201
|
Chevalier NR, de Witte TM, Cornelissen AJM, Dufour S, Proux-Gillardeaux V, Asnacios A. Mechanical Tension Drives Elongational Growth of the Embryonic Gut. Sci Rep 2018; 8:5995. [PMID: 29662083 PMCID: PMC5902462 DOI: 10.1038/s41598-018-24368-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
During embryonic development, most organs are in a state of mechanical compression because they grow in a confined and limited amount of space within the embryo’s body; the early gut is an exception because it physiologically herniates out of the coelom. We demonstrate here that physiological hernia is caused by a tensile force transmitted by the vitelline duct on the early gut loop at its attachment point at the umbilicus. We quantify this tensile force and show that applying tension for 48 h induces stress-dependent elongational growth of the embryonic gut in culture, with an average 90% length increase (max: 200%), 65% volume increase (max: 160%), 50% dry mass increase (max: 100%), and 165% cell number increase (max: 300%); this mechanical cue is required for organ growth as guts not subject to tension do not grow. We demonstrate that growth results from increased cell proliferation when tension is applied. These results outline the essential role played by mechanical forces in shaping and driving the proliferation of embryonic organs.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| | - Tinke-Marie de Witte
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Annemiek J M Cornelissen
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - Sylvie Dufour
- INSERM, U955, Equipe 06, 94000, Créteil, France.,Université Paris Est, Faculté de médecine, 94000, Créteil, France
| | | | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| |
Collapse
|
202
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
203
|
Gopinath M, Di Liddo R, Marotta F, Murugesan R, Banerjee A, Sriramulu S, Jothimani G, Subramaniam VD, Narasimhan S, Priya K S, Sun XF, Pathak S. Role of Hippo Pathway Effector Tafazzin Protein in Maintaining Stemness of Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSC). Int J Hematol Oncol Stem Cell Res 2018; 12:153-165. [PMID: 30233778 PMCID: PMC6141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/24/2017] [Indexed: 11/22/2022] Open
Abstract
Tafazzin (TAZ) protein has been upregulated in various types of human cancers, although the basis for elevation is uncertain, it has been made definite that the effect of mutation in the hippo pathway, particularly when it is switched off, considerably activates tafazzin transcriptionally and thus this results in tissue or tumor overgrowth. Recent perceptions into the activity of tafazzin, have ascribed to it, a role as stem cell factor in mouse mesenchymal and as well as in neural stem cells. Being a downstream molecule in Hippo signalling, phosphorylation or dephosphorylation of tafazzin gene regulates its transcriptional activity and the stemness of mesenchymal stem cells. Commonly, extracellular matrix controls the stem cell fate commitment and perhaps tafazzin controls stemness through altering the extra cellular matrix. Extracellular matrix is generally made up of prime proteoglycans and the fate stabilization of the resulting lineages is surveilled by engineering these glycans. Tafazzin degradation and addition of proteoglycans affect physical attributes of the extracellular matrix that drives cell differentiation into various lineages. Thus, tafazzin along with major glycans present in the extracellular matrix is involved in imparting stemness. However, there are incoherent molecular events, wherein both tafazzin and the extracellular matrix components, together either activate or inhibit differentiation of stem cells. This review discusses about the role of tafazzin oncoprotein as a stemness factor.
Collapse
Affiliation(s)
- Madhumala Gopinath
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Rosa Di Liddo
- Department of Pharmacology and Pharmaceutical Sciences, University of Padova, Padova, Italy
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano-Beijing, Italy-China, VCC Preventive Medical Promotion Foundation, Beijing, China
| | - Ramachandran Murugesan
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Antara Banerjee
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Sushmitha Sriramulu
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Ganesan Jothimani
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Vimala Devi Subramaniam
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Srinivasan Narasimhan
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Swarna Priya K
- Department of Gynecology and Pediatrics, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| | - Xiao-Feng Sun
- Department of Oncology and Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Surajit Pathak
- Department of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603103, India
| |
Collapse
|
204
|
Chittiboyina S, Bai Y, Lelièvre SA. Microenvironment-Cell Nucleus Relationship in the Context of Oxidative Stress. Front Cell Dev Biol 2018; 6:23. [PMID: 29594114 PMCID: PMC5854663 DOI: 10.3389/fcell.2018.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
The microenvironment is a source of reactive oxygen species (ROS) that influence cell phenotype and tissue homeostasis. The impact of ROS on redox pathways as well as directly on epigenetic mechanisms and the DNA illustrate communication with the cell nucleus. Changes in gene transcription related to redox conditions also influence the content and structure of the extracellular matrix. However, the importance of microenvironmental ROS for normal progression through life and disease development still needs to be thoroughly understood. We illustrate how different ROS concentration levels trigger various intracellular pathways linked to nuclear functions and determine processes necessary for the differentiation of stem cells. The abnormal predominance of ROS that leads to oxidative stress is emphasized in light of its impact on aging and diseases related to aging. These phenomena are discussed in the context of the possible contribution of extracellular ROS via direct diffusion into cells responsible for organ function, but also via an impact on stromal cells that triggers extracellular modifications and influences mechanotransduction. Finally, we argue that organs-on-a-chip with controlled microenvironmental conditions can help thoroughly grasp whether ROS production is readily a cause or a consequence of certain disorders, and better understand the concentration levels of extracellular ROS that are necessary to induce a switch in phenotype.
Collapse
Affiliation(s)
- Shirisha Chittiboyina
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
- 3D Cell Culture Core, Birck Nanotechnology Center, Purdue University Discovery Park, West Lafayette, IN, United States
| | - Yunfeng Bai
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Sophie A. Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
- 3D Cell Culture Core, Birck Nanotechnology Center, Purdue University Discovery Park, West Lafayette, IN, United States
- Center for Cancer Research, West Lafayette, IN, United States
| |
Collapse
|
205
|
He L, Tao J, Maity D, Si F, Wu Y, Wu T, Prasath V, Wirtz D, Sun SX. Role of membrane-tension gated Ca 2+ flux in cell mechanosensation. J Cell Sci 2018; 131:jcs208470. [PMID: 29361533 PMCID: PMC5868948 DOI: 10.1242/jcs.208470] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
Eukaryotic cells are sensitive to mechanical forces they experience from the environment. The process of mechanosensation is complex, and involves elements such as the cytoskeleton and active contraction from myosin motors. Ultimately, mechanosensation is connected to changes in gene expression in the cell, known as mechanotransduction. While the involvement of the cytoskeleton in mechanosensation is known, the processes upstream of cytoskeletal changes are unclear. In this paper, by using a microfluidic device that mechanically compresses live cells, we demonstrate that Ca2+ currents and membrane tension-sensitive ion channels directly signal to the Rho GTPase and myosin contraction. In response to membrane tension changes, cells actively regulate cortical myosin contraction to balance external forces. The process is captured by a mechanochemical model where membrane tension, myosin contraction and the osmotic pressure difference between the cytoplasm and extracellular environment are connected by mechanical force balance. Finally, to complete the picture of mechanotransduction, we find that the tension-sensitive transcription factor YAP family of proteins translocate from the nucleus to the cytoplasm in response to mechanical compression.
Collapse
Affiliation(s)
- Lijuan He
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jiaxiang Tao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Debonil Maity
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fangwei Si
- Department of Physics, University of California San Diego, San Diego, CA 92010, USA
| | - Yi Wu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tiffany Wu
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Vishnu Prasath
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
206
|
Wong KF, Liu AM, Hong W, Xu Z, Luk JM. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma. Oncotarget 2018; 7:77683-77695. [PMID: 27765911 PMCID: PMC5363613 DOI: 10.18632/oncotarget.12760] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/25/2016] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway regulates the down-stream target Yes-associated protein (YAP) to maintain organ homeostasis, which is commonly inactivated in many types of cancers. However, how cell adhesion dysregulates the Hippo pathway activating YAP oncogene in hepatocellular carcinoma (HCC) remains unclear. Our findings demonstrate that α2β1 integrin (but not other β1 integrins) expressed in HCC cells, after binding to collagen extracellular matrix, could inhibit MST1 kinase phosphorylation and activate YAP pro-oncogenic activities. Knockdown of integrin α2 gene (ITGA2) suppressed YAP targeted gene expression in vitro. α2β1 and collagen binding resulted in suppressing Hippo signaling of mammalian sterile 20-like kinase 1 (MST1) and Large tumor suppressor homolog 1 (LATS1) with concomitant activation of YAP-mediated connective tissue growth factor (CTGF) gene expression. In vitro kinase assay showed that MST1 is an immediate downstream target of integrin α2 with S1180 residue as the critical phosphorylation site. Clinical correlational analysis using a gene expression dataset of 228 HCC tumors revealed that ITGA2 expression was significantly associated with tumor progression, and co-expression with YAP targeted genes (AXL receptor tyrosine kinase, CTGF, cyclin D1, glypican 3, insulin like growth factor 1 receptor, and SRY-box 4) correlated with survivals of HCC patients. In conclusion, α2β1 integrin activation through cellular adhesion impacts the Hippo pathway in solid tumors and modulates MST1-YAP signaling cascade. Targeting integrin α2 holds promises for treating YAP-positive HCC.
Collapse
Affiliation(s)
- Kwong-Fai Wong
- Department of Pharmacology, National University Health System, Singapore.,Department of Surgery, National University Health System, Singapore
| | - Angela M Liu
- Department of Pharmacology, National University Health System, Singapore.,Department of Surgery, National University Health System, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Biopolis, Singapore
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - John M Luk
- Department of Pharmacology, National University Health System, Singapore.,Department of Surgery, National University Health System, Singapore.,Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.,Department of Translational and Clinical Medicine, Arbele Limited, Hong Kong Science Park, Shatin, Hong Kong
| |
Collapse
|
207
|
Dawes LJ, Shelley EJ, McAvoy JW, Lovicu FJ. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation. Exp Eye Res 2018; 169:122-133. [PMID: 29355736 DOI: 10.1016/j.exer.2018.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Recent studies indicate an important role for the transcriptional co-activator Yes-associated protein (YAP), and its regulatory pathway Hippo, in controlling cell growth and fate during lens development; however, the exogenous factors that promote this pathway are yet to be identified. Given that fibroblast growth factor (FGF)-signaling is an established regulator of lens cell behavior, the current study investigates the relationship between this pathway and Hippo/YAP-signaling during lens cell proliferation and fibre differentiation. Rat lens epithelial explants were cultured with FGF2 to induce epithelial cell proliferation or fibre differentiation. Immunolabeling methods were used to detect the expression of Hippo-signaling components, Total and Phosphorylated YAP, as well as fibre cell markers, Prox-1 and β-crystallin. FGF-induced lens cell proliferation was associated with a strong nuclear localisation of Total-YAP and low-level immuno-staining for phosphorylated-YAP. FGF-induced lens fibre differentiation was associated with a significant increase in cytoplasmic phosphorylated YAP (inactive state) and enhanced expression of core Hippo-signaling components. Inhibition of YAP with Verteporfin suppressed FGF-induced lens cell proliferation and ablated cell elongation during lens fibre differentiation. Inhibition of either FGFR- or MEK/ERK-signaling suppressed FGF-promoted YAP nuclear translocation. Here we propose that FGF promotes Hippo/YAP-signaling during lens cell proliferation and differentiation, with FGF-induced nuclear-YAP expression playing an essential role in promoting the proliferation of lens epithelial cells. An FGF-induced switch from proliferation to differentiation, hence regulation of lens growth, may play a key role in mediating Hippo suppression of YAP transcriptional activity.
Collapse
Affiliation(s)
- L J Dawes
- Save Sight Institute, The University of Sydney, NSW, Australia.
| | - E J Shelley
- Save Sight Institute, The University of Sydney, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, The University of Sydney, NSW, Australia
| | - F J Lovicu
- Save Sight Institute, The University of Sydney, NSW, Australia; Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, NSW, Australia
| |
Collapse
|
208
|
Sugimoto W, Itoh K, Mitsui Y, Ebata T, Fujita H, Hirata H, Kawauchi K. Substrate rigidity-dependent positive feedback regulation between YAP and ROCK2. Cell Adh Migr 2018; 12:101-108. [PMID: 28686514 DOI: 10.1080/19336918.2017.1338233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Extracellular matrix (ECM) stiffness influences gene expression, leading to modulation of various cellular functions. While ROCK2 regulates actomyosin activity as well as cell migration and proliferation, expression of ROCK2 is increased in response to stiffening ECM. However, the mechanism underlying rigidity-dependent ROCK2 expression remains elusive. Here, we show that YAP, a mechanically regulated transcription coactivator, upregulates ROCK2 expression in an ECM rigidity-dependent manner. YAP interacted with the ROCK2 promoter region in an actomyosin activity-dependent manner. Knockdown of YAP decreased ROCK2 expression while activity of the ROCK2 promoter was upregulated by expressing constitutively active YAP. Furthermore, we found that ROCK2 expression promotes transcriptional activation by YAP. Our results reveal a novel positive feedback loop between YAP and ROCK2, which is modulated by ECM stiffness.
Collapse
Affiliation(s)
- Wataru Sugimoto
- a Frontiers of Innovative Research in Science and Technology , Konan University , Kobe, Hyogo , Japan
| | - Katsuhiko Itoh
- a Frontiers of Innovative Research in Science and Technology , Konan University , Kobe, Hyogo , Japan
| | - Yasumasa Mitsui
- a Frontiers of Innovative Research in Science and Technology , Konan University , Kobe, Hyogo , Japan
| | - Takahiro Ebata
- a Frontiers of Innovative Research in Science and Technology , Konan University , Kobe, Hyogo , Japan
| | - Hideaki Fujita
- b Laboratory for Comprehensive Bioimaging , Riken Qbic , Osaka , Japan.,c Waseda Bioscience Research Institute in Singapore , Singapore , Republic of Singapore
| | - Hiroaki Hirata
- d Mechanobiology Laboratory , Nagoya University Graduate School of Medicine , Nagoya, Aichi , Japan
| | - Keiko Kawauchi
- a Frontiers of Innovative Research in Science and Technology , Konan University , Kobe, Hyogo , Japan.,e Department of Molecular Oncology , Institute for Advanced Medical Sciences, Nippon Medical School , Kawasaki, Kanagawa , Japan
| |
Collapse
|
209
|
Lee HJ, Ewere A, Diaz MF, Wenzel PL. TAZ responds to fluid shear stress to regulate the cell cycle. Cell Cycle 2018; 17:147-153. [PMID: 29143545 DOI: 10.1080/15384101.2017.1404209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Physical forces associated with tumor growth and drainage alter cancer cell invasiveness and metastatic potential. We previously showed that fluid frictional force, or shear stress, typical of lymphatic flow induces YAP1/TAZ activation in prostate cancer cells to promote motility dependent upon YAP1 but not TAZ. Here, we show that shear stress elevates TAZ protein levels and promotes TAZ nuclear localization. Increased TAZ activity drives increased DNA synthesis and induces AMOTL2, ANKRD1, and CTGF gene transcription independently of YAP1. Ectopic expression of constitutively activated TAZ increases expression of these TAZ target genes and promotes cell proliferation of prostate cancer cells. Conversely, silencing of TAZ results in reduced proliferation. Together, our data show that force-induced TAZ regulates signaling that dictates cell division, and suggest that TAZ may govern cellular proliferation of cancer cells traveling through the lymphatics in response to biophysical cues.
Collapse
Affiliation(s)
- Hyun Jung Lee
- a Children's Regenerative Medicine Program , Department of Pediatric Surgery , University of Texas Health Science Center at Houston , TX , USA.,b Center for Stem Cell and Regenerative Medicine , The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , TX , USA
| | - Adesuwa Ewere
- a Children's Regenerative Medicine Program , Department of Pediatric Surgery , University of Texas Health Science Center at Houston , TX , USA.,b Center for Stem Cell and Regenerative Medicine , The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , TX , USA
| | - Miguel F Diaz
- a Children's Regenerative Medicine Program , Department of Pediatric Surgery , University of Texas Health Science Center at Houston , TX , USA.,b Center for Stem Cell and Regenerative Medicine , The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , TX , USA
| | - Pamela L Wenzel
- a Children's Regenerative Medicine Program , Department of Pediatric Surgery , University of Texas Health Science Center at Houston , TX , USA.,b Center for Stem Cell and Regenerative Medicine , The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , TX , USA
| |
Collapse
|
210
|
Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J 2018; 32:1099-1107. [PMID: 29070586 DOI: 10.1096/fj.201700721r] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Focal adhesion kinase (FAK) is a key molecule in focal adhesions and regulates fundamental processes in cells such as growth, survival, and migration. FAK is one of the first molecules recruited to focal adhesions in response to external mechanical stimuli and therefore is a pivotal mediator of cell mechanosignaling, and relays these stimuli to other mechanotransducers within the cytoplasm. Yes-associated protein (YAP) has been identified recently as one of these core mechanotransducers. YAP translocates to the nucleus following changes in cell mechanics to promote the expression of genes implicated in motility, apoptosis, proliferation, and organ growth. Here, we show that FAK controls the nuclear translocation and activation of YAP in response to mechanical activation and submit that the YAP-dependent process of durotaxis requires a cell with an asymmetric distribution of active and inactive FAK molecules.-Lachowski, D., Cortes, E., Robinson, B., Rice, A., Rombouts, K., Del Río Hernández, A. E. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom; and
| |
Collapse
|
211
|
Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration. Proc Natl Acad Sci U S A 2018; 115:E390-E399. [PMID: 29295934 DOI: 10.1073/pnas.1717230115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Filopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodial mechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism.
Collapse
|
212
|
Harn HIC, Ogawa R, Hsu CK, Hughes MW, Tang MJ, Chuong CM. The tension biology of wound healing. Exp Dermatol 2017; 28:464-471. [PMID: 29105155 DOI: 10.1111/exd.13460] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Following skin wounding, the healing outcome can be: regeneration, repair with normal scar tissue, repair with hypertrophic scar tissue or the formation of keloids. The role of chemical factors in wound healing has been extensively explored, and while there is evidence suggesting the role of mechanical forces, its influence is much less well defined. Here, we provide a brief review on the recent progress of the role of mechanical force in skin wound healing by comparing laboratory mice, African spiny mice, fetal wound healing and adult scar keloid formation. A comparison across different species may provide insight into key regulators. Interestingly, some findings suggest tension can induce an immune response, and this provides a new link between mechanical and chemical forces. Clinically, manipulating skin tension has been demonstrated to be effective for scar prevention and treatment, but not for tissue regeneration. Utilising this knowledge, specialists may modulate regulatory factors and develop therapeutic strategies to reduce scar formation and promote regeneration.
Collapse
Affiliation(s)
- Hans I-Chen Harn
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Chao-Kai Hsu
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael W Hughes
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ming Chuong
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
213
|
Wang SP, Wang LH. Disease implication of hyper-Hippo signalling. Open Biol 2017; 6:rsob.160119. [PMID: 27805903 PMCID: PMC5090056 DOI: 10.1098/rsob.160119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
The Hippo signalling pathway regulates cellular proliferation, apoptosis and differentiation, thus exerting profound effects on cellular homeostasis. Inhibition of Hippo signalling has been frequently implicated in human cancers, indicating a well-known tumour suppressor function of the Hippo pathway. However, it is less certain whether and how hyperactivation of the Hippo pathway affects biological outcome in living cells. This review describes current knowledge of the regulatory mechanisms of the Hippo pathway, mainly focusing on hyperactivation of the Hippo signalling nexus. The disease implications of hyperactivated Hippo signalling have also been discussed, including arrhythmogenic cardiomyopathy, Sveinsson's chorioretinal atrophy, Alzheimer's disease, amyotrophic lateral sclerosis and diabetes. By highlighting the significance of disease-relevant Hippo signalling activation, this review can offer exciting prospects to address the onset and potential reversal of Hippo-related disorders.
Collapse
Affiliation(s)
- Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, 161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 114, Taiwan
| |
Collapse
|
214
|
Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel. Acta Biomater 2017; 64:67-79. [PMID: 28966094 DOI: 10.1016/j.actbio.2017.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022]
Abstract
Current in vitro liver models provide three-dimensional (3-D) microenvironments in combination with tissue engineering technology and can perform more accurate in vivo mimicry than two-dimensional models. However, a human cell-based, functionally mature liver model is still desired, which would provide an alternative to animal experiments and resolve low-prediction issues on species differences. Here, we prepared hybrid hydrogels of varying elasticity and compared them with a normal liver, to develop a more mature liver model that preserves liver properties in vitro. We encapsulated HepaRG cells, either alone or with supporting cells, in a biodegradable hybrid hydrogel. The elastic modulus of the 3D liver dynamically changed during culture due to the combined effects of prolonged degradation of hydrogel and extracellular matrix formation provided by the supporting cells. As a result, when the elastic modulus of the 3D liver model converges close to that of the in vivo liver (≅ 2.3 to 5.9 kPa), both phenotypic and functional maturation of the 3D liver were realized, while hepatic gene expression, albumin secretion, cytochrome p450-3A4 activity, and drug metabolism were enhanced. Finally, the 3D liver model was expanded to applications with embryonic stem cell-derived hepatocytes and primary human hepatocytes, and it supported prolonged hepatocyte survival and functionality in long-term culture. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. STATEMENT OF SIGNIFICANCE We provide a functionally improved 3D liver model that recapitulates in vivo liver stiffness. We have experimentally addressed the issues of orchestrated effects of mechanical compliance, controlled matrix formation by stromal cells in conjunction with hepatic differentiation, and functional maturation of hepatocytes in a dynamic 3D microenvironment. Our model represents critical progress in developing a biomimetic liver system to simulate liver tissue remodeling, and provides a versatile platform in drug development and disease modeling, ranging from physiology to pathology. Additionally, recent advances in the stem-cell technologies have made the development of 3D organoid possible, and thus, our study also provides further contribution to the development of physiologically relevant stem-cell-based 3D tissues that provide an elasticity-based predefined biomimetic 3D microenvironment.
Collapse
|
215
|
Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017; 18:758-770. [PMID: 28951564 PMCID: PMC6192510 DOI: 10.1038/nrm.2017.87] [Citation(s) in RCA: 927] [Impact Index Per Article: 115.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence suggests that mechanical signals emanating from the cell's microenvironment are fundamental regulators of cell behaviour. Moreover, at the macroscopic scale, the influence of forces, such as the forces generated by blood flow, muscle contraction, gravity and overall tissue rigidity (for example, inside of a tumour lump), is central to our understanding of physiology and disease pathogenesis. Still, how mechanical cues are sensed and transduced at the molecular level to regulate gene expression has long remained enigmatic. The identification of the transcription factors YAP and TAZ as mechanotransducers started to fill this gap. YAP and TAZ read a broad range of mechanical cues, from shear stress to cell shape and extracellular matrix rigidity, and translate them into cell-specific transcriptional programmes. YAP and TAZ mechanotransduction is critical for driving stem cell behaviour and regeneration, and it sheds new light on the mechanisms by which aberrant cell mechanics is instrumental for the onset of multiple diseases, such as atherosclerosis, fibrosis, pulmonary hypertension, inflammation, muscular dystrophy and cancer.
Collapse
Affiliation(s)
- Tito Panciera
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| |
Collapse
|
216
|
Jiang L, Sun L, Edwards G, Manley M, Wallace DP, Septer S, Manohar C, Pritchard MT, Apte U. Increased YAP Activation Is Associated With Hepatic Cyst Epithelial Cell Proliferation in ARPKD/CHF. Gene Expr 2017; 17:313-326. [PMID: 28915934 PMCID: PMC5705408 DOI: 10.3727/105221617x15034976037343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal recessive polycystic kidney disease/congenital hepatic fibrosis (ARPKD/CHF) is a rare but fatal genetic disease characterized by progressive cyst development in the kidneys and liver. Liver cysts arise from aberrantly proliferative cholangiocytes accompanied by pericystic fibrosis and inflammation. Yes-associated protein (YAP), the downstream effector of the Hippo signaling pathway, is implicated in human hepatic malignancies such as hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma, but its role in hepatic cystogenesis in ARPKD/CHF is unknown. We studied the role of the YAP in hepatic cyst development using polycystic kidney (PCK) rats, an orthologous model of ARPKD, and in human ARPKD/CHF patients. The liver cyst wall epithelial cells (CWECs) in PCK rats were highly proliferative and exhibited expression of YAP. There was increased expression of YAP target genes, Ccnd1 (cyclin D1) and Ctgf (connective tissue growth factor), in PCK rat livers. Extensive expression of YAP and its target genes was also detected in human ARPKD/CHF liver samples. Finally, pharmacological inhibition of YAP activity with verteporfin and short hairpin (sh) RNA-mediated knockdown of YAP expression in isolated liver CWECs significantly reduced their proliferation. These data indicate that increased YAP activity, possibly through dysregulation of the Hippo signaling pathway, is associated with hepatic cyst growth in ARPKD/CHF.
Collapse
Affiliation(s)
- Lu Jiang
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lina Sun
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Genea Edwards
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Manley
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P. Wallace
- †Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- §Department of Gastroenterology, Children’s Mercy Hospital, Kansas City, KS, USA
| | - Chirag Manohar
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- ‡The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
217
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
218
|
Hülter-Hassler D, Wein M, Schulz SD, Proksch S, Steinberg T, Jung BA, Tomakidi P. Biomechanical strain-induced modulation of proliferation coincides with an ERK1/2-independent nuclear YAP localization. Exp Cell Res 2017; 361:93-100. [PMID: 29017756 DOI: 10.1016/j.yexcr.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 01/07/2023]
Abstract
Biomechanical strain induces activation of the transcriptional co-activator yes-associated protein (YAP) by nuclear re-distribution. Recent findings indicate that the mechanically responsive mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK) 1/2 is involved in the amount of nuclear YAP, reflecting its activation. In this context, we conducted experiments to detect how biomechanical strain acts on the subcellular localization of YAP in periodontal cells. To this end, cells were subjected to 2.5% static equiaxial strain for different time periods. Western blot and fluorescence imaging-based analyses revealed a clear modulation of nuclear YAP localization. This modulation fairly coincided with the altered course of the KI-67 protein amount in conjunction with the percentage of KI-67-positive and thus proliferating cells. The inhibition of the ERK1/2 activity via U0126 yielded an unchanged strain-related modulation of nuclear YAP localization, while YAP amount in whole cell extracts of strained cells was decreased. Administration of the YAP-inhibiting drug Verteporfin evoked a clear reduction of KI-67-positive and thus proliferating cells by approximately 65%, irrespective of strain. Our data reveal YAP as a regulator of strain-modulated proliferation which occurs in a MAPK-independent fashion.
Collapse
Affiliation(s)
- Diana Hülter-Hassler
- Department of Orthodontics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | - Martin Wein
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Simon D Schulz
- Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Britta A Jung
- Department of Orthodontics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
219
|
Meliambro K, Wong JS, Ray J, Calizo RC, Towne S, Cole B, El Salem F, Gordon RE, Kaufman L, He JC, Azeloglu EU, Campbell KN. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. J Biol Chem 2017; 292:21137-21148. [PMID: 28982981 DOI: 10.1074/jbc.m117.819029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
Kidney podocytes represent a key constituent of the glomerular filtration barrier. Identifying the molecular mechanisms of podocyte injury and survival is important for better understanding and management of kidney diseases. KIBRA (kidney brain protein), an upstream regulator of the Hippo signaling pathway encoded by the Wwc1 gene, shares the pro-injury properties of its putative binding partner dendrin and antagonizes the pro-survival signaling of the downstream Hippo pathway effector YAP (Yes-associated protein) in Drosophila and MCF10A cells. We recently identified YAP as an essential component of the glomerular filtration barrier that promotes podocyte survival by inhibiting dendrin pro-apoptotic function. Despite these recent advances, the signaling pathways that mediate podocyte injury remain poorly understood. Here we tested the hypothesis that, similar to its role in other model systems, KIBRA promotes podocyte injury. We found increased expression of KIBRA and phosphorylated YAP protein in glomeruli of patients with biopsy-proven focal segmental glomerulosclerosis (FSGS). KIBRA/WWc1 overexpression in murine podocytes promoted LATS kinase phosphorylation, leading to subsequent YAP Ser-127 phosphorylation, YAP cytoplasmic sequestration, and reduction in YAP target gene expression. Functionally, KIBRA overexpression induced significant morphological changes in podocytes, including disruption of the actin cytoskeletal architecture and reduction of focal adhesion size and number, all of which were rescued by subsequent YAP overexpression. Conversely, constitutive KIBRA knockout mice displayed reduced phosphorylated YAP and increased YAP expression at baseline. These mice were protected from acute podocyte foot process effacement following protamine sulfate perfusion. KIBRA knockdown podocytes were also protected against protamine-induced injury. These findings suggest an important role for KIBRA in the pathogenesis of podocyte injury and the progression of proteinuric kidney disease.
Collapse
Affiliation(s)
| | | | | | | | - Sara Towne
- Department of Pharmacological Sciences, and
| | | | - Fadi El Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | | | - John C He
- From the Division of Nephrology.,Department of Pharmacological Sciences, and
| | | | | |
Collapse
|
220
|
Li Y, Tang CB, Kilian KA. Matrix Mechanics Influence Fibroblast-Myofibroblast Transition by Directing the Localization of Histone Deacetylase 4. Cell Mol Bioeng 2017; 10:405-415. [PMID: 31719870 PMCID: PMC6816600 DOI: 10.1007/s12195-017-0493-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The propagation of mechanochemical signals from the extracellular matrix to the cell nucleus has emerged as a central feature in regulating cellular differentiation and de-differentiation. This process of outside-in signaling and the associated mechanotransduction pathways have been well described in numerous developmental and pathological contexts. However, it remains less clear how mechanotransduction influences the activity of chromatin modifying enzymes that direct gene expression programs. OBJECTIVES The primary objective of this study was to explore how matrix mechanics and geometric confinement influence histone deacetylase (HDAC) activity in fibroblast culture. METHODS Polyacrylamide hydrogels were formed and functionalized with fibronectin patterns using soft lithography. Primary mouse embryonic fibroblasts (MEFs) were cultured on the islands until confluent, fixed, and immunolabeled for microscopy. RESULTS After 24 h MEFs cultured on soft hydrogels (0.5 kPa) show increased expression of class I HDACs relative to MEFs cultured on stiff hydrogels (100 kPa). A member of the class II family, HDAC4 shows a similar trend; however, there is a pronounced cytoplasmic localization on soft hydrogels suggesting a role in outside-in cytoplasmic signaling. Pharmacological inhibitor studies suggest that the opposing activities of extracellular related kinase 1/2 (ERK) and protein phosphatase 2a (PP2a) influence the localization of HDAC4. MEFs cultured on the soft hydrogels show enhanced expression of markers associated with a fibroblast-myofibroblast transition (Paxillin, αSMA). CONCLUSIONS We show that the phosphorylation state and cellular localization of HDAC4 is influenced by matrix mechanics, with evidence for a role in mechanotransduction and the regulation of gene expression associated with fibroblast-myofibroblast transitions. This work establishes a link between outside-in signaling and epigenetic regulation, which will assist efforts aimed at controlling gene regulation in engineered extracellular matrices.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Claire B. Tang
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Kristopher A. Kilian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
221
|
Zhang X, Sun F, Qiao Y, Zheng W, Liu Y, Chen Y, Wu Q, Liu X, Zhu G, Chen Y, Yu Y, Pan Q, Wang J. TFCP2 Is Required for YAP-Dependent Transcription to Stimulate Liver Malignancy. Cell Rep 2017; 21:1227-1239. [DOI: 10.1016/j.celrep.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
|
222
|
Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function. Neurochem Res 2017; 43:190-194. [PMID: 28918515 DOI: 10.1007/s11064-017-2387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.
Collapse
|
223
|
Neural Progenitor Cells Undergoing Yap/Tead-Mediated Enhanced Self-Renewal Form Heterotopias More Easily in the Diencephalon than in the Telencephalon. Neurochem Res 2017; 43:180-189. [PMID: 28879493 PMCID: PMC7550386 DOI: 10.1007/s11064-017-2390-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023]
Abstract
Spatiotemporally ordered production of cells is essential for brain development. Normally, most undifferentiated neural progenitor cells (NPCs) face the apical (ventricular) surface of embryonic brain walls. Pathological detachment of NPCs from the apical surface and their invasion of outer neuronal territories, i.e., formation of NPC heterotopias, can disrupt the overall structure of the brain. Although NPC heterotopias have previously been observed in a variety of experimental contexts, the underlying mechanisms remain largely unknown. Yes-associated protein 1 (Yap1) and the TEA domain (Tead) proteins, which act downstream of Hippo signaling, enhance the stem-like characteristics of NPCs. Elevated expression of Yap1 or Tead in the neural tube (future spinal cord) induces massive NPC heterotopias, but Yap/Tead-induced expansion of NPCs in the developing brain has not been previously reported to produce NPC heterotopias. To determine whether NPC heterotopias occur in a regionally characteristic manner, we introduced the Yap1-S112A or Tead-VP16 into NPCs of the telencephalon and diencephalon, two neighboring but distinct forebrain regions, of embryonic day 10 mice by in utero electroporation, and compared NPC heterotopia formation. Although NPCs in both regions exhibited enhanced stem-like behaviors, heterotopias were larger and more frequent in the diencephalon than in the telencephalon. This result, the first example of Yap/Tead-induced NPC heterotopia in the forebrain, reveals that Yap/Tead-induced NPC heterotopia is not specific to the neural tube, and also suggests that this phenomenon depends on regional factors such as the three-dimensional geometry and assembly of these cells.
Collapse
|
224
|
Guillemette S, Rico C, Godin P, Boerboom D, Paquet M. In Vitro Validation of the Hippo Pathway as a Pharmacological Target for Canine Mammary Gland Tumors. J Mammary Gland Biol Neoplasia 2017; 22:203-214. [PMID: 28822004 DOI: 10.1007/s10911-017-9384-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasms in intact female dogs. Some clinical and molecular similarities between certain CMT subtypes and breast cancer make them a potential model for the study of the human disease. As misregulated Hippo signaling is thought to play an important role in breast cancer development and also occurs in CMTs, we sought to determine if Hippo represents a valid pharmacological target for the treatment of CMTs. Six CMT cell lines were assessed for their expression of the Hippo pathway effectors YAP and TAZ and for their sensitivity to verteporfin, an inhibitor of YAP-mediated transcriptional coactivation. Four cell lines that expressed YAP (CMT-9, -12, -28, -47) were found to be very sensitive to verteporfin treatment, which killed the cells through induction of apoptosis with ED50 values of 14-79 nM. Conversely, two YAP-negative cell lines (CF-35, CMT-25) were an order of magnitude more resistant to verteporfin. Verteporfin suppressed the expression of YAP/TAZ target genes, particularly CYR61 and CTGF, which play important roles in breast cancer development. Verteporfin was also able to inhibit cell migration and anchorage-independent growth. Likewise, verteporfin efficiently suppressed tumor cell invasiveness in the CMT-28 and -47 lines, but not in CF-35 cells. Together, our findings provide proof of principle that pharmacological targeting of the Hippo pathway compromises the viability and attenuates the malignant behavior of CMT cells. These results will serve as the basis for the development of novel chemotherapeutic approaches for CMTs that could translate to human medicine.
Collapse
Affiliation(s)
- Samantha Guillemette
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Godin
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
225
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
226
|
Jasplakinolide induces primary cilium formation through cell rounding and YAP inactivation. PLoS One 2017; 12:e0183030. [PMID: 28797107 PMCID: PMC5552318 DOI: 10.1371/journal.pone.0183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022] Open
Abstract
Primary cilia are non-motile cilia that serve as cellular antennae for sensing and transducing extracellular signals. In general, primary cilia are generated by cell quiescence signals. Recent studies have shown that manipulations to increase actin assembly suppress quiescence-induced ciliogenesis. To further examine the role of actin dynamics in ciliogenesis, we analyzed the effect of jasplakinolide (Jasp), a potent inducer of actin polymerization, on ciliogenesis. Unexpectedly, Jasp treatment induced ciliogenesis in serum-fed cells cultured at low density. In contrast, Jasp had no apparent effect on ciliogenesis in cells cultured at higher densities. Jasp-induced ciliogenesis was correlated with a change in cell morphology from a flat and adherent shape to a round and weakly adherent one. Jasp treatment also induced the phosphorylation and cytoplasmic localization of the YAP transcriptional co-activator and suppressed cell proliferation in low density-cultured cells. Overexpression of an active form of YAP suppressed Jasp-induced ciliogenesis. These results suggest that Jasp induces ciliogenesis through cell rounding and cytoplasmic localization and inactivation of YAP. Knockdown of LATS1/2 only faintly suppressed Jasp-induced YAP phosphorylation, indicating that LATS1/2 are not primarily responsible for Jasp-induced YAP phosphorylation. Furthermore, overexpression of active Src kinase suppressed Jasp-induced cytoplasmic localization of YAP and ciliogenesis, suggesting that down-regulation of Src activity is involved in Jasp-induced YAP inactivation and ciliogenesis. Our data suggest that actin polymerization does not suppress ciliogenesis per se but rather that cell rounding and reduced cell adhesion are more crucially involved in Jasp-induced ciliogenesis.
Collapse
|
227
|
Miranda MZ, Bialik JF, Speight P, Dan Q, Yeung T, Szászi K, Pedersen SF, Kapus A. TGF-β1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. J Biol Chem 2017; 292:14902-14920. [PMID: 28739802 DOI: 10.1074/jbc.m117.780502] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Hippo pathway transcriptional coactivators TAZ and YAP and the TGF-β1 (TGFβ) effector Smad3 regulate a common set of genes, can physically interact, and exhibit multilevel cross-talk regulating cell fate-determining and fibrogenic pathways. However, a key aspect of this cross-talk, TGFβ-mediated regulation of TAZ or YAP expression, remains uncharacterized. Here, we show that TGFβ induces robust TAZ but not YAP protein expression in both mesenchymal and epithelial cells. TAZ levels, and to a lesser extent YAP levels, also increased during experimental kidney fibrosis. Pharmacological or genetic inhibition of Smad3 did not prevent the TGFβ-induced TAZ up-regulation, indicating that this canonical pathway is dispensable. In contrast, inhibition of p38 MAPK, its downstream effector MK2 (e.g. by the clinically approved antifibrotic pirferidone), or Akt suppressed the TGFβ-induced TAZ expression. Moreover, TGFβ elevated TAZ mRNA in a p38-dependent manner. Myocardin-related transcription factor (MRTF) was a central mediator of this effect, as MRTF silencing/inhibition abolished the TGFβ-induced TAZ expression. MRTF overexpression drove the TAZ promoter in a CC(A/T-rich)6GG (CArG) box-dependent manner and induced TAZ protein expression. TGFβ did not act by promoting nuclear MRTF translocation; instead, it triggered p38- and MK2-mediated, Nox4-promoted MRTF phosphorylation and activation. Functionally, higher TAZ levels increased TAZ/TEAD-dependent transcription and primed cells for enhanced TAZ activity upon a second stimulus (i.e. sphingosine 1-phosphate) that induced nuclear TAZ translocation. In conclusion, our results uncover an important aspect of the cross-talk between TGFβ and Hippo signaling, showing that TGFβ induces TAZ via a Smad3-independent, p38- and MRTF-mediated and yet MRTF translocation-independent mechanism.
Collapse
Affiliation(s)
- Maria Zena Miranda
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and
| | - Janne Folke Bialik
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Pam Speight
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Qinghong Dan
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Tony Yeung
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Katalin Szászi
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Departments of Surgery and
| | - Stine F Pedersen
- the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - András Kapus
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, .,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and.,Departments of Surgery and
| |
Collapse
|
228
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
229
|
Sun M, Spill F, Zaman MH. A Computational Model of YAP/TAZ Mechanosensing. Biophys J 2017; 110:2540-2550. [PMID: 27276271 DOI: 10.1016/j.bpj.2016.04.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022] Open
Abstract
In cell proliferation, stem cell differentiation, chemoresistance, and tissue organization, the ubiquitous role of YAP/TAZ continues to impact our fundamental understanding in numerous physiological and disease systems. YAP/TAZ is an important signaling nexus integrating diverse mechanical and biochemical signals, such as ECM stiffness, adhesion ligand density, or cell-cell contacts, and thus strongly influences cell fate. Recent studies show that YAP/TAZ mechanical sensing is dependent on RhoA-regulated stress fibers. However, current understanding of YAP/TAZ remains limited due to the unknown interaction between the canonical Hippo pathway and cell tension. Furthermore, the multiscale relationship connecting adhesion signaling to YAP/TAZ activity through cytoskeleton dynamics remains poorly understood. To identify the roles of key signaling molecules in mechanical signal sensing and transduction, we present a, to our knowledge, novel computational model of the YAP/TAZ signaling pathway. This model converts extracellular-matrix mechanical properties to biochemical signals via adhesion, and integrates intracellular signaling cascades associated with cytoskeleton dynamics. We perform perturbations of molecular levels and sensitivity analyses to predict how various signaling molecules affect YAP/TAZ activity. Adhesion molecules, such as FAK, are predicted to rescue YAP/TAZ activity in soft environments via the RhoA pathway. We also found that changes of molecule concentrations result in different patterns of YAP/TAZ stiffness response. We also investigate the sensitivity of YAP/TAZ activity to ECM stiffness, and compare with that of SRF/MAL, which is another important regulator of differentiation. In addition, the model shows that the unresolved synergistic effect of YAP/TAZ activity between the mechanosensing and the Hippo pathways can be explained by the interaction of LIM-kinase and LATS. Overall, our model provides a, to our knowledge, novel platform for studying YAP/TAZ activity in the context of integrating different signaling pathways. This platform can be used to gain, to our knowledge, new fundamental insights into roles of key molecular and mechanical regulators on development, tissue engineering, or tumor progression.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Howard Hughes Medical Institute, Boston University, Boston, Massachusetts.
| |
Collapse
|
230
|
Luo H, Yao L, Zhang Y, Li R. Liquid chromatography–mass spectrometry-based quantitative proteomics analysis reveals chondroprotective effects of astragaloside IV in interleukin-1β-induced SW1353 chondrocyte-like cells. Biomed Pharmacother 2017; 91:796-802. [DOI: 10.1016/j.biopha.2017.04.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 11/17/2022] Open
|
231
|
Hamon A, Masson C, Bitard J, Gieser L, Roger JE, Perron M. Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells. Invest Ophthalmol Vis Sci 2017; 58:1941-1953. [PMID: 28384715 PMCID: PMC6024660 DOI: 10.1167/iovs.16-21366] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. Methods Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several differentially expressed genes were assessed by quantitative RT-PCR (RT-qPCR). Protein expression level and retinal cellular localization were determined by western blot and immunohistochemistry, respectively. Results Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. Conclusions This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathologic conditions.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Christel Masson
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Juliette Bitard
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
232
|
Athirasala A, Hirsch N, Buxboim A. Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 2017. [PMID: 28641092 DOI: 10.1016/j.ceb.2017.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell nucleus is a hallmark of eukaryotic evolution, where gene expression is regulated and the genome is replicated and repaired. Yet, in addition to complex molecular processes, the nucleus has also evolved to serve physical tasks that utilize its optical and mechanical properties. Nuclear mechanotransduction of externally applied forces and extracellular stiffness is facilitated by the physical connectivity of the extracellular environment, the cytoskeleton and the nucleoskeletal matrix of lamins and chromatin. Nuclear mechanosensor elements convert applied tension into biochemical cues that activate downstream signal transduction pathways. Mechanoregulatory networks stabilize a contractile cell state with feedback to matrix, cell adhesions and cytoskeletal elements. Recent advances have thus provided mechanistic insights into how forces are sensed from within, that is, in the nucleus where cell-fate decision-making is performed.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nivi Hirsch
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Alexander Grass Center for Bioengineering, School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
233
|
Seifert A, Posern G. Tightly controlled MRTF-A activity regulates epithelial differentiation during formation of mammary acini. Breast Cancer Res 2017; 19:68. [PMID: 28592291 PMCID: PMC5463372 DOI: 10.1186/s13058-017-0860-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
Background Myocardin-related transcription factors (MRTF) A and B link actin dynamics and mechanotransduction to gene expression. In mice, MRTF-A is involved in mammary gland differentiation, but its role in human mammary epithelial cells remains unclear. Methods Three-dimensional cultures of human mammary epithelial MCF10A cells were used to model acinar morphogenesis. Stable MRTF-A knockdown, MRTF-A/B rescue and MRTF-A/B overexpression was established to characterize the functional role during morphogenesis using confocal microscopy and expression analysis. Breast cancer patient databases were analyzed for MRTF-A expression. Results We showed that a precise temporal control of MRTFs is required for normal morphogenesis of MCF10A mammary acini. MRTF transcriptional activity, but not their protein amounts, is transiently induced during 3D acini formation. MRTF-A knockdown dramatically reduces acini size and prevents lumen formation. These effects are rescued by re-expression of MRTF-A, and partially by MRTF-B. Conversely, overexpression of MRTF-A and MRTF-B increases acini size, resulting in irregular spheroids without lumen and defective apico-basal polarity. These phenotypes correlate with deregulated expression of cell cycle inhibitors p21/Waf1, p27/Kip1 and altered phosphorylation of retinoblastoma protein. In MRTF overexpressing spheroids, proliferation and apoptosis are simultaneously increased at late stages, whilst neither occurs in control acini. MRTFs interfere with anoikis of the inner cells and cause an integrin switch from α6 to α5, repression of E-cadherin and induction of mesenchymal markers vimentin, Snai2 and Zeb1. Moreover, MRTF-overexpressing spheroids are insensitive to alteration in matrix stiffness. In two breast cancer cohorts, high expression of MRTF-A and known target genes was associated with decreased patient survival. Conclusion MRTF-A is required for proliferation and formation of mammary acini from luminal epithelial cells. Conversely, elevated MRTF activity results in pre-malignant spheroid formation due to defective proliferation, polarity loss and epithelial-mesenchymal transition. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0860-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja Seifert
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| |
Collapse
|
234
|
Expression of YAP/TAZ in Keratocystic Odontogenic Tumors and Its Possible Association with Proliferative Behavior. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4624890. [PMID: 28512636 PMCID: PMC5420425 DOI: 10.1155/2017/4624890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022]
Abstract
The aim of this study is to clarify whether YAP/TAZ is involved in the pathogenesis and proliferative growth of keratocystic odontogenic tumor (KCOT). The expression levels of YAP/TAZ and downstream proteins and genes in normal oral mucosa (OM) and KCOT were determined and compared by immunohistochemistry and real-time quantitative PCR. The results showed that the expression of YAP/TAZ and downstream proteins (Cyr61, CTGF) was significantly upregulated in KCOT with upregulation of Ki-67 compared to OM. Importantly, the mRNA levels of transcription factors (TEAD1, TEAD4, and RUNX2) and cell cycle related genes (CDK2, PCNA), which interact with the transcriptional coactivators YAP/TAZ, are also upregulated in the KCOT. In addition, the results from Spearman rank correlation test revealed the close relationship between YAP/TAZ and Ki-67, which was further evidenced by double-labelling immunofluorescence that revealed a synchronous distribution for YAP/TAZ with Ki-67 in KCOT samples. All the data suggested YAP/TAZ might be involved in the proliferative behavior of KCOT.
Collapse
|
235
|
Totaro A, Castellan M, Battilana G, Zanconato F, Azzolin L, Giulitti S, Cordenonsi M, Piccolo S. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat Commun 2017; 8:15206. [PMID: 28513598 PMCID: PMC5442321 DOI: 10.1038/ncomms15206] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
How the behaviour of somatic stem cells (SCs) is influenced by mechanical signals remains a black-box in cell biology. Here we show that YAP/TAZ regulation by cell shape and rigidity of the extracellular matrix (ECM) dictates a pivotal SC decision: to remain undifferentiated and grow, or to activate a terminal differentiation programme. Notably, mechano-activation of YAP/TAZ promotes epidermal stemness by inhibition of Notch signalling, a key factor for epidermal differentiation. Conversely, YAP/TAZ inhibition by low mechanical forces induces Notch signalling and loss of SC traits. As such, mechano-dependent regulation of YAP/TAZ reflects into mechano-dependent regulation of Notch signalling. Mechanistically, at least in part, this is mediated by YAP/TAZ binding to distant enhancers activating the expression of Delta-like ligands, serving as ‘in cis' inhibitors of Notch. Thus YAP/TAZ mechanotransduction integrates with cell–cell communication pathways for fine-grained orchestration of SC decisions. Notch signalling is a fundamental negative regulator of epidermal stemness. Here, the authors show that cell mechanics through YAP/TAZ activity prevent primary human keratinocytes from differentiating by inhibiting cell-autonomous Notch signals.
Collapse
Affiliation(s)
- Antonio Totaro
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Martina Castellan
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Giusy Battilana
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Luca Azzolin
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Giulitti
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy.,Department of Industrial Engineering (DII), University of Padua, via Marzolo 9, Padua 35131, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| |
Collapse
|
236
|
Haque F, Kaku Y, Fujimura S, Ohmori T, Adelstein RS, Nishinakamura R. Non-muscle myosin II deletion in the developing kidney causes ureter-bladder misconnection and apical extrusion of the nephric duct lineage epithelia. Dev Biol 2017; 427:121-130. [PMID: 28478097 DOI: 10.1016/j.ydbio.2017.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 04/29/2017] [Indexed: 01/23/2023]
Abstract
In kidney development, connection of the nephric duct (ND) to the cloaca and subsequent sprouting of the ureteric bud (UB) from the ND are important for urinary exit tract formation. Although the roles of Ret signaling are well established, it remains unclear how intracellular cytoskeletal proteins regulate these morphogenetic processes. Myh9 and Myh10 encode two different non-muscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases. Here we report that ND/UB lineage-specific deletion of Myh9/Myh10 in mice caused severe hydroureter/hydronephrosis at birth. At mid-gestation, the mutant ND/UB epithelia exhibited aberrant basal protrusion and ectopic UB formation, which likely led to misconnection of the ureter to the bladder. In addition, the mutant epithelia exhibited apical extrusion followed by massive apoptosis in the lumen, which could be explained by reduced apical constriction and intercellular adhesion mediated by E-cadherin. These phenotypes were not ameliorated by genetic reduction of the tyrosine kinase receptor Ret. In contrast, ERK was activated in the mutant cells and its chemical inhibition partially ameliorated the phenotypes. Thus, myosin II is essential for maintaining the apicobasal integrity of the developing kidney epithelia independently of Ret signaling.
Collapse
Affiliation(s)
- Fahim Haque
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yusuke Kaku
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
237
|
Qiao Y, Chen J, Lim YB, Finch-Edmondson ML, Seshachalam VP, Qin L, Jiang T, Low BC, Singh H, Lim CT, Sudol M. YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis. Cell Rep 2017; 19:1495-1502. [DOI: 10.1016/j.celrep.2017.04.075] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/02/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022] Open
|
238
|
Gnimassou O, Francaux M, Deldicque L. Hippo Pathway and Skeletal Muscle Mass Regulation in Mammals: A Controversial Relationship. Front Physiol 2017; 8:190. [PMID: 28424630 PMCID: PMC5372825 DOI: 10.3389/fphys.2017.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle mass reflects a dynamic turnover between net protein synthesis and degradation. In addition, satellite cell inclusion may contribute to increase muscle mass while fiber loss results in a reduction of muscle mass. Since 2010, a few studies looked at the involvement of the newly discovered Hippo pathway in the regulation of muscle mass. In line with its roles in other organs, it has been hypothesized that the Hippo pathway could play a role in different regulatory mechanisms in skeletal muscle as well, namely proliferation and renewal of satellite cells, differentiation, death, and growth of myogenic cells. While the Hippo components have been identified in skeletal muscle, their role in muscle mass regulation has been less investigated and conflicting results have been reported. Indeed, the first studies described both atrophic and hypertrophic roles of the Hippo pathway and its effectors Yap/Taz using different biochemical approaches. Further, investigation is therefore warranted to determine the role of the Hippo pathway in the regulation of skeletal muscle mass. New components of the pathway will probably emerge and unsuspected roles will likely be discovered due to its numerous interactions with different cellular processes. This mini-review aims to summarize the current literature concerning the roles of the Hippo pathway in the regulation of muscle mass and to develop the hypothesis that this pathway could contribute to muscle mass adaptation after exercise.
Collapse
Affiliation(s)
- Olouyomi Gnimassou
- Institute of Neuroscience, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de LouvainLouvain-la-Neuve, Belgium
| |
Collapse
|
239
|
Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nat Cell Biol 2017; 19:362-374. [PMID: 28346439 PMCID: PMC5398908 DOI: 10.1038/ncb3496] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
The Hippo pathway senses cellular conditions and regulates YAP/TAZ to control cellular and tissue homeostasis, while TBK1 is central for cytosolic nucleic acid sensing and antiviral defense. The correlation between cellular nutrient/physical status and host antiviral defense is interesting but not well understood. Here we find that YAP/TAZ act as natural inhibitors of TBK1 and are vital for antiviral physiology. Independent of transcriptional regulation and through transactivation domain, YAP/TAZ associate directly with TBK1 and abolish virus-induced TBK1 activation, by preventing TBK1 K63-linked ubiquitination and adaptors/substrates binding. Accordingly, YAP/TAZ deletion/depletion or cellular conditions inactivating YAP/TAZ through Lats1/2 kinases relieve TBK1 suppression and boost antiviral responses, whereas expression of the transcriptionally inactive YAP dampens cytosolic RNA/DNA sensing and weakens the antiviral defense in cells and zebrafish. Thus, we describe a function of YAP/TAZ and the Hippo pathway in innate immunity, by linking cellular nutrient/physical status to antiviral host defense.
Collapse
|
240
|
Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson-Peer K, Chuang PT. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 2017; 6:e21130. [PMID: 28323616 PMCID: PMC5360446 DOI: 10.7554/elife.21130] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stacey Croll
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Katherine Thompson-Peer
- Department of Physiology, Howard Hughes Medical institute, University of California, San Francisco, San Francisco, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
241
|
Eroshkin FM, Zaraisky AG. Mechano-sensitive regulation of gene expression during the embryonic development. Genesis 2017; 55. [PMID: 28236362 DOI: 10.1002/dvg.23026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Cell movements during embryogenesis produce mechanical tensions that shape the embryo and can also regulate gene expression, thereby affecting cell differentiation. Increasing evidence indicates that mechanosensitive regulation of gene expression plays important roles during embryogenesis by coupling the processes of morphogenesis and differentiation. However, the molecular mechanisms of this phenomenon remain poorly understood. This review focuses on the molecular mechanisms that "translate" mechanical stimuli into gene expression.
Collapse
Affiliation(s)
- Fedor M Eroshkin
- Laboratory of Molecular Bases of Embryogenesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey G Zaraisky
- Laboratory of Molecular Bases of Embryogenesis, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
242
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
243
|
Andl T, Zhou L, Yang K, Kadekaro AL, Zhang Y. YAP and WWTR1: New targets for skin cancer treatment. Cancer Lett 2017; 396:30-41. [PMID: 28279717 DOI: 10.1016/j.canlet.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/11/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
The core components of the Hippo signaling pathway are a cascade of kinases that govern the phosphorylation of downstream transcriptional co-activators, namely, YES-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ). The Hippo signaling pathway is considered an important tumor-suppressor pathway, and its dysregulation has been noted in a variety of human cancers, in which YAP/WWTR1 enable cancerous cells to overcome contact inhibition, and to grow and spread uncontrollably. Interestingly, however, recent studies have told a somewhat different but perhaps more intriguing YAP/WWTR1 story, as these studies found that YAP/WWTR1 function as a central hub that integrates signals from multiple upstream signaling pathways, cell-cell interactions and mechanical forces and then bind to and activate different downstream transcriptional factors to direct cell social behavior and cell-cell interactions. In this review, we present the latest findings on the role of YAP/WWTR1 in skin physiology, pathology and tumorigenesis and discuss the statuses of newly developed therapeutic interventions that target YAP/WWTR1 in human cancers, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
- Thomas Andl
- Burnett School of Biological Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kun Yang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ana Luisa Kadekaro
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
244
|
Chakraborty S, Njah K, Pobbati AV, Lim YB, Raju A, Lakshmanan M, Tergaonkar V, Lim CT, Hong W. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway. Cell Rep 2017; 18:2464-2479. [DOI: 10.1016/j.celrep.2017.02.041] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 12/01/2022] Open
|
245
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
246
|
CRB3 regulates contact inhibition by activating the Hippo pathway in mammary epithelial cells. Cell Death Dis 2017; 8:e2546. [PMID: 28079891 PMCID: PMC5386381 DOI: 10.1038/cddis.2016.478] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/08/2023]
Abstract
The loss of contact inhibition is a hallmark of cancer cells. The Hippo pathway has recently been shown to be an important regulator of contact inhibition, and the cell apical polarity determinant protein CRB3 has been suggested to be involved in Hippo signalling. However, whether CRB3 regulates contact inhibition in mammary cells remains unclear, and the underlying mechanisms have not been elucidated. As shown in the present study, CRB3 decreases cell proliferation, promotes apoptosis, and enhances the formation of tight and adherens junctions. Furthermore, we report for the first time that CRB3 acts as an upstream regulator of the Hippo pathway to regulate contact inhibition by recruiting other Hippo molecules, such as Kibra and/or FRMD6, in mammary epithelial cells. In addition, CRB3 inhibits tumour growth in vivo. Collectively, the present study increases our understanding of the Hippo pathway and provides an important theoretical basis for exploring new avenues for breast cancer treatment.
Collapse
|
247
|
Ferreira BI, Lie MK, Engelsen AST, Machado S, Link W, Lorens JB. Adaptive mechanisms of resistance to anti-neoplastic agents. MEDCHEMCOMM 2017; 8:53-66. [PMID: 30108690 PMCID: PMC6072477 DOI: 10.1039/c6md00394j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
Intrinsic and acquired resistance to conventional and targeted therapeutics is a fundamental reason for treatment failure in many cancer patients. Targeted approaches to overcome chemoresistance as well as resistance to targeted approaches require in depth understanding of the underlying molecular mechanisms. The anti-cancer activity of a drug can be limited by a broad variety of molecular events at different levels of drug action in a cell-autonomous and non-cell-autonomous manner. This review summarizes recent insights into the adaptive mechanisms used by tumours to resist therapy including cellular phenotypic plasticity, dynamic alterations of the tumour microenvironment, activation of redundant signal transduction pathways, modulation of drug target expression levels, and exploitation of pro-survival responses.
Collapse
Affiliation(s)
- Bibiana I Ferreira
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - Maria K Lie
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
- Department of Pathology , Haukeland University Hospital , Jonas Lies vei 65 , 5021 Bergen , Norway
| | - Agnete S T Engelsen
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
| | - Susana Machado
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - Wolfgang Link
- Centre for Biomedical Research (CBMR) , University of Algarve , Campus of Gambelas, Building 8, room 2.22 , 8005-139 Faro , Portugal
- Regenerative Medicine Program , Department of Biomedical Sciences and Medicine , University of Algarve , Campus de Gambelas , 8005-139 Faro , Portugal .
| | - James B Lorens
- Department of Biomedicine , Centre for Cancer Biomarkers , University of Bergen , Jonas Lies Vei 91 , 5009 Bergen , Norway
| |
Collapse
|
248
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
249
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
250
|
Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL. N-cadherin adhesive interactions modulate matrix mechanosensing and fate commitment of mesenchymal stem cells. NATURE MATERIALS 2016; 15:1297-1306. [PMID: 27525568 PMCID: PMC5121068 DOI: 10.1038/nmat4725] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/07/2016] [Indexed: 04/14/2023]
Abstract
During mesenchymal development, the microenvironment gradually transitions from one that is rich in cell-cell interactions to one that is dominated by cell-ECM (extracellular matrix) interactions. Because these cues cannot readily be decoupled in vitro or in vivo, how they converge to regulate mesenchymal stem cell (MSC) mechanosensing is not fully understood. Here, we show that a hyaluronic acid hydrogel system enables, across a physiological range of ECM stiffness, the independent co-presentation of the HAVDI adhesive motif from the EC1 domain of N-cadherin and the RGD adhesive motif from fibronectin. Decoupled presentation of these cues revealed that HAVDI ligation (at constant RGD ligation) reduced the contractile state and thereby nuclear YAP/TAZ localization in MSCs, resulting in altered interpretation of ECM stiffness and subsequent changes in downstream cell proliferation and differentiation. Our findings reveal that, in an evolving developmental context, HAVDI/N-cadherin interactions can alter stem cell perception of the stiffening extracellular microenvironment.
Collapse
Affiliation(s)
- Brian D. Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104
| | - Keeley L. Mui
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tristan P. Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104
| | - Steven R. Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Kush D. Mehta
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard K. Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA 19104
- Corresponding Author: Robert L. Mauck, Ph.D., Associate Professor of Orthopaedic Surgery and Bioengineering, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294, Fax: (215) 573-2133,
| |
Collapse
|