201
|
Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res 2019; 376:198-209. [DOI: 10.1016/j.yexcr.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|
202
|
Cervantes-Garduño A, Zampedri C, Espinosa M, Maldonado V, Melendez-Zajgla J, Ceballos-Cancino G. MT4-MMP Modulates the Expression of miRNAs in Breast Cancer Cells. Arch Med Res 2019; 49:471-478. [PMID: 30792164 DOI: 10.1016/j.arcmed.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND MT4-MMP is a member of the metalloproteinases family, although with a controversial role in the extracellular matrix remodelation. Overexpression of this metalloproteinase has been observed in breast cancer and it has been suggested that it can regulate tumor growth and cancer progression. The mechanisms by which MT4-MMP participates in breast cancer includes tumor blood vessels desestabilization, the activation of an angiogenic switch, and increase of EGFR signaling. However, all the mechanisms by which MT4-MMP participates in breast cancer are still unknowns. AIM OF THE STUDY To study if MT4-MMP could modulate the expression of microRNAs (miRNAs) related to biological processes associated with tumor formation and progression. METHODS MT4-MMP was ectopically overexpressed in MDA-MB-231 cells and the miRNAs expression profile modulated by the metalloproteinase was studied by using miRNAs microarrays. Microarray data were analyzed with different tools to find the molecular and cellular functions related to the differentially expressed miRNAs. The clinical relevance of some miRNAs was analyzed using a public database. RESULTS MT4-MMP overexpression in breast cancer cells induced the modulation of 65 miRNAs, which were related to the alteration of pathways dependent of p53, TGF-β, MAPK, ErbB, and Wnt, as well as processes such as cell cycle, adherens junctions, apoptosis, and focal adhesion. Several of the upregulated miRNAs were associated to a worse prognosis in breast cancer patients. CONCLUSIONS In breast cancer cells, the overexpression of MT4-MMP modulates the expression of miRNAs involved in several biological processes associated with tumor formation and progression and with clinical relevance.
Collapse
Affiliation(s)
- Alejandra Cervantes-Garduño
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Cecilia Zampedri
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Magali Espinosa
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Gisela Ceballos-Cancino
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México.
| |
Collapse
|
203
|
Ingangi V, Minopoli M, Ragone C, Motti ML, Carriero MV. Role of Microenvironment on the Fate of Disseminating Cancer Stem Cells. Front Oncol 2019; 9:82. [PMID: 30847298 PMCID: PMC6393337 DOI: 10.3389/fonc.2019.00082] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Disseminating Cancer Stem Cells (CSCs) initiate growth in specific niches of the host tissues, the cellular and molecular components of which sustain signaling pathways that support their survival, self-renewal dormancy and reactivation. In the metastatic niche, tumor cells may enter in a dormant state to survive and, consequently, the metastasis can remain latent for years. Despite the clinical importance of metastatic latency, little is known about what induces CSCs to enter a dormant state and what allows them to remain viable for years in this state. CSCs exhibit genetic, epigenetic and cellular adaptations that confer resistance to classical therapeutic approaches. The identification of potential CSC targets is complicated by the fact that CSCs may arise as a consequence of their relationship with the local microenvironment into the metastatic niches. Indeed, microenvironment modulates the capability of CSCs to evade the innate immune response and survive. Some new therapeutic options that include drugs targeting microenvironment components are achieving encouraging results in reducing the number of CSCs in tumors and/or overcoming their resistance in preclinical studies. This review will focus on specific CSC features with an emphasis on the role of tumor microenvironment in supporting metastatic dissemination of CSCs. In addition, it sheds light on potential microenvironment-targeted therapies aimed to counteract seeding and survival of CSCs in the metastatic niche.
Collapse
Affiliation(s)
- Vincenzo Ingangi
- IRCCS Istituto Nazionale Tumori, Fondazione G. Pascale, Naples, Italy
| | - Michele Minopoli
- IRCCS Istituto Nazionale Tumori, Fondazione G. Pascale, Naples, Italy
| | - Concetta Ragone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Letizia Motti
- IRCCS Istituto Nazionale Tumori, Fondazione G. Pascale, Naples, Italy.,Department of Sport Science and Wellness, University Parthenope, Naples, Italy
| | | |
Collapse
|
204
|
Zhang ZT, Huang-Fu MY, Xu WH, Han M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm 2019; 137:122-130. [PMID: 30776412 DOI: 10.1016/j.ejpb.2019.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is the cellular environment that is also described as the "soil" for supporting tumor growth, proliferation, invasion and metastasis, as well as protecting tumor cells from immunological recognition. Notably, tumor cells can grow much faster than other normal organs and invade surrounding tissues more easily, which results in abnormal expression of enzymes in the tumor microenvironment, including matrix metalloproteinases, cathepsins, phospholipases, oxidoreductases, etc. In opposite, due to the high selectivity and catalytic activity, these enzymes can promote nanoparticles to recognize tumor tissues more accurately, and the more accumulation of drugs at primal tumor sites will enhance therapeutic efficacy with lower systemic toxicity. Therefore, one promising antitumor strategy is to design stimulus-responsive nanoscale delivery systems triggered by the enzymes with the support of various nanocarriers, such as liposomes, micelles and inorganic nanoparticles, etc. In this review, numerous facts were cited to summarize and discuss the typical types of enzyme-stimulus responsive nanoscale delivery systems. More importantly, we also focused on their recent advancements in antitumor therapy, and offered the direction for further studies.
Collapse
Affiliation(s)
- Zhen-Tao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yi Huang-Fu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou 310058 China.
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
205
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
206
|
Huliák I, Bodai L, Czepán M, Kovács D, Szabó A, Tiszlavicz L, Lázár G, Rakonczay Z, Hegyi P, Boros IM, Kiricsi M. Genetic, epigenetic and transcriptional comparison of esophagus tumor‑associated and adjacent normal myofibroblasts. Oncol Rep 2019; 41:839-852. [PMID: 30535493 PMCID: PMC6313073 DOI: 10.3892/or.2018.6909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts (MFs) are present in healthy tissues and are also key components of the tumor microenvironment. In the present study a comparative analysis of MFs obtained from various gastrointestinal tumor tissues and from tumor‑adjacent normal tissues of cancer patients was performed, with the aim to evaluate differences in MF morphology, gene expression profile and function. The goal was to correlate the observed morphological and functional variations with the underlying genetic and epigenetic backgrounds. The mutation frequency of MFs was assessed by next generation sequencing. The transcript levels of cancer‑specific genes were determined by TaqMan array and quantitative polymerase chain reaction. Epigenetic modifications were analyzed by immunocytochemistry and western blotting. The migratory capacity of MFs was assessed by scratch assay, whereas matrix metalloproteinase expression and activity were obtained by quantitative polymerase chain reaction and zymography. The results of the present study demonstrate that MFs were present in an increased number and with altered morphology in tumor samples compared with the healthy tissue. Although the detected number of mutations in tumor‑associated and normal tissue‑derived MFs did not differ markedly, shifts in the level of specific acetylated and methylated histone proteins, namely decreased levels of trimethylated H3K9 and acetylated H4K16 were demonstrated in tumor‑associated MFs. Transcript levels of several tumor‑specific genes involved in metastasis, regulation of cellular growth, apoptosis, as well as in hypoxia‑angiogenesis were altered in tumor‑derived MF cultures. Increased mRNA levels were obtained and activity of matrix metalloproteases in tumor‑derived MFs and these cells also exhibited a higher migratory capacity compared with the normal MFs. In summary, the results of the present study indicate that tumor‑associated MFs display an altered phenotype compared with healthy tissue derived counterparts. The results imply that epigenetic rather than genetic alterations are associated with the development of the distinct expressional and functional features, which define this MF phenotype in the tumor microenvironment.
Collapse
Affiliation(s)
- Ildikó Huliák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| | - Mátyás Czepán
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| | - Anikó Szabó
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Szeged H-6720, Hungary
| | - György Lázár
- Department of Surgery, University of Szeged, Szeged H-6720, Hungary
| | - Zoltán Rakonczay
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary
- Department of Pathophysiology, University of Szeged, Szeged H-6720, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Lendület Translational Gastroenterology Research Group, Szeged H-6720, Hungary
| | - Imre Miklós Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
207
|
Abstract
Objective: Oral cancer presents as a devastating type of malignancy. It is predominant in populations with high use of alcohol and various forms of tobacco as well as poor diets with low intake of fruits and vegetables. The present study focused on the potential of Garcinone E to inhibit HSC-4 oral cancer cell proliferation, migration and invasion. Methods: MTT and colony forming assays were performed to study antiproliferative effects of Garcinone E. Hoechst staining was used to determine levels of apoptosis, with cell invasion and scratch assays conducted for migration and invasion characteristics. The levels of MMPs and cytokines were quantified in Garcinone E treated cells by ELISA. Results: Garcinone E inhibited the proliferation and colony forming potential of HSC-4 cells. It also suppressed migration and invasion with inhibition of MMP-2 and MMP-9 expression. Moreover, it elevated IL-2 and reduced IL-6 expression in HSC-4 cells. Conclusion: Our results demonstrate for the first time that Garcinone E might inhibit metastasis of an oral cancer cell line by blocking invasion, migration and MMP production.
Collapse
Affiliation(s)
- Sheeja K
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre, Medical College, Thiruvanananthapuram, Kerala, India.
| | | |
Collapse
|
208
|
Rath B, Klameth L, Plangger A, Hochmair M, Ulsperger E, Huk I, Zeillinger R, Hamilton G. Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines. Cancers (Basel) 2019; 11:cancers11010114. [PMID: 30669448 PMCID: PMC6357007 DOI: 10.3390/cancers11010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A). In contrast to NCI-H526 and SCLC26A, MMP-9 was highly expressed in the two CTC lines and in GLC16 derived of a relapse. Furthermore, cathepsins (S, V, X/Z/P, A and D) were highly expressed in the CTC lines, whereas ADAM/TS and kallikreins were not detectable. In conclusion, SCLC CTCs express MMP-9 and a range of cathepsins for proteolysis and, aside from tissue degradation, these enzymes are involved in cell signaling, survival, and the chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecological Cancer Unit, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
209
|
Lopez C, Park S, Edwards S, Vong S, Hou S, Lee M, Sauerland H, Lee JJ, Jeong KJ. Matrix Metalloproteinase-Deactivating Contact Lens for Corneal Melting. ACS Biomater Sci Eng 2019; 5:1195-1199. [PMID: 31692998 DOI: 10.1021/acsbiomaterials.8b01404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Corneal melting is an uncontrolled, excessive degradation of cellular and extracellular components of the cornea. This potential cause of corneal blindness is caused by excessive expression of zinc-dependent matrix metalloproteinases (MMPs) and has no satisfying cure as of now. Herein, we introduce a novel therapeutic hydrogel which can be made into a contact lens to slow down the progression of corneal melting by deactivating MMPs. The hydrogel backbone is comprised of poly(2-hydroxyetyl methacrylate) (pHEMA), a main material for commercial contact lenses, and dipicolylamine (DPA) which has high affinity and selectivity towards zinc ion. Due to the high affinity towards zinc ions, the DPA-conjugated pHEMA (pDPA-HEMA) hydrogel selectively removes zinc ions from a physiological buffer and deactivates MMP-1, MMP-2 and MMP-9 within 2 hours. pDPA-HEMA hydrogel also effectively prevents degradation of porcine corneas by collagenase A, a zinc-dependent protease, whereas the corneas completely degrades within 15 hours when incubated with pHEMA hydrogel. The presence of pDPA-HEMA hydrogel does not affect the viability of keratocytes and corneal epithelial cells. Unlike the conventional MMP inhibitors (MMPi), the pDPA-HEMA hydrogel minimizes the risk of serious non-specific side effects, and provides a method to slow down the progression of corneal melting and other related ocular diseases.
Collapse
Affiliation(s)
- Chelsi Lopez
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Seth Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Selina Vong
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Minyoung Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Hunter Sauerland
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Jung-Jae Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204.,Department of Bioengineering, University of Colorado Denver, Aurora, CO 80045
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
210
|
Small leucine-rich proteoglycans and matrix metalloproteinase-14: Key partners? Matrix Biol 2019; 75-76:271-285. [DOI: 10.1016/j.matbio.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022]
|
211
|
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76:141-159. [DOI: 10.1016/j.matbio.2018.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
|
212
|
MMP-1 Over-expression Promotes Malignancy and Stem-Like Properties of Human Osteosarcoma MG-63 Cells In Vitro. Curr Med Sci 2018; 38:809-817. [PMID: 30594980 DOI: 10.1007/s11596-018-1947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/10/2018] [Indexed: 12/28/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in childhood, and it maintains a high level of recurrence. Matrix metalloproteinase-1 (MMP-1) was found to contribute to cancer progression. The present study was to investigate the in vitro effects of MMP-1 over-expression on the proliferation, invasion, metastasis and stem-like properties of osteosarcoma MG-63 cells. The MG-63 cells were cultured and had a full length MMP-1 cDNA inserted by the lentiviral vector (MG-63MMP-1+). MG-63 negative control and MG-63 blank control groups were established as well. MMP-1 expression was detected in MG-63MMP-1+, MG-63 negative control and MG-63 blank control cells using qPCR, Western blotting and immunofluorescence after 24 h of culture. The cell proliferation assay was performed with a camera attached to a bioreactor, which was programmed to photograph five regions of each well every 10 min over a period of 48 h. The cell invasion assay was conducted with Matrigel to assess the invasive potential of MG-63 cells over 24 h, the qPCR analysis to measure stem cell markers, including Oct4, Sox-2, Nanog, and Pax-7, and Western blot analysis to detect invasive and metastatic potential markers TIMP-1, VEGF and BMP2/4, after 24 h of culture. Immunofluorescence was used to investigate the presence of the stem cell marker Pax-7 after 24-h culture. The results showed that over-expression of MMP-1 after transfection could significantly increase tumor cell proliferation and invasion (P<0.05, MG-63MMP-1+versus controls). Pax-7 was highly expressed in MG-63MMP-1+ cells, with no significant changes of Oct-4, Sox-2, and Nanog observed (P<0.05). MG-63MMP-1+ cells showed higher expression of VEGF and BMP 2/4 proteins and lower expression of TIMP-1 protein than controls (P<0.05). It was concluded that MMP-1 over-expression in MG-63 cells contributed to the proliferation, invasion, metastasis and stem-like properties of osteosarcoma cells. Future studies should focus on in vivo effects of MMP-1 over-expression and the application of MMP-1 and Pax-7 inhibition in vivo to osteosarcoma therapies.
Collapse
|
213
|
Felton J, Hu S, Raufman JP. Targeting M3 Muscarinic Receptors for Colon Cancer Therapy. Curr Mol Pharmacol 2018; 11:184-190. [PMID: 29357811 DOI: 10.2174/1874467211666180119115828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Expression and activation of subtype-3 muscarinic receptors (M3R) plays an important role in the progression of colorectal neoplasia. METHOD Herein, we describe the role of muscarinic receptors in colon cancer, focusing specifically on M3R, illustrate how M3R over-expression and activation of post-receptor signaling pathways potentiates tumor progression, and explore the efficacy and safety of a variety of therapeutic approaches that can target the molecules involved. RESULTS Colon cancers overexpress M3R mRNA (CHRM3) and protein, and post-M3R signaling stimulates cell proliferation. Post-M3R signal transduction is complex, involving interplay between epidermal growth factor receptors (EGFR)/ERK and protein kinase C (PKC)/p38 mitogen-activated protein (MAP) kinase signaling pathways. In particular, the development of an invasive and metastatic phenotype requires that these signaling interactions augment cellular release of a key collagenase, matrix metalloproteinase-1 (MMP1). Blocking either M3R activation or post-M3R signaling attenuates MMP1 release and colon cancer invasiveness. CONCLUSION Parsing the complexities of these signaling interactions is important, not only to understand these mechanisms of cancer initiation and progression, but also to develop novel treatment modalities. Since the vast majority of persons with colon cancer die from disseminated disease, preventing or reversing metastatic spread of cancer cells by targeting M3R, post-M3R signaling, or MMP1 has therapeutic potential.
Collapse
Affiliation(s)
- Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shien Hu
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
214
|
Zhu G, Wang HB, Jin F, Tao LD, Li D, Ni TY, Li WY, Pan B, Xiao WM, Ding YB, Sunagawa M, Liu YQ. Celastrus Orbiculatus Extract Suppresses Migration and Invasion
of Gastric Cancer by Inhibiting Prohibitin and c-Raf/ERK Signaling
Pathway. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.40.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
215
|
Du R, Tang G, Tang Z, Kuang Y. Ectopic expression of CC chemokine receptor 7 promotes prostate cancer cells metastasis via Notch1 signaling. J Cell Biochem 2018; 120:9639-9647. [PMID: 30548287 DOI: 10.1002/jcb.28242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
There currently exists no satisfactory treatment for patients with prostate cancer with local evolution and distant metastasis. Previous studies have confirmed the importance of CC chemokine receptor 7 (CCR7) in the invasion and metastasis of prostate cancer. And increasing evidence prove that Notch1 can play diametrically opposite roles in the development and progression of different tumors. To demonstrate the correlation between CCR7 and Notch1, PC-3 cells were transfected with pcDNA3.1-CCR7 or CCR7 si-RNA, respectively. Then Western blot analysis was used to detect the expressions of Notch1, ERK, P38, JNK, NF-κB, MMP-9, and epithelial-mesenchymal transition (EMT)-related proteins. Moreover, matrigel invasion assays were performed to assess the migratory and invasive activities of PC-3 cells. PcDNA3.1-CCR7 increased the expression of Notch1, phospho-MAPK, phospho-P65, MMP-9, N-cadherin, and Snail in PC-3 cells, but decreased the expression of E-cadherin. PcDNA3.1-CCR7 also promoted the migration and invasion of PC-3 cells. However, CCR7 si-RNA reversed the effect of pcDNA3.1-CCR7 in PC-3 cells. And MAPK and NF-κB pathway inhibitors were used to testify that activation of Notch1 induces EMT through MAPK and NF-κB pathway. All these results indicate that upregulation of Notch1 by CCR7 can accelerate the evolution of EMT and develop the invasion and metastasis in prostate cancer cells by activating MAPK and NF-κB signaling pathways in prostate cancer cells, which provides a new molecular evidence for targeted therapy in metastatic prostate cancer.
Collapse
Affiliation(s)
- Ruoyang Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guanlin Tang
- Department of Urology, Chengdu Sixth People's Hospital, Chengdu, China
| | - Zhaobing Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Kuang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
216
|
Barati Bagherabad M, Afzaljavan F, ShahidSales S, Hassanian SM, Avan A. Targeted therapies in pancreatic cancer: Promises and failures. J Cell Biochem 2018; 120:2726-2741. [PMID: 28703890 DOI: 10.1002/jcb.26284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incidence rate nearly equal to its mortality rate. The poor prognosis of the disease can be explained by the absence of effective biomarkers for screening and early detection, together with the aggressive behavior and resistance to the currently available chemotherapy. The therapeutic failure can also be attributed to the inter-/intratumor genetic heterogeneity and the abundance of tumor stroma that occupies the majority of the tumor mass. Gemcitabine is used in the treatment of PDAC; however, the response rate is less than 12%. A recent phase III trial revealed that the combination of oxaliplatin, irinotecan, fluorouracil, and leucovorin could be an option for the treatment of metastatic PDAC patients with good performance status, although these approaches can result in high toxicity level. Further investigations are required to develop innovative anticancer agents that either improve gemcitabine activity, within novel combinatorial approaches or acts with a better efficacy than gemcitabine. The aim of the current review is to give an overview of preclinical and clinical studies targeting key dysregulated signaling pathways in PDAC.
Collapse
Affiliation(s)
- Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine group, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
217
|
Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:321. [PMID: 30518369 PMCID: PMC6282398 DOI: 10.1186/s12906-018-2392-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022]
Abstract
Background Eugenol is a natural phenolic compound and possesses anticancer and antibacterial activities. Breast cancer is a major global health problem, and most of the chemotherapeutic agents are highly toxic with long-term side effects. Therefore, this study aimed to explore the possibility of using eugenol as an anti-metastatic and anti-proliferative agent against MDA-MB-231 and SK-BR-3 breast cancer cells. Methods Breast cancer cell lines MDA-MB-231 and SK-BR-3 were treated with eugenol and cell proliferation was measured using a real-time cell electronic sensing system. Annexin V analysis with flow cytometry was used to detect the effect of eugenol on cell death. In MDA-MB-231 and SK-BR-3 cells, metastatic potential after eugenol treatment was examined using a wound-healing assay. Real-time PCR was used to study the effect of eugenol on the expression of anti-metastatic genes such as MMP2, MMP9, and TIMP-1, and genes involved in apoptosis including Caspase3, Caspase7, and Caspase9. Results Treatment with 4 μM and 8 μM eugenol for 48 h significantly inhibited cell proliferation of MDA-MB-231, with an inhibition rate of 76.4%, whereas 5 μM and 10 μM of eugenol for 48 h significantly inhibited the proliferation of SK-BR-3 cells with an inhibition rate of 68.1%. Eugenol-treated cells showed significantly decreased MMP2 and MMP9 expression and an insignificant increase in TIMP1 expression in HER2 positive and triple negative breast cancer cells. Eugenol significantly increased the proportion of MDA-MB-231 and SK-BR-3 cells in late apoptosis and increased the expression of Caspase3, Caspase7, and Caspase9. Conclusion To the best of our knowledge, this is the first study to describe the anti-metastatic effect of eugenol against MDA-MB-231 and SK-BR-3 breast cancer cell lines.
Collapse
|
218
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
219
|
Effects of VEGFR1 + hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J Cancer Res Clin Oncol 2018; 145:411-427. [PMID: 30483898 PMCID: PMC6373264 DOI: 10.1007/s00432-018-2802-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche has been shown to play a critical role in tumor metastasis, and its formation is closely related to the tumor microenvironment. However, the underlying molecular mechanisms remain unclear. In the present study, we successfully established a mouse model of lung metastasis using luciferase-expressing MDA-MB-435s cells. In this model, recruitment of vascular endothelial growth factor receptor-1 (VEGFR1)+CD133+ hematopoietic progenitor cells (HPCs) was gradually increased in lung but gradually decreased after the formation of tumor colonies in lung. We also established a highly metastatic MDA-MB-435s (MDA-MB-435s-HM) cell line from the mouse model. Changes in protein profiles in different culture conditions were investigated by protein microarray analysis. The levels of CXC chemokine ligand 16, interleukin (IL)-2Rα, IL-2Rγ, matrix metalloproteinase (MMP)-1, MMP-9, platelet-derived growth factor receptor (PDGFR)-α, stromal cell-derived factor (SDF)-1α, transforming growth factor (TGF)-β, platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial (VE)-cadherin were significantly greater (> fivefold) in the culture medium from MDA-MB-435s-HM cells than in that from MDA-MB-435s cells. Moreover, the levels of MMP-9, PDGFR-α, and PECAM-1 were significantly greater in the co-culture medium of MDA-MB-435s-HM cells and CD133+ HPCs than in that from MDA-MB-435s-HM cells. Differentially expressed proteins were validated by enzyme-linked immunosorbent assay, and expression of their transcripts was confirmed by quantitative real-time polymerase chain reaction. Moreover, inhibition of MMP-9, PDGFR-α, and PECAM-1 by their specific inhibitors or antibodies significantly decreased cell migration, delayed lung metastasis, and decreased recruitment of VEGFR1+CD133+ HPCs into lung. Intra-hepatic growth of HPCs enhanced the invasive growth of MDA-MB-435s-HM cells in the liver. Our data indicate that VEGFR1+CD133+ HPCs contribute to lung metastasis.
Collapse
|
220
|
Wyganowska-Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak-Jankun E, Jankun J. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 2018; 43:15-25. [PMID: 30431071 PMCID: PMC6257838 DOI: 10.3892/ijmm.2018.3983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
The mortality rates of cancer patients decreased by ~1.5% per year between 2001 and 2015, although the decrease depends on patient sex, ethnic group and type of malignancy. Cancer remains a significant global health problem, requiring a search for novel treatments. The most common property of malignant tumors is their capacity to invade adjacent tissue and to metastasize, and this cancer aggressiveness is contingent on overexpression of proteolytic enzymes. The components of the plasminogen activation system (PAS) and the metal-loproteinase family [mainly matrix metalloproteinases (MMPs)] are overexpressed in malignant tumors, driving the local invasion, metastasis and angiogenesis. This is the case for numerous types of cancer, such as breast, colon, prostate and oral carcinoma, among others. Present chemotherapeutics agents typically attack all dividing cells; however, for future therapeutic agents to be clinically successful, they need to be highly selective for a specific protein(s) and act on the cancerous tissues without adverse systemic effects. Inhibition of proteolysis in cancerous tissue has the ability to attenuate tumor invasion, angiogenesis and migration. For that purpose, inhibiting both PAS and MMPs may be another approach, since the two groups of enzymes are overexpressed in cancer. In the present review, the roles and new findings on PAS and MMP families in cancer formation, growth and possible treatments are discussed.
Collapse
Affiliation(s)
| | | | - Daniel Murtagh
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| |
Collapse
|
221
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
222
|
Tsai CF, Chen JH, Chang CN, Lu DY, Chang PC, Wang SL, Yeh WL. Fisetin inhibits cell migration via inducing HO-1 and reducing MMPs expression in breast cancer cell lines. Food Chem Toxicol 2018; 120:528-535. [DOI: 10.1016/j.fct.2018.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
223
|
Zhou Q, Zhang Z, Song L, Huang C, Cheng Q, Bi S, Hu X, Yu R. Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway. Oncol Lett 2018; 16:6930-6939. [PMID: 30546425 PMCID: PMC6256291 DOI: 10.3892/ol.2018.9518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and caused cell cycle arrest in the S phase. The published results also demonstrated that CMF-induced apoptosis was involved in mitochondrial dysfunction. The aim of the present study was to investigate the anti-invasion and anti-metastasis effects of CMF in NCI-H1299 and Lewis lung cancer (LLC) cell lines, which have high metastatic potential. MTT and clone formation assays were initially used to investigate the inhibitory effect of CMF on the viability of NCI-H1299 and LLC cells. The results of cell adhesion, wound healing, migration and Matrigel invasion assays in vitro indicated that NCI-H1299 cells (treated with 1, 3, 10 or 30 µg/ml CMF) and LLC cells (treated with 0.1, 0.3, 1 or 3 µg/ml CMF) demonstrated a concentration-dependent reduction in cell migration and invasion compared with the control. In vivo experiments demonstrated that the oral administration of CMF (65, 130 or 260 mg/kg) decreased the tumor growth and decreased the lung and liver metastasis in an LLC xenograft model, compared with untreated mice. Furthermore, western blot analysis was used to investigate the mechanism of the effect of CMF on the migration of NCI-H1299 cells and metastasis in the xenograft model. The results revealed that CMF may promote glycogen synthase kinase 3β (GSK-3β)-mediated degradation of β-catenin inhibited the phosphorylation of upstream protein kinase B (Akt), which resulted in the attenuation of the expression of matrix metalloproteinase (MMP)-2 and MMP-9. These results suggested that CMF may possess potential for the treatment of lung cancer metastasis via the Akt/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Qinqin Zhou
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhang Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chunhua Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qi Cheng
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Sixue Bi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xianjing Hu
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
224
|
Liao Y, Ivanova L, Zhu H, Plumer T, Hamby C, Mehta B, Gevertz A, Christiano AM, McGrath JA, Cairo MS. Cord Blood-Derived Stem Cells Suppress Fibrosis and May Prevent Malignant Progression in Recessive Dystrophic Epidermolysis Bullosa. Stem Cells 2018; 36:1839-1850. [PMID: 30247783 DOI: 10.1002/stem.2907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/06/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the Col7a1 gene. Patients with RDEB suffer from recurrent erosions in skin and mucous membranes and have a high risk for developing cutaneous squamous cell carcinoma (cSCCs). TGFβ signaling has been associated with fibrosis and malignancy in RDEB. In this study, the activation of TGFβ signaling was demonstrated in col7a1-/- mice as early as a week after birth starting in the interdigital folds of the paws, accompanied by increased deposition of collagen fibrils and elevated dermal expression of matrix metalloproteinase (MMP)-9 and MMP-13. Furthermore, human cord blood-derived unrestricted somatic stem cells (USSCs) that we previously demonstrated to significantly improve wound healing and prolong the survival of col7a1-/- mice showed the ability to suppress TGFβ signaling and MMP-9 and MMP-13 expression meanwhile upregulating anti-fibrotic TGFβ3 and decorin. In parallel, we cocultured USSCs in a transwell with RDEB patient-derived fibroblasts, keratinocytes, and cSCC, respectively. The patient-derived cells were constitutively active for STAT, but not TGFβ signaling. Moreover, the levels of MMP-9 and MMP-13 were significantly elevated in the patient derived-keratinocytes and cSCCs. Although USSC coculture did not inhibit STAT signaling, it significantly suppressed the secretion of MMP-9 and MMP-13, and interferon (IFN)-γ from RDEB patient-derived cells. Since epithelial expression of these MMPs is a biomarker of malignant transformation and correlates with the degree of tumor invasion, these results suggest a potential role for USSCs in mitigating epithelial malignancy, in addition to their anti-inflammatory and anti-fibrotic functions. Stem Cells 2018;36:1839-12.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Trevor Plumer
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Carl Hamby
- Department of Immunology & Microbiology, New York Medical College, Valhalla, New York
| | - Brinda Mehta
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Annie Gevertz
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London, United Kingdom
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Immunology & Microbiology, New York Medical College, Valhalla, New York.,Department of Medicine, New York Medical College, Valhalla, New York.,Department of Pathology, New York Medical College, Valhalla, New York.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
225
|
Polymorphism of MMP-9 gene is not associated with the risk of urinary cancers: Evidence from an updated meta-analysis. Pathol Res Pract 2018; 214:1966-1973. [PMID: 30249503 DOI: 10.1016/j.prp.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Matrix metalloproteinases 9 (MMP-9) is a zinc-dependent gelatinase, which could decrease the expression of extracellular matrix proteins and influence the metastatic behavior of tumors. In order to draw a comprehensive and precise result about the relationship of MMP-9 and urinary cancers, we presented the current meta-analysis. METHODS We searched the PubMed, EMbase, Web of Science, CBM, CNKI and Wanfang databases, the cited references were also manually searched again, covering all the papers published until August 2018. Quality assessment was conducted using the Newcastle-Ottawa Scale. All the meta-analysis was conducted with Stata version 12.0 software to assess the strength of the association. Linkage disequilibrium (LD) analyses of gene polymorphisms and in-silico analysis of MMP-9 expression were also conducted to illustrate the relationship. RESULTS 17 case-control studies comprise of more than 6154 cases and 6330 controls were enrolled and analyzed. After analyzed, we found that there is no significant association between rs3918241, rs2250889, rs17576 and rs17577 of MMP-9 and urinary cancers. LD analysis uncovered a significant LD between rs3918241 and rs17577 in CEU, CHB&CHS, ESN, and JPT populations (CEU: r2 = 1.0; CHB&CHS: r2 = 1.0; ESN: r2 = 0.74; JPT: r2 = 0.77), as well as a remarkable LD between rs17576 and rs2250889 in CHB&CHS and JPT populations (CHB&CHS: r2 = 0.81; JPT: r2 = 0.82). Furthermore, in-silico results indicated that the expression of MMP-9 in cancer tissue was higher than that in normal tissue in prostate cancer (Transcripts Per Kilobase Million (TPM) = 7.14 vs. 1.36, P < 0.001), bladder cancer (TPM = 14.2 vs. 2.47, P < 0.001), kidney renal clear cell carcinoma (TPM = 7.43 vs. 1.61, P < 0.001), kidney renal papillary cell carcinoma (TPM = 5.52 vs. 1.74, P = 0.002). CONCLUSIONS rs3918241, rs2250889, rs17576 and rs17577 polymorphisms of MMP-9 are not associated with altered risk of urinary cancer. More studies with large sample size focused on the combined effect of two or more polymorphisms of MMP-9 are necessary in the future.
Collapse
|
226
|
Daphnane diterpenes inhibit the metastatic potential of B16F10 murine melanoma cells in vitro and in vivo. BMC Cancer 2018; 18:856. [PMID: 30157785 PMCID: PMC6116488 DOI: 10.1186/s12885-018-4693-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Melanoma is one of the most invasive and aggressive types of cancer with a very poor prognosis. Surgery remains the most efficient treatment prior melanoma invasion and metastasis formation. However, therapy becomes a challenge once the cancer cells colonized other tissues. At present, there are two main classes of therapies acting with a certain efficiency on metastatic melanoma: immune check point inhibitors (anti-PD1/PDL1) and targeted therapy such as Vemurafenib. Unfortunately, these therapies are not fully responsive, induce resistance and/or generate unwanted side effects. In this respect, it is important to continue to discover new cancer therapeutics. Here, we show that daphnane diterpenes type of compounds can prevent melanoma metastasis by inhibiting metastasis-associated matrix metalloproteinases expression without cytotoxicity. METHODS Evaluation of the anti-metastasis effect of daphnane diterpenes-rich Thymelaea hirsuta extract (TH) and its bioactive component gnidilatidin was carried out in vitro using B16 murine melanoma cells and in vivo using male C57BL/6 J mice. Global gene expression in B16 cells was done using DNA microarray, validated using real-time PCR, to further understand the effect of daphnane diterpenes, specifically daphnane diterpenoid gnidilatidin. RESULTS Oral administration of daphnane diterpenes-rich Thymelaea hirsuta extract (TH) suppressed MMP2 and MMP9 expression, decreasing lung tumor in mice injected with B16 murine melanoma cells. Validation of these observations in vitro showed reduced B16 cells migration, adhesion, and invasion. Results of microarray analysis of B16 cells treated with daphnane diterpenoid gnidilatidin from TH revealed an upregulation of tumor suppressor Egr1 while inhibiting metastasis-associated genes Id2 and Sytl2 expression. A downregulation of the melanoma oncogene microphthalmia-associated transcription factor (Mitf) was observed, and most likely caused by the inhibition of Id2, a gene that regulated HLH transcription factors such as MITF and also reported to promote tumor cell migration and invasion. CONCLUSIONS Daphnane diterpenes have inhibitory effect on the metastatic potential of B16 melanoma cells, and the results of this study provided evidence for their potential for use in the prevention and inhibition of melanoma metastasis.
Collapse
|
227
|
Roy S, Bag AK, Dutta S, Polavaram NS, Islam R, Schellenburg S, Banwait J, Guda C, Ran S, Hollingsworth MA, Singh RK, Talmadge JE, Muders MH, Batra SK, Datta K. Macrophage-Derived Neuropilin-2 Exhibits Novel Tumor-Promoting Functions. Cancer Res 2018; 78:5600-5617. [PMID: 30111533 DOI: 10.1158/0008-5472.can-18-0562] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) are causally associated with tumorigenesis as well as regulation of antitumor immune responses and have emerged as potential immunotherapeutic targets. Recent evidence suggests TAM phagocytose apoptotic tumor cells within the tumor microenvironment through efferocytosis in an immunologically silent manner, thus maintaining an immunosuppressed microenvironment. The signal transduction pathways coupling efferocytosis and immunosuppression are not well known. Neuropilin-2 (NRP2) is a member of the membrane-associated neuropilin family and has been reported in different immune cells but is poorly characterized. In this study, we show that NRP2 is expressed during macrophage differentiation, is induced by tumor cells, and regulates phagocytosis in macrophages. Furthermore, NRP2 in TAM promoted efferocytosis and facilitated tumor growth. Deletion of NRP2 from TAM impaired the clearance of apoptotic tumor cells and increased secondary necrosis within tumors. This resulted in a break in the immune tolerance and reinitiated antitumor immune responses, characterized by robust infiltration of CD8+ T and natural killer cells. This result suggests NRP2 may act as a molecular mediator that connects efferocytosis and immune suppression. Deletion of NRP2 in TAM downregulated several immunosuppressive and tumor-promoting genes and upregulated immunostimulatory genes in the myeloid compartment. Taken together, our study demonstrates that TAM-derived NRP2 plays a crucial role in tumor promotion through efferocytosis, opening the enticing option for the development of effective immunotherapy targeting TAM.Significance: Neuropilin-2 in macrophages promotes tumor growth by regulating efferocytosis of apoptotic tumor cells and orchestrating immune suppression.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/19/5600/F1.large.jpg Cancer Res; 78(19); 5600-17. ©2018 AACR.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
| | - Samuel Schellenburg
- Institute of Pathology, University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany
| | - Jasjit Banwait
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Michael A Hollingsworth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, Nebraska
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael H Muders
- Institute of Pathology, University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany.
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
- Fred and Pamela Buffet Cancer Center at University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
228
|
Shen M, Kang Y. Complex interplay between tumor microenvironment and cancer therapy. Front Med 2018; 12:426-439. [PMID: 30097962 DOI: 10.1007/s11684-018-0663-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
Abstract
Tumor microenvironment (TME) is comprised of cellular and non-cellular components that exist within and around the tumor mass. The TME is highly dynamic and its importance in different stages of cancer progression has been well recognized. A growing body of evidence suggests that TME also plays pivotal roles in cancer treatment responses. TME is significantly remodeled upon cancer therapies, and such change either enhances the responses or induces drug resistance. Given the importance of TME in tumor progression and therapy resistance, strategies that remodel TME to improve therapeutic responses are under developing. In this review, we provide an overview of the essential components in TME and the remodeling of TME in response to anti-cancer treatments. We also summarize the strategies that aim to enhance therapeutic efficacy by modulating TME.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
229
|
Chappell WH, Candido S, Abrams SL, Russo S, Ove R, Martelli AM, Cocco L, Ramazzotti G, Cervello M, Montalto G, Steelman LS, Leng X, Arlinghaus RB, Libra M, McCubrey JA. Roles of p53, NF-κB and the androgen receptor in controlling NGAL expression in prostate cancer cell lines. Adv Biol Regul 2018; 69:43-62. [PMID: 29861174 DOI: 10.1016/j.jbior.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL a.k.a lipocalin 2, lnc2) is a secreted protein which can form a complex with matrix metalloproteinase-9 (MMP9). This MMP9/NGAL complex has been associated with metastasis. MMP9 and NGAL are detected in the urine of patients afflicted with many different types of cancer, including prostate cancer. The effects of p53, NF-κB and the androgen receptor (AR) on the expression of NGAL was examined in four prostate cancer cell lines. Prostate cancer cell lines that are AR negative and expressed either mutant or no p53 (DU145 and PC3) displayed higher levels of NGAL expression compared to the prostate cancer cell lines (LNCaP and 22Rv-1) which are AR positive and express wild type (WT) p53. Introduction of WT-p53 into the PC3 prostate cancer cell line, resulted in reduction of the levels of NGAL expression. Conversely, introduction of dominant negative (DN) p53 or a retroviral construct expressing NF-κB into LNCaP cells increased NGAL expression. NGAL expression had functional effects on the ability of the cells to form colonies in soft agar. Whereas suppression of WT-53 in LNCaP cells increased NGAL expression, the introduction of WT-p53 suppressed NGAL transcription activity in PC3 prostate cells which normally express high level of NGAL. NF-κB and p53 were determined to regulate NGAL expression by positive and negative mechanisms, respectively. Our data indicate that prostate cancer growth, progression and sensitivity to chemotherapeutic drugs are regulated in part by NGAL and may involve complex interactions between NGAL, MMP9, NF-κB and p53.
Collapse
Affiliation(s)
- William H Chappell
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Becton, Dickinson and Company (BD), BD Diagnostics, Franklin Lakes, NJ, USA
| | - Saverio Candido
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Suzanne Russo
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Roger Ove
- Department of Radiation Oncology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Giuseppe Montalto
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas Medical Center at Houston, Houston, TX, USA
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
230
|
Celià-Terrassa T, Kang Y. Metastatic niche functions and therapeutic opportunities. Nat Cell Biol 2018; 20:868-877. [PMID: 30050120 DOI: 10.1038/s41556-018-0145-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Metastasis is an inefficient process, especially during colonization at a distant organ. This bottleneck underlies the importance of the metastatic niche for seeding and outgrowth of metastases. Here, we classify the common functions of different metastatic niches: anchorage, survival support, protection from external insults, licensing proliferation and outgrowth. We highlight the emerging role of the metastatic niche in maintaining cancer stemness and promoting immune evasion, and discuss therapeutic opportunities against the metastatic niche.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
231
|
Muscella A, Cossa LG, Vetrugno C, Antonaci G, Marsigliante S. Adenosine diphosphate regulates MMP2 and MMP9 activity in malignant mesothelioma cells. Ann N Y Acad Sci 2018; 1431:72-84. [PMID: 29984433 DOI: 10.1111/nyas.13922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Although an association between cancer progression and matrix metalloproteinase (MMP) 2 and MPP9 expression has been known, the expression, nuclear localization, and physiologically controlled activation of these two MMPs have not been investigated in malignant mesothelioma cells. We examined the expression and intracellular localization of MMP2/9 in ZL55 malignant mesothelioma cells, as well as their regulation by ADP. Using real-time PCR, we showed that activation of the P2Y1 receptor by ADP increased the expression of MMP2/9 mRNAs; MMP2/9 collected from conditioned media also showed an increase in activity; and ADP induced the nuclear localization of MMP2/9. The effects of ADP on transcription of the MMPs were due to activation of c-Src, Akt, and NF-κB, while ERK1/2 phosphorylation was needed for the increase in enzymatic activity and the regulation of nuclear import. We also showed that the nuclear localization of MMP2/9 induced by ADP causes the cleavage and inactivation of poly-ADP-ribose polymerase-1. These findings may help to elucidate the mechanisms regulating MMP2/9 activation in ZL55 human epithelioid mesothelioma cells, and perhaps other cells. Therapeutic approaches that promote ADP accumulation in a tumor environment may constitute an effective means to induce anticancer activity.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Luca Giulio Cossa
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Carla Vetrugno
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Giovanna Antonaci
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
232
|
Mushtaq MU, Papadas A, Pagenkopf A, Flietner E, Morrow Z, Chaudhary SG, Asimakopoulos F. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. J Immunother Cancer 2018; 6:65. [PMID: 29970158 PMCID: PMC6029413 DOI: 10.1186/s40425-018-0376-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023] Open
Abstract
Recent advances in our understanding of the dynamics of cellular cross-talk have highlighted the significance of host-versus-tumor effect that can be harnessed with immune therapies. Tumors exploit immune checkpoints to evade adaptive immune responses. Cancer immunotherapy has witnessed a revolution in the past decade with the development of immune checkpoint inhibitors (ICIs), monoclonal antibodies against cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) or their ligands, such as PD1 ligand 1 (PD-L1). ICIs have been reported to have activity against a broad range of tumor types, in both solid organ and hematologic malignancy contexts. However, less than one-third of the patients achieve a durable and meaningful treatment response. Expression of immune checkpoint ligands (e.g., PD-L1), mutational burden and tumor-infiltrating lymphocytes are currently used as biomarkers for predicting response to ICIs. However, they do not reliably predict which patients will benefit from these therapies. There is dire need to discover novel biomarkers to predict treatment efficacy and to identify areas for development of combination strategies to improve response rates. Emerging evidence suggests key roles of tumor extracellular matrix (ECM) components and their proteolytic remodeling products in regulating each step of the cancer-immunity cycle. Here we review tumor matrix dynamics and matrix remodeling in context of anti-tumor immune responses and immunotherapy and propose the exploration of matrix-based biomarkers to identify candidates for immune therapy.
Collapse
Affiliation(s)
- Muhammad Umair Mushtaq
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA
| | - Athanasios Papadas
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA
| | - Adam Pagenkopf
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA
| | - Evan Flietner
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA
| | - Zachary Morrow
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA
| | - Sibgha Gull Chaudhary
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA
| | - Fotis Asimakopoulos
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. .,University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, WIMR 4031, Madison, WI, 53705, USA.
| |
Collapse
|
233
|
Yoneyama T, Gorry M, Sobo-Vujanovic A, Lin Y, Vujanovic L, Gaither-Davis A, Moss ML, Miller MA, Griffith LG, Lauffenburger DA, Stabile LP, Herman J, Vujanovic NL. ADAM10 Sheddase Activity is a Potential Lung-Cancer Biomarker. J Cancer 2018; 9:2559-2570. [PMID: 30026855 PMCID: PMC6036891 DOI: 10.7150/jca.24601] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Methods: Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts. Results: NSCLC cell lines and patient tumors and exosomes consistently showed significant increases of ADAM10sa relative to their normal, inflammatory and/or benign-tumor controls. Additionally, stage IA-IIB NSCLC primary tumors of patients who died of the disease exhibited greater increases of ADAM10sa than those of patients who survived 5 years following diagnosis and surgery. In contrast, NSCLC cell lines and patient tumors and exosomes did not display increases of ADAM17sa. Conclusions: This study is the first to investigate enzyme-specific proteolytic activities as potential cancer biomarkers. It provides a proof-of-concept that ADAM10sa could be a biomarker for NSCLC early detection and outcome prediction. To ascertain that ADAM10sa is a useful cancer biomarker, further robust clinical validation studies are needed.
Collapse
Affiliation(s)
- Toshie Yoneyama
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Michael Gorry
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Andrea Sobo-Vujanovic
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Autumn Gaither-Davis
- Department of Medicine, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | | | - Miles A Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Linda G Griffith
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA.,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - James Herman
- Department of Medicine, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Nikola L Vujanovic
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,Department of Immunology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| |
Collapse
|
234
|
Abstract
The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
Collapse
|
235
|
Javvaji K, Begum G, Deshpande SS, Rana RK, Misra S. Potential of the Bioinspired CaCO3 Microspheres Loaded with Tetracycline in Inducing Differential Cytotoxic Effects toward Noncancerous and Cancer Cells: A Cytogenetic Toxicity Assessment Using CHO Cells in Vitro. Chem Res Toxicol 2018; 31:629-636. [DOI: 10.1021/acs.chemrestox.8b00131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
236
|
Abstract
Exosomes are secreted extracellular vesicles (EVs) that carry micro RNAs and other factors to reprogram cancer cells and tissues affected by cancer. Exosomes are exchanged between cancer cells and other tissues, often to prepare a premetastatic niche, escape immune surveillance, or spread multidrug resistance. Only a few studies investigated the function of lipids in exosomes although their lipid composition is different from that of the secreting cells. Ceramide is one of the lipids critical for exosome formation, and it is also enriched in these EVs. New research suggests that lipids in the exosomal membrane may organize and transmit "mobile rafts" that turn exosomes into extracellular signalosomes spreading activation of cell signaling pathways in oncogenesis and metastasis. Ceramide may modulate the function of mobile rafts and their effect on these cell signaling pathways. The critical role of lipids and, in particular, ceramide for formation, secretion, and function of exosomes may lead to a radically new understanding of cancer biology and therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
237
|
|
238
|
Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J Transl Med 2018; 16:147. [PMID: 29848327 PMCID: PMC5977468 DOI: 10.1186/s12967-018-1514-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.
Collapse
Affiliation(s)
- Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Yiran Qiu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| |
Collapse
|
239
|
Chiaramonte N, Romanelli MN, Teodori E, Supuran CT. Amino Acids as Building Blocks for Carbonic Anhydrase Inhibitors. Metabolites 2018; 8:E36. [PMID: 29795039 PMCID: PMC6027070 DOI: 10.3390/metabo8020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are a superfamily of metalloenzymes widespread in all life, classified into seven genetically different families (α⁻θ). These enzymes catalyse the reversible hydration of carbonic anhydride (CO₂), generating bicarbonate (HCO₃-) and protons (H⁺). Fifteen isoforms of human CA (hCA I⁻XV) have been isolated, their presence being fundamental for the regulation of many physiological processes. In addition, overexpression of some isoforms has been associated with the outbreak or progression of several diseases. For this reason, for a long time CA inhibitors (CAIs) have been used in the control of glaucoma and as diuretics. Furthermore, the search for new potential CAIs for other pharmacological applications is a very active field. Amino acids constitute the smallest fundamental monomers of protein and, due to their useful bivalent chemical properties, are widely used in organic chemistry. Both proteinogenic and non-proteinogenic amino acids have been extensively used to synthesize CAIs. This article provides an overview of the different strategies that have been used to design new CAIs containing amino acids, and how these bivalent molecules influence the properties of the inhibitors.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
240
|
Shen M, Zhao X, Zhao L, Shi L, An S, Huang G, Liu J. Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer. Mol Cancer 2018; 17:88. [PMID: 29753331 PMCID: PMC5948872 DOI: 10.1186/s12943-018-0839-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
TIGAR is a p53 target gene that is known to protect cells from ROS-induced apoptosis by promoting the pentose phosphate pathway. The role of TIGAR in tumor cell invasion and metastasis remains elusive. Here we found that downregulation of TIGAR reduced the invasion and metastasis of NSCLC cells in vitro and in vivo. Immunohistochemical analysis of 72 NSCLC patients showed that TIGAR and Met protein expression was positively correlated with late stages of lung cancer. Besides, patients with high co-expression of TIGAR and Met presented a significantly worse survival. In addition, we found that Met signaling pathway is involved in TIGAR-induced invasion and metastasis. Our study indicates that TIGAR/Met pathway may be a novel target for NSCLC therapy. It is necessary to evaluate the expression of TIGAR before Met inhibitors are used for NSCLC treatment.
Collapse
Affiliation(s)
- Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liang Shi
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
241
|
Barillari G, Monini P, Sgadari C, Ensoli B. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies. Int J Mol Sci 2018; 19:E1418. [PMID: 29747434 PMCID: PMC5983696 DOI: 10.3390/ijms19051418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Infection of uterine cervix epithelial cells by the Human Papilloma Viruses (HPV) is associated with the development of dysplastic/hyperplastic lesions, termed cervical intraepithelial neoplasia (CIN). CIN lesions may regress, persist or progress to invasive cervical carcinoma (CC), a leading cause of death worldwide. CIN is particularly frequent and aggressive in women infected by both HPV and the Human Immunodeficiency Virus (HIV), as compared to the general female population. In these individuals, however, therapeutic regimens employing HIV protease inhibitors (HIV-PI) have reduced CIN incidence and/or clinical progression, shedding light on the mechanism(s) of its development. This article reviews published work concerning: (i) the role of HPV proteins (including HPV-E5, E6 and E7) and of matrix-metalloproteinases (MMPs) in CIN evolution into invasive CC; and (ii) the effect of HIV-PI on events leading to CIN progression such as basement membrane and extracellular matrix invasion by HPV-positive CIN cells and the formation of new blood vessels. Results from the reviewed literature indicate that CIN clinical progression can be monitored by evaluating the expression of MMPs and HPV proteins and they suggest the use of HIV-PI or their derivatives for the block of CIN evolution into CC in both HIV-infected and uninfected women.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy.
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| |
Collapse
|
242
|
Yang Y, Lu Q, Shao X, Mo B, Nie X, Liu W, Chen X, Tang Y, Deng Y, Yan J. Development Of A Three-Gene Prognostic Signature For Hepatitis B Virus Associated Hepatocellular Carcinoma Based On Integrated Transcriptomic Analysis. J Cancer 2018; 9:1989-2002. [PMID: 29896284 PMCID: PMC5995946 DOI: 10.7150/jca.23762] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of public genome-wide gene expression data together with Cox regression analysis is a powerful weapon to identify new prognostic gene signatures for cancer diagnosis and prognosis. Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC), however, it remains largely unknown about the specific gene prognostic signature of HBV-associated HCC. Using Robust Rank Aggreg (RRA) method to integrate seven whole genome expression datasets, we identified 82 up-regulated genes and 577 down-regulated genes in HBV-associated HCC patients. Combination of several enrichment analysis, univariate and multivariate Cox proportional hazards regression analysis, we revealed that a three-gene (SPP2, CDC37L1, and ECHDC2) prognostic signature could act as an independent prognostic indicator for HBV-associated HCC in both the discovery cohort and the internal testing cohort. Gene set enrichment analysis showed that the high-risk group with lower expression levels of the three genes was enriched in bladder cancer and cell cycle pathway, whereas the low-risk group with higher expression levels of the three genes was enriched in drug metabolism-cytochrome P450, PPAR signaling pathway, fatty acid and histidine metabolisms. This indicates that patients of HBV-associated HCC with higher expression of these three genes may preserve relatively good hepatic cellular metabolism and function, which may also protect HCC patients from persistent drug toxicity in response to various medication. Our findings suggest a three-gene prognostic model that serves as a specific prognostic signature for HBV-associated HCC.
Collapse
Affiliation(s)
- Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Lu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Xuejun Shao
- Brigade 315th of Territorial Defense Force, Chinese People's Liberation Army Ground Force, Xishuangbanna District, Yunan 666200, China
| | - Banghui Mo
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Liu
- Health Physical Examination Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Xianhua Chen
- Diagnosis and Treatment Center for Servicemen, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuan Tang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
243
|
Novel dual-targeting anti-proliferative dihydrotriazine-chalcone derivatives display suppression of cancer cell invasion and inflammation by inhibiting the NF-κB signaling pathway. Food Chem Toxicol 2018; 116:238-248. [PMID: 29630947 DOI: 10.1016/j.fct.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 02/03/2023]
Abstract
Chalcones present in edible plants possess anti-cancer and anti-inflammatory properties, with the Michael acceptor moiety reported to be responsible for their biological activities. In this study, two novel dihydrotriazine-chalcone compounds previously identified to exert anti-proliferative effects through dual-targeting of dihydrofolate reductase (DHFR) and thioredoxin reductase (TrxR), were evaluated for their anti-invasive and anti-inflammatory abilities. At non-lethal concentrations, the compounds suppressed in vitro migration of MDA-MB-231 breast carcinoma cells, which was correlated with a dose-dependent downregulation of phorbol 12-myristate 13-acetate (PMA)-induced matrix metalloproteinase-9 (MMP-9) expression and secretion. At similar concentrations, these chalcone-based compounds suppressed expression of inflammatory mediators inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharides (LPS)-stimulated murine macrophage-like RAW 264.7 cells, as well as tumor necrosis factor alpha (TNF-α) in LPS-stimulated human monocytes isolated from healthy donors. Mechanistically, inhibition of cancer cell invasion and inflammation by the compounds were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway, which corroborated with the reported mechanism of action of chalcones. Their abilities to target multiple biological mediators relevant to multi-step carcinogenesis and with bioactivities stronger than those of the parent chalcone scaffold have warranted dihydrotriazine-chalcone compounds as promising candidates for use in pharmacological intervention of aggressive cancers.
Collapse
|
244
|
Shay G, Tauro M, Loiodice F, Tortorella P, Sullivan DM, Hazlehurst LA, Lynch CC. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment. Oncotarget 2018; 8:41827-41840. [PMID: 28611279 PMCID: PMC5522031 DOI: 10.18632/oncotarget.18103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/27/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple myeloma is a plasma cell malignancy that homes aberrantly to bone causing extensive skeletal destruction. Despite the development of novel therapeutic agents that have significantly improved overall survival, multiple myeloma remains an incurable disease. Matrix metalloproteinase-2 (MMP-2) is associated with cancer and is significantly overexpressed in the bone marrow of myeloma patients. These data provide rationale for selectively inhibiting MMP-2 activity as a multiple myeloma treatment strategy. Given that MMP-2 is systemically expressed, we used novel “bone-seeking” bisphosphonate based MMP-2 specific inhibitors (BMMPIs) to target the skeletal tissue thereby circumventing potential off-target effects of MMP-2 inhibition outside the bone marrow-tumor microenvironment. Using in vivo models of multiple myeloma (5TGM1, U266), we examined the impact of MMP-2 inhibition on disease progression using BMMPIs. Our data demonstrate that BMMPIs can decrease multiple myeloma burden and protect against cancer-induced osteolysis. Additionally, we have shown that MMP-2 can be specifically inhibited in the multiple myeloma-bone microenvironment, underscoring the feasibility of developing targeted and tissue selective MMP inhibitors. Given the well-tolerated nature of bisphosphonates in humans, we anticipate that BMMPIs could be rapidly translated to the clinical setting for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Gemma Shay
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marilena Tauro
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fulvio Loiodice
- Department of Pharmacy and Pharmaceutical Sciences, Università degli Studi di Bari "A. Moro", Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy and Pharmaceutical Sciences, Università degli Studi di Bari "A. Moro", Bari, Italy
| | - Daniel M Sullivan
- Blood and Marrow Transplantation and Cellular Immunology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lori A Hazlehurst
- Hematopoietic Malignancy and Transplantation Program, West Virginia University, Morgantown, WV, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
245
|
Matrix Metalloproteinase 8: Could it Benefit the CAR-T Cell Therapy of Solid Tumors?- a- Commentary on Therapeutic Potential. CANCER MICROENVIRONMENT 2018; 11:93-96. [PMID: 29589335 DOI: 10.1007/s12307-018-0208-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
|
246
|
Cui S, Zhang K, Li C, Chen J, Pan Y, Feng B, Lu L, Zhu Z, Wang R, Chen L. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget 2018; 7:78009-78028. [PMID: 27793005 PMCID: PMC5363640 DOI: 10.18632/oncotarget.12870] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Metastasis and recurrence has become one major obstacle for further improving the survival of hepatocelluar cancer (HCC) patients. Therefore, it is critical to elucidate the mechanisms involved in HCC metastasis. This study aimed to investigate the roles of microRNA (miR)-129-3p in HCC metastasis and its possible molecular mechanisms. By using microarray analysis to compare levels of different miRNAs in HCC tissues with or without lymph node metastasis (LNM), we showed that HCC tissues with LNM had reduced levels of miR-129-3p, which was related to its promoter hypermethylation and correlated with tumor metastasis, recurrence and poor prognosis. Gain - and loss - of - function assays indicated that re-expression of miR-129-3p could reverse epithelial-mesenchymal transition (EMT), and reduce in vitro invasion and in vivo metastasis of HCC cells. Aurora-A, a serine/threonine protein kinase, was identified as a direct target of miR-129-3p. Knockdown of Aurora-A phenocopied the effect of miR-129-3p overexpression on HCC metastasis. In addition, Aurora-A upregulation could partially rescue the effect of miR-129-3p. We further demonstrated that activation of PI3K/Akt and p38-MAPK signalings were involved in miR-129-3p-mediated HCC metastasis. These findings suggest that methylation-mediated miR-129-3p downregulation promotes EMT, in vitro invasion and in vivo metastasis of HCC cells via activation of PI3K/Akt and p38-MAPK signalings partially by targeting Aurora-A. Therefore, miR-129-3p may be a novel prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shiyun Cui
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Chen Li
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Yan Pan
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Lei Lu
- Liver Disease Center of PLA, The 81th Hospital of PLA, Nanjing 210002, Jiangsu, PR China
| | - Ziman Zhu
- Department of Hepatobiliary Surgery, First Hospital Affiliated to the Chinese PLA General Hospital, Haidian District, Beijing 100048, PR China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu, PR China
| |
Collapse
|
247
|
Vaiphei K. Molecular interphase between extracellular matrix & cancer cells. Indian J Med Res 2018; 146:298-300. [PMID: 29355134 PMCID: PMC5793462 DOI: 10.4103/ijmr.ijmr_1601_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kim Vaiphei
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, India
| |
Collapse
|
248
|
Costa H, Xu X, Overbeek G, Vasaikar S, Patro CPK, Kostopoulou ON, Jung M, Shafi G, Ananthaseshan S, Tsipras G, Davoudi B, Mohammad AA, Lam H, Strååt K, Wilhelmi V, Shang M, Tegner J, Tong JC, Wong KT, Söderberg-Naucler C, Yaiw KC. Human cytomegalovirus may promote tumour progression by upregulating arginase-2. Oncotarget 2018; 7:47221-47231. [PMID: 27363017 PMCID: PMC5216936 DOI: 10.18632/oncotarget.9722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/14/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Both arginase (ARG2) and human cytomegalovirus (HCMV) have been implicated in tumorigenesis. However, the role of ARG2 in the pathogenesis of glioblastoma (GBM) and the HCMV effects on ARG2 are unknown. We hypothesize that HCMV may contribute to tumorigenesis by increasing ARG2 expression. RESULTS ARG2 promotes tumorigenesis by increasing cellular proliferation, migration, invasion and vasculogenic mimicry in GBM cells, at least in part due to overexpression of MMP2/9. The nor-NOHA significantly reduced migration and tube formation of ARG2-overexpressing cells. HCMV immediate-early proteins (IE1/2) or its downstream pathways upregulated the expression of ARG2 in U-251 MG cells. Immunostaining of GBM tissue sections confirmed the overexpression of ARG2, consistent with data from subsets of Gene Expression Omnibus. Moreover, higher levels of ARG2 expression tended to be associated with poorer survival in GBM patient by analyzing data from TCGA. METHODS The role of ARG2 in tumorigenesis was examined by proliferation-, migration-, invasion-, wound healing- and tube formation assays using an ARG2-overexpressing cell line and ARG inhibitor, N (omega)-hydroxy-nor-L-arginine (nor-NOHA) and siRNA against ARG2 coupled with functional assays measuring MMP2/9 activity, VEGF levels and nitric oxide synthase activity. Association between HCMV and ARG2 were examined in vitro with 3 different GBM cell lines, and ex vivo with immunostaining on GBM tissue sections. The viral mechanism mediating ARG2 induction was examined by siRNA approach. Correlation between ARG2 expression and patient survival was extrapolated from bioinformatics analysis on data from The Cancer Genome Atlas (TCGA). CONCLUSIONS ARG2 promotes tumorigenesis, and HCMV may contribute to GBM pathogenesis by upregulating ARG2.
Collapse
Affiliation(s)
- Helena Costa
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Xinling Xu
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Gitta Overbeek
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Suhas Vasaikar
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Pawan K Patro
- Social & Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Ourania N Kostopoulou
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Masany Jung
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Gowhar Shafi
- Department of Genomics and Bioinformatics, Positive Bioscience, Mumbai, India
| | - Sharan Ananthaseshan
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Giorgos Tsipras
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Belghis Davoudi
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul-Aleem Mohammad
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Hoyin Lam
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden.,Present affiliation: Division of Cancer Studies, King's College London, London, UK
| | - Klas Strååt
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden.,Division of Gene Technology, School of Biotechnology, Science for Life Laboratory, Royal Institute of Technology (KTH), Solna, Sweden
| | - Vanessa Wilhelmi
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Mingmei Shang
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Tegner
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joo Chuan Tong
- Social & Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Malaysia
| | - Cecilia Söderberg-Naucler
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Koon-Chu Yaiw
- Cell and Molecular Immunology, Department of Medicine, Center for Molecular Medicine, Unit for Experimental Cardiovascular Research and Department of Neurology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
249
|
Zou S, Yang J, Guo J, Su Y, He C, Wu J, Yu L, Ding WQ, Zhou J. RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway. Cancer Lett 2018; 417:65-74. [DOI: 10.1016/j.canlet.2017.12.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
|
250
|
Hebron KE, Li EY, Arnold Egloff SA, von Lersner AK, Taylor C, Houkes J, Flaherty DK, Eskaros A, Stricker TP, Zijlstra A. Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis. Sci Rep 2018; 8:3208. [PMID: 29453336 PMCID: PMC5816644 DOI: 10.1038/s41598-018-21467-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
While many adhesion receptors are known to influence tumor progression, the mechanisms by which they dynamically regulate cell-cell adhesion remain elusive. We previously identified Activated Leukocyte Cell Adhesion Molecule (ALCAM) as a clinically relevant driver of metastasis and hypothesized that a tunable mechanism of ectodomain shedding regulates its contribution to dissemination. To test this hypothesis, we examined an under-explored ALCAM splice variant (ALCAM-Iso2) and demonstrated that loss of the membrane-proximal region of ALCAM (exon 13) increased metastasis four-fold. Mechanistic studies identified a novel MMP14-dependent membrane distal cleavage site in ALCAM-Iso2, which mediated a ten-fold increase in shedding, thereby decreasing cellular cohesion. Importantly, the loss of cohesion is not limited to the cell capable of shedding because the released extracellular domain diminished cohesion of non-shedding cells through disruption of ALCAM-ALCAM interactions. ALCAM-Iso2-dominated expression in bladder cancer tissue, compared to normal bladder, further emphasizes that ALCAM alternative splicing may contribute to clinical disease progression. The requirement for both the loss of exon 13 and the gain of metalloprotease activity suggests that ALCAM shedding and concomitant regulation of tumor cell adhesion is a locally tunable process.
Collapse
Affiliation(s)
- Katie E Hebron
- Vanderbilt University, Program in Cancer Biology, Nashville, USA
| | - Elizabeth Y Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | - Shanna A Arnold Egloff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
| | | | - Chase Taylor
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
| | - Joep Houkes
- Department of Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - David K Flaherty
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, USA
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Thomas P Stricker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Andries Zijlstra
- Vanderbilt University, Program in Cancer Biology, Nashville, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|