of labor in bumblebees is associated with adaptations of the morphology and function of the brain circadian system.
Collapse
Affiliation(s)
- Ron Weiss
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
220
|
Yang YY, Wen CJ, Mishra A, Tsai CW, Lee HJ. Development of the circadian clock in the German cockroach, Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:469-478. [PMID: 19245873 DOI: 10.1016/j.jinsphys.2009.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 05/27/2023]
Abstract
The cell distribution and immunoreactivity (ir) against period (PER), pigment dispersing factor (PDF) and corazonin (CRZ), were compared between adults and nymphs in the central nervous system of the German cockroach. Although PER-ir cells in the optic lobes (OL) were expressed in the nymphs from the first instar, the links between major clock cells became more elaborated after second/third instar. A circadian rhythm of locomotion was initiated at the fourth/fifth instar. The results suggest that the clock was running from hatching, but the control network needed more time to develop. In addition, the putative downstream regulators, PDF-ir and CRZ-ir, are co-localized in various regions of the brain, indicating potential output routes of the circadian clock. CRZ-ir cells with typical morphology of neurosecretory cells in the dorsolateral protocerebrum send out three neural fibers to reach the ipsilateral corpora cardiaca (CC), the antennal lobe and two hemispheres of the protocerebrum. Based on co-localization with some PER-ir/PDF-ir cells, the CRZ-ir cells have the potential to serve as a bridge between circadian neural signals and endocrine regulation. Based on PDF's role in the regulation of locomotion, our results support the finding that the locomotor circadian rhythm is possibly controlled by a hormonal route.
Collapse
Affiliation(s)
- Yung-Yu Yang
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
221
|
Beaulé C, Mitchell JW, Lindberg PT, Damadzic R, Eiden LE, Gillette MU. Temporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN. J Biol Rhythms 2009; 24:126-34. [PMID: 19382381 PMCID: PMC2914551 DOI: 10.1177/0748730409332037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian rhythms in physiology and behavior are temporally synchronized to the day/night cycle through the action of light on the circadian clock. In mammals, transduction of the photic signal reaching the circadian oscillator in the suprachiasmatic nucleus (SCN) occurs through the release of glutamate and pituitary adenylate cyclase-activating peptide (PACAP). The authors' study aimed at clarifying the role played by PACAP in photic resetting and entrainment. They investigated the circadian response to light of PACAPnullmice lacking the 5th exon of the PACAP coding sequence. Specifically, they examined free-running rhythms, entrainment to 12-h light:12-h dark (LD)cycles, the phase-response curve (PRC) to single light pulses, entrainment to a23-h T-cycle, re-entrainment to 6-h phase shifts in LD cycles, and light-induced c-Fos expression. PACAP-null and wild-type mice show similar free-running periods and similar entrainment to 12:12 LD cycles. However, the PRC of PACAP-null mice lacks a phase-advance portion. Surprisingly, despite the absence of phase advance to single light pulses, PACAP-null mice are able to entrain to a 23-h T-cycle, but with a significantly longer phase angle of entrainment than wild types. In addition, PACAP-null mice re-entrain more slowly to a 6-h phase advance of the LD cycle. Nevertheless, induction of c-Fos by light in late night is normal. In all experiments, PACAP-null mice show specific behavioral impairments in response to phase-advancing photic stimuli. These results suggest that PACAP is required for the normal integration of the phase advancing light signal by the SCN.
Collapse
Affiliation(s)
- Christian Beaulé
- Department of Cell & Developmental Biology, University of Illinois, Urbana-Champaign
- Neuroscience Program, University of Illinois, Urbana-Champaign
| | - Jennifer W. Mitchell
- Department of Cell & Developmental Biology, University of Illinois, Urbana-Champaign
| | - Peder T. Lindberg
- Neuroscience Program, University of Illinois, Urbana-Champaign
- Medical Scholars Program, University of Illinois, Urbana-Champaign
| | - Ruslan Damadzic
- Section on Molecular Neuroscience, Laboratory of Cellular & Molecular Regulation, NIMH, NIH, Bethesda, MD, USA
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular & Molecular Regulation, NIMH, NIH, Bethesda, MD, USA
| | - Martha U. Gillette
- Department of Cell & Developmental Biology, University of Illinois, Urbana-Champaign
- Neuroscience Program, University of Illinois, Urbana-Champaign
- Medical Scholars Program, University of Illinois, Urbana-Champaign
| |
Collapse
|
222
|
The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila's clock. J Neurosci 2009; 29:2597-610. [PMID: 19244536 DOI: 10.1523/jneurosci.5439-08.2009] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) is a key transmitter in the circadian clock of Drosophila melanogaster. PDF is necessary for robust activity rhythms and is thought to couple the circadian oscillations of the clock neurons. However, little is known about the action of PDF on individual clock neurons. Here, we combined the period-luciferase reporter system with immunolabeling of clock proteins in wild-type and Pdf(01) mutants to dissect the effects of PDF on specific subgroups of clock neurons. Additionally, PDF levels were elevated to higher than normal levels using specific neural mutants, and a correlation analysis of locomotor activity and clock protein staining served to determine the periods of specific clock cells. We found that PDF has multiple effects on the clock neurons: In some groups of clock neurons, PDF was required for maintaining the oscillations of individual cells, and in others, PDF was required for synchronous cycling of the individual members. Other clock neurons cycled with high amplitude in absence of PDF, but PDF affected their intrinsic clock speed. Sometimes PDF shortened and sometimes PDF lengthened period. Our observations indicate that PDF is crucial for adjusting cycling amplitude, period, and phase of the different players in the circadian clock. Under natural conditions PDF may be required for adapting Drosophila's clock to varying photoperiods. Indeed, we show here that Pdf(01) mutants are not able to adapt their activity to long photoperiods in a wild-type manner.
Collapse
|
223
|
Gatto CL, Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol Neurobiol 2009; 39:107-29. [PMID: 19214804 DOI: 10.1007/s12035-009-8057-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/22/2009] [Indexed: 02/06/2023]
Abstract
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
224
|
Wu Y, Cao G, Pavlicek B, Luo X, Nitabach MN. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol 2009; 6:e273. [PMID: 18986214 PMCID: PMC2577701 DOI: 10.1371/journal.pbio.0060273] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/25/2008] [Indexed: 11/19/2022] Open
Abstract
Drosophila clock neurons are self-sustaining cellular oscillators that rely on negative transcriptional feedback to keep circadian time. Proper regulation of organismal rhythms of physiology and behavior requires coordination of the oscillations of individual clock neurons within the circadian control network. Over the last decade, it has become clear that a key mechanism for intercellular communication in the circadian network is signaling between a subset of clock neurons that secrete the neuropeptide pigment dispersing factor (PDF) and clock neurons that possess its G protein-coupled receptor (PDFR). Furthermore, the specific hypothesis has been proposed that PDF-secreting clock neurons entrain the phase of organismal rhythms, and the cellular oscillations of other clock neurons, via the temporal patterning of secreted PDF signals. In order to test this hypothesis, we have devised a novel technique for altering the phase relationship between circadian transcriptional feedback oscillation and PDF secretion by using an ion channel-directed spider toxin to modify voltage-gated Na(+) channel inactivation in vivo. This technique relies on the previously reported "tethered-toxin" technology for cell-autonomous modulation of ionic conductances via heterologous expression of subtype-specific peptide ion channel toxins as chimeric fusion proteins tethered to the plasma membrane with a glycosylphosphatidylinositol (GPI) anchor. We demonstrate for the first time, to our knowledge, the utility of the tethered-toxin technology in a transgenic animal, validating four different tethered spider toxin ion channel modifiers for use in Drosophila. Focusing on one of these toxins, we show that GPI-tethered Australian funnel-web spider toxin delta-ACTX-Hv1a inhibits Drosophila para voltage-gated Na(+) channel inactivation when coexpressed in Xenopus oocytes. Transgenic expression of membrane-tethered delta-ACTX-Hv1a in vivo in the PDF-secreting subset of clock neurons induces rhythmic action potential bursts and depolarized plateau potentials. These in vitro and in vivo electrophysiological effects of membrane-tethered delta-ACTX-Hv1a are consistent with the effects of soluble delta-ACTX-Hv1a purified from venom on Na(+) channel physiological and biophysical properties in cockroach neurons. Membrane-tethered delta-ACTX-Hv1a expression in the PDF-secreting subset of clock neurons induces an approximately 4-h phase advance of the rhythm of PDF accumulation in their terminals relative to both the phase of the day:night cycle and the phase of the circadian transcriptional feedback loops. As a consequence, the morning anticipatory peak of locomotor activity preceding dawn, which has been shown to be driven by the clocks of the PDF-secreting subset of clock neurons, phase advances coordinately with the phase of the PDF rhythm of the PDF-secreting clock neurons, rather than maintaining its phase relationship with the day:night cycle and circadian transcriptional feedback loops. These results (1) validate the tethered-toxin technology for cell-autonomous modulation of ion channel biophysical properties in vivo in transgenic Drosophila, (2) demonstrate that the kinetics of para Na(+) channel inactivation is a key parameter for determining the phase relationship between circadian transcriptional feedback oscillation and PDF secretion, and (3) provide experimental support for the hypothesis that PDF-secreting clock neurons entrain the phase of organismal rhythms via the temporal patterning of secreted PDF signals.
Collapse
Affiliation(s)
- Ying Wu
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Guan Cao
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Beth Pavlicek
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xuan Luo
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Michael N Nitabach
- Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
225
|
Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. ADVANCES IN GENETICS 2009; 65:79-143. [DOI: 10.1016/s0065-2660(09)65003-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
226
|
Weber F. Remodeling the clock: coactivators and signal transduction in the circadian clockworks. Naturwissenschaften 2008; 96:321-37. [PMID: 19052721 DOI: 10.1007/s00114-008-0474-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/21/2008] [Accepted: 11/05/2008] [Indexed: 01/25/2023]
Abstract
Most organisms on earth such as cyanobacteria, fungi, plants, insects, animals, and humans synchronize their physiological and behavioral activities with the environmental cycles of day and night. Significant progress has been made in unraveling the genetic components that constitute a molecular circadian clock, which facilitates the temporal control of physiology and behavior. Clock genes assemble interlocked transcriptional/translational feedback loops that underlie the circadian oscillations. Recent investigations revealed that posttranslational regulation of clock proteins is crucial for functioning of the molecular oscillator and for precise temporal control of circadian transcription. This review provides an overview of the homologous clockworks in Drosophila and mammals, with a special focus on recent insights in the posttranslational regulation of clock proteins as well as the role of coactivators, repressors, and signal transduction for circadian controlled genome-wide transcription. The emerging mechanisms of clock gene regulation provide an understanding of the temporal control of transcription in general and the circadian orchestration of physiology and behavior in particular.
Collapse
Affiliation(s)
- Frank Weber
- Biochemie-Zentrum Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
227
|
Junwei Wang, Jiajun Zhang, Zhanjiang Yuan, Aimin Chen, Tianshou Zhou. Neurotransmitter-Mediated Collective Rhythms in Grouped Drosophila Circadian Clocks. J Biol Rhythms 2008; 23:472-82. [DOI: 10.1177/0748730408324849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decades, fly Drosophila melanogaster has being used as a premier model organism to study molecular and genetic bases of circadian rhythms. Here the authors propose a multicellular heterogeneous model for which the network of Drosophila circadian oscillators consists of two groups, the self-sustained lateral neurons (LNs) communicating to each other and the damped dorsal neurons (DNs) receiving neurotransmitters only from the LNs without interaction within this group. By simulating different experimental conditions, the authors find that the proposed model, except for being capable of reproducing some known experimental results well, also can predict some interesting phenomena: 1) The DNs need neuronal projections from the LNs to be rhythmic and to synchronize; 2) the effect of communication on mean amplitude and mean period of two oscillatory groups is different; 3) communication delay can facilitate the network synchronization of the LNs; and 4) only the LNs lose rhythmicity under constant light conditions. These results reveal the mechanism of an integrated pacemaker that would govern behavioral and physiological rhythmicity of the model organism.
Collapse
Affiliation(s)
- Junwei Wang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zhanjiang Yuan
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Aimin Chen
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, P.R. China, , State Key Laboratory of Biocontrol and Guangzhou Center for Bioinformatics, School of Life Science, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
228
|
Olsen SR, Wilson RI. Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 2008; 31:512-20. [PMID: 18775572 PMCID: PMC2845908 DOI: 10.1016/j.tins.2008.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Genetic screens in Drosophila have identified many genes involved in neural development and function. However, until recently, it has been impossible to monitor neural signals in Drosophila central neurons, and it has been difficult to make specific perturbations to central neural circuits. This has changed in the past few years with the development of new tools for measuring and manipulating neural activity in the fly. Here we review how these new tools enable novel conceptual approaches to 'cracking circuits' in this important model organism. We discuss recent studies aimed at defining the cognitive demands on the fly brain, identifying the cellular components of specific neural circuits, mapping functional connectivity in those circuits and defining causal relationships between neural activity and behavior.
Collapse
Affiliation(s)
- Shawn R Olsen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
229
|
Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6. Neuroreport 2008; 19:1441-4. [DOI: 10.1097/wnr.0b013e32830e4961] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
230
|
Sandrelli F, Costa R, Kyriacou CP, Rosato E. Comparative analysis of circadian clock genes in insects. INSECT MOLECULAR BIOLOGY 2008; 17:447-63. [PMID: 18828836 DOI: 10.1111/j.1365-2583.2008.00832.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
After a slow start, the comparative analysis of clock genes in insects has developed into a mature area of study in recent years. Brain transplant or surgical interventions in larger insects defined much of the early work in this area, before the cloning of clock genes became possible. We discuss the evolution of clock genes, their key sequence differences, and their likely modes of regulation in several different insect orders. We also present their expression patterns in the brain, focusing particularly on Diptera, Lepidoptera, and Orthoptera, the most common non-genetic model insects studied. We also highlight the adaptive involvement of clock molecules in other complex phenotypes which require biological timing, such as social behaviour, diapause and migration.
Collapse
Affiliation(s)
- F Sandrelli
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | | | | |
Collapse
|
231
|
Dubruille R, Emery P. A Plastic Clock: How Circadian Rhythms Respond to Environmental Cues in Drosophila. Mol Neurobiol 2008; 38:129-45. [DOI: 10.1007/s12035-008-8035-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/27/2008] [Indexed: 11/24/2022]
|
232
|
McNabb SL, Truman JW. Light and peptidergic eclosion hormone neurons stimulate a rapid eclosion response that masks circadian emergence in Drosophila. J Exp Biol 2008; 211:2263-74. [PMID: 18587121 PMCID: PMC2760273 DOI: 10.1242/jeb.015818] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Light signals can entrain circadian clocks, but they can also mask aspects of the circadian output. We have analyzed the masking effects of a lights-on (LOn) signal on Drosophila eclosion. The LOn response results in 12-21% of the flies that emerge on a given day eclosing within 10 min of the LOn signal. Flies that lack the neuropeptide eclosion hormone (EH), or in which its release is inhibited by the tetanus toxin light chain, lack the response. Optic photoreceptors in both the ocelli and the compound eyes appear to be required for the response. The LOn signal has two effects: (1) it drastically reduces the interval between EH release and eclosion, presumably by suppressing a transient descending inhibition that immediately follows EH release, and (2) it stimulates premature EH release. The LOn signal does not influence the latency of wing spreading, an EH-regulated post-ecdysis behavior.
Collapse
Affiliation(s)
- Susan L McNabb
- Department of Zoology, Box 351800, University of Washington, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|
233
|
Cao G, Nitabach MN. Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J Neurosci 2008; 28:6493-501. [PMID: 18562620 PMCID: PMC2680300 DOI: 10.1523/jneurosci.1503-08.2008] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 11/21/2022] Open
Abstract
Drosophila circadian rhythms are controlled by a neural circuit containing approximately 150 clock neurons. Although much is known about mechanisms of autonomous cellular oscillation, the connection between cellular oscillation and functional outputs that control physiological and behavioral rhythms is poorly understood. To address this issue, we performed whole-cell patch-clamp recordings on lateral ventral clock neurons (LN(v)s), including large (lLN(v)s) and small LN(v)s (sLN(v)s), in situ in adult fly whole-brain explants. We found two distinct sizes of action potentials (APs) in >50% of lLN(v)s that fire APs spontaneously, and determined that large APs originate in the ipsilateral optic lobe and small APs in the contralateral. lLN(v) resting membrane potential (RMP), spontaneous AP firing rate, and membrane resistance are cyclically regulated as a function of time of day in 12 h light/dark conditions (LD). lLN(v) RMP becomes more hyperpolarized as time progresses from dawn to dusk with a concomitant decrease in spontaneous AP firing rate and membrane resistance. From dusk to dawn, lLN(v) RMP becomes more depolarized, with spontaneous AP firing rate and membrane resistance remaining stable. In contrast, circadian defective per(0) null mutant lLN(v) membrane excitability is nearly constant in LD. Over 24 h in constant darkness (DD), wild-type lLN(v) membrane excitability is not cyclically regulated, although RMP gradually becomes slightly more depolarized. sLN(v) RMP is most depolarized around lights-on, with substantial variability centered around lights-off in LD. Our results indicate that LN(v) membrane excitability encodes time of day via a circadian clock-dependent mechanism, and likely plays a critical role in regulating Drosophila circadian behavior.
Collapse
Affiliation(s)
- Guan Cao
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520
| | - Michael N. Nitabach
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
234
|
Tomchik SM, Davis RL. Cyclic AMP imaging sheds light on PDF signaling in circadian clock neurons. Neuron 2008; 58:161-3. [PMID: 18439399 DOI: 10.1016/j.neuron.2008.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Drosophila, the neuropeptide PDF is required for circadian rhythmicity, but it is unclear where PDF acts. In this issue of Neuron, Shafer et al. use a novel bioimaging methodology to demonstrate that PDF elevates cAMP in nearly all clock neurons. Thus, PDF apparently exerts more widespread effects on the circadian clock network than suggested by previous studies of PDF receptor expression.
Collapse
Affiliation(s)
- Seth M Tomchik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
235
|
|
236
|
Park D, Veenstra JA, Park JH, Taghert PH. Mapping peptidergic cells in Drosophila: where DIMM fits in. PLoS One 2008; 3:e1896. [PMID: 18365028 PMCID: PMC2266995 DOI: 10.1371/journal.pone.0001896] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022] Open
Abstract
The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides.
Collapse
Affiliation(s)
- Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | | | - Jae H. Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee–Knoxville, Knoxville, Tennessee, United States of America
| | - Paul H. Taghert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|