201
|
Carminati M, Gallini S, Pirovano L, Alfieri A, Bisi S, Mapelli M. Concomitant binding of Afadin to LGN and F-actin directs planar spindle orientation. Nat Struct Mol Biol 2016; 23:155-63. [DOI: 10.1038/nsmb.3152] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022]
|
202
|
Anderson DP, Whitney DS, Hanson-Smith V, Woznica A, Campodonico-Burnett W, Volkman BF, King N, Thornton JW, Prehoda KE. Evolution of an ancient protein function involved in organized multicellularity in animals. eLife 2016; 5:e10147. [PMID: 26740169 PMCID: PMC4718807 DOI: 10.7554/elife.10147] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/09/2015] [Indexed: 12/30/2022] Open
Abstract
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.
Collapse
Affiliation(s)
- Douglas P Anderson
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States.,Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, United States
| | - Victor Hanson-Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Arielle Woznica
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - William Campodonico-Burnett
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States.,Institute of Molecular Biology, University of Oregon, Eugene, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, United States
| | - Nicole King
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | | | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States.,Institute of Molecular Biology, University of Oregon, Eugene, United States
| |
Collapse
|
203
|
Abstract
As spindle positioning during mitosis is a highly dynamic process, live cell imaging is a key technology when studying its underlying mechanisms. Recent advances in imaging tools and microscope systems have enabled us to simultaneously visualize several cellular components in living cells with high temporal and spatial resolution. By combining live cell imaging with functional assays such as RNAi-based depletions, drug inhibition, and micropatterned coverslips, novel and unexpected mechanisms of spindle positioning have been uncovered. In this chapter, I present methods for analyzing the dynamics of spindle positioning in cultured cells.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Room 227 Building A, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
204
|
Pham K, Shimoni R, Charnley M, Ludford-Menting MJ, Hawkins ED, Ramsbottom K, Oliaro J, Izon D, Ting SB, Reynolds J, Lythe G, Molina-Paris C, Melichar H, Robey E, Humbert PO, Gu M, Russell SM. Asymmetric cell division during T cell development controls downstream fate. J Cell Biol 2015; 210:933-50. [PMID: 26370500 PMCID: PMC4576854 DOI: 10.1083/jcb.201502053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T cell precursors undergo asymmetric cell division after T cell receptor genomic recombination, with stromal cell cues controlling the differential inheritance of fate determinants Numb and α-Adaptin by the daughters of a dividing DN3a T cell precursor. During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal.
Collapse
Affiliation(s)
- Kim Pham
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Raz Shimoni
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mirren Charnley
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Industrial Research Institute Swinburne, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mandy J Ludford-Menting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Edwin D Hawkins
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Kelly Ramsbottom
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Jane Oliaro
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Izon
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stephen B Ting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joseph Reynolds
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Carmen Molina-Paris
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Heather Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Ellen Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Patrick O Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Min Gu
- Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Sarah M Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
205
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
206
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
207
|
High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division. Biointerphases 2015; 10:041008. [PMID: 26652706 DOI: 10.1116/1.4936589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Retraction fibers (RFs) determine orientation of the cell division axis and guide the spreading of daughter cells. Long and unidirectional RFs, which are especially apparent during mitosis of cells in three-dimensional (3D) environments, enable improved control over cell fate, following division. However, 3D gel environments lack the cues necessary for predetermining the orientation of RFs to direct tissue architecture. While patterning of focal adhesion regions by microcontact printing can determine orientation of the RFs through enhancing focal adhesion numbers along particular directions, the RFs remain short due to the two-dimensional culture environment. Herein, the authors demonstrate that nanoimprinted grooves of polylactic acid glycolic acid (PLGA) with a high aspect ratio (A.R. of 2.0) can provide the cues necessary to control the direction of RFs, as well as enable the maintenance of long and unidirectional RFs as observed within 3D cultures, while the same is not possible with PLGA grooves of lower A.R. (1.0 or lower). Based on enhanced levels of contact guidance of premitotic fibroblast protrusions at high A.R. grooves and deeper levels of focal adhesion due to filopodia extensions into these grooves, it is suggested that submicron (800 nm width) PLGA grooves with A.R. of 2 are capable of supporting mechanical forces from cell protrusions to a greater depth, thereby enabling the maintenance of the protrusions as long and unidirectional RFs during cell division. Given the scalability and versatility of nanoimprint techniques, the authors envision a platform for designing nanostructures to direct tissue regeneration and developmental biology.
Collapse
|
208
|
Distinct modes of mitotic spindle orientation align cells in the dorsal midline of ascidian embryos. Dev Biol 2015; 408:66-78. [DOI: 10.1016/j.ydbio.2015.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
|
209
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
210
|
Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun 2015; 6:8872. [PMID: 26602832 PMCID: PMC4696517 DOI: 10.1038/ncomms9872] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.
Collapse
|
211
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
212
|
Corrigan AM, Shrestha R, Draviam VM, Donald AM. Modeling of Noisy Spindle Dynamics Reveals Separable Contributions to Achieving Correct Orientation. Biophys J 2015; 109:1398-409. [PMID: 26445440 PMCID: PMC4601064 DOI: 10.1016/j.bpj.2015.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022] Open
Abstract
The mechanisms by which the mammalian mitotic spindle is guided to a predefined orientation through microtubule-cortex interactions have recently received considerable interest, but there has been no dynamic model that describes spindle movements toward the preferred axis in human cells. Here, we develop a dynamic model based on stochastic activity of cues anisotropically positioned around the cortex of the mitotic cell and we show that the mitotic spindle does not reach equilibrium before chromosome segregation. Our model successfully captures the characteristic experimental behavior of noisy spindle rotation dynamics in human epithelial cells, including a weak underlying bias in the direction of rotation, suppression of motion close to the alignment axis, and the effect of the aspect ratio of the interphase cell shape in defining the final alignment axis. We predict that the force exerted per cue has a value that minimizes the deviation of the spindle from the predefined axis. The model has allowed us to systematically explore the parameter space around experimentally relevant configurations, and predict the mechanistic function of a number of established regulators of spindle orientation, highlighting how physical modeling of a noisy system can lead to functional biological understanding. We provide key insights into measurable parameters in live cells that can help distinguish between mechanisms of microtubule and cortical-cue interactions that jointly control the final orientation of the spindle.
Collapse
Affiliation(s)
- Adam M Corrigan
- Department of Genetics, University of Cambridge, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, UK
| | | | | | - Athene M Donald
- Cavendish Laboratory, Department of Physics, University of Cambridge, UK.
| |
Collapse
|
213
|
Mitotic spindle orientation: semaphorin-plexin signaling flags the way. Dev Cell 2015; 33:243-4. [PMID: 25942620 DOI: 10.1016/j.devcel.2015.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular signals and corresponding receptors that align the mitotic spindle of symmetrically dividing cells within an epithelial sheet are largely unknown. In this issue of Developmental Cell, Xia et al. (2015) identify semaphorin-plexin signaling as a regulator of spindle orientation critical for kidney development and repair.
Collapse
|
214
|
Baffet AD, Carabalona A, Dantas TJ, Doobin DD, Hu DJ, Vallee RB. Cellular and subcellular imaging of motor protein-based behavior in embryonic rat brain. Methods Cell Biol 2015; 131:349-63. [PMID: 26794523 DOI: 10.1016/bs.mcb.2015.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Development of the cerebral cortex is a very dynamic process, involving a series of complex morphogenetic events. Following division of progenitor cells in the ventricular zone, neurons undergo a series of morphological changes and migrate outward toward the cortical plate, where they differentiate and integrate into functional circuits. Errors at several of stages during neurogenesis and migration cause a variety of severe cortical malformations. A number of disease genes encode factors associated with the cytoskeleton, which plays a crucial role throughout cortical development. Methods for regulating gene expression coupled with imaging of subcellular structures have provided important insight into the mechanisms governing normal and abnormal brain development. We describe here a series of protocols for imaging motor protein-dependent processes in real time in the developing rat brain.
Collapse
Affiliation(s)
- Alexandre D Baffet
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Aurélie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - David D Doobin
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Daniel J Hu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
215
|
Matsuzaki F, Shitamukai A. Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development. Cold Spring Harb Perspect Biol 2015; 7:a015719. [PMID: 26330517 DOI: 10.1101/cshperspect.a015719] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During mammalian brain development, neural progenitor cells undergo symmetric proliferative divisions followed by asymmetric neurogenic divisions. The division mode of these self-renewing progenitors, together with the cell fate of their progeny, plays critical roles in determining the number of neurons and, ultimately, the size of the adult brain. In the past decade, remarkable progress has been made toward identifying various types of neuronal progenitors. Recent technological advances in live imaging and genetic manipulation have enabled us to link dynamic cell biological events to the molecular mechanisms that control the asymmetric divisions of self-renewing progenitors and have provided a fresh perspective on the modes of division of these progenitors. In addition, comparison of progenitor repertoires between species has provided insight into the expansion and the development of the complexity of the brain during mammalian evolution.
Collapse
Affiliation(s)
- Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
216
|
Tuncay H, Brinkmann BF, Steinbacher T, Schürmann A, Gerke V, Iden S, Ebnet K. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun 2015; 6:8128. [PMID: 26306570 PMCID: PMC4560831 DOI: 10.1038/ncomms9128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 01/08/2023] Open
Abstract
Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein–dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein–dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway. Polarized epithelial cells orient their mitotic spindles in the plane of the sheet but the role of cell adhesion molecules in this process is poorly understood. Here Tuncay et al. show that JAM-A regulates spindle orientation by creating a gradient of PtdIns(3,4,5)P3, regulating cortical actin assembly and localizing dynactin to the cell cortex.
Collapse
Affiliation(s)
- Hüseyin Tuncay
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Benjamin F Brinkmann
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.,Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48149 Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Annika Schürmann
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48149 Münster, Germany
| | - Sandra Iden
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group 'Cell Adhesion and Cell Polarity', University of Münster, 48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, 48149 Münster, Germany.,Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48149 Münster, Germany
| |
Collapse
|
217
|
Araya C, Ward LC, Girdler GC, Miranda M. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis. Dev Dyn 2015; 245:197-208. [PMID: 26177834 DOI: 10.1002/dvdy.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022] Open
Abstract
The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,UACh Program in Cellular Dynamics and Microscopy.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), UACh
| | - Laura C Ward
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences, University Walk, Bristol, United Kingdom
| | - Gemma C Girdler
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Miguel Miranda
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile
| |
Collapse
|
218
|
Srivastava D, Chakrabarti O. Ubiquitin in regulation of spindle apparatus and its positioning: implications in development and disease. Biochem Cell Biol 2015; 93:273-81. [PMID: 26110206 DOI: 10.1139/bcb-2015-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging data implicates ubiquitination, a post-translational modification, in regulating essential cellular events, one of them being mitosis. In this review we discuss how various E3 ligases modulate the cortical proteins such as dynein, LGN, NuMa, Gα, along with polymerization, stability, and integrity of spindles. These are responsible for regulating symmetric cell division. Some of the ubiquitin ligases regulating these proteins include PARK2, BRCA1/BARD1, MGRN1, SMURF2, and SIAH1; these play a pivotal role in the correct positioning of the spindle apparatus. A direct connection between developmental or various pathological disorders and the ubiquitination mediated cortical regulation is rather speculative, though deletions or mutations in them lead to developmental disorders and disease conditions.
Collapse
Affiliation(s)
- Devika Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal 700064, India
| |
Collapse
|
219
|
Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds. Dev Cell 2015; 34:323-37. [PMID: 26235048 DOI: 10.1016/j.devcel.2015.06.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/08/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022]
Abstract
Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles.
Collapse
|
220
|
Kumar M, Pushpa K, Mylavarapu SVS. Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos. IUBMB Life 2015; 67:575-87. [PMID: 26173082 PMCID: PMC5937677 DOI: 10.1002/iub.1404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/12/2022]
Abstract
The unicellular metazoan zygote undergoes a series of cell divisions that are central to its development into an embryo. Differentiation of embryonic cells leads eventually to the development of a functional adult. Fate specification of pluripotent embryonic cells occurs during the early embryonic cleavage divisions in several animals. Early development is characterized by well-known stages of embryogenesis documented across animals--morulation, blastulation, and morphogenetic processes such as gastrulation, all of which contribute to differentiation and tissue specification. Despite this broad conservation, there exist clearly discernible morphological and functional differences across early embryonic stages in metazoans. Variations in the mitotic mechanisms of early embryonic cell divisions play key roles in governing these gross differences that eventually encode developmental patterns. In this review, we discuss molecular mechanisms of both karyokinesis (nuclear division) and cytokinesis (cytoplasmic separation) during early embryonic divisions. We outline the broadly conserved molecular pathways that operate in these two stages in early embryonic mitoses. In addition, we highlight mechanistic variations in these two stages across different organisms. We finally discuss outstanding questions of interest, answers to which would illuminate the role of divergent mitotic mechanisms in shaping early animal embryogenesis.
Collapse
Affiliation(s)
- Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sivaram V. S. Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
221
|
Yan M, Chu L, Qin B, Wang Z, Liu X, Jin C, Zhang G, Gomez M, Hergovich A, Chen Z, He P, Gao X, Yao X. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis. Sci Rep 2015; 5:10449. [PMID: 26057687 PMCID: PMC4460818 DOI: 10.1038/srep10449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids which depends on correct position of mitotic spindle relative to membrane cortex. Although recent work has identified the role of PLK1 in spindle orientation, the mechanisms underlying PLK1 signaling in spindle positioning and orientation have not been fully illustrated. Here, we identified a conserved signaling axis in which NDR1 kinase activity is regulated by PLK1 in mitosis. PLK1 phosphorylates NDR1 at three putative threonine residues (T7, T183 and T407) at mitotic entry, which elicits PLK1-dependent suppression of NDR1 activity and ensures correct spindle orientation in mitosis. Importantly, persistent expression of non-phosphorylatable NDR1 mutant perturbs spindle orientation. Mechanistically, PLK1-mediated phosphorylation protects the binding of Mob1 to NDR1 and subsequent NDR1 activation. These findings define a conserved signaling axis that integrates dynamic kinetochore-microtubule interaction and spindle orientation control to genomic stability maintenance.
Collapse
Affiliation(s)
- Maomao Yan
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Lingluo Chu
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
| | - Bo Qin
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zhikai Wang
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Changjiang Jin
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
| | - Guanglan Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China
| | - Marta Gomez
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | | | - Zhengjun Chen
- Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | - Ping He
- Guangzhou Women and Children’s Medical Center, Guangzhou 510623, China
| | - Xinjiao Gao
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
| | - Xuebiao Yao
- Anhui Key Laboratory of Cellular Dynamics & Chemical Biology and the University of Science and Technology of China, Hefei 230026, China
- Molecular Imaging Center, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
222
|
Nakajima YI, Gibson MC. Epithelial cell division: Aurora kicks Lgl to the cytoplasmic curb. Curr Biol 2015; 25:R43-5. [PMID: 25562301 DOI: 10.1016/j.cub.2014.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila neoplastic tumor suppressor Lethal giant larvae (Lgl) regulates apico-basal polarity in epithelia as well as the asymmetric segregation of cell fate in neural progenitors. Two new studies uncover a new facet of its regulation in epithelia, where Aurora-dependent phosphorylation triggers Lgl dissociation from the basolateral cortex to facilitate planar orientation of the mitotic spindle.
Collapse
Affiliation(s)
- Yu-ichiro Nakajima
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
223
|
Kiyomitsu T. Mechanisms of daughter cell-size control during cell division. Trends Cell Biol 2015; 25:286-95. [DOI: 10.1016/j.tcb.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
224
|
Xia J, Swiercz JM, Bañón-Rodríguez I, Matković I, Federico G, Sun T, Franz T, Brakebusch CH, Kumanogoh A, Friedel RH, Martín-Belmonte F, Gröne HJ, Offermanns S, Worzfeld T. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair. Dev Cell 2015; 33:299-313. [PMID: 25892012 DOI: 10.1016/j.devcel.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023]
Abstract
Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central regulatory mechanism of mitotic spindle orientation necessary for the alignment of epithelial cell divisions with the epithelial plane.
Collapse
Affiliation(s)
- Jingjing Xia
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | | | - Ivana Matković
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35043 Marburg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tianliang Sun
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Timo Franz
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cord H Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University, Osaka 565-0871, Japan
| | - Roland H Friedel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Medical Faculty, University of Frankfurt, 60590 Frankfurt, Germany
| | - Thomas Worzfeld
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, 35043 Marburg, Germany.
| |
Collapse
|
225
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
226
|
Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, Pierani A, Falk J, Moret F, Castellani V. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun 2015; 6:6366. [PMID: 25721514 DOI: 10.1038/ncomms7366] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/22/2015] [Indexed: 01/05/2023] Open
Abstract
The spatial orientation of cell divisions is fundamental for tissue architecture and homeostasis. Here we analysed neuroepithelial progenitors in the developing mouse spinal cord to determine whether extracellular signals orient the mitotic spindle. We report that Semaphorin3B (Sema3B) released from the floor plate and the nascent choroid plexus in the cerebrospinal fluid (CSF) controls progenitor division orientation. Delivery of exogenous Sema3B to neural progenitors after neural tube opening in living embryos promotes planar orientation of their division. Preventing progenitor access to cues present in the CSF by genetically engineered canal obstruction affects the proportion of planar and oblique divisions. Sema3B knockout phenocopies the loss of progenitor access to the CSF. Sema3B binds to the apical surface of mitotic progenitors and exerts its effect via Neuropilin receptors, GSK3 activation and subsequent inhibition of the microtubule stabilizer CRMP2. Thus, extrinsic control mediated by the Semaphorin signalling orients progenitor divisions in neurogenic zones.
Collapse
Affiliation(s)
- Elise Arbeille
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Florie Reynaud
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Isabelle Sanyas
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Muriel Bozon
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Karine Kindbeiter
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Frédéric Causeret
- CNRS UMR 7592, Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julien Falk
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Frédéric Moret
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Valérie Castellani
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| |
Collapse
|
227
|
PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol Cell Biol 2015; 35:1197-208. [PMID: 25605337 DOI: 10.1128/mcb.01017-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Integrin-dependent cell-extracellular matrix (ECM) adhesion is a determinant of spindle orientation. However, the signaling pathways that couple integrins to spindle orientation remain elusive. Here, we show that PCTAIRE-1 kinase (PCTK1), a member of the cyclin-dependent kinases (CDKs) whose function is poorly characterized, plays an essential role in this process. PCTK1 regulates spindle orientation in a kinase-dependent manner. Phosphoproteomic analysis together with an RNA interference screen revealed that PCTK1 regulates spindle orientation through phosphorylation of Ser83 on KAP0, a regulatory subunit of protein kinase A (PKA). This phosphorylation is dispensable for KAP0 dimerization and for PKA binding but is necessary for its interaction with myosin X, a regulator of spindle orientation. KAP0 binds to the FERM domain of myosin X and enhances the association of myosin X-FERM with β1 integrin. This interaction between myosin X-FERM and β1 integrin appeared to be crucial for spindle orientation control. We propose that PCTK1-KAP0-myosin X-β1 integrin is a functional module providing a link between ECM and the actin cytoskeleton in the ECM-dependent control of spindle orientation.
Collapse
|
228
|
Kask K, Ruisu K, Tikker L, Karis K, Saare M, Meier R, Karis A, Tõnissoo T, Pooga M. Deletion of RIC8A in neural precursor cells leads to altered neurogenesis and neonatal lethality of mouse. Dev Neurobiol 2015; 75:984-1002. [DOI: 10.1002/dneu.22264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Keiu Kask
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Katrin Ruisu
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Laura Tikker
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Kirstin Karis
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Merly Saare
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Riho Meier
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Alar Karis
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Tambet Tõnissoo
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| | - Margus Pooga
- Department of Developmental Biology; Institute of Molecular and Cell Biology, University of Tartu; 23 Riia St., Tartu 51010 Estonia
| |
Collapse
|
229
|
Azzarelli R, Kerloch T, Pacary E. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Front Cell Neurosci 2015; 8:445. [PMID: 25610373 PMCID: PMC4285737 DOI: 10.3389/fncel.2014.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022] Open
Abstract
The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge Cambridge, UK
| | - Thomas Kerloch
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| |
Collapse
|
230
|
Abstract
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.
Collapse
Affiliation(s)
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110 Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160
| |
Collapse
|
231
|
Affiliation(s)
- Shen Yin
- College of Animal Science and Technology; Qingdao Agricultural University; Qingdao, China
| | - Qing-Yuan Sun
- College of Animal Science and Technology; Qingdao Agricultural University; Qingdao, China
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
232
|
Garcia JD, Dewey EB, Johnston CA. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila. PLoS One 2014; 9:e114235. [PMID: 25461409 PMCID: PMC4252473 DOI: 10.1371/journal.pone.0114235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh), a key regulator of planar cell polarity, and Discs large (Dlg), a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced “I3-insert” of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH). These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.
Collapse
Affiliation(s)
- Joshua D. Garcia
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Evan B. Dewey
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Christopher A. Johnston
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
233
|
Saxena A, Denholm B, Bunt S, Bischoff M, VijayRaghavan K, Skaer H. Epidermal growth factor signalling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol 2014; 12:e1002013. [PMID: 25460353 PMCID: PMC4251826 DOI: 10.1371/journal.pbio.1002013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022] Open
Abstract
A study in fruit flies shows that during the elongation of embryonic renal tubules, graded signalling provides axial information for polarized myosin pulses that shorten cells circumferentially, driving intercalation of the cells and elongation of the tubule. Most epithelial tubes arise as small buds and elongate by regulated morphogenetic processes including oriented cell division, cell rearrangements, and changes in cell shape. Through live analysis of Drosophila renal tubule morphogenesis we show that tissue elongation results from polarised cell intercalations around the tubule circumference, producing convergent-extension tissue movements. Using genetic techniques, we demonstrate that the vector of cell movement is regulated by localised epidermal growth factor (EGF) signalling from the distally placed tip cell lineage, which sets up a distal-to-proximal gradient of pathway activation to planar polarise cells, without the involvement for PCP gene activity. Time-lapse imaging at subcellular resolution shows that the acquisition of planar polarity leads to asymmetric pulsatile Myosin II accumulation in the basal, proximal cortex of tubule cells, resulting in repeated, transient shortening of their circumferential length. This repeated bias in the polarity of cell contraction allows cells to move relative to each other, leading to a reduction in cell number around the lumen and an increase in tubule length. Physiological analysis demonstrates that animals whose tubules fail to elongate exhibit abnormal excretory function, defective osmoregulation, and lethality. Many of the tissues in our bodies are built up around complex arrays of elongated cellular tubes, which permit the entry, exit, and transport of essential molecules such as oxygen, glucose, and water. These tubes often arise as short buds, which elongate dramatically as the organ grows. We sought to understand the mechanisms that govern such transformations of shape using the fly renal tubule as a model. We find that elongation of this tissue is predominantly driven by cell rearrangement. Cells move around the circumference of the tubule, intercalating with each other so that the cell number around the lumen reduces, while increasing along the length of the tube. Our next question was how cells sense the direction in which they should move. We show that cells orient their position in the tissue by reading a signal sent out by a specific pair of cells at the tip of each tube. Cells use this directional information to make polarised movements through the asymmetric activity of the cell's contractile machinery. We find that the activity of myosin—the motor protein that regulates contraction—is pulsatile and polarised within the cell. This activity shortens the cells' circumferential lengths, so that cells move past each other around the tube circumference, thereby intercalating and producing tube elongation. We go on to show that excretory physiology is severely impaired when elongation fails, underlining the importance of sculpting organs with appropriate dimensions.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Bunt
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marcus Bischoff
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; School of Biology, St Andrews, Scotland, United Kingdom
| | | | - Helen Skaer
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
234
|
Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:832-43. [PMID: 25449648 DOI: 10.1016/j.bbalip.2014.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P₂production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P₂hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P₂have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
235
|
Dejima K, Kang S, Mitani S, Cosman PC, Chisholm AD. Syndecan defines precise spindle orientation by modulating Wnt signaling in C. elegans. Development 2014; 141:4354-65. [PMID: 25344071 DOI: 10.1242/dev.113266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signals orient mitotic spindles in development, but it remains unclear how Wnt signaling is spatially controlled to achieve precise spindle orientation. Here, we show that C. elegans syndecan (SDN-1) is required for precise orientation of a mitotic spindle in response to a Wnt cue. We find that SDN-1 is the predominant heparan sulfate (HS) proteoglycan in the early C. elegans embryo, and that loss of HS biosynthesis or of the SDN-1 core protein results in misorientation of the spindle of the ABar blastomere. The ABar and EMS spindles both reorient in response to Wnt signals, but only ABar spindle reorientation is dependent on a new cell contact and on HS and SDN-1. SDN-1 transiently accumulates on the ABar surface as it contacts C, and is required for local concentration of Dishevelled (MIG-5) in the ABar cortex adjacent to C. These findings establish a new role for syndecan in Wnt-dependent spindle orientation.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sukryool Kang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037-0407, USA
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Pamela C Cosman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037-0407, USA
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
236
|
Markus SM, Lee WL. Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation. BIOARCHITECTURE 2014; 1:209-215. [PMID: 22754610 PMCID: PMC3384571 DOI: 10.4161/bioa.18103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic spindle with the site of cell division to ensure normal distribution of cell fate determinants and equal sequestration of genetic material into the two daughter cells. Emerging data from diverse model systems have led to the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex signal for the recruitment of NuMA and the minus-end directed MT motor cytoplasmic dynein.1 The NuMA/dynein complex is believed to connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle, but how this connection is achieved faithfully is unclear. Do astral MTs need to search for and then capture cortical NuMA/dynein? How does dynein capture the astral MTs emanating from the correct spindle pole? Recently, using the classical model of asymmetric cell division—budding yeast S. cerevisiae—we successfully demonstrated that astral MTs assume an active role in cortical dynein targeting, in that astral MTs utilize their distal plus ends to deliver dynein to the daughter cell cortex, the site where dynein activity is needed to perform its spindle alignment function. This observation introduced the novel idea that, during mitotic spindle orientation processes, polarity cues at the cell cortex may actually signal to prime the cortical receptors for MT-dependent dynein delivery. This model is consistent with the observation that dynein/dynactin accumulate prominently at the astral MT plus ends during metaphase in a wide range of cultured mammalian cells.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biology; University of Massachusetts Amherst; Amherst, MA USA
| | | |
Collapse
|
237
|
Mochizuki T, Suzuki S, Masai I. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium. Biol Open 2014; 3:982-94. [PMID: 25260917 PMCID: PMC4197447 DOI: 10.1242/bio.20149563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior-posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.
Collapse
Affiliation(s)
- Toshiaki Mochizuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Shohei Suzuki
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
238
|
Moorhouse KS, Burgess DR. How to be at the right place at the right time: the importance of spindle positioning in embryos. Mol Reprod Dev 2014; 81:884-95. [PMID: 25258000 DOI: 10.1002/mrd.22418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
Collapse
|
239
|
Mutant huntingtin affects cortical progenitor cell division and development of the mouse neocortex. J Neurosci 2014; 34:10034-40. [PMID: 25057205 DOI: 10.1523/jneurosci.0715-14.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A polyglutamine expansion in huntingtin (HTT) causes the specific death of adult neurons in Huntington's disease (HD). Most studies have thus focused on mutant HTT (mHTT) toxicity in adulthood, and its developmental effects have been largely overlooked. We found that mHTT caused mitotic spindle misorientation in cultured cells by altering the localization of dynein, NuMA, and the p150(Glued) subunit of dynactin to the spindle pole and cell cortex and of CLIP170 and p150(Glued) to microtubule plus-ends. mHTT also affected spindle orientation in dividing mouse cortical progenitors, altering the thickness of the developing cortex. The serine/threonine kinase Akt, which regulates HTT function, rescued the spindle misorientation caused by the mHTT, by serine 421 (S421) phosphorylation, in cultured cells and in mice. Thus, cortical development is affected in HD, and this early defect can be rescued by HTT phosphorylation at S421.
Collapse
|
240
|
Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev Cell 2014; 30:731-45. [PMID: 25241934 DOI: 10.1016/j.devcel.2014.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/01/2014] [Accepted: 08/07/2014] [Indexed: 12/14/2022]
Abstract
Mitotic spindles are critical for accurate chromosome segregation. Centrosomes, the primary microtubule nucleating centers of animal cells, play key roles in forming and orienting mitotic spindles. However, the survival of Drosophila without centrosomes suggested they are dispensable in somatic cells, challenging the canonical view. We used fly wing disc epithelia as a model to resolve these conflicting hypotheses, revealing that centrosomes play vital roles in spindle assembly, function, and orientation. Many acentrosomal cells exhibit prolonged spindle assembly, chromosome missegregation, DNA damage, misoriented divisions, and eventual apoptosis. We found that multiple mechanisms buffer the effects of centrosome loss, including alternative microtubule nucleation pathways and the spindle assembly checkpoint. Apoptosis of acentrosomal cells is mediated by JNK signaling, which also drives compensatory proliferation to maintain tissue integrity and viability. These data reveal the importance of centrosomes in fly epithelia and demonstrate the robust compensatory mechanisms at the cellular and organismal level.
Collapse
|
241
|
Sebbagh M, Borg JP. Insight into planar cell polarity. Exp Cell Res 2014; 328:284-95. [PMID: 25236701 DOI: 10.1016/j.yexcr.2014.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022]
Abstract
Planar cell polarity or PCP refers to a uniform cellular organization within the plan, typically orthogonal to the apico-basal polarity axis. As such, PCP provides directional cues that control and coordinate the integration of cells in tissues to build a living organism. Although dysfunctions of this fundamental cellular process have been convincingly linked to the etiology of various pathologies such as cancer and developmental defects, the molecular mechanisms governing its establishment and maintenance remain poorly understood. Here, we review some aspects of invertebrate and vertebrate PCPs, highlighting similarities and differences, and discuss the prevalence of the non-canonical Wnt signaling as a central PCP pathway, as well as recent findings on the importance of cell contractility and cilia as promising avenues of investigation.
Collapse
Affiliation(s)
- Michael Sebbagh
- CRCM, "Equipe labellisée Ligue Contre le Cancer", Inserm, U1068, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009, France; Aix-Marseille University, F-13284 Marseille, France.
| | - Jean-Paul Borg
- CRCM, "Equipe labellisée Ligue Contre le Cancer", Inserm, U1068, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; CNRS, UMR7258, Marseille F-13009, France; Aix-Marseille University, F-13284 Marseille, France.
| |
Collapse
|
242
|
Saadaoui M, Machicoane M, di Pietro F, Etoc F, Echard A, Morin X. Dlg1 controls planar spindle orientation in the neuroepithelium through direct interaction with LGN. ACTA ACUST UNITED AC 2014; 206:707-17. [PMID: 25202028 PMCID: PMC4164945 DOI: 10.1083/jcb.201405060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dlg1 recruits LGN to the cortex of cells in the chick neuroepithelium and may provide instructive cues that drive planar spindle orientation. Oriented cell divisions are necessary for the development of epithelial structures. Mitotic spindle orientation requires the precise localization of force generators at the cell cortex via the evolutionarily conserved LGN complex. However, polarity cues acting upstream of this complex in vivo in the vertebrate epithelia remain unknown. In this paper, we show that Dlg1 is localized at the basolateral cell cortex during mitosis and is necessary for planar spindle orientation in the chick neuroepithelium. Live imaging revealed that Dlg1 is required for directed spindle movements during metaphase. Mechanistically, we show that direct interaction between Dlg1 and LGN promotes cortical localization of the LGN complex. Furthermore, in human cells dividing on adhesive micropatterns, homogenously localized Dlg1 recruited LGN to the mitotic cortex and was also necessary for proper spindle orientation. We propose that Dlg1 acts primarily to recruit LGN to the cortex and that Dlg1 localization may additionally provide instructive cues for spindle orientation.
Collapse
Affiliation(s)
- Mehdi Saadaoui
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, F-75005 Paris, France Institut National de la Santé et de la Recherche Medicale, U1024, F-75005 Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France
| | - Mickaël Machicoane
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, F-75015 Paris, France Centre National de la Recherche Scientifique, Unité de Recherche Associée 2582, F-75015 Paris, France Cellule Pasteur-Université Pierre et Marie Curie, Université Pierre et Marie Curie, F-75015 Paris, France
| | - Florencia di Pietro
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, F-75005 Paris, France Institut National de la Santé et de la Recherche Medicale, U1024, F-75005 Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France Institute of Doctoral Studies (IFD), Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, F-75252 Paris, France
| | - Fred Etoc
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, F-75005 Paris, France Institut National de la Santé et de la Recherche Medicale, U1024, F-75005 Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, F-75015 Paris, France Centre National de la Recherche Scientifique, Unité de Recherche Associée 2582, F-75015 Paris, France
| | - Xavier Morin
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, F-75005 Paris, France Institut National de la Santé et de la Recherche Medicale, U1024, F-75005 Paris, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, F-75005 Paris, France
| |
Collapse
|
243
|
Tuoc TC, Pavlakis E, Tylkowski MA, Stoykova A. Control of cerebral size and thickness. Cell Mol Life Sci 2014; 71:3199-218. [PMID: 24614969 PMCID: PMC11113230 DOI: 10.1007/s00018-014-1590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
Abstract
The mammalian neocortex is a sheet of cells covering the cerebrum that provides the structural basis for the perception of sensory inputs, motor output responses, cognitive function, and mental capacity of primates. Recent discoveries promote the concept that increased cortical surface size and thickness in phylogenetically advanced species is a result of an increased generation of neurons, a process that underlies higher cognitive and intellectual performance in higher primates and humans. Here, we review some of the advances in the field, focusing on the diversity of neocortical progenitors in different species and the cellular mechanisms of neurogenesis. We discuss recent views on intrinsic and extrinsic molecular determinants, including the role of epigenetic chromatin modifiers and microRNA, in the control of neuronal output in developing cortex and in the establishment of normal cortical architecture.
Collapse
Affiliation(s)
- Tran Cong Tuoc
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Kreuzbergring 40, 37075, Göttingen, Germany,
| | | | | | | |
Collapse
|
244
|
Fischer-Friedrich E, Hyman AA, Jülicher F, Müller DJ, Helenius J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci Rep 2014; 4:6213. [PMID: 25169063 PMCID: PMC4148660 DOI: 10.1038/srep06213] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 01/11/2023] Open
Abstract
During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.
Collapse
Affiliation(s)
- Elisabeth Fischer-Friedrich
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| |
Collapse
|
245
|
Vied CM, Freudenberg F, Wang Y, Raposo AASF, Feng D, Nowakowski RS. A multi-resource data integration approach: identification of candidate genes regulating cell proliferation during neocortical development. Front Neurosci 2014; 8:257. [PMID: 25191221 PMCID: PMC4139594 DOI: 10.3389/fnins.2014.00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022] Open
Abstract
Neurons of the mammalian neocortex are produced by proliferating cells located in the ventricular zone (VZ) lining the lateral ventricles. This is a complex and sequential process, requiring precise control of cell cycle progression, fate commitment and differentiation. We have analyzed publicly available databases from mouse and human to identify candidate genes that are potentially involved in regulating early neocortical development and neurogenesis. We used a mouse in situ hybridization dataset (The Allen Institute for Brain Science) to identify 13 genes (Cdon, Celsr1, Dbi, E2f5, Eomes, Hmgn2, Neurog2, Notch1, Pcnt, Sox3, Ssrp1, Tead2, Tgif2) with high correlation of expression in the proliferating cells of the VZ of the neocortex at early stages of development (E15.5). We generated a similar human brain network using microarray and RNA-seq data (BrainSpan Atlas) and identified 407 genes with high expression in the developing human VZ and subventricular zone (SVZ) at 8–9 post-conception weeks. Seven of the human genes were also present in the mouse VZ network. The human and mouse networks were extended using available genetic and proteomic datasets through GeneMANIA. A gene ontology search of the mouse and human networks indicated that many of the genes are involved in the cell cycle, DNA replication, mitosis and transcriptional regulation. The reported involvement of Cdon, Celsr1, Dbi, Eomes, Neurog2, Notch1, Pcnt, Sox3, Tead2, and Tgif2 in neural development or diseases resulting from the disruption of neurogenesis validates these candidate genes. Taken together, our knowledge-based discovery method has validated the involvement of many genes already known to be involved in neocortical development and extended the potential number of genes by 100's, many of which are involved in functions related to cell proliferation but others of which are potential candidates for involvement in the regulation of neocortical development.
Collapse
Affiliation(s)
- Cynthia M Vied
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt Frankfurt, Germany
| | - Yuting Wang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore Singapore, Singapore
| | | | - David Feng
- Allen Institute for Brain Science Seattle, WA, USA
| | - Richard S Nowakowski
- Department of Biomedical Sciences, College of Medicine, Florida State University Tallahassee, FL, USA
| |
Collapse
|
246
|
Machicoane M, de Frutos CA, Fink J, Rocancourt M, Lombardi Y, Garel S, Piel M, Echard A. SLK-dependent activation of ERMs controls LGN-NuMA localization and spindle orientation. ACTA ACUST UNITED AC 2014; 205:791-9. [PMID: 24958772 PMCID: PMC4068135 DOI: 10.1083/jcb.201401049] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ERM activation by SLK kinase promotes polarized association at the mitotic cortex of LGN and NuMA, a necessary step in proper spindle orientation. Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.
Collapse
Affiliation(s)
- Mickael Machicoane
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252 Paris, France
| | - Cristina A de Frutos
- Institut de Biologie de L'Ecole Normale Supérieure, Ecole Normale Supérieure, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Jenny Fink
- Systems Cell Biology of Cell Polarity and Cell Division Laboratory, Institut Curie, 75005 Paris, France Centre National de la Recherche Scientifique UMR144, 75005 Paris, France
| | - Murielle Rocancourt
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France
| | - Yannis Lombardi
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France
| | - Sonia Garel
- Institut de Biologie de L'Ecole Normale Supérieure, Ecole Normale Supérieure, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale, U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Matthieu Piel
- Systems Cell Biology of Cell Polarity and Cell Division Laboratory, Institut Curie, 75005 Paris, France Centre National de la Recherche Scientifique UMR144, 75005 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France Centre National de la Recherche Scientifique URA2582, 75015 Paris, France
| |
Collapse
|
247
|
Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate. Exp Cell Res 2014; 328:296-302. [PMID: 25128813 DOI: 10.1016/j.yexcr.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.
Collapse
|
248
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
249
|
Nestor-Bergmann A, Goddard G, Woolner S. Force and the spindle: mechanical cues in mitotic spindle orientation. Semin Cell Dev Biol 2014; 34:133-9. [PMID: 25080021 PMCID: PMC4169662 DOI: 10.1016/j.semcdb.2014.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts.
Collapse
Affiliation(s)
| | - Georgina Goddard
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Sarah Woolner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
250
|
Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation. Biosci Rep 2014; 34:BSR20140008. [PMID: 24965943 PMCID: PMC4114065 DOI: 10.1042/bsr20140008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers.
Collapse
|