201
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|
202
|
Sardar R, Ahmed S, Yasin NA. Seed priming with karrikinolide improves growth and physiochemical features of coriandrum sativum under cadmium stress. ENVIRONMENTAL ADVANCES 2021; 5:100082. [DOI: 10.1016/j.envadv.2021.100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
203
|
Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi J Biol Sci 2021; 28:5238-5249. [PMID: 34466102 PMCID: PMC8381010 DOI: 10.1016/j.sjbs.2021.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/24/2023] Open
Abstract
Water deficit stress negatively affects wheat growth, physiology, and yield. In lab and hydroponic experiments, osmotic stress levels (control, −2, −4, −6 and −8 Bars) created by PEG-6000, caused a significant decline in germination, mean germination time, root, shoot, and coleoptile length in both wheat genotypes examined. Germination was inhibited more in Wafaq-2001 than in Chakwal-50. Wafaq-2001 showed a higher susceptibility index based on root and shoot dry weight than did Chakwal-50. Wheat plants exhibited osmotic adjustment through the accumulation of proline, soluble sugars, soluble proteins, and free amino acids, and increased antioxidation activities of superoxide dismutase, peroxidase, catalase, and malondialdehyde. Increasing water deficit stress caused a linear decline in chlorophyll contents, leaf membrane stability, and relative water content in all wheat plants, with Wafaq-2001 showing a more severe negative impact on these parameters with increasing stress levels. The results suggest the possibility of utilizing some of these parameters as quantitative indicators of water stress tolerance in plants. Gas exchange measurements (photosynthesis, transpiration, stomatal conductance), leaf osmotic potential, water potential, and yield attributes decreased more abruptly with increasing water deficit, whereas leaf cuticular wax content increased in both genotypes, with more severe impacts on Wagaq-2001. More reduction in biochemical, physiological, and yield attributes was observed in Wafaq-2001 than was observed in Chakwal-50. Based on these results, we can conclude that Chakwal-50 is a more drought-tolerant genotype, and has excellent potential for future use in breeding programs to improve wheat drought tolerance.
Collapse
|
204
|
Patel M, Fatnani D, Parida AK. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:290-313. [PMID: 34146784 DOI: 10.1016/j.plaphy.2021.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 05/28/2023]
Abstract
Drought stress considered as a major environmental constraint that frequently limits crop production globally. In the current investigation, drought stress-induced alterations in growth, ion homeostasis, photosynthetic pigments, organic osmolytes, reactive oxygen species (ROS) generation, antioxidative components, and metabolic profile were examined in order to assess the role of silicon (Si) in mitigation of drought effects and to understand the drought adaptive mechanism in two contrasting peanut genotypes (GG7: fast growing and tall, TG26: slow growing and semi-dwarf). Si application significantly improved the leaf chlorophyll content, relative water content % (RWC %), growth and biomass in GG7 compared with TG26 genotype under water stress. Si supplementation considerably promotes the uptake and transport of mineral nutrients under drought condition in both the genotypes, which eventually promote plant growth. Exogenous application of Si protects the photosynthetic pigments from oxidative damage by reducing membrane lipid peroxidation and either maintained or reduced H2O2 accumulation in both the genotypes. The activity of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) and non-enzymatic antioxidants like ascorbate (AsA) and glutathione (GSH) were either maintained or increased in both the genotypes in response to Si under drought as compared to those without Si. Silicon-induced higher accumulation of metabolites mainly sugars and sugar alcohols (talose, mannose, fructose, sucrose, cellobiose, trehalose, pinitol, and myo-inositol), amino acids (glutamic acid, serine, histidine, threonine, tyrosine, valine, isoleucine, and leucine) in GG7 genotype as compared to TG26, provides osmo-protection. Moreover, Si application increased phytohormones levels such as indole-3-acetic acid (IAA), gibberellic acid (GA3), jasmonic acid (JA), and zeatin in GG7 genotype under drought stress compared to non-Si treated seedlings suggesting its involvement in signaling pathways for drought adaptation and tolerance. Noteworthy increment in polyphenols (chlorogenic acid, caffeic acid, ellagic acid, rosmarinic acid, quercetin, coumarin, naringenin, and kaempferol) in the Si treated seedlings of GG7 genotype as compared to TG26 under drought stress suggests an efficient mechanism of ROS sequestration in GG7 genotype. Our findings provide comprehensive information on physiological, biochemical, and metabolic dynamics associated with Si-mediated water stress tolerance in peanut. This study indicates that the drought tolerance efficacy of peanut genotypes can be improved by Si application.
Collapse
Affiliation(s)
- Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
205
|
Zahedi SM, Hosseini MS, Daneshvar Hakimi Meybodi N, Peijnenburg W. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5202-5213. [PMID: 33608893 DOI: 10.1002/jsfa.11167] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Drought is a very important environmental stressor, which has negative effects on the growth of trees, decreasing their yield. The role of different-sized selenium nanoparticles (Se-NPs) in the mitigation of environmental stresses such as drought in crops has not yet been investigated. RESULTS Trees treated with Se-NPs displayed higher levels of photosynthetic pigments, a better nutrient status, better physical parameters (especially fruit cracking) and chemical parameters, a higher phenolic content, and higher concentrations of osmolytes, antioxidant enzymes, and abscisic acid than untreated trees under drought stress. Foliar spraying of 10 and 50 nm Se-NPs alleviated many of the deleterious effects of drought in pomegranate leaves and fruits and this was achieved by reducing stress-induced lipid peroxidation and H2 O2 content by enhancing the activity of antioxidant enzymes. Furthermore, the 10 nm Se-NPs treatment produced more noticeable effects than the treatment with 50 nm Se-NPs. CONCLUSION Results confirm the positive effects of nanoparticle spraying, especially the role of 10 nm Se-NPs in the management of negative effects of drought not only for pomegranates but potentially also for other crops. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Marjan Sadat Hosseini
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Naghmeh Daneshvar Hakimi Meybodi
- Department of Horticulture, College of Agricultural Science and Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Willie Peijnenburg
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
206
|
Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int J Mol Sci 2021; 22:ijms22179108. [PMID: 34502020 PMCID: PMC8431676 DOI: 10.3390/ijms22179108] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways. Physio-biochemical and molecular strategies involved in plant tolerance mechanisms could be exploited to increase plant survival under drought stress. This review summarizes the most updated findings on primary and secondary metabolites involved in drought stress. We also examine the application of useful metabolic genes and their molecular responses to drought tolerance in plants and discuss possible strategies to help plants to counteract unfavorable drought periods.
Collapse
|
207
|
Ahmad S, Muhammad I, Wang GY, Zeeshan M, Yang L, Ali I, Zhou XB. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC PLANT BIOLOGY 2021; 21:368. [PMID: 34384391 PMCID: PMC8359050 DOI: 10.1186/s12870-021-03160-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/03/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 μM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. RESULTS The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 μM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Ihsan Muhammad
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Guo Yun Wang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Muhammad Zeeshan
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Li Yang
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Izhar Ali
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China
| | - Xun Bo Zhou
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Agricultural College of Guangxi University, Nanning, 530004, China.
| |
Collapse
|
208
|
Li F, Deng H, Wang Y, Li X, Chen X, Liu L, Zhang H. Potato growth, photosynthesis, yield, and quality response to regulated deficit drip irrigation under film mulching in a cold and arid environment. Sci Rep 2021; 11:15888. [PMID: 34354149 PMCID: PMC8342503 DOI: 10.1038/s41598-021-95340-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.
Collapse
Affiliation(s)
- Fuqiang Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haoliang Deng
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yucai Wang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuan Li
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xietian Chen
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lintao Liu
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hengjia Zhang
- College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
209
|
Silva JB, Mori R, Marques LH, Santos AC, Nowatzki T, Dahmer ML, Bing J, Gratão PL, Rossi GD. Water Deprivation Induces Biochemical Changes Without Reduction in the Insecticidal Activity of Maize and Soybean Transgenic Plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1817-1822. [PMID: 34104964 PMCID: PMC8340033 DOI: 10.1093/jee/toab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Like conventional crops, transgenic plants expressing insecticidal toxins from Bacillus thuringiensis (Bt) are subjected to water deprivation. However, the effects of water deprivation over the insecticidal activity of Bt plants are not well understood. We submitted Bt maize and Bt soybean to water deprivation and evaluated biochemical stress markers and the insecticidal activity of plants against target insects. Bt maize (DAS-Ø15Ø7-1 × MON-89Ø34-3 × MON-ØØ6Ø3-6 × SYN-IR162-4) containing the PowerCore Ultra traits, Bt soybean (DAS-444Ø6-6 × DAS-81419-2) with the Conkesta E3 traits, and commercial non-Bt cultivars were cultivated and exposed to water deprivation in the greenhouse. Leaves were harvested for quantification of hydrogen peroxide, malondialdeyde (MDA), and total phenolics and insecticidal activity. Maize or soybean leaf disks were used to evaluate the insecticidal activity against, respectively, Spodoptera frugiperda (J.E Smith) and Chrysodeixis includens (Walker) neonates. Except for Bt soybean, water deprivation increased hydrogen peroxide and MDA contents in Bt and non-Bt plants. Both biochemical markers of water deficit were observed in lower concentrations in Bt plants than in non-Bt commercial cultivars. Water deprivation did not result in changes of phenolic contents in Bt and non-Bt maize. For Bt or non-Bt soybean, phenolic contents were similar despite plants being exposed or not to water deprivation. Water deprivation did not alter substantially insect survival in non-Bt maize or non-Bt soybean. Despite water deprivation-induced biochemical changes in plants, both Bt plants maintained their insecticidal activity (100% mortality) against the target species.
Collapse
Affiliation(s)
- Juliana Barroso Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Raphael Mori
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Antonio Cesar Santos
- Corteva Agriscience, Alameda Itapecuru, 506, Alphaville, Barueri - SP, 06454-080, Brazil
| | | | | | - James Bing
- Corteva Agriscience, 7000NW 62nd Ave, Johnston, IA 50131, USA
| | - Priscila Lupino Gratão
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Guilherme Duarte Rossi
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| |
Collapse
|
210
|
Kim M, Lee C, Hong S, Kim SL, Baek JH, Kim KH. High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops. Int J Mol Sci 2021; 22:ijms22158266. [PMID: 34361030 PMCID: PMC8347144 DOI: 10.3390/ijms22158266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.
Collapse
Affiliation(s)
- Minsu Kim
- National Institute of Agricultural Science, RDA, Wanju 54874, Korea; (M.K.); (C.L.); (S.H.); (S.L.K.); (J.-H.B.)
| | - Chaewon Lee
- National Institute of Agricultural Science, RDA, Wanju 54874, Korea; (M.K.); (C.L.); (S.H.); (S.L.K.); (J.-H.B.)
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Subin Hong
- National Institute of Agricultural Science, RDA, Wanju 54874, Korea; (M.K.); (C.L.); (S.H.); (S.L.K.); (J.-H.B.)
| | - Song Lim Kim
- National Institute of Agricultural Science, RDA, Wanju 54874, Korea; (M.K.); (C.L.); (S.H.); (S.L.K.); (J.-H.B.)
| | - Jeong-Ho Baek
- National Institute of Agricultural Science, RDA, Wanju 54874, Korea; (M.K.); (C.L.); (S.H.); (S.L.K.); (J.-H.B.)
| | - Kyung-Hwan Kim
- National Institute of Agricultural Science, RDA, Wanju 54874, Korea; (M.K.); (C.L.); (S.H.); (S.L.K.); (J.-H.B.)
- Correspondence:
| |
Collapse
|
211
|
Bhusal N, Lee M, Lee H, Adhikari A, Han AR, Han A, Kim HS. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146466. [PMID: 33744562 DOI: 10.1016/j.scitotenv.2021.146466] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/27/2023]
Abstract
The frequency and severity of drought are expected to increase due to climate change; therefore, selection of tree species for afforestation should consider drought resistance of the species for maximum survival and conservation of natural habitats. In this study, three soil moisture regimes: control (100% precipitation), mild drought (40% reduction in precipitation), and severe drought (80% reduction in precipitation) were applied to six gymnosperm and five angiosperm species for two consecutive years. We quantified the drought resistance index based on the root collar diameter and assessed the correlation between species drought resistance and other morphological, physiological, and biochemical traits by regression analysis. The prolonged drought stress altered the morphological, physiological, and biochemical traits, but the responses were species-specific. The species with high drought resistance had high leaf mass per area (LMA), photosynthetic rate (Pn), and midday leaf water potential (ΨMD), and low carbon isotopic discrimination (δ13C), flavonoid and polyphenol content, superoxide dismutase and DPPH radical scavenging activity. The highly drought-resistant species had a relatively less decrease in leaf size, Pn, and predawn leaf water potential (ΨPD), and less increase in δ13C, abscisic acid and sucrose content, and LMA compared to the control. The interannual variation in drought resistance (∆Rd) was positively correlated with the species hydroscopic slope (isohydric and anisohydric). Korean pine was highly resistant, sawtooth oak, hinoki cypress, East Asian white birch, East Asian ash, and mono maple were highly susceptible, and Korean red pine, Japanese larch, Sargent cherry, needle fir, and black pine were moderate in drought resistance under long-term drought. These findings will help species selection for afforestation programs and establishment of sustainable forests, especially of drought-tolerant species, under increased frequency and intensity of spring and summer droughts.
Collapse
Affiliation(s)
- Narayan Bhusal
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsu Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Hojin Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul 08826, Republic of Korea
| | - Arjun Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah Reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun 33657, Republic of Korea
| | - Areum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun 33657, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul 08826, Republic of Korea; National Center for Agro Meteorology, Seoul 08826, Republic of Korea.
| |
Collapse
|
212
|
Pandey V, Tiwari DC, Dhyani V, Bhatt ID, Rawal RS, Nandi SK. Physiological and metabolic changes in two Himalayan medicinal herbs under drought, heat and combined stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1523-1538. [PMID: 34366594 PMCID: PMC8295442 DOI: 10.1007/s12298-021-01027-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED Valeriana jatamansi Jones and Hedychium spicatum Ham-ex-Smith are important medicinal herbs of the Himalayan region, which are highly demanded by pharmaceutical industries. Climatic variability especially increasing temperature and water deficit affects the growth and productivity of these species. In addition, increased temperature and water deficit may trigger the biosynthesis of medicinally important bioactive metabolites, which influence the quality of raw plant material and finished products. Therefore, V. jatamansi and H. spicatum plants were undertaken and subjected to different levels of drought (no irrigation), heat (35 °C), and combined stresses for investigating their physiological and metabolic responses. Both the treatments (individually and in combination) reduced relative water content, photosynthesis, carboxylation efficiency, chlorophyll content, while increased intracellular CO2, malondialdehyde and H2O2 content in both the species. Transpiration and stomatal conductance increased under heat and reduced under drought stress as compared to control. Water use efficiency was found to be increased under drought, while reduced under heat stress. Protein, proline, carotenoid content and antioxidant enzymes activities (superoxide dismutase, peroxidise, catalase) initially increased and thereafter decreased during late stages of stress. Exposure of plants to combined stress was more detrimental than individual stress. In V. jatamansi, exposure to drought stress significantly (p < 0.05) increased valerenic acid content in all plant parts (1.0-6.9 fold) with maximum increase after 20 days of exposure, while under heat stress, valerenic acid content increased (1.0-1.2 fold) in belowground part of V. jatamansi, and decreased (1.1-1.3 fold) in aerial part as compared to control. In H. spicatum, exposure of individual heat stress for 25-30 days and combined stress for 5-15 days significantly (p < 0.05) increased linalool content to 6.2-6.5 fold and 8.3-19.6 fold, respectively, as compared to control. Higher accumulation of bioactive compounds after exposure to mild stress provides encouraging prospects for enhancing pharmaceutical properties of these Himalayan herbs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01027-w.
Collapse
Affiliation(s)
- Veena Pandey
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Deep C. Tiwari
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Vibhash Dhyani
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Indra D. Bhatt
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Ranbeer S. Rawal
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Shyamal K. Nandi
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| |
Collapse
|
213
|
Islam MJ, Ryu BR, Azad MOK, Rahman MH, Rana MS, Lim JD, Lim YS. Exogenous Putrescine Enhances Salt Tolerance and Ginsenosides Content in Korean Ginseng ( Panax ginseng Meyer) Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1313. [PMID: 34203403 PMCID: PMC8309092 DOI: 10.3390/plants10071313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.
Collapse
Affiliation(s)
- Md. Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Obyedul Kalam Azad
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Hafizur Rahman
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Soyel Rana
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Jung-Dae Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| |
Collapse
|
214
|
Abdelaal K, AlKahtani M, Attia K, Hafez Y, Király L, Künstler A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. BIOLOGY 2021; 10:520. [PMID: 34207963 PMCID: PMC8230635 DOI: 10.3390/biology10060520] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Plant growth-promoting bacteria play an essential role in enhancing the physical, chemical and biological characters of soils by facilitating nutrient uptake and water flow, especially under abiotic stress conditions, which are major constrains to agricultural development and production. Drought is one of the most harmful abiotic stress and perhaps the most severe problem facing agricultural sustainability, leading to a severe shortage in crop productivity. Drought affects plant growth by causing hormonal and membrane stability perturbations, nutrient imbalance and physiological disorders. Furthermore, drought causes a remarkable decrease in leaf numbers, relative water content, sugar yield, root yield, chlorophyll a and b and ascorbic acid concentrations. However, the concentrations of total phenolic compounds, electrolyte leakage, lipid peroxidation, amounts of proline, and reactive oxygen species are considerably increased because of drought stress. This negative impact of drought can be eliminated by using plant growth-promoting bacteria (PGPB). Under drought conditions, application of PGPB can improve plant growth by adjusting hormonal balance, maintaining nutrient status and producing plant growth regulators. This role of PGPB positively affects physiological and biochemical characteristics, resulting in increased leaf numbers, sugar yield, relative water content, amounts of photosynthetic pigments and ascorbic acid. Conversely, lipid peroxidation, electrolyte leakage and amounts of proline, total phenolic compounds and reactive oxygen species are decreased under drought in the presence of PGPB. The current review gives an overview on the impact of drought on plants and the pivotal role of PGPB in mitigating the negative effects of drought by enhancing antioxidant defense systems and increasing plant growth and yield to improve sustainable agriculture.
Collapse
Affiliation(s)
- Khaled Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Muneera AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yaser Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| |
Collapse
|
215
|
Monda K, Mabuchi A, Negi J, Iba K. Cuticle permeability is an important parameter for the trade-off strategy between drought tolerance and CO 2 uptake in land plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1908692. [PMID: 33830857 PMCID: PMC8143242 DOI: 10.1080/15592324.2021.1908692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To protect against water loss, land plants have developed the cuticle; however, the cuticle strongly restricts CO2 uptake for photosynthesis. Controlling this trade-off relationship is an important strategy for plant survival, but the extent to which the changes in cuticle affects this relationship is not clear. To evaluate this, we measured CO2 assimilation rate and transpiration rate together in the Arabidopsis thaliana mutant excessive transpiration1 (extra1), which exhibited marked evaporative water loss due to an increased cuticle permeability caused by a new allele of ACETYL-COA CARBOXYLASE 1 (ACC1). Under high humidity (85%) conditions, the extra1 mutant exhibited higher CO2 assimilation rate in exchange for decreasing water use efficiency by one-third compared to the slow anion channel-associated 1 (slac1) mutant, whose stomata are continuously open. Our results indicate that the increased cuticle permeability in extra1 affects transpiration rate more than CO2 assimilation rate, but the effect on CO2 assimilation rate is larger than the effect of open stomata in slac1, suggesting that the cuticle permeability is an important parameter for the trade-off relationship between drought tolerance and CO2 uptake in land plants.
Collapse
Affiliation(s)
- Keina Monda
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
- CONTACT Keina Monda Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka819-0395, Japan
| | - Atsushi Mabuchi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
216
|
Mathur P, Roy S. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. PHYSIOLOGIA PLANTARUM 2021; 172:1016-1029. [PMID: 33491182 DOI: 10.1111/ppl.13338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Global increase in water scarcity is a serious problem for sustaining crop productivity. The lack of water causes the degeneration of the photosynthetic apparatus, an imbalance in key metabolic pathways, an increase in free radical generation as well as weakens the root architecture of plants. Drought is one of the major stresses that directly interferes with the osmotic status of plant cells. Abscisic acid (ABA) is known to be a key player in the modulation of drought responses in plants and involvement of both ABA-dependent and ABA-independent pathways have been observed during drought. Concomitantly, other phytohormones such as auxins, ethylene, gibberellins, cytokinins, jasmonic acid also confer drought tolerance and a crosstalk between different phytohormones and transcription factors at the molecular level exists. A number of drought-responsive genes and transcription factors have been utilized for producing transgenic plants for improved drought tolerance. Despite relentless efforts, biotechnological advances have failed to design completely stress tolerant plants until now. The root microbiome is the hidden treasure that possesses immense potential to revolutionize the strategies for inducing drought resistance in plants. Root microbiota consist of plant growth-promoting rhizobacteria, endophytes and mycorrhizas that form a consortium with the roots. Rhizospheric microbes are proliferous producers of phytohormones, mainly auxins, cytokinin, and ethylene as well as enzymes like the 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) and metabolites like exopolysaccharides that help to induce systemic tolerance against drought. This review, therefore focuses on the major mechanisms of plant-microbe interactions under drought-stressed conditions and emphasizes the importance of drought-tolerant microbes for sustaining and improving the productivity of crop plants under stress.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, India
| |
Collapse
|
217
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
218
|
Mukarram M, Choudhary S, Kurjak D, Petek A, Khan MMA. Drought: Sensing, signalling, effects and tolerance in higher plants. PHYSIOLOGIA PLANTARUM 2021; 172:1291-1300. [PMID: 33847385 DOI: 10.1111/ppl.13423] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 05/12/2023]
Abstract
Drought can be considered as a cocktail of multiple stressful conditions that contribute to osmotic and ionic imbalance in plants. Considering that water is vital for plant life, the very survival of the plant becomes questionable during drought conditions. Water deficit affects a wide spectrum of morpho-physiological phenomena restricting overall plant growth, development and productivity. To evade such complications and ameliorate drought-induced effects, plants have a battery of various defence mechanisms. These mechanisms can vary from stomatal adjustments to osmotic adjustments and antioxidant metabolism to ion regulations. In this review, we critically evaluate how drought is perceived and signalled through the whole plant via abscisic acid mediated pathways. Additionally, the impact of drought on photosynthesis, gas exchange variables and reactive oxygen species pathway was also reviewed, along with the reversal of these induced effects through associated morpho-physiological counter mechanisms.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Anja Petek
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
219
|
Peng C, Song Y, Li C, Mei T, Wu Z, Shi Y, Zhou Y, Zhou G. Growing in Mixed Stands Increased Leaf Photosynthesis and Physiological Stress Resistance in Moso Bamboo and Mature Chinese Fir Plantations. FRONTIERS IN PLANT SCIENCE 2021; 12:649204. [PMID: 34093612 PMCID: PMC8173113 DOI: 10.3389/fpls.2021.649204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/22/2021] [Indexed: 05/13/2023]
Abstract
Mixed-stand plantations are not always as beneficial for timber production and carbon sequestration as monoculture plantations. Systematic analyses of mixed-stand forests as potential ideal plantations must consider the physiological-ecological performance of these plantations. This study aimed to determine whether mixed moso bamboo (Phyllostachys pubescens (Pradelle) Mazel ex J. Houz.) and Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands exhibited better physiological-ecological performance than monoculture plantations of these species. We analyzed leaf photosynthesis, chlorophyll fluorescence, antioxidant enzyme activities, chlorophyll content and leaf chemistry in a moso bamboo stand, a Chinese fir stand and a mixed stand with both species. The results showed that both species in the mixed stand exhibited significantly higher leaf net photosynthesis rate (Amax), instantaneous carboxylation efficiency (CUE), chlorophyll content, maximum quantum yield of photosynthesis (Fv/Fm), photochemical quenching coefficient (qP), PSII quantum yield [Y(II)], leaf nitrogen content, and antioxidant enzyme activities than those in the monoculture plantations. However, the non-photochemical quenching (NPQ) in Chinese fir and 2-year-old moso bamboo was significantly lower in the mixed stand than in the monocultures. In addition, the water use efficiency (WUE) of Chinese fir was significantly higher in the mixed stand. The results suggest that the increase in leaf net photosynthetic capacity and the improved growth in the mixed stand could be attributed primarily to the (i) more competitive strategies for soil water use, (ii) stronger antioxidant systems, and (iii) higher leaf total nitrogen and chlorophyll contents in the plants. These findings suggest that mixed growth has beneficial effects on the leaf photosynthesis capacity and physiological resistance of moso bamboo and Chinese fir.
Collapse
Affiliation(s)
- Chunju Peng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Yandong Song
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Chong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Zhili Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Yongjun Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Yufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin’an, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Lin’an, China
- School of Environmental and Resources Science, Zhejiang A&F University, Lin’an, China
| |
Collapse
|
220
|
Semedo JN, Rodrigues AP, Lidon FC, Pais IP, Marques I, Gouveia D, Armengaud J, Silva MJ, Martins S, Semedo MC, Dubberstein D, Partelli FL, Reboredo FH, Scotti-Campos P, Ribeiro-Barros AI, DaMatta FM, Ramalho JC. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. is strengthened by elevated air [CO2]. TREE PHYSIOLOGY 2021; 41:708-727. [PMID: 33215189 DOI: 10.1093/treephys/tpaa158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
Growing water restrictions associated with climate changes constitute daunting challenges to crop performance. This study unveils the impacts of moderate (MWD) or severe (SWD) water deficit, and their interaction with air [CO2], on the photosynthetic apparatus of Coffea canephora Pierre ex A. Froehner cv. Conilon Clone 153 (CL153) and Coffea arabica L. cv. Icatu. Seven year-old potted plants grown under 380 (aCO2) or 700 μl l -1 (eCO2) [CO2] gradually reached predawn water potentials between -1.6 and -2.1 MPa (MWD), and below -3.5 MPa (SWD). Under drought, stomata closure was chiefly related to abscisic acid (ABA) rise. Increasing drought severity progressively affected gas exchange and fluorescence parameters in both genotypes, with non-stomatal limitations becoming gradually dominating, especially regarding the photochemical and biochemical components of CL153 SWD plants. In contrast, Icatu plants were highly tolerant to SWD, with minor, if any, negative impacts on the potential photosynthetic functioning and components (e.g., Amax, Fv/Fm, electron carriers, photosystems (PSs) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) activities). Besides, drought-stressed Icatu plants displayed increased abundance of a large set of proteins associated with the photosynthetic apparatus (PSs, light-harvesting complexes, cyclic electron flow, RuBisCO activase) regardless of [CO2]. Single eCO2 did not promote stomatal and photosynthetic down-regulation in both genotypes. Instead, eCO2 increased photosynthetic performance, moderately reinforced photochemical (PSs activity, electron carriers) and biochemical (RuBisCO, ribulose-5-phosphate kinase) components, whereas photoprotective mechanisms and protein abundance remained mostly unaffected. In both genotypes, under MWD, eCO2 superimposition delayed stress severity and promoted photosynthetic functioning with lower energy dissipation and PSII impacts, whereas stomatal closure was decoupled from increases in ABA. In SWD plants, most impacts on the photosynthetic performance were reduced by eCO2, especially in the moderately drought affected CL153 genotype, although maintaining RuBisCO as the most sensitive component, deserving special breeder's attention to improve coffee sustainability under future climate scenarios.
Collapse
Affiliation(s)
- José N Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana P Rodrigues
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel P Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Isabel Marques
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Duarte Gouveia
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Jean Armengaud
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, Bagnols-sur-Cèze F-F-30200, France
| | - Maria J Silva
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisboa 1959-007, Portugal
| | - Danielly Dubberstein
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fábio L Partelli
- Departamento de Ciências Agrárias e Biológicas (DCAB), Centro Universitário do Norte do Espírito Santo (CEUNES), Universidade Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, São Mateu-ES, CEP 29932-540, Brazil
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras 2784-505, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
| | - Ana I Ribeiro-Barros
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa, Viçosa, MG 36570-900, Brazil
| | - José C Ramalho
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Caparica 2829-516, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras 2784-505, Portugal
- Plant Stress and Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, Lisboa 1349-017, Portugal
| |
Collapse
|
221
|
Biochemical, Physiological, and Molecular Aspects of Ornamental Plants Adaptation to Deficit Irrigation. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing concern regarding global warming and its severe impact on the farming sector and food security. Incidences of extreme weather conditions are becoming more and more frequent, posing plants to stressful conditions, such as flooding, drought, heat, or frost etc. Especially for arid lands, there is a tug-of-war between keeping high crop yields and increasing water use efficiency of limited water resources. This difficult task can be achieved through the selection of tolerant water stress species or by increasing the tolerance of sensitive species. In this scenario, it is important to understand the response of plants to water stress. So far, the response of staple foods and vegetable crops to deficit irrigation is well studied. However, there is lack of literature regarding the responses of ornamental plants to water stress conditions. Considering the importance of this ever-growing sector for the agricultural sector, this review aims to reveal the defense mechanisms and the involved morpho-physiological, biochemical, and molecular changes in ornamental plant’s responses to deficit irrigation.
Collapse
|
222
|
Promotion of Growth and Physiological Characteristics in Water-Stressed Triticum aestivum in Relation to Foliar-Application of Salicylic Acid. WATER 2021. [DOI: 10.3390/w13091316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work reports the assessment of the effectiveness of a foliar-spray of salicylic acid (SA) on growth attributes, biochemical characteristics, antioxidant activities and osmolytes accumulation in wheat grown under control (100% field capacity) and water stressed (60% field capacity) conditions. The total available water (TAW), calculated for a rooting depth of 1.65 m was 8.45 inches and readily available water (RAW), considering a depletion factor of 0.55, was 4.65 inches. The water contents corresponding to 100 and 60% field capacity were 5.70 and 1.66 inches, respectively. For this purpose, seeds of two wheat cultivars (Fsd-2008 and S-24) were grown in pots subjected to water stress. Water stress at 60% field capacity markedly reduced the growth attributes, photosynthetic pigments, total soluble proteins (TSP) and total phenolic contents (TPC) compared with control. However, cv. Fsd-2008 was recorded as strongly drought-tolerant and performed better compared to cv. S-24, which was moderately drought tolerant. However, water stress enhanced the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and membrane electrolyte leakage (EL) and modulated the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as accumulation of ascorbic acid (AsA), proline (Pro) and glycine betaine (GB) contents. Foliar-spray with salicylic acid (SA; 0, 3 mM and 6 mM) effectively mitigated the adverse effects of water stress on both cultivars. SA application at 6 mM enhanced the shoot and root length, as well as their fresh and dry weights, and improved photosynthetic pigments. SA foliage application further enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nonenzymatic antioxidants such as ascorbic acid and phenolics contents. However, foliar-spray of SA reduced MDA, H2O2 and membrane permeability in both cultivars under stress conditions. The results of the present study suggest that foliar-spray of salicylic acid was effective in increasing the tolerance of wheat plants under drought stress in terms of growth attributes, antioxidant defense mechanisms, accumulation of osmolytes, and by reducing membrane lipid peroxidation.
Collapse
|
223
|
Kumar A, Kumar V, Dubey AK, Ansari MA, Narayan S, Kumar S, Pandey V, Pande V, Sanyal I. Chickpea glutaredoxin ( CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:923-944. [PMID: 34092945 PMCID: PMC8140008 DOI: 10.1007/s12298-021-00999-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Glutaredoxins (Grxs) are short, cysteine-rich glutathione (GSH)-mediated oxidoreductases. In this study, a chickpea (Cicer arietinum L.) glutaredoxin [LOC101493651 (CaGrx)] gene has been selected based on screening experiments with two contrasting varieties of chickpea, PUSA-362 (drought-tolerant) and ICC-1882 (drought-sensitive) under drought and salinity. The tolerant variety showed higher CaGrx gene expression, as compared to less in the sensitive variety, under both the stresses. The CaGrx gene was then over-expressed in Arabidopsis thaliana and were exposed to drought and salinity. The over-expression of CaGrx elevated the activity of glutaredoxin, which induced antioxidant enzymes (glutathione reductase; GR, glutathione peroxidase; GPX, catalase; CAT, ascorbate peroxidase; APX, glutathione-S-transferase; GST, superoxide dismutase; SOD, monodehydroascorbate reductase; MDHAR, and dehydroascorbate reductase; DHAR), antioxidants (GSH and ascorbate) and stress-responsive amino acids (cysteine and proline). Enhancement in the antioxidant defense system possibly administered tolerance in transgenics against both stresses. CaGrx reduced stress markers (H2O2, TBARS, and electrolyte leakage) and enhanced root growth, seed germination, and survival against both stresses. The physiological parameters (net photosynthesis; P N, water use efficiency; WUE, stomatal conductance; g s, transpiration; E, electron transport rate; ETR, and photochemical quenching; qP), chlorophylls and carotenoids, were improved in the transgenics during both stresses, that maintained the photosynthetic apparatus and protected the plants from damage. The enhanced activity of the cysteine biosynthesis enzyme, o-acetylserine (thiol) lyase (OAS-TL), increased the cysteine level in the transgenics, which elevated glutathione biosynthesis to maintain the ascorbate-glutathione cycle under both stresses. This investigation verified that the CaGrx gene provides tolerance against salinity and drought, maintaining physiological and morphological performances, and could be exploited for genetic engineering approaches to overcome both the stresses in various crops. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00999-z.
Collapse
Affiliation(s)
- Anil Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Varun Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Arvind Kumar Dubey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Mohd Akram Ansari
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Shiv Narayan
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sanoj Kumar
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Vivek Pandey
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
224
|
Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and Co-expression Network Analyses Reveal Differential Gene Expression and Pathways in Response to Severe Drought Stress in Peanut ( Arachis hypogaea L.). Front Genet 2021; 12:672884. [PMID: 33995498 PMCID: PMC8120245 DOI: 10.3389/fgene.2021.672884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/23/2023] Open
Abstract
Drought is one of the major abiotic stress factors limiting peanut production. It causes the loss of pod yield during the pod formation stage. Here, one previously identified drought-tolerant cultivar, "L422" of peanut, was stressed by drought (35 ± 5%) at pod formation stage for 5, 7, and 9 days. To analyze the drought effects on peanut, we conducted physiological and transcriptome analysis in leaves under well-watered (CK1, CK2, and CK3) and drought-stress conditions (T1, T2, and T3). By transcriptome analysis, 3,586, 6,730, and 8,054 differentially expressed genes (DEGs) were identified in "L422" at 5 days (CK1 vs T1), 7 days (CK2 vs T2), and 9 days (CK3 vs T3) of drought stress, respectively, and 2,846 genes were common DEGs among the three-time points. Furthermore, the result of weighted gene co-expression network analysis (WGCNA) revealed one significant module that was closely correlated between drought stress and physiological data. A total of 1,313 significantly up-/down-regulated genes, including 61 transcription factors, were identified in the module at three-time points throughout the drought stress stage. Additionally, six vital metabolic pathways, namely, "MAPK signaling pathway-plant," "flavonoid biosynthesis," "starch and sucrose metabolism," "phenylpropanoid biosynthesis," "glutathione metabolism," and "plant hormone signal transduction" were enriched in "L422" under severe drought stress. Nine genes responding to drought tolerance were selected for quantitative real-time PCR (qRT-PCR) verification and the results agreed with transcriptional profile data, which reveals the reliability and accuracy of transcriptome data. Taken together, these findings could lead to a better understanding of drought tolerance and facilitate the breeding of drought-resistant peanut cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lifeng Liu
- State Key Laboratory for Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
225
|
Abstract
Microalgae have become an attractive natural source of a diverse range of biomolecules, including enzymatic and non-enzymatic antioxidants; nevertheless, economically sustainable production of such compounds from microalgae biomass is still challenging. The main hurdles are: (a) increasing microalgae yield; (b) achieving optimal cultivation conditions; (c) energy-efficient and cost-effective downstream processing (extraction and purification); (d) optimal storage of post-processed antioxidant molecules. This review provides a detailed overview of enzymatic and non-enzymatic antioxidants in the cellular metabolism of the commercially important microalgae Dunaliella, industrial applications of antioxidant enzymes, strategies to enhanced antioxidant accumulation in cells, and the opportunities and limitations of current technologies for antioxidant enzymes production from microalgae biomass as an alternative to common microbial sources.
Collapse
|
226
|
Hnilickova H, Kraus K, Vachova P, Hnilicka F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050845. [PMID: 33922210 PMCID: PMC8145623 DOI: 10.3390/plants10050845] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 05/26/2023]
Abstract
In this investigation, the effect of salt stress on Portulaca oleracea L. was monitored at salinity levels of 100 and 300 mM NaCl. At a concentration of 100 mM NaCl there was a decrease in stomatal conductance (gs) simultaneously with an increase in CO2 assimilation (A) at the beginning of salt exposure (day 3). However, the leaf water potential (ψw), the substomatal concentration of CO2 (Ci), the maximum quantum yield of photosystem II (Fv/Fm), and the proline and malondialdehyde (MDA) content remained unchanged. Exposure to 300 mM NaCl caused a decrease in gs from day 3 and a decrease in water potential, CO2 assimilation, and Fv/Fm from day 9. There was a large increase in proline content and a significantly higher MDA concentration on days 6 and 9 of salt stress compared to the control group. After 22 days of exposure to 300 mM NaCl, there was a transition from the C4 cycle to crassulacean acid metabolism (CAM), manifested by a rapid increase in substomatal CO2 concentration and negative CO2 assimilation values. These results document the tolerance of P. oleracea to a lower level of salt stress and the possibility of its use in saline localities.
Collapse
|
227
|
Padilla YG, Gisbert-Mullor R, López-Serrano L, López-Galarza S, Calatayud Á. Grafting Enhances Pepper Water Stress Tolerance by Improving Photosynthesis and Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10040576. [PMID: 33918024 PMCID: PMC8069515 DOI: 10.3390/antiox10040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Currently, limited water supply is a major problem in many parts of the world. Grafting peppers onto adequate rootstocks is a sustainable technique used to cope with water scarcity in plants. For 1 month, this work compared grafted peppers by employing two rootstocks (H92 and H90), with different sensitivities to water stress, and ungrafted plants in biomass, photosynthesis, and antioxidant response terms to identify physiological–antioxidant pathways of water stress tolerance. Water stress significantly stunted growth in all the plant types, although tolerant grafted plants (variety grafted onto H92, Var/H92) had higher leaf area and fresh weight values. Var/H92 showed photosynthesis and stomata conductance maintenance, compared to sensitive grafted plants (Var/H90) and ungrafted plants under water stress, linked with greater instantaneous water use efficiency. The antioxidant system was effective in removing reactive oxygen species (ROS) that could damage photosynthesis; a significant positive and negative linear correlation was observed between the rate of CO2 uptake and ascorbic acid (AsA)/total AsA (AsAt) and proline, respectively. Moreover, in Var/H92 under water stress, both higher proline and ascorbate concentration were observed. Consequently, less membrane lipid peroxidation was quantified in Var/H92.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Lidia López-Serrano
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
- Correspondence:
| |
Collapse
|
228
|
Zhou XR, Dai L, Xu GF, Wang HS. A strain of Phoma species improves drought tolerance of Pinus tabulaeformis. Sci Rep 2021; 11:7637. [PMID: 33828138 PMCID: PMC8027514 DOI: 10.1038/s41598-021-87105-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Global warming has led to frequent droughts, posing challenges for afforestation in arid and semiarid regions. In search of labor-saving and money-saving methods to improve the survival and growth rates of trees in these regions, we isolated and identified fungal endophytes that can potentially enhance the drought-resistance abilities of seedlings. We isolated 93 endophytic strains from the roots of Pinus tabulaeformis trees grown on an arid cliff. Three isolates increased the drought resistance of the tree seedlings. Using morphological, molecular, and physiological-biochemical methods, we identified three isolates as different clones of a strain of Phoma spp. and studied the strain's effect on stress resistance-related substances in the seedlings. The results showed that the strain improved drought tolerance and increased the seedlings' proline levels and antioxidant enzyme activities. The strain also secreted abundant extracellular abscisic acid, which likely triggered the seedlings' protective mechanisms. This endophytic strain may provide a cheaper labor-saving, sustainable alternative to traditional methods of enhancing drought resistance.
Collapse
Affiliation(s)
- Xiu Ren Zhou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China.
| | - Lei Dai
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China
| | - Gui Fang Xu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China
| | - Hong Sheng Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453002, China
| |
Collapse
|
229
|
Predicting Water Stress in Wild Blueberry Fields Using Airborne Visible and Near Infrared Imaging Spectroscopy. REMOTE SENSING 2021. [DOI: 10.3390/rs13081425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Water management and irrigation practices are persistent challenges for many agricultural systems, exacerbated by changing seasonal and weather patterns. The wild blueberry industry is at heightened susceptibility due to its unique growing conditions and uncultivated nature. Stress detection in agricultural fields can prompt management responses to mitigate detrimental conditions, including drought and disease. We assessed airborne spectral data accompanied by ground sampled water potential over three developmental stages of wild blueberries collected throughout the 2019 summer on two adjacent fields, one irrigated and one non-irrigated. Ground sampled leaves were collected in tandem to the hyperspectral image collection with an unoccupied aerial vehicle (UAV) and then measured for leaf water potential. Using methods in machine learning and statistical analysis, we developed models to determine irrigation status and water potential. Seven models were assessed in this study, with four used to process six hyperspectral cube images for analysis. These images were classified as irrigated or non-irrigated and estimated for water potential levels, resulting in an R2 of 0.62 and verified with a validation dataset. Further investigation relating imaging spectroscopy and water potential will be beneficial in understanding the dynamics between the two for future studies.
Collapse
|
230
|
Gowayed SMH, Abd El-Moneim D. Detection of genetic divergence among some wheat (Triticum aestivum L.) genotypes using molecular and biochemical indicators under salinity stress. PLoS One 2021; 16:e0248890. [PMID: 33780480 PMCID: PMC8007010 DOI: 10.1371/journal.pone.0248890] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/07/2021] [Indexed: 11/30/2022] Open
Abstract
Wheat has remarkable importance among cereals in Egypt. Salt stress affects plant growth, development, and crop productivity. Therefore, salinity tolerance is an essential trait that must be incorporated in crops. This research aimed to investigate molecular and biochemical indicators and defence responses in seedlings of 14 Egyptian wheat genotypes to distinguish the most contrasting salt-responsive genotypes. Analysis of ISSR and SCoT markers revealed high polymorphism and reproducible fingerprinting profiles for evaluating genetic variability within the studied genotypes. The HB-10 and SCoT 1 primers had the highest values for all the studied parameters. All the tested primers generated a set of 66 polymorphic bands among tolerant and sensitive genotypes. The transcript profiles of eight TaWRKY genes showed significant induction under the salinity treatments. Moreover, the expression of TaWRKY6 for genotypes Sids 14 and Sakha 93 sharply increased and recorded the highest expression, while the expression of TaWRKY20 for Misr 1 recorded the lowest expression. Under salt stress, the total sugar, proline, and phenolic contents increased significantly, while the chlorophyll content decreased significantly. Additionally, five peroxidase and polyphenol oxidase isoforms were observed in treated leaves and clustered into five different patterns. Some isoforms increased significantly as salinity levels increased. This increase was clearer in salt-tolerant than in salt-sensitive genotypes. Eighteen protein bands appeared, most of which were not affected by salinity compared with the control, and specific bands were rare. Generally, the Sids 14, Sakha 93, Sohag 4, and Gemmeiza 12 genotypes are considered salt tolerant in comparison to the other genotypes.
Collapse
Affiliation(s)
- Salah M. H. Gowayed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Botany, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental and Agricultural Sciences, Arish University, El- Arish, Egypt
- * E-mail:
| |
Collapse
|
231
|
Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms 2021; 9:microorganisms9040687. [PMID: 33810405 PMCID: PMC8066330 DOI: 10.3390/microorganisms9040687] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
In the coming century, climate change and the increasing human population are likely leading agriculture to face multiple challenges. Agricultural production has to increase while preserving natural resources and protecting the environment. Drought is one of the major abiotic problems, which limits the growth and productivity of crops and impacts 1–3% of all land.To cope with unfavorable water-deficit conditions, plants use through sophisticated and complex mechanisms that help to perceive the stress signal and enable optimal crop yield are required. Among crop production, wheat is estimated to feed about one-fifth of humanity, but faces more and more drought stress periods, partially due to climate change. Plant growth promoting rhizobacteria are a promising and interesting way to develop productive and sustainable agriculture despite environmental stress. The current review focuses on drought stress effects on wheat and how plant growth-promoting rhizobacteria trigger drought stress tolerance of wheat by highlighting several mechanisms. These bacteria can lead to better growth and higher yield through the production of phytohormones, osmolytes, antioxidants, volatile compounds, exopolysaccharides and 1-aminocyclopropane-1-carboxylate deaminase. Based on the available literature, we provide a comprehensive review of mechanisms involved in drought resilience and how bacteria may alleviate this constraint
Collapse
|
232
|
Oliveira M, João Rodrigues M, Neng NR, Nogueira JMF, Bessa RJB, Custódio L. Seasonal Variations of the Nutritive Value and Phytotherapeutic Potential of Cladium mariscus L. (Pohl.) Targeting Ruminant's Production. PLANTS 2021; 10:plants10030556. [PMID: 33809590 PMCID: PMC8002363 DOI: 10.3390/plants10030556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
In our endeavor to identify salt-tolerant plants with potential veterinary uses in ruminants' production strategies, we focused on Cladium mariscus L. Pohl (sawgrass), due to its high total phenolic and tannin content, anti-radical properties, and ethnomedicinal uses. Aerial parts were collected along the year in Southern Portugal and evaluated for the nutritional profile and in vitro organic matter digestibility (IVOMD), aiming for its use as feed. Acetone extracts were appraised for total contents in phenolics (TPC), flavonoids (TFC), and tannins (CTC), as well as the chemical composition by HPLC-DAD and in vitro antioxidant and anti-inflammatory properties, targeting its exploitation as phytotherapeutic products. Sawgrass biomass has a limited nutritive value, due to its high neutral detergent fiber (NDF; 596-690 g kg-1 dry matter (DM)) and acid detergent fiber (ADF; 330-418 g kg-1 DM) contents, low crude protein (51.8-87.3 g kg-1 DM) and IVOMD (172-317 g kg-1 organic matter (OM)). Despite differences among seasons, the mineral profile was adequate. The extracts were rich in TPC (88-112 mg g-1), CTC (115-169 mg g-1), and TFC (18.5-20.2 mg g-1), and displayed significant antioxidant capacity, particularly in summer and autumn, whilst no seasonal influence was detected for anti-inflammatory properties (30% reduction of nitric oxide production). Eleven phenolics were quantified: chlorogenic, ferulic, and syringic acids were the most abundant, especially in the autumn sample. Overall, despite the low nutritional interest, sawgrass extracts hold the potential as a source of antioxidant and anti-inflammatory phenolic compounds.
Collapse
Affiliation(s)
- Marta Oliveira
- Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.O.); (M.J.R.)
| | - Maria João Rodrigues
- Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.O.); (M.J.R.)
| | - Nuno R. Neng
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (N.R.N.); (J.M.F.N.)
| | - José Manuel Florêncio Nogueira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (N.R.N.); (J.M.F.N.)
| | - Rui J. B. Bessa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-666 Lisboa, Portugal;
| | - Luísa Custódio
- Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.O.); (M.J.R.)
- Correspondence:
| |
Collapse
|
233
|
Zahid Z, Khan MKR, Hameed A, Akhtar M, Ditta A, Hassan HM, Farid G. Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:627107. [PMID: 33777067 PMCID: PMC7994611 DOI: 10.3389/fpls.2021.627107] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/02/2021] [Indexed: 06/01/2023]
Abstract
Cotton is an important fiber and cash crop. Extreme water scarceness affects the growth, quality, and productivity of cotton. Water shortage has threatened the future scenario for cotton growers, so it is imperative to devise a solution to this problem. In this research, we have tried to machinate a solution for it. 23 genotypes have been screened out against drought tolerance at the seedling stage by evaluating the morphological, physiological, and biochemical traits in a triplicate completely randomized design plot experiment with two water regimes [50 and 100% field capacity]. Genotypic differences for all the morphological and physiological traits revealed highly significant differences except transpiration rate (TR). Moreover, the interaction between genotype and water regime (G × W) was highly significant for root length (RL, 5.163), shoot length (SL, 11.751), excised leaf water loss (ELWL, 0.041), and stomatal conductance (SC, 7.406). A positively strong correlation was found in TR with relative water content (RWC; 0.510) and SC (0.584) and RWC with photosynthesis (0.452) under drought conditions. A negative correlation was found in SC with SL (-0.428) and photosynthesis (-0.446). Traits like RL, SL, SC, photosynthesis, proline, catalase, and malondialdehyde were visible indicators, which can differentiate drought-tolerant genotypes from the susceptible ones. A wide range of diversity was found in all the morpho-physiological traits with the cumulative variance of four principal components (PCs) 83.09% and three PCs 73.41% under normal and water-stressed conditions, respectively, as per the principal component analysis. Hence, selection criteria can be established on the aforementioned traits for the development of drought-tolerant cultivars. Moreover, it was found that out of 23 experimental varieties, NIAB-135, NIAB-512, and CIM-554 could be used to devise breeding strategies for improving drought tolerance in cotton.
Collapse
Affiliation(s)
- Zobia Zahid
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
- NIAB-C, Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
- NIAB-C, Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Amjad Hameed
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
- NIAB-C, Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Muhammad Akhtar
- NIAB-C, Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
- NIAB-C, Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Hafiz Mumtaz Hassan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
- NIAB-C, Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Ghulam Farid
- Soil and Environmental Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
234
|
Wan T, Feng Y, Liang C, Pan L, He L, Cai Y. Metabolomics and Transcriptomics Analyses of Two Contrasting Cherry Rootstocks in Response to Drought Stress. BIOLOGY 2021; 10:201. [PMID: 33800812 PMCID: PMC8001747 DOI: 10.3390/biology10030201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
Drought is one of the main factors affecting sweet cherry yields, and cherry rootstocks can provide a range of tree vigor levels to better match sweet cherries with the characteristics of the soil. To investigate the molecular events of the cherry to water deficiency, we performed transcriptomic and metabolomic analyses of Prunus mahaleb CDR-1 (drought-tolerant cherry rootstock (DT)) and P. cerasus × P. canescens Gisela 5 (drought-susceptible cherry rootstock (DS)), respectively. The results revealed 253 common drought-responsive genes in leaves and roots in DT and 17 in DS; 59 upregulated metabolites were explored in leaves in DT and 19 were explored in DS. Differentially expressed metabolites related to the cyanoamino acid metabolism pathway and phenylpropanoid biosynthesis pathway may be key factors in the difference in drought resistance in the two rootstocks. Moreover, six central metabolites-3-cyanoalanine, phenylalanine, quinic acid, asparagine, p-benzoquinone, and phytosphingosine-were identified as potential biological markers of drought response in cherries and may be key factors in the difference in drought resistance, along with caffeic acid and chlorogenic acid. We also selected 17 differentially expressed genes as core candidate genes and the mechanism of DT in response to drought is summarized.
Collapse
Affiliation(s)
- Tian Wan
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Ying Feng
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Chenglin Liang
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China;
| | - Liuyi Pan
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Ling He
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| | - Yuliang Cai
- College of Horticulture, Northwest Agriculture & Forestry University, No.3 Taicheng Road, Yangling 712100, China; (T.W.); (Y.F.); (L.P.)
| |
Collapse
|
235
|
Hou P, Wang F, Luo B, Li A, Wang C, Shabala L, Ahmed HAI, Deng S, Zhang H, Song P, Zhang Y, Shabala S, Chen L. Antioxidant Enzymatic Activity and Osmotic Adjustment as Components of the Drought Tolerance Mechanism in Carex duriuscula. PLANTS (BASEL, SWITZERLAND) 2021; 10:436. [PMID: 33668813 PMCID: PMC7996351 DOI: 10.3390/plants10030436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022]
Abstract
Drought stress is a major environmental constraint for plant growth. Climate-change-driven increases in ambient temperatures resulted in reduced or unevenly distributed rainfalls, leading to increased soil drought. Carex duriuscula C. A. Mey is a typical drought-tolerant sedge, but few reports have examined the mechanisms conferring its tolerant traits. In the present study, the drought responses of C. duriuscula were assessed by quantifying activity of antioxidant enzymes in its leaf and root tissues and evaluating the relative contribution of organic and inorganic osmolyte in plant osmotic adjustment, linking it with the patterns of the ion acquisition by roots. Two levels of stress-mild (MD) and severe (SD) drought treatments-were used, followed by re-watering. Drought stress caused reduction in a relative water content and chlorophyll content of leaves; this was accompanied by an increase in the hydrogen peroxide (H2O2) and superoxide (O2-) contents in leaves and roots. Under MD stress, the activities of catalase (CAT), peroxidase (POD), and glutathione peroxidase (GPX) increased in leaves, whereas, in roots, only CAT and POD activities increased. SD stress led to an increase in the activities of CAT, POD, superoxide dismutase (SOD), and GPX in both tissues. The levels of proline, soluble sugars, and soluble proteins in the leaves also increased. Under both MD and SD stress conditions, C. duriuscula increased K+, Na+, and Cl- uptake by plant roots, which resulted in an increased K+, Na+, and Cl- concentrations in leaves and roots. This reliance on inorganic osmolytes enables a cost-efficient osmotic adjustment in C. duriuscula. Overall, this study revealed that C. duriuscula was able to survive arid environments due to an efficient operation of its ROS-scavenging systems and osmotic adjustment mechanisms.
Collapse
Affiliation(s)
- Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
| | - Feifei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Bin Luo
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| | - Cheng Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528011, China
| | - Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
- Department of Botany, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (S.D.); (Y.Z.)
| | - Huilong Zhang
- Tianjin Research Institute of Forestry of Chinese Academy of Forestry, Tianjin 300000, China;
| | - Peng Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (S.D.); (Y.Z.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania 7001, Australia; (L.S.); (H.A.I.A.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528011, China
| | - Liping Chen
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (P.H.); (B.L.); (A.L.); (C.W.)
| |
Collapse
|
236
|
Li X, Zhao C, Zhang T, Wang G, Amombo E, Xie Y, Fu J. Exogenous Aspergillus aculeatus Enhances Drought and Heat Tolerance of Perennial Ryegrass. Front Microbiol 2021; 12:593722. [PMID: 33679629 PMCID: PMC7933552 DOI: 10.3389/fmicb.2021.593722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Perennial ryegrass (Lolium perenne) is a cool-season grass whose growth and development are limited by drought and high temperature. Aspergillus aculeatus has been reported to promote plant growth and counteract the adverse effects of abiotic stresses. The objective of this study was to assess A. aculeatus-induced response mechanisms to drought and heat resistance in perennial ryegrass. We evaluated the physiological and biochemical markers of drought and heat stress based on the hormone homeostasis, photosynthesis, antioxidant enzymes activity, lipid peroxidation, and genes expression level. We found out that under drought and heat stress, A. aculeatus-inoculated leaves exhibited higher abscisic acid (ABA) and lower salicylic acid (SA) contents than non-inoculated regimes. In addition, under drought and heat stress, the fungus enhanced the photosynthetic performance, decreased the antioxidase activities, and mitigated membrane lipid peroxidation compared to non-inoculated regime. Furthermore, under drought stress, A. aculeatus induced a dramatic upregulation of sHSP17.8 and DREB1A and a downregulation of POD47, Cu/ZnSOD, and FeSOD genes. In addition, under heat stress, A. aculeatus-inoculated plants exhibited a higher expression level of HSP26.7a, sHSP17.8, and DREB1A while a lower expression level of POD47 and FeSOD than non-inoculated ones. Our results provide an evidence of the protective role of A. aculeatus in perennial ryegrass response to drought and heat stresses.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Chuncheng Zhao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Ting Zhang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan City, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
237
|
Near-Infrared Spectroscopy (NIRS) and Optical Sensors for Estimating Protein and Fiber in Dryland Mediterranean Pastures. AGRIENGINEERING 2021. [DOI: 10.3390/agriengineering3010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dryland pastures provide the basis for animal sustenance in extensive production systems in Iberian Peninsula. These systems have temporal and spatial variability of pasture quality resulting from the diversity of soil fertility and pasture floristic composition, the interaction with trees, animal grazing, and a Mediterranean climate characterized by accentuated seasonality and interannual irregularity. Grazing management decisions are dependent on assessing pasture availability and quality. Conventional analytical determination of crude protein (CP) and fiber (neutral detergent fiber, NDF) by reference laboratory methods require laborious and expensive procedures and, thus, do not meet the needs of the current animal production systems. The aim of this study was to evaluate two alternative approaches to estimate pasture CP and NDF, namely one based on near-infrared spectroscopy (NIRS) combined with multivariate data analysis and the other based on the Normalized Difference Vegetation Index (NDVI) measured in the field by a proximal active optical sensor (AOS). A total of 232 pasture samples were collected from January to June 2020 in eight fields. Of these, 96 samples were processed in fresh form using NIRS. All 232 samples were dried and subjected to reference laboratory and NIRS analysis. For NIRS, fresh and dry samples were split in two sets: a calibration set with half of the samples and an external validation set with the remaining half of the samples. The results of this study showed significant correlation between NIRS calibration models and reference methods for quantifying pasture quality parameters, with greater accuracy in dry samples (R2 = 0.936 and RPD = 4.01 for CP and R2 = 0.914 and RPD = 3.48 for NDF) than fresh samples (R2 = 0.702 and RPD = 1.88 for CP and R2 = 0.720 and RPD = 2.38 for NDF). The NDVI measured by the AOS shows a similar coefficient of determination to the NIRS approach with pasture fresh samples (R2 = 0.707 for CP and R2 = 0.648 for NDF). The results demonstrate the potential of these technologies for estimating CP and NDF in pastures, which can facilitate the farm manager’s decision making in terms of the dynamic management of animal grazing and supplementation needs.
Collapse
|
238
|
Yaseen ZM, Ali M, Sharafati A, Al-Ansari N, Shahid S. Forecasting standardized precipitation index using data intelligence models: regional investigation of Bangladesh. Sci Rep 2021; 11:3435. [PMID: 33564055 PMCID: PMC7873304 DOI: 10.1038/s41598-021-82977-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
A noticeable increase in drought frequency and severity has been observed across the globe due to climate change, which attracted scientists in development of drought prediction models for mitigation of impacts. Droughts are usually monitored using drought indices (DIs), most of which are probabilistic and therefore, highly stochastic and non-linear. The current research investigated the capability of different versions of relatively well-explored machine learning (ML) models including random forest (RF), minimum probability machine regression (MPMR), M5 Tree (M5tree), extreme learning machine (ELM) and online sequential-ELM (OSELM) in predicting the most widely used DI known as standardized precipitation index (SPI) at multiple month horizons (i.e., 1, 3, 6 and 12). Models were developed using monthly rainfall data for the period of 1949-2013 at four meteorological stations namely, Barisal, Bogra, Faridpur and Mymensingh, each representing a geographical region of Bangladesh which frequently experiences droughts. The model inputs were decided based on correlation statistics and the prediction capability was evaluated using several statistical metrics including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), Willmott's Index of agreement (WI), Nash Sutcliffe efficiency (NSE), and Legates and McCabe Index (LM). The results revealed that the proposed models are reliable and robust in predicting droughts in the region. Comparison of the models revealed ELM as the best model in forecasting droughts with minimal RMSE in the range of 0.07-0.85, 0.08-0.76, 0.062-0.80 and 0.042-0.605 for Barisal, Bogra, Faridpur and Mymensingh, respectively for all the SPI scales except one-month SPI for which the RF showed the best performance with minimal RMSE of 0.57, 0.45, 0.59 and 0.42, respectively.
Collapse
Affiliation(s)
- Zaher Mundher Yaseen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Mumtaz Ali
- Deakin-SWU Joint Research Centre on Big Data, School of Information Technology, Deakin University, Burwood, VIC, 3125, Australia
| | - Ahmad Sharafati
- Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nadhir Al-Ansari
- Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Luleå, Sweden
| | - Shamsuddin Shahid
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
| |
Collapse
|
239
|
Abd El-Gawad HG, Mukherjee S, Farag R, Abd Elbar OH, Hikal M, Abou El-Yazied A, Abd Elhady SA, Helal N, ElKelish A, El Nahhas N, Azab E, Ismail IA, Mbarki S, Ibrahim MFM. Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. PLANT SIGNALING & BEHAVIOR 2021; 16:1853384. [PMID: 33356834 PMCID: PMC7849733 DOI: 10.1080/15592324.2020.1853384] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Not much information is available to substantiate the possible role of γ -aminobutyric acid (GABA) signaling in mitigating water-deficit stress in snap bean (Phaseolus vulgaris L.) plants under semiarid conditions. Present work aims to investigate the role of exogenous GABA (foliar application; 0.5, 1 and 2 mM) in amelioration of drought stress and improvement of field performance on snap bean plants raised under two drip irrigation regimes (100% and 70% of water requirements). Water stress led to significant reduction in plant growth, leaf relative water content (RWC), cell membrane stability index (CMSI), nutrient uptake (N, P, K, Ca, Fe and Zn), pod yield and its content from protein and total soluble solids (TSS). Meanwhile, lipid peroxidation (malondialdehyde content- MDA), osmolyte content (free amino acids- FAA, proline, soluble sugars) antioxidative defense (activity of superoxide dismutase- SOD, catalase- CAT, peroxidase- POX and ascorbate peroxidase- APX) and the pod fiber content exhibited significantly increase due to water stress. Exogenous GABA application (especially at 2 mM) revealed partial normalization of the effects of drought stress in snap bean plants. GABA-induced mitigation of drought stress was manifested by improvement in growth, water status, membrane integrity, osmotic adjustment, antioxidant defense and nutrient acquisition. Furthermore, GABA application during water stress in snap bean plants resulted in improvement of field performance being manifested by increased pod yield and its quality attributes. To sum up, exogenous GABA appears to function as an effective priming molecule to alleviate drought stress in snap bean plants under semiarid conditions.
Collapse
Affiliation(s)
- Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Soumya Mukherjee
- , Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
- CONTACT Soumya Mukherjee Department of Botany, Jangipur College (University of Kalyani), Chota Kalia, Jangipur, District Murshidabad West Bengal 742213, India
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ola H. Abd Elbar
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed Hikal
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Salama A. Abd Elhady
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nesreen Helal
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Amr ElKelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Sharkia, Egypt
| | - Ismail A. Ismail
- Department of Biology, College of Science, Taif University, Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sonia Mbarki
- Laboratory of Valorisation of Unconventional Waters, National Institute of Research in Rural Engineering, Water and Forests(INRGREF), Ariana, Tunisia
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
240
|
Manaa A, Goussi R, Derbali W, Cantamessa S, Essemine J, Barbato R. Photosynthetic performance of quinoa (Chenopodium quinoa Willd.) after exposure to a gradual drought stress followed by a recovery period. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148383. [PMID: 33513364 DOI: 10.1016/j.bbabio.2021.148383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Drought is an abiotic scourge, one of the major environmental stress factors that adversely affect plant growth and photosynthesis machinery through a disruption of cell organelles, arrangement thylakoid membranes and the electron transport chain. Herein, we probed the effect of drought stress on photosynthetic performance of Chenopodium quinoa Willd. Beforehand, plants were subjected to water deficit (as 15% Field Capacity, FC) for one (D-1W) or two weeks (D-2W), and were then re-watered at 95% FC for 2 weeks. Light and electron microscopy analysis of leaves showed no apparent changes in mesophyll cell organization and chloroplast ultrastructure after one week of drought stress, while a swelling of thylakoids and starch accumulation were observed after the prolonged drought (D-2W). The latter induced a decrease in both PSI and PSII quantum yields which was accompanied by an increase in F0 (minimum fluorescence) and a decline in Fm (maximum fluorescence). Drought stress influenced the fluorescence transients, where the major changes at the OJIP prompt FI level were detected in the OJ and IP phases. Prolonged drought induced a decrease in chl a fluorescence at IP phase which was readjusted and established back after re-watering and even more an increase was observed after 2 weeks of recovery. The maximum quantum yield of primary photochemistry (φPo) was unaffected by the different drought stress regimes. Drought induced an increase in the ABS/RC and DI0/RC ratios which was concurrent to a stable φPo (maximum quantum yield of PSII primary photochemistry). A substantial decrease in PI(ABS) was detected especially, during severe drought stress (D-2W) suggesting a drop in the PSII efficiency and the level of electron transport through the plastoquinone pool (PQ pool) towards oxidized PSI RCs (P700+). The immunoblot analysis of the main PSII proteins revealed considerable changes in the D1, D2, CP47, OEC, PsbQ and LHCII proteins under drought. These changes depend on the stress duration and recovery period. The main message of this investigation is the elevated recovery capacities of PSII and PSI photochemical activities after re-watering.
Collapse
Affiliation(s)
- Arafet Manaa
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia.
| | - Rahma Goussi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunisie; Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Walid Derbali
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunisie
| | - Simone Cantamessa
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Jemaa Essemine
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Roberto Barbato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
241
|
Verma K, Song XP, Verma CL, Malviya MK, Guo DJ, Rajput VD, Sharma A, Wei KJ, Chen GL, Solomon S, Li YR. Predication of Photosynthetic Leaf Gas Exchange of Sugarcane ( Saccharum spp) Leaves in Response to Leaf Positions to Foliar Spray of Potassium Salt of Active Phosphorus under Limited Water Irrigation. ACS OMEGA 2021; 6:2396-2409. [PMID: 33521478 PMCID: PMC7841956 DOI: 10.1021/acsomega.0c05863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 05/06/2023]
Abstract
Sufficient water and fertilizer inputs in agriculture play a major role in crop growth, production, and quality. In this study, the response of sugarcane to limited water irrigation and foliar application of potassium salt of active phosphorus (PSAP) for photosynthetic responses were examined, and PSAP's role in limited water irrigation management was assessed. Sugarcane plants were subjected to limited irrigation (95-90 and 45-40% FC) after three months of germination, followed by a foliar spray (0, 2, 4, 6, and 10 M) of PSAP. The obtained results indicated that limited water irrigation negatively affected sugarcane growth and reduced leaf gas exchange activities. However, the application of PSAP increased the photosynthetic activities by protecting the photosynthetic machinery during unfavorable conditions. Mathematical modeling, a Skewed model, was developed and compared with the existing Gaussian model to describe the photosynthetic responses of sugarcane leaves under the limited irrigation with and without PSAP application. The models fitted well with the observed values, and the predicted photosynthetic parameters were in close relationship with the obtained results. The Skewed model was found to be better than the Gaussian model in describing the photosynthetic parameters of plant leaves positioned over a stem of limited water irrigation and applied PSAP application and is recommended for further application.
Collapse
Affiliation(s)
- Krishan
K. Verma
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Xiu-Peng Song
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Chhedi Lal Verma
- Irrigation
and Drainage Engineering, ICAR-Central Soil
Salinity Research Institute, Regional Research Station, Lucknow 226005, India
| | - Mukesh Kumar Malviya
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Dao-Jun Guo
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
- College
of Agriculture, Guangxi University, Nanning 530004 Guangxi, China
| | - Vishnu D. Rajput
- Academy
of Biology and Biotechnology, Southern Federal
University, Rostov-on-Don 344006, Russia
| | - Anjney Sharma
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
| | - Kai-Jun Wei
- Liuzhou
Institute of Agricultural Sciences, Liuzhou 545 003 Guangxi, China
| | - Gan-Lin Chen
- Institute
of Biotechnology, Guangxi Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Nanning 530 007 Guangxi, China
| | - Sushil Solomon
- ICAR-Indian
Institute of Sugarcane Research, Lucknow 226 021, India
| | - Yang-Rui Li
- Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi),
Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of
Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi
Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007 Guangxi, China
- College
of Agriculture, Guangxi University, Nanning 530004 Guangxi, China
| |
Collapse
|
242
|
Wang L, Wang X, Han X, Gao Y, Liu B, Zhang X, Wang G. Potamogeton crispus responses to varying water depth in morphological plasticity and physiological traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4253-4261. [PMID: 32939652 DOI: 10.1007/s11356-020-10806-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophytes, important primary producers in shallow lakes, play a crucial role in maintaining ecosystem structure and function. By altering a series of environmental factors, especially light intensity, water depth has great influences on growth of submerged macrophytes. Here, by hanging pots statically at water depths of 40, 60, 80, 100, 120, 140, 160, 180, 200, and 220 cm, respectively, we investigated effects of water depths on morphological plasticity and physiological traits of Potamogeton crispus. At 40 and 60 cm water depths versus other water depths, P. crispus showed lower plant height, larger stem diameter, thicker leaves, and smaller leaf area, leaf length, and specific leaf area. With water depth increasing, the plant height, leaf area, and leaf length gradually increased until 160 cm water depth, while the stem diameter and leaf thickness gradually decreased until 200 cm water depth. In comparison, the plant height, leaf length, and leaf number significantly decreased when the water depth further increased to 180-220 cm. The leaves contained lower concentrations of superoxide dismutase and peroxidase at 100-160 cm water depth, and lower catalase concentrations at 40-140 cm water depth, especially at 80-100 cm. In shallow waters, the concentration of chlorophyll a and b in leaves were both lower, while the ratio of chlorophyll a to b was relatively higher. As the water depth of 40-220 cm, the chlorophyll a and b concentrations increased significantly with increasing water depth, while their ratio gradually decreased. The present study provides new insights into the adaptation strategies of submerged macrophytes to the variation in water levels, and our findings are beneficial for ecosystem construction and management.
Collapse
Affiliation(s)
- Lei Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaohui Han
- School of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuxuan Gao
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Baogui Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
243
|
Mahmoud GAE. Biotic Stress to Legumes: Fungal Diseases as Major Biotic Stress Factor. SUSTAINABLE AGRICULTURE REVIEWS 2021:181-212. [DOI: 10.1007/978-3-030-68828-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
244
|
Bian Z, Wang Y, Zhang X, Grundy S, Hardy K, Yang Q, Lu C. A Transcriptome Analysis Revealing the New Insight of Green Light on Tomato Plant Growth and Drought Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:649283. [PMID: 34745154 PMCID: PMC8566944 DOI: 10.3389/fpls.2021.649283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/23/2021] [Indexed: 05/13/2023]
Abstract
Light plays a pivotal role in plant growth, development, and stress responses. Green light has been reported to enhance plant drought tolerance via stomatal regulation. However, the mechanisms of green light-induced drought tolerance in plants remain elusive. To uncover those mechanisms, we investigated the molecular responses of tomato plants under monochromatic red, blue, and green light spectrum with drought and well-water conditions using a comparative transcriptomic approach. The results showed that compared with monochromatic red and blue light treated plants, green light alleviated the drought-induced inhibition of plant growth and photosynthetic capacity, and induced lower stomatal aperture and higher ABA accumulation in tomato leaves after 9 days of drought stress. A total of 3,850 differentially expressed genes (DEGs) was identified in tomato leaves through pairwise comparisons. Functional annotations revealed that those DEGs responses to green light under drought stress were enriched in plant hormone signal transduction, phototransduction, and calcium signaling pathway. The DEGs involved in ABA synthesis and ABA signal transduction both participated in the green light-induced drought tolerance of tomato plants. Compared with ABA signal transduction, more DEGs related to ABA synthesis were detected under different light spectral treatments. The bZIP transcription factor- HY5 was found to play a vital role in green light-induced drought responses. Furthermore, other transcription factors, including WRKY46 and WRKY81 might participate in the regulation of stomatal aperture and ABA accumulation under green light. Taken together, the results of this study might expand our understanding of green light-modulated tomato drought tolerance via regulating ABA accumulation and stomatal aperture.
Collapse
Affiliation(s)
- Zhonghua Bian
- Photobiology Research Center, The Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- School of Animal, Rural and Environment Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, United Kingdom
| | - Yu Wang
- School of Animal, Rural and Environment Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, United Kingdom
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Steven Grundy
- School of Animal, Rural and Environment Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, United Kingdom
| | - Katherine Hardy
- School of Animal, Rural and Environment Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, United Kingdom
| | - Qichang Yang
- Photobiology Research Center, The Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- *Correspondence: Qichang Yang
| | - Chungui Lu
- School of Animal, Rural and Environment Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, United Kingdom
- Chungui Lu
| |
Collapse
|
245
|
Wang ZQ, Yu TF, Sun GZ, Zheng JC, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS. Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:614909. [PMID: 33815437 PMCID: PMC8012678 DOI: 10.3389/fpls.2021.614909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/15/2021] [Indexed: 05/22/2023]
Abstract
Abiotic stresses, such as drought and salinity, severely affects the growth, development and productivity of the plants. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase family is involved in several processes in the plant life cycle. However, there have been few studies addressing the functions of CrRLK1L proteins in soybean. In this study, 38 CrRLK1L genes were identified in the soybean genome (Glycine max Wm82.a2.v1). Phylogenetic analysis demonstrated that soybean CrRLK1L genes were grouped into clusters, cluster I, II, III. The chromosomal mapping demonstrated that 38 CrRLK1L genes were located in 14 of 20 soybean chromosomes. None were discovered on chromosomes 1, 4, 6, 7, 11, and 14. Gene structure analysis indicated that 73.6% soybean CrRLK1L genes were characterized by a lack of introns.15.7% soybean CrRLK1L genes only had one intron and 10.5% soybean CrRLK1L genes had more than one intron. Five genes were obtained from soybean drought- and salt-induced transcriptome databases and were found to be highly up-regulated. GmCrRLK1L20 was notably up-regulated under drought and salinity stresses, and was therefore studied further. Subcellular localization analysis revealed that the GmCrRLK1L20 protein was located in the cell membrane. The overexpression of the GmCrRLK1L20 gene in soybean hairy roots improved both drought tolerance and salt stresses and enhanced the expression of the stress-responsive genes GmMYB84, GmWRKY40, GmDREB-like, GmGST15, GmNAC29, and GmbZIP78. These results indicated that GmCrRLK1L20 could play a vital role in defending against drought and salinity stresses in soybean.
Collapse
Affiliation(s)
- Zhi-Qi Wang
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Guo-Zhong Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Jingzhou, China
- *Correspondence: Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences(CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- Wen-Liang Wei,
| |
Collapse
|
246
|
Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN. Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. CHEMOSPHERE 2020; 261:127728. [PMID: 32731022 DOI: 10.1016/j.chemosphere.2020.127728] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Current study was performed to explore the effect of butanolide (KAR1) in mitigation of cadmium (Cd) induced toxicity in Brussels sprout (Brassica oleracea L.). Brussels sprout seeds, treated with 10-5 M, 10-7 M and 10-10 M solution of KAR1 were allowed to grow in Cd-contaminated (5 mg L-1) regimes for 25 d. Cadmium toxicity decreased seed germination and growth in B. oleracea seedlings. Elevated intensity of electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) were observed in Cd-stressed seedlings. Additionally, reduced level of stomatal conductivity, transpiration rate, photosynthesis rate, intercellular carbon dioxide concentration, and leaf relative water content (LRWC) was also observed in Cd-stressed seedlings. Nevertheless, KAR1 improved seed germination, seedling growth and biomass production in Cd stressed plants. KAR1 application showed elevated LRWC, osmotic potential, and higher membranous stability index (MSI) in seedlings under Cd regime. Furthermore, seedlings developed by KAR1 treatment exhibited higher stomatal conductivity, and intercellular carbon dioxide concentration together with improved rate of transpiration and photosynthetic rate in B. oleracea under Cd stress. These findings elucidate that the reduced level of MDA, EL and H2O2, as well as improvement in antioxidative machinery increased growth and alleviated Cd toxicity in KAR1 treated seedlings under Cd stress.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of Narowal, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Waheed Akram
- Guangdong Key Laboratory of New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aqeel Ahmad
- Guangdong Key Laboratory of New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | | |
Collapse
|
247
|
Svensk M, Coste S, Gérard B, Gril E, Julien F, Maillard P, Stahl C, Leroy C. Drought effects on resource partition and conservation among leaf ontogenetic stages in epiphytic tank bromeliads. PHYSIOLOGIA PLANTARUM 2020; 170:488-507. [PMID: 32623731 DOI: 10.1111/ppl.13161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage.
Collapse
Affiliation(s)
- Mia Svensk
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
- Grazing Systems, Agroscope, Route de Duillier 50, Nyon, 1260, Suisse
| | - Sabrina Coste
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Bastien Gérard
- INRAE, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, F-54000, France
| | - Eva Gril
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
- UMR 'Ecologie et Dynamique des Systèmes Anthropisées' (EDYSAN, UMR 7058 CNRS-UPJV), Univ. de Picardie Jules Verne, Amiens, France
| | - Frédéric Julien
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, 31062, France
| | - Pascale Maillard
- INRAE, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, F-54000, France
| | - Clément Stahl
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Céline Leroy
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- UMR EcoFoG, CNRS, CIRAD, INRAE, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France
| |
Collapse
|
248
|
Chen P, Yan M, Li L, He J, Zhou S, Li Z, Niu C, Bao C, Zhi F, Ma F, Guan Q. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. HORTICULTURE RESEARCH 2020; 7:195. [PMID: 33328433 PMCID: PMC7704620 DOI: 10.1038/s41438-020-00419-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
DNA-binding one zinc-finger (Dof) proteins constitute a family of transcription factors with a highly conserved Dof domain that contains a C2C2 zinc-finger motif. Although several studies have demonstrated that Dof proteins are involved in multiple plant processes, including development and stress resistance, the functions of these proteins in drought stress resistance are largely unknown. Here, we report the identification of the MdDof54 gene from apple and document its positive roles in apple drought resistance. After long-term drought stress, compared with nontransgenic plants, MdDof54 RNAi plants had significantly shorter heights and weaker root systems; the transgenic plants also had lower shoot and root hydraulic conductivity, as well as lower photosynthesis rates. By contrast, compared with nontransgenic plants, MdDof54-overexpressing plants had higher photosynthesis rates and shoot hydraulic conductivity under long-term drought stress. Moreover, compared with nontransgenic plants, MdDof54-overexpressing plants had higher survival percentages under short-term drought stress, whereas MdDof54 RNAi plants had lower survival percentages. MdDof54 RNAi plants showed significant downregulation of 99 genes and significant upregulation of 992 genes in response to drought, and 366 of these genes were responsive to drought. We used DAP-seq and ChIP-seq analyses to demonstrate that MdDof54 recognizes cis-elements that contain an AAAG motif. Taken together, our results provide new information on the functions of MdDof54 in plant drought stress resistance as well as resources for apple breeding aimed at the improvement of drought resistance.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Lei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Limited, Hawke's Bay, New Zealand
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China.
| |
Collapse
|
249
|
Akman M, Carlson JE, Latimer AM. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea. Mol Ecol 2020; 30:255-273. [PMID: 33098695 DOI: 10.1111/mec.15705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Long-term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment-dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry-down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up-regulation of stress-related and down-regulation of growth-related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co-expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment-dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses of P. repens populations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences, UC Davis, Davis, CA, USA.,Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Jane E Carlson
- Department of Biology, Nicholls State University, Thibodaux, LA, USA.,Gulf Coast Network Inventory and Monitoring Program, National Park Services, Washington, DC, USA
| | | |
Collapse
|
250
|
Kavas M, Gökdemir G, Seçgin Z, Bakhsh A. Ectopic expression of common bean ERF transcription factor PvERF35 promotes salt stress tolerance in tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1102-1112. [PMID: 32777125 DOI: 10.1111/plb.13167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a TINY-like AP2/ERF gene, PvERF35i, was amplified from common bean (Phaseolus vulgaris L.), cloned and functionally characterized by overexpressing in tobacco cv. Petite havana. Transgenic plants overexpressing PvERF35 were generated using Agrobacterium-mediated transformation and used to evaluate the possible roles of the transgene under salt stress conditions. Evaluation of transgenics was completed using both molecular and biochemical analysis. PCR, Southern blot and RT-qPCR assays revealed the correct integration and enhanced expression of the transgene. Physiological and biochemical analysis of transgenic plants showed their better performance compared to the wild type in terms of germination and survival rates and root and shoot growth under salt stress treatment (200 mM NaCl). Having a high concentration of proline, APX and POX, the PvERF35 overexpressed plants were physiologically and morphologically less affected by salt stress application. In silico promoter analysis of the PvERF35 gene led to identification of important cis-regulatory elements, MYB, MYC and TGACG-motif, annotated with salt response of plants. The protein-protein interaction network showed that there was a strong association between ABC transporter proteins and PvERF35 protein. Salt stress-related miRNA, miRNA156 and miRNA159, targeting PvERF35 were identified using in silico target finding analysis. These findings suggest that PvERF35 functions as a stress-responsive transcription factor in differential modulation of salt stress tolerance and may have applications in the engineering of economically important crops.
Collapse
Affiliation(s)
- M Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - G Gökdemir
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Z Seçgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - A Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|