201
|
Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18020430. [PMID: 28212331 PMCID: PMC5343964 DOI: 10.3390/ijms18020430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 02/01/2023] Open
Abstract
We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD). We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+) to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h). We found that the Epidermal Growth Factor Receptor (EGFR) pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26) gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic) neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.
Collapse
|
202
|
Burggren AC, Mahmood Z, Harrison TM, Siddarth P, Miller KJ, Small GW, Merrill DA, Bookheimer SY. Hippocampal thinning linked to longer TOMM40 poly-T variant lengths in the absence of the APOE ε4 variant. Alzheimers Dement 2017; 13:739-748. [PMID: 28183529 DOI: 10.1016/j.jalz.2016.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The translocase of outer mitochondrial membrane 40 (TOMM40), which lies in linkage disequilibrium with apolipoprotein E (APOE), has received attention more recently as a promising gene in Alzheimer's disease (AD) risk. TOMM40 influences AD pathology through mitochondrial neurotoxicity, and the medial temporal lobe (MTL) is the most likely brain region for identifying early manifestations of AD-related morphology changes. METHODS In this study, we examined the effects of TOMM40 using high-resolution magnetic resonance imaging in 65 healthy, older subjects with and without the APOE ε4 AD-risk variant. RESULTS Examining individual subregions within the MTL, we found a significant relationship between increasing poly-T lengths of the TOMM40 variant and thickness of the entorhinal cortex only in subjects who did not carry the APOE ε4 allele. DISCUSSION Our data provide support for TOMM40 variant repeat length as an important contributor to AD-like MTL pathology in the absence of APOE ε4.
Collapse
Affiliation(s)
- Alison C Burggren
- Center for Cognitive Neurosciences, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Zanjbeel Mahmood
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Theresa M Harrison
- Center for Cognitive Neurosciences, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - Karen J Miller
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - David A Merrill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Division of Geriatric Psychiatry, Longevity Center, University of California, Los Angeles, CA, USA
| | - Susan Y Bookheimer
- Center for Cognitive Neurosciences, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
203
|
Valian N, Ahmadiani A, Dargahi L. Escalating Methamphetamine Regimen Induces Compensatory Mechanisms, Mitochondrial Biogenesis, and GDNF Expression, in Substantia Nigra. J Cell Biochem 2017; 118:1369-1378. [PMID: 27862224 DOI: 10.1002/jcb.25795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
Methamphetamine (MA) produces long-lasting deficits in dopaminergic neurons in the long-term use via several neurotoxic mechanisms. The effects of MA on mitochondrial biogenesis is less studied currently. So, we evaluated the effects of repeated escalating MA regimen on transcriptional factors involved in mitochondrial biogenesis and glial-derived neurotrophic factor (GDNF) expression in substantia nigra (SN) and striatum of rat. In male Wistar rats, increasing doses of MA (1-14 mg/kg) were administrated twice a day for 14 days. At the 1st, 14th, 28th, and 60th days after MA discontinuation, we measured the PGC1α, TFAM and NRF1 mRNA levels, indicator of mitochondrial biogenesis, and GDNF expression in SN and striatum. Furthermore, we evaluated the glial fibrillary acidic protein (GFAP) and Iba1 mRNA levels, and the levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) using immunohistochemistry and real-time polymerase chain reaction (PCR). We detected increments in PGC1α and TFAM mRNA levels in SN, but not striatum, and elevations in GDNF levels in SN immediately after MA discontinuation. We also observed increases in GFAP and Iba1 mRNA levels in SN on day 1 and increases in Iba1 mRNA on days 1 and 14 in striatum. Data analysis revealed that the number of TH+ cells in the SN did not reduce in any time points, though TH mRNA levels was increased on day 1 after MA discontinuation in SN. These data show that repeated escalating MA induces several compensatory mechanisms, such as mitochondrial biogenesis and elevation in GDNF in SN. These mechanisms can reverse MA-induced neuroinflammation and prevent TH-immunoreactivity reduction in nigrostriatal pathway. J. Cell. Biochem. 118: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
204
|
Nguyen L, Lucke-Wold BP, Mookerjee S, Kaushal N, Matsumoto RR. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:133-152. [PMID: 28315269 PMCID: PMC5500918 DOI: 10.1007/978-3-319-50174-1_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sigma-1 receptors are molecular chaperones that may act as pathological mediators and targets for novel therapeutic applications in neurodegenerative diseases. Accumulating evidence indicates that sigma-1 ligands can either directly or indirectly modulate multiple neurodegenerative processes, including excitotoxicity, calcium dysregulation, mitochondrial and endoplasmic reticulum dysfunction, inflammation, and astrogliosis. In addition, sigma-1 ligands may act as disease-modifying agents in the treatment for central nervous system (CNS) diseases by promoting the activity of neurotrophic factors and neural plasticity. Here, we summarize their neuroprotective and neurorestorative effects in different animal models of acute brain injury and chronic neurodegenerative diseases, and highlight their potential role in mitigating disease. Notably, current data suggest that sigma-1 receptor dysfunction worsens disease progression, whereas enhancement amplifies pre-existing functional mechanisms of neuroprotection and/or restoration to slow disease progression. Collectively, the data support a model of the sigma-1 receptor as an amplifier of intracellular signaling, and suggest future clinical applications of sigma-1 ligands as part of multi-therapy approaches to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, 930 Chestnut Ridge Road, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, One Medical Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Brandon P Lucke-Wold
- Graduate Program in Neuroscience, School of Medicine, West Virginia University, One Medical Center Drive, Morgantown, WV, 26506, USA
| | - Shona Mookerjee
- College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA, 94592, USA
| | | | - Rae R Matsumoto
- Department of Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, 930 Chestnut Ridge Road, Morgantown, WV, 26506, USA.
- College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA, 94592, USA.
| |
Collapse
|
205
|
Zhang R, Zhang N, Zhang H, Liu C, Dong X, Wang X, Zhu Y, Xu C, Liu L, Yang S, Huang S, Chen L. Celastrol prevents cadmium-induced neuronal cell death by blocking reactive oxygen species-mediated mammalian target of rapamycin pathway. Br J Pharmacol 2017; 174:82-100. [PMID: 27764525 PMCID: PMC5341486 DOI: 10.1111/bph.13655] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence has suggested cadmium (Cd), as an inducer of ROS, is a potential pathogenic factor in human neurodegenerative diseases. Thus, it is important to find effective interventions for Cd-induced oxidative stress in the CNS. Here, we have studied the effects of celastrol, a plant-derived triterpene, on ROS production and cell death in neuronal cells, induced by Cd. EXPERIMENTAL APPROACH PC12, SH-SY5Y cells and primary murine neurons were used to study celastrol neuroprotection against Cd-poisoning. Cd-induced changes in cell viability, apoptosis, ROS and AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the cells were analysed by Trypan blue exclusion, DAPI and TUNEL staining, ROS imaging, immunofluorescence staining and Western blotting. Pharmacological and genetic approaches were employed to investigate the mechanisms underlying Cd neurotoxicity. RESULTS Celastrol attenuated Cd-induced apoptosis by suppressing Cd activation of mTOR, which was attributed to preventing Cd inactivation of AMPK. Inhibition of AMPK with compound C or expression of dominant negative AMPKα prevented celastrol from hindering Cd-induced dephosphorylation of AMPKα, activation of mTOR and apoptosis. Inhibition of mTOR with rapamycin or knockdown of mTOR potentiated prevention by celastrol, of Cd-induced phosphorylation of p70 S6 kinase 1/eukaryotic initiation factor 4E binding protein 1 and apoptosis. Celastrol attenuated Cd-induced cell death by suppressing induction of mitochondrial ROS. CONCLUSIONS AND IMPLICATIONS Celastrol prevented the inactivation of AMPK by mitochondrial ROS, thus attenuating Cd-induced mTOR activation and neuronal apoptosis. Celastrol may be a promising agent for prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Nana Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yu Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lei Liu
- Department of Biochemistry and Molecular BiologyLouisiana State University Health Sciences CenterShreveportLAUSA
- Feist‐Weiller Cancer CenterLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Sijun Yang
- ABSL‐III Laboratory for Animal Experiment Center, State Key Laboratory of VirologyWuhan University School of MedicineWuhanChina
| | - Shile Huang
- Department of Biochemistry and Molecular BiologyLouisiana State University Health Sciences CenterShreveportLAUSA
- Feist‐Weiller Cancer CenterLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
206
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
207
|
Mehan S, Parveen S, Kalra S. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders. Neural Regen Res 2017; 12:290-300. [PMID: 28400813 PMCID: PMC5361515 DOI: 10.4103/1673-5374.200812] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity), resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.
Collapse
Affiliation(s)
- Sidharth Mehan
- Department of Pharamcology, Rajendra Institute of Technology & Sciences, Sirsa, Haryana, India
| | - Shaba Parveen
- Department of Pharamcology, Rajendra Institute of Technology & Sciences, Sirsa, Haryana, India
| | - Sanjeev Kalra
- Department of Pharamcology, Rajendra Institute of Technology & Sciences, Sirsa, Haryana, India
| |
Collapse
|
208
|
Polyzos AA, McMurray CT. The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 2017; 161:181-197. [PMID: 27634555 PMCID: PMC5543717 DOI: 10.1016/j.mad.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/30/2023]
Abstract
Mitochondrial dysfunction and ensuing oxidative damage is typically thought to be a primary cause of Huntington's disease, Alzheimer's disease, and Parkinson disease. There is little doubt that mitochondria (MT) become defective as neurons die, yet whether MT defects are the primary cause or a detrimental consequence of toxicity remains unanswered. Oxygen consumption rate (OCR) and glycolysis provide sensitive and informative measures of the functional status MT and the cells metabolic regulation, yet these measures differ depending on the sample source; species, tissue type, age at measurement, and whether MT are measured in purified form or in a cell. The effects of these various parameters are difficult to quantify and not fully understood, but clearly have an impact on interpreting the bioenergetics of MT or their failure in disease states. A major goal of the review is to discuss issues and coalesce detailed information into a reference table to help in assessing mitochondrial dysfunction as a cause or consequence of Huntington's disease.
Collapse
Affiliation(s)
- Aris A Polyzos
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA.
| |
Collapse
|
209
|
Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife 2016; 5. [PMID: 27995895 PMCID: PMC5199195 DOI: 10.7554/elife.21616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI:http://dx.doi.org/10.7554/eLife.21616.001
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Matthew Rm Mullen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
210
|
Intravenous Treatment With Coenzyme Q10 Improves Neurological Outcome and Reduces Infarct Volume After Transient Focal Brain Ischemia in Rats. J Cardiovasc Pharmacol 2016; 67:103-9. [PMID: 26371950 DOI: 10.1097/fjc.0000000000000320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Coenzyme Q10 (CoQ10) crosses the blood-brain barrier when administered intravenously and accumulates in the brain. In this study, we investigated whether CoQ10 protects against ischemia-reperfusion injury by measuring neurological function and brain infarct volumes in a rat model of transient focal cerebral ischemia. In male Wistar rats, we performed transient middle cerebral artery occlusion (tMCAO) for 60 minutes, followed by reperfusion for 24 hours or 7 days. Forty-five minutes after the onset of occlusion (or 15 minutes before reperfusion), rats received a single intravenous injection of solubilized CoQ10 (30 mg·mL(-1)·kg(-1)) or saline (2 mL/kg). Sensory and motor function scores and body weights were obtained before the rats were killed by decapitation, and brain infarct volumes were calculated using tetrazolium chloride staining. CoQ10 brain levels were measured by high-performance liquid chromatography with electrochemical detection. CoQ10 significantly improved neurological behavior and reduced weight loss up to 7 days after tMCAO (P < 0.05). Furthermore, CoQ10 reduced cerebral infarct volumes by 67% at 24 hours after tMCAO and 35% at 7 days (P < 0.05). Cerebral ischemia resulted in a significant reduction in endogenous CoQ10 in both hemispheres (P < 0.05). However, intravenous injection of solubilized CoQ10 resulted in its increase in both hemispheres at 24 hours and in the contralateral hemisphere at 7 days (P < 0.05). Our results demonstrate that CoQ10 is a robust neuroprotective agent against ischemia-reperfusion brain injury in rats, improving both functional and morphological indices of brain damage.
Collapse
|
211
|
Mehta NJ, Asmaro K, Hermiz DJ, Njus MM, Saleh AH, Beningo KA, Njus D. Hypochlorite converts cysteinyl-dopamine into a cytotoxic product: A possible factor in Parkinson's Disease. Free Radic Biol Med 2016; 101:44-52. [PMID: 27682361 DOI: 10.1016/j.freeradbiomed.2016.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
The dopamine oxidation product cysteinyl-dopamine has attracted attention as a contributor to the death of dopaminergic neurons in Parkinson's disease. Treatment of cysteinyl-dopamine with hypochlorite yields an even more cytotoxic product. This product has potent redox-cycling activity and initiates production of superoxide in PC12 cells. Taurine, which scavenges hypochlorite, protects PC12 cells from cysteinyl-dopamine but not from the hypochlorite product, suggesting that the product, not cysteinyl-dopamine itself, is toxic. Furthermore, rotenone, which enhances expression of the hypochlorite-producing enzyme myeloperoxidase, increases the cytotoxicity of cysteinyl-dopamine but not of the hypochlorite product. This suggests that dopamine oxidation to cysteinyl-dopamine followed by hypochlorite-dependent conversion to a cytotoxic redox-cycling product leads to the generation of reactive oxygen species and oxidative stress and may contribute to the death of dopaminergic neurons.
Collapse
Affiliation(s)
- Nihar J Mehta
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Karam Asmaro
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States
| | - David J Hermiz
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Meredith M Njus
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Ashraf H Saleh
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Karen A Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States
| | - David Njus
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
212
|
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016; 100:14-31. [PMID: 27085844 DOI: 10.1016/j.freeradbiomed.2016.04.001] [Citation(s) in RCA: 721] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD+; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site IIIQo) and the site in complex I active during reverse electron transport (site IQ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites IIIQo and IQ are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts.
Collapse
Affiliation(s)
- Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, United States.
| |
Collapse
|
213
|
Evaluation of the Antioxidant Activity of the Marine Pyrroloiminoquinone Makaluvamines. Mar Drugs 2016; 14:md14110197. [PMID: 27801775 PMCID: PMC5128740 DOI: 10.3390/md14110197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/09/2023] Open
Abstract
Makaluvamines are pyrroloiminoquinones isolated from Zyzzya sponges. Until now, they have been described as topoisomerase II inhibitors with cytotoxic effects in diverse tumor cell lines. In the present work, seven makaluvamines were tested in several antioxidant assays in primary cortical neurons and neuroblastoma cells. Among the alkaloids studied, makaluvamine J was the most active in all the assays. This compound was able to reduce the mitochondrial damage elicited by the well-known stressor H2O2. The antioxidant properties of makaluvamine J are related to an improvement of the endogenous antioxidant defenses of glutathione and catalase. SHSY5Y assays proved that this compound acts as a Nrf2 activator leading to an improvement of antioxidant defenses. A low concentration of 10 nM is able to reduce the reactive oxygen species release and maintain a correct mitochondrial function. Based on these results, non-substituted nitrogen in the pyrrole plus the presence of a p-hydroxystyryl without a double bond seems to be the most active structure with a complete antioxidant effect in neuronal cells.
Collapse
|
214
|
Fu XF, Yao K, Du X, Li Y, Yang XY, Yu M, Li MZ, Cui QH. PGC-1α regulates the cell cycle through ATP and ROS in CH1 cells. J Zhejiang Univ Sci B 2016; 17:136-46. [PMID: 26834014 DOI: 10.1631/jzus.b1500158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation (OXPHOS). PGC-1α plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC-1α function, we established a cell line, CH1 PGC-1α, which stably overexpresses PGC-1α. Using this cell line, we found that over-expression of PGC-1α stimulated extra adenosine triphosphate (ATP) and reduced reactive oxygen species (ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators CyclinD1 and CyclinB1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated CyclinD1 but not CyclinB1, whereas elevation of ROS levels down-regulated CyclinB1 but not CyclinD1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC-1α was maintained at a constant level. Together, these results demonstrate that PGC-1α regulates cell cycle progression through modulation of CyclinD1 and CyclinB1 by ATP and ROS. These findings suggest that PGC-1α potentially coordinates energy metabolism together with the cell cycle.
Collapse
Affiliation(s)
- Xu-feng Fu
- School of Life Sciences, Yunnan University, Kunming 650091, China.,School of Medicine, Yunnan University, Kunming 650091, China
| | - Kun Yao
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xing Du
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yan Li
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiu-yu Yang
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mei-zhang Li
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qing-hua Cui
- School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
215
|
Azar A, Devlin K, Mell JC, Giovannetti T, Pirrone V, Nonnemacher MR, Passic S, Kercher K, Williams JW, Jacobson JM, Wigdahl B, Dampier W, Libon DJ, Sell C. Mitochondrial Haplogroup Influences Motor Function in Long-Term HIV-1-Infected Individuals. PLoS One 2016; 11:e0163772. [PMID: 27711166 PMCID: PMC5053473 DOI: 10.1371/journal.pone.0163772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022] Open
Abstract
Evolutionary divergence of the mitochondrial genome has given rise to distinct haplogroups. These haplogroups have arisen in specific geographical locations and are responsible for subtle functional changes in the mitochondria that may provide an evolutionary advantage in a given environment. Based on these functional differences, haplogroups could define disease susceptibility in chronic settings. In this study, we undertook a detailed neuropsychological analysis of a cohort of long-term HIV-1-infected individuals in conjunction with sequencing of their mitochondrial genomes. Stepwise regression analysis showed that the best model for predicting both working memory and declarative memory were age and years since diagnosis. In contrast, years since diagnosis and sub-haplogroup were significantly predictive of psychomotor speed. Consistent with this, patients with haplogroup L3e obtained better scores on psychomotor speed and dexterity tasks when compared to the remainder of the cohort, suggesting that this haplogroup provides a protective advantage when faced with the combined stress of HIV-1 infection and long-term antiretroviral therapies. Differential performance on declarative memory tasks was noted for individuals with other sub-L haplogroups, but these differences were not as robust as the association between L3e and psychomotor speed and dexterity tasks. This work provides evidence that mitochondrial haplogroup is related to neuropsychological test performance among patients in chronic disease settings such as HIV-1 infection.
Collapse
Affiliation(s)
- Ashley Azar
- Department of Pathology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kathryn Devlin
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tania Giovannetti
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffery M. Jacobson
- Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - William Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David J. Libon
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, United States of America
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
216
|
Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism. Eur J Med Chem 2016; 121:774-784. [DOI: 10.1016/j.ejmech.2016.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/21/2016] [Accepted: 03/26/2016] [Indexed: 12/27/2022]
|
217
|
Thangarajan S, Ramachandran S, Krishnamurthy P. Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair-Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax-Bad genes in male wistar rats. Biomed Pharmacother 2016; 84:514-525. [PMID: 27690136 DOI: 10.1016/j.biopha.2016.09.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 11/26/2022] Open
Abstract
3-Nitropropionic acid (3-NP) is an irreversible inhibitor of mitochondrial complex-II that causes transcriptional dysregulation, bioenergetics failure, protein aggregation and oxidative damage similar to Huntington's disease (HD) pathogenesis. Chrysin, a bioactive flavonoid reported to have anti-inflammation, antioxidant, vasorelaxant and neuroprotective property. The present study was framed to determine the neuroprotective efficiency of chrysin upon 3-NP induced oxidative stress, mitochondrial dysfunctions and neurodegeneration. 3-NP (10mg/kg b.w. i.p.) administration for 14days exhibited significant (P<0.01) behavioral alterations, mitochondrial dysfunction and oxidative damages to biomolecules, finally causes cell death. Chrysin at 50mg/kg b.w. orally for 14days improved all the behavioral performances and regulated the complex activities in mitochondria. Further, chrysin diminished the oxidative stress markers (lipid peroxidation, nitrite and protein carbonyls) by significantly (P<0.01) improving the antioxidant status (superoxide dismutase, catalase and reduced glutathione) in striatal mitochondria. Indeed, chrysin prevents apoptosis by upregulating the Bcl-2 mRNA expression and downregulating the pro-apoptotic (Bax, Bad) mRNAs in 3-NP induced condition. Furthermore, the survival of striatal neurons against 3-NP toxicity was enhanced upon chrysin treatment which was evidenced by observing histopathological studies. Hence, the present study collectively suggests that the chrysin can serve as a potential therapeutic agent on 3-NP induced mitochondrial deficits and subsequent apoptosis.
Collapse
Affiliation(s)
- Sumathi Thangarajan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113,Tamil Nadu, India.
| | - Surekha Ramachandran
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113,Tamil Nadu, India
| | - Priya Krishnamurthy
- Department of Biotechnology, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
218
|
Fukui K, Nakamura K, Shirai M, Hirano A, Takatsu H, Urano S. Long-Term Vitamin E-Deficient Mice Exhibit Cognitive Dysfunction via Elevation of Brain Oxidation. J Nutr Sci Vitaminol (Tokyo) 2016; 61:362-8. [PMID: 26639843 DOI: 10.3177/jnsv.61.362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vitamin E inhibits oxidative processes in living tissues. We produced vitamin E-deficient mice by feeding them a vitamin E-deficient diet to verify the influence of chronic vitamin E deficiency on cognitive function. We measured cognitive function over a 5-d period using the Morris water maze task, as well as antioxidant enzyme activity and lipid peroxidation in discrete brain regions, and total serum cholesterol content. Three- and six-mo-old vitamin E-deficient and age-matched control mice were used. In addition, 24-mo-old mice were used as an aged-model. In the 3-mo-old mice, cognitive function in the vitamin E-deficient (short-term vitamin E-deficient) group was significantly impaired compared to age-matched controls. Although the lipid peroxidation products in the cerebral cortex, cerebellum and hippocampus did not significantly differ in 3-mo-old mice, the levels in the 6-mo-old vitamin E-deficient (long-term vitamin E-deficient) mice were significantly increased compared to age-matched controls. Serum cholesterol content was also significantly increased in the short- and long-term vitamin E-deficient mice compared to their respective age-matched controls. These results indicate that chronic vitamin E deficiency may slowly accelerate brain oxidation. Thus, vitamin E concentrations may need to be monitored in order to prevent the risk of cognitive dysfunction, even under normal conditions.
Collapse
Affiliation(s)
- Koji Fukui
- Physiological Chemistry Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Sciences, Shibaura Institute of Technology
| | | | | | | | | | | |
Collapse
|
219
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
220
|
Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 2016; 98:187-196. [PMID: 26828019 DOI: 10.1016/j.freeradbiomed.2016.01.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary; Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
| | - Katsuhiko Suzuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Laszlo Balogh
- Institute of Physical Education and Sport Science, University of Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary
| |
Collapse
|
221
|
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Brain Pathol 2016; 26:648-63. [PMID: 27328058 PMCID: PMC8029062 DOI: 10.1111/bpa.12403] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Collapse
Affiliation(s)
- T C Bernardo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - I Marques-Aleixo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Beleza
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - P J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Coimbra, Portugal
| | - A Ascensão
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
222
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
223
|
Stucki DM, Ruegsegger C, Steiner S, Radecke J, Murphy MP, Zuber B, Saxena S. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic Biol Med 2016; 97:427-440. [PMID: 27394174 DOI: 10.1016/j.freeradbiomed.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression.
Collapse
Affiliation(s)
- David M Stucki
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julika Radecke
- Institute of Anatomy, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael P Murphy
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
224
|
Masser DR, Clark NW, Van Remmen H, Freeman WM. Loss of the antioxidant enzyme CuZnSOD (Sod1) mimics an age-related increase in absolute mitochondrial DNA copy number in the skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2016; 38:323-333. [PMID: 27444179 PMCID: PMC5061674 DOI: 10.1007/s11357-016-9930-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Mitochondria contain multiple copies of the circular mitochondrial genome (mtDNA) that encodes ribosomal RNAs and proteins locally translated for oxidative phosphorylation. Loss of mtDNA integrity, both altered copy number and increased mutations, is implicated in cellular dysfunction with aging. Published data on mtDNA copy number and aging is discordant which may be due to methodological limitations for quantifying mtDNA copy number. Existing quantitative PCR (qPCR) mtDNA copy number quantification methods provide only relative abundances and are problematic to normalize to different template input amounts and across tissues/sample types. As well, existing methods cannot quantify mtDNA copy number in subcellular isolates, such as isolated mitochondria and neuronal synaptic terminals, which lack nuclear genomic DNA for normalization. We have developed and validated a novel absolute mtDNA copy number quantitation method that uses chip-based digital polymerase chain reaction (dPCR) to count the number of copies of mtDNA and used this novel method to assess the literature discrepancy in which there is no clear consensus whether mtDNA numbers change with aging in skeletal muscle. Skeletal muscle in old mice was found to have increased absolute mtDNA numbers compared to young controls. Furthermore, young Sod1 -/- mice were assessed and show an age-mimicking increase in skeletal muscle mtDNA. These findings reproduce a number of previous studies that demonstrate age-related increases in mtDNA. This simple and cost effective dPCR approach should enable precise and accurate mtDNA copy number quantitation in mitochondrial studies, eliminating contradictory studies of mitochondrial DNA content with aging.
Collapse
Affiliation(s)
- Dustin R. Masser
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Department of Geriatric Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, OK 73104 USA
| | - Nicholas W. Clark
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Holly Van Remmen
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, OK 73104 USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73102 USA
| | - Willard M. Freeman
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Department of Geriatric Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, OK 73104 USA
| |
Collapse
|
225
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
226
|
Bratu LM, Rogobete AF, Sandesc D, Bedreag OH, Tanasescu S, Nitu R, Popovici SE, Crainiceanu ZP. The Use of Redox Expression and Associated Molecular Damage to Evaluate the Inflammatory Response in Critically Ill Patient with Severe Burn. Biochem Genet 2016; 54:753-768. [PMID: 27465592 DOI: 10.1007/s10528-016-9763-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/23/2016] [Indexed: 01/28/2023]
Abstract
The patient with severe burns always represents a challenge for the trauma team due to the severe biochemical and physiopathological disorders. Although there are many resuscitation protocols of severe burn patient, systemic inflammatory response, oxidative stress, decreased immune response, infections, and multiple organ dysfunction syndromes are still secondary complications of trauma, present at maximum intensity in this type of patients. Currently there are numerous studies regarding the evaluation, monitoring, and minimizing the side effects induced by free radicals through antioxidant therapy. In this study, we want to introduce biochemical and physiological aspects of oxidative stress in patients with severe burns and to summarize the biomarkers used presently in the intensive care units. Systemic inflammations and infections are according to the literature the most important causes of death in these type of patients, being directly involved in multiple organ dysfunction syndrome and death.
Collapse
Affiliation(s)
- Lavinia Melania Bratu
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania. .,Clinic of Aneshtesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Bd. Iosif Bulbuca nr.10, 300736, Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Aneshtesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Bd. Iosif Bulbuca nr.10, 300736, Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Aneshtesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Bd. Iosif Bulbuca nr.10, 300736, Timisoara, Romania
| | - Sonia Tanasescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | |
Collapse
|
227
|
Niewiadomska-Cimicka A, Krzyżosiak A, Ye T, Podleśny-Drabiniok A, Dembélé D, Dollé P, Krężel W. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2016; 54:3859-3878. [PMID: 27405468 DOI: 10.1007/s12035-016-0010-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e-5), cAMP (p = 4.5e-4), and calcium signaling (p = 3.4e-3). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Agnieszka Krzyżosiak
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anna Podleśny-Drabiniok
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Doulaye Dembélé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404, Illkirch Cedex, France. .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U 964, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
228
|
A polysaccharide isolated from Cynomorium songaricum Rupr. protects PC12 cells against H2O2-induced injury. Int J Biol Macromol 2016; 87:222-8. [DOI: 10.1016/j.ijbiomac.2016.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/09/2016] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
|
229
|
Gaman AM, Uzoni A, Popa-Wagner A, Andrei A, Petcu EB. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-"Chemobrain". Aging Dis 2016; 7:307-317. [PMID: 27330845 PMCID: PMC4898927 DOI: 10.14336/ad.2015.1022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022] Open
Abstract
Chemobrain or chemotherapy induced cognitive impairment (CICI) represents a new clinical syndrome characterised by memory, learning and motor function impairment. As numerous patients with cancer are long-term survivors, CICI represent a significant factor which may interfere with their quality of life. However, this entity CICI must be distinguished from other cognitive syndromes and addressed accordingly. At the present time, experimental and clinical research suggests that CICI could be induced by numerous factors including oxidative stress. This type of CNS injury has been previously described in cancer patients treated with common anti-neoplastic drugs such as doxorubicine, carmustine, methotrexate and cyclophosphamide. It seems that all these pharmacological factors promote neuronal death through a final common pathway represented by TNF alpha (tumour necrosis factor). However, as cancer in general is diagnosed more commonly in the aging population, the elderly oncological patient must be treated with great care since aging per se is also impacted by oxidative stress and potentiually by TNF alpha deleterious action on brain parenchyma. In this context, some patients may develop cognitive dysfunction well before the appearance of CICI. In addition, chemotherapy may worsen their cognitive function. Therefore, at the present time, there is an acute need for development of effective therapeutic methods to prevent CICI as well as new methods of early CICI diagnosis.
Collapse
Affiliation(s)
- Amelia Maria Gaman
- Research Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy of Craiova, 200349, Romania
- Filantropia City Hospital Craiova, Romania
| | - Adriana Uzoni
- Department of Psychiatry, University of Medicine Rostock, 18147 Rostock, Germany
| | - Aurel Popa-Wagner
- Research Center of Experimental and Clinical Medicine, University of Medicine and Pharmacy of Craiova, 200349, Romania
- Department of Psychiatry, University of Medicine Rostock, 18147 Rostock, Germany
| | - Anghel Andrei
- Biochemistry Department, University of Medicine and Pharmacy “Victor Babes” Timisoara
| | - Eugen-Bogdan Petcu
- Griffith University School of Medicine, Gold Coast Campus, Griffith University, QLD 4222, Australia
| |
Collapse
|
230
|
Stefanova NA, Kolosova NG. Evolution of Alzheimer’s disease pathogenesis conception. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392516010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
231
|
Lin CY, Tsai CW, Tsai CW. Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway. Neuropharmacology 2016; 110:109-117. [PMID: 27091487 DOI: 10.1016/j.neuropharm.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 02/02/2023]
Abstract
Parkin is a Parkinson's disease (PD)-linked gene that plays an important role in the ubiquitin-proteasome system (UPS). This study explored whether carnosic acid (CA) from rosemary protects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulation of parkin in vivo and in vitro. We found that the reduction in proteasomal activity by 6-OHDA was attenuated in SH-SY5Y cells pretreated with 1 μM CA. Immunoblots showed that CA reversed the induction of ubiquitinated protein and the reduction of PTEN-induced putative kinase 1 (PINK1) and parkin protein in 6-OHDA-treated SH-SY5Y cells and rats. Moreover, in a transgenic OW13 Caenorhabditis elegans model of PD that expresses human α-synuclein in muscle cells, CA reduced α-synuclein accumulation in a dose-dependent manner. In cells pretreated with the proteasome inhibitor MG132, CA no longer reversed the 6-OHDA-mediated induction of cleavage of caspase 3 and poly(ADP)-ribose polymerase and no longer reversed the suppression of proteasome activity. When parkin expression was silenced by use of small interfering RNA, the ability of CA to inhibit apoptosis and induce proteasomal activity was significantly reduced. The reduction in 6-OHDA-induced neurotoxicity by CA was associated with the induction of parkin, which in turn upregulated the UPS and then decreased cell death.
Collapse
Affiliation(s)
- Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
232
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
233
|
Pahrudin Arrozi A, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S. Antioxidant modulation in restoring mitochondrial function in neurodegeneration. Int J Neurosci 2016; 127:218-235. [PMID: 27074540 DOI: 10.1080/00207454.2016.1178261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of disability associated with neurodegeneration worldwide. These diseases are influenced by multiple genetic and environmental factors and share similar mechanisms as both are characterized by accumulation and aggregation of misfolded proteins - amyloid-beta (Aβ) in AD and α-synuclein in PD. Over the past decade, increasing evidence has shown that mitochondrial dysfunction and the generation of reactive oxygen species (ROS) are involved in the pathology of these diseases, and the contributions of these defects to the cellular and molecular changes that eventually cause neuronal death have been explored. Using mitochondrial protective agents, such as antioxidants, to combat ROS provides a new strategy for neurodegenerative treatment. In this review, we highlight the potential of multiple types of antioxidants, including vitamins, phytochemicals, fatty acids and minerals, as well as synthetic antioxidants specifically targeting the mitochondria, which can restore mitochondrial function, in the treatment of neurodegenerative disorders at both the pre-clinical and clinical stages by focusing on AD and PD.
Collapse
Affiliation(s)
- Aslina Pahrudin Arrozi
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Wan Zurinah Wan Ngah
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Yasmin Anum Mohd Yusof
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | | | - Suzana Makpol
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| |
Collapse
|
234
|
Mlody B, Lorenz C, Inak G, Prigione A. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Semin Cell Dev Biol 2016; 52:102-9. [DOI: 10.1016/j.semcdb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
|
235
|
Nardi F, Frati F, Liò P. Animal inference on human mitochondrial diseases. Comput Biol Chem 2016; 62:17-28. [PMID: 27023046 DOI: 10.1016/j.compbiolchem.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Several pathological mutations in the human mitochondrial genome have been characterized based on medical, genetic and biochemical evidence. The observation that the structure and core functions of the mitochondrial genome are conserved from animals to man suggests that the analysis of animal variation may be informative to further characterize, and possibly predict, human pathological variants. We studied the distribution of sequence site-wise diversity and structural heterogeneity (based on several scales of hydrophobicity and supercomplex classification of mitochondrial genes) at different taxonomic levels in ∼15,000 human and animal genomes. We found that human pathological mutations tend to lay in regions of low diversity and that states that are pathological in humans appear to be extremely rare in animals, with two noticeable exceptions (T10663C and C14568T). Focusing on hydrophobicity, as possibly the most general site-wise functional parameter of a protein, we deploy the observed range of hydrophobicity in mammals as a proxy for the range of permissible states compatible with an efficient functioning of the mitochondrial machinery. We show that, while non pathological human variants tend to fall within the hypothesized range, pathological mutations generally fall outside this range. We further analyzed this distribution quantitatively to show that the estimated probability of observed states can indeed be used to predict the pathogenicity of a mutation in humans. This study provides a proof of principle that animal data can indeed be informative to predict the pathogenicity of a human mutation alongside, or in the absence of, additional evidence.
Collapse
Affiliation(s)
| | | | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
236
|
A Abdel-Rahman E, Mahmoud AM, Khalifa AM, Ali SS. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing. J Physiol 2016; 594:4591-613. [PMID: 26801204 DOI: 10.1113/jp271471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdulrahman M Khalifa
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
237
|
Mitochondria in pluripotent stem cells: stemness regulators and disease targets. Curr Opin Genet Dev 2016; 38:1-7. [PMID: 26953561 DOI: 10.1016/j.gde.2016.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
Abstract
Beyond their canonical role in efficient ATP production through oxidative metabolism, mitochondria are increasingly recognized as critical in defining stem cell function and fate. Implicating a fundamental interplay within the epigenetics of eukaryotic cell systems, the integrity of mitochondria is found vital across the developmental/differentiation spectrum from securing pluripotency maintenance to informing organotypic decisions. This overview will discuss recent progress on examining the plasticity of mitochondria in enabling the execution of programming and reprogramming regimens, as well as the application of nuclear reprogramming and somatic cell nuclear transfer as rescue techniques to generate genetically and functionally corrected pluripotent stem cells from patients with mitochondrial DNA-based disease.
Collapse
|
238
|
Abstract
Mitochondrial reactive oxygen species production has emerged as an important pathological mechanism in myocardial ischemia/reperfusion injury. Attempts at targeting reactive oxygen species by scavenging using antioxidants have, however, been clinically disappointing. This review will provide an overview of the current understanding of mitochondrial reactive oxygen species in ischemia/reperfusion injury. We will outline novel therapeutic approaches designed to directly target the mitochondrial respiratory chain and prevent excessive reactive oxygen species production and its associated pathology. This approach could lead to more effective interventions in an area where there is an urgent need for new treatments.
Collapse
Affiliation(s)
- Victoria R Pell
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Edward T Chouchani
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Michael P Murphy
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Paul S Brookes
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.)
| | - Thomas Krieg
- From the Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (V.R.P., T.K.); Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA (E.T.C.); Department of Cell Biology, Harvard Medical School, Boston, MA (E.T.C.); MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.); and Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY (P.S.B.).
| |
Collapse
|
239
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
240
|
Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez-Marin A, Castro MR, Ayala-Peña S, McMurray CT. Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet 2016; 25:1792-802. [PMID: 26908614 DOI: 10.1093/hmg/ddw051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative damage to mitochondria (MT) is a major mechanism for aging and neurodegeneration. We have developed a novel synthetic antioxidant, XJB-5-131, which directly targets MT, the primary site and primary target of oxidative damage. XJB-5-131 prevents the onset of motor decline in an HdhQ(150/150) mouse model for Huntington's disease (HD) if treatment starts early. Here, we report that XJB-5-131 attenuates or reverses disease progression if treatment occurs after disease onset. In animals with well-developed pathology, XJB-5-131 promotes weight gain, prevents neuronal death, reduces oxidative damage in neurons, suppresses the decline of motor performance or improves it, and reduces a graying phenotype in treated HdhQ(150/150) animals relative to matched littermate controls. XJB-5-131 holds promise as a clinical candidate for the treatment of HD.
Collapse
Affiliation(s)
- Aris Polyzos
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Amy Holt
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Christopher Brown
- Molecular Cellular Biology Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Celica Cosme
- Molecular Cellular Biology Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Alex Gomez-Marin
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Spain and
| | - Maríadel R Castro
- Department of Pharmacology and Toxicology, University of Puerto Rico, PO Box 365067, San Juan, PR 00936, USA
| | - Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico, PO Box 365067, San Juan, PR 00936, USA
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA,
| |
Collapse
|
241
|
Jiang S, Deng C, Lv J, Fan C, Hu W, Di S, Yan X, Ma Z, Liang Z, Yang Y. Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke. Mol Neurobiol 2016; 54:1440-1455. [PMID: 26846360 DOI: 10.1007/s12035-016-9707-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/05/2016] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a neuroprotective transcription factor that has recently attracted increased attention. Stroke, a common and serious neurological disease, is currently a leading cause of death in the USA so far. It is therefore of vital importance to explore how Nrf2 behaves in stroke. In this review, we first introduce the structural features of Nrf2 and Kelch-like ECH-associated protein 1 (Keap1) and briefly depict the activation, inactivation, and regulation processes of the Nrf2 pathway. Next, we discuss the physiopathological mechanisms, upstream modulators, and downstream targets of the Nrf2 pathway. Following this background, we expand our discussion to the roles of Nrf2 in ischemic and hemorrhagic stroke and provide several potential future directions. The information presented here may be useful in the design of future experimental research and increase the likelihood of using Nrf2 as a therapeutic target for stroke in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China.,Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Shouyin Di
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Xiaolong Yan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China.
| | - Yang Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China. .,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
242
|
Suski M, Olszanecki R, Chmura Ł, Stachowicz A, Madej J, Okoń K, Adamek D, Korbut R. Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice. Eur J Pharmacol 2016; 772:99-107. [DOI: 10.1016/j.ejphar.2015.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
243
|
|
244
|
Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia. Cell 2016; 163:324-39. [PMID: 26451483 PMCID: PMC4601085 DOI: 10.1016/j.cell.2015.08.069] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases have been linked to inflammation, but whether altered immunomodulation plays a causative role in neurodegeneration is not clear. We show that lack of cytokine interferon-β (IFN-β) signaling causes spontaneous neurodegeneration in the absence of neurodegenerative disease-causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-β signaling caused defects in neuronal autophagy prior to α-synucleinopathy, which was associated with accumulation of senescent mitochondria. Recombinant IFN-β promoted neurite growth and branching, autophagy flux, and α-synuclein degradation in neurons. In addition, lentiviral IFN-β overexpression prevented dopaminergic neuron loss in a familial Parkinson's disease model. These results indicate a protective role for IFN-β in neuronal homeostasis and validate Ifnb mutant mice as a model for sporadic Lewy body and Parkinson's disease dementia.
Collapse
|
245
|
Kohli MA, Cukier HN, Hamilton-Nelson KL, Rolati S, Kunkle BW, Whitehead PL, Züchner SL, Farrer LA, Martin ER, Beecham GW, Haines JL, Vance JM, Cuccaro ML, Gilbert JR, Schellenberg GD, Carney RM, Pericak-Vance MA. Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease. NEUROLOGY-GENETICS 2016; 2:e41. [PMID: 27066578 PMCID: PMC4817909 DOI: 10.1212/nxg.0000000000000041] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The genetic risk architecture of Alzheimer disease (AD) is complex with single pathogenic mutations leading to early-onset AD, while both rare and common genetic susceptibility variants contribute to the more widespread late-onset AD (LOAD); we sought to discover novel genes contributing to LOAD risk. METHODS Whole-exome sequencing and genome-wide genotyping were performed on 11 affected individuals in an extended family with an apparent autosomal dominant pattern of LOAD. Variants of interest were then evaluated in a large cohort of LOAD cases and aged controls. RESULTS We detected a single rare, nonsynonymous variant shared in all 11 LOAD individuals, a missense change in the tetratricopeptide repeat domain 3 (TTC3) gene. The missense variant, rs377155188 (p.S1038C), is predicted to be damaging. Affecteds-only multipoint linkage analysis demonstrated that this region of TTC3 has a LOD score of 2.66 in this family. CONCLUSION The TTC3 p.S1038C substitution may represent a segregating, rare LOAD risk variant. Previous studies have shown that TTC3 expression is consistently reduced in LOAD patients and negatively correlated with AD neuropathology and that TTC3 is a regulator of Akt signaling, a key pathway disrupted in LOAD. This study demonstrates how utilizing whole-exome sequencing in a large, multigenerational family with a high incidence of LOAD could reveal a novel candidate gene.
Collapse
Affiliation(s)
- Martin A Kohli
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Holly N Cukier
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Sophie Rolati
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Stephan L Züchner
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Lindsay A Farrer
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jonathan L Haines
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Gerard D Schellenberg
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Regina M Carney
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics (M.A.K., H.N.C., K.L.H.-N., S.R., B.W.K., P.L.W., S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., R.M.C., M.A.P.-V.), Department of Neurology (H.N.C., S.L.Z., J.M.V., M.A.P.-V.), and Dr. John T. Macdonald Foundation Department of Human Genetics (S.L.Z., E.R.M., G.W.B., J.M.V., M.L.C., J.R.G., M.A.P.-V.), University of Miami, Miller School of Medicine, Miami, FL; Departments of Medicine, Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics (L.A.F.), Boston University, Boston, MA; Department of Epidemiology and Biostatistics (J.L.H.), Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH; and Department of Pathology and Laboratory Medicine (G.D.S.), University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
246
|
Romanello V, Sandri M. Mitochondrial Quality Control and Muscle Mass Maintenance. Front Physiol 2016; 6:422. [PMID: 26793123 PMCID: PMC4709858 DOI: 10.3389/fphys.2015.00422] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Loss of muscle mass and force occurs in many diseases such as disuse/inactivity, diabetes, cancer, renal, and cardiac failure and in aging-sarcopenia. In these catabolic conditions the mitochondrial content, morphology and function are greatly affected. The changes of mitochondrial network influence the production of reactive oxygen species (ROS) that play an important role in muscle function. Moreover, dysfunctional mitochondria trigger catabolic signaling pathways which feed-forward to the nucleus to promote the activation of muscle atrophy. Exercise, on the other hand, improves mitochondrial function by activating mitochondrial biogenesis and mitophagy, possibly playing an important part in the beneficial effects of physical activity in several diseases. Optimized mitochondrial function is strictly maintained by the coordinated activation of different mitochondrial quality control pathways. In this review we outline the current knowledge linking mitochondria-dependent signaling pathways to muscle homeostasis in aging and disease and the resulting implications for the development of novel therapeutic approaches to prevent muscle loss.
Collapse
Affiliation(s)
| | - Marco Sandri
- Venetian Institute of Molecular MedicinePadova, Italy; Department of Biomedical Science, University of PadovaPadova, Italy; Institute of Neuroscience, Consiglio Nazionale delle RicerchePadova, Italy; Department of Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
247
|
Mitochondrial Alterations in Peripheral Mononuclear Blood Cells from Alzheimer's Disease and Mild Cognitive Impairment Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5923938. [PMID: 26881032 PMCID: PMC4736772 DOI: 10.1155/2016/5923938] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/17/2022]
Abstract
It is well recognized that mitochondrial dysfunction contributes to neurodegeneration occurring in Alzheimer's disease (AD). However, evidences of mitochondrial defects in AD peripheral cells are still inconclusive. Here, some mitochondrial-encoded and nuclear-encoded proteins, involved in maintaining the correct mitochondria machine, were investigated in terms of protein expression and enzymatic activity in peripheral blood mononuclear cells (PBMCs) isolated from AD and Mild Cognitive Impairment (MCI) patients and healthy subjects. In addition mitochondrial DNA copy number was measured by real time PCR. We found some differences and some similarities between AD and MCI patients when compared with healthy subjects. For example, cytochrome C and cytochrome B were decreased in AD, while MCI showed only a statistical reduction of cytochrome C. On the other hand, both AD and MCI blood cells exhibited highly nitrated MnSOD, index of a prooxidant environment inside the mitochondria. TFAM, a regulator of mitochondrial genome replication and transcription, was decreased in both AD and MCI patients' blood cells. Moreover also the mitochondrial DNA amount was reduced in PBMCs from both patient groups. In conclusion these data confirmed peripheral mitochondria impairment in AD and demonstrated that TFAM and mtDNA amount reduction could be two features of early events occurring in AD pathogenesis.
Collapse
|
248
|
Whitaker RM, Corum D, Beeson CC, Schnellmann RG. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Annu Rev Pharmacol Toxicol 2016; 56:229-49. [DOI: 10.1146/annurev-pharmtox-010715-103155] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan M. Whitaker
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Daniel Corum
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Craig C. Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Rick G. Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina 29425; , , ,
| |
Collapse
|
249
|
Denzer I, Münch G, Friedland K. Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds. Pharmacol Res 2016; 103:80-94. [DOI: 10.1016/j.phrs.2015.11.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022]
|
250
|
Fišar Z, Hroudová J, Singh N, Kopřivová A, Macečková D. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration. Folia Biol (Praha) 2016; 62:53-66. [PMID: 27187037 DOI: 10.14712/fb2016062020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).
Collapse
Affiliation(s)
- Z Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - J Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - N Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - A Kopřivová
- Department of Biology, Faculty of Science, University J. E. Purkyně in Ústí nad Labem, Czech Republic
| | - D Macečková
- Department of Biology, Faculty of Science, University J. E. Purkyně in Ústí nad Labem, Czech Republic
| |
Collapse
|