201
|
Abstract
Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2-associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3-interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.
Collapse
|
202
|
Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Cell Death Differ 2013; 20:744-54. [PMID: 23392123 DOI: 10.1038/cdd.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bax is a proapoptotic Bcl-2 family member that has a central role in the initiation of mitochondria-dependent apoptosis. However, the mechanism of Bax activation during apoptosis remains unsettled. It is believed that the activation of Bax is mediated by either dissociation from prosurvival Bcl-2 family members, or direct association with BH3-only members. Several interaction sites on Bax that mediate its interactions with other Bcl-2 family members, as well as its proapoptotic activity, have been identified in previous studies by other groups. To rigorously investigate the functional role of these interaction sites, we knocked in their respective mutants using HCT116 colon cancer cells, in which apoptosis induced by several stimuli is strictly Bax-dependent. Bax-mediated apoptosis was intact upon knock-in (KI) of K21E and D33A, which were shown to block the interaction of Bax with BH3-only activators. Apoptosis was partially reduced by KI of D68R, which impairs the interaction of Bax with prosurvival members, and S184V, a constitutively mitochondria-targeting mutant. In contrast, apoptosis was largely suppressed by KI of L70A/D71A, which blocks homo-oligomerization of Bax and its binding to prosurvival Bcl-2 family proteins. Collectively, our results suggest that the activation of endogenous Bax in HCT116 cells is dependent on its homo-oligomerization sites, but not those previously shown to interact with BH3-only activators or prosurvival proteins only. We therefore postulate that critical interaction sites yet to be identified, or mechanisms other than protein-protein interactions, need to be pursued to delineate the mechanism of Bax activation during apoptosis.
Collapse
|
203
|
Tran VH, Bartolo R, Westphal D, Alsop A, Dewson G, Kluck RM. Bak apoptotic function is not directly regulated by phosphorylation. Cell Death Dis 2013; 4:e452. [PMID: 23303126 PMCID: PMC3563979 DOI: 10.1038/cddis.2012.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/02/2022]
Abstract
During apoptosis, Bak and Bax permeabilize the mitochondrial outer membrane by undergoing major conformational change and oligomerization. This activation process in Bak is reported to require dephosphorylation of tyrosine-108 close to an activation trigger site. To investigate how dephosphorylation of Bak contributes to its activation and conformational change, one-dimensional isoelectric focusing (1D-IEF) and mutagenesis was used to monitor Bak phosphorylation. On 1D-IEF, Bak extracted from a range of cell types migrated as a single band near the predicted isoelectric point of 5.6 both before and after phosphatase treatment, indicating that Bak is not significantly phosphorylated at any residue. In contrast, three engineered 'phosphotagged' Bak variants showed a second band at lower pI, indicating phosphorylation. Apoptosis induced by several stimuli failed to alter Bak pI, indicating little change in phosphorylation status. In addition, alanine substitution of tyrosine-108 and other putative phosphorylation sites failed to enhance Bak activation or pro-apoptotic function. In summary, Bak is not significantly phosphorylated at any residue, and Bak activation during apoptosis does not require dephosphorylation.
Collapse
Affiliation(s)
- V H Tran
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - R Bartolo
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - D Westphal
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - A Alsop
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - G Dewson
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - R M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
204
|
Bender T, Martinou JC. Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 2013; 5:a011106. [PMID: 23284044 DOI: 10.1101/cshperspect.a011106] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although mitochondria are usually considered as supporters of life, they are also involved in cellular death. Mitochondrial outer membrane permeabilization (MOMP) is a crucial event during apoptosis because it causes the release of proapoptotic factors from the mitochondrial intermembrane space to the cytosol. MOMP is mainly controlled by the Bcl-2 family of proteins, which consists of both proapoptotic and antiapoptotic members. We discuss the current understanding of how activating and inhibitory interactions within this family lead to the activation and oligomerization of MOMP effectors Bax and Bak, which result in membrane permeabilization. The order of events leading to MOMP is then highlighted step by step, emphasizing recent discoveries regarding the formation of Bax/Bak pores on the outer mitochondrial membrane. Besides the Bcl-2 proteins, the mitochondrial organelle contributes to and possibly regulates MOMP, because mitochondrial resident proteins and membrane lipids are prominently involved in the process.
Collapse
Affiliation(s)
- Tom Bender
- Department of Cell Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
205
|
Abstract
Mitochondria are membrane bound organelles present in almost all eukaryotic cells. Responsible for orchestrating cellular energy production, they are central to the maintenance of life and the gatekeepers of cell death. Thought to have originated from symbiotic ancestors, they carry a residual genome as mtDNA encoding 13 proteins essential for respiratory chain function. Mitochondria comprise an inner and outer membrane that separate and maintain the aqueous regions, the intermembrane space and the matrix. Mitochondria contribute to many processes central to cellular function and dysfunction including calcium signalling, cell growth and differentiation, cell cycle control and cell death. Mitochondrial shape and positioning in cells is crucial and is tightly regulated by processes of fission and fusion, biogenesis and autophagy, ensuring a relatively constant mitochondrial population. Mitochondrial dysfunction is implicated in metabolic and age related disorders, neurodegenerative diseases and ischemic injury in heart and brain.
Collapse
Affiliation(s)
- Laura D. Osellame
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
- UK Parkinson’s Disease Consortium, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Thomas S. Blacker
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
- UK Parkinson’s Disease Consortium, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Corresponding author. Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom. Tel.: +44 20 7679 3207.
| |
Collapse
|
206
|
Aouacheria A, Rech de Laval V, Combet C, Hardwick JM. Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol 2012. [PMID: 23199982 PMCID: PMC3582728 DOI: 10.1016/j.tcb.2012.10.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bcl-2 family proteins regulate apoptosis in animals. This protein family includes several homologous proteins and a collection of other proteins lacking sequence similarity except for a Bcl-2 homology (BH)3 motif. Thus, membership in the Bcl-2 family requires only one of the four BH motifs. On this basis, a growing number of diverse BH3-only proteins are being reported. Although compelling cell biological and biophysical evidence validates many BH3-only proteins, claims of significant BH3 sequence similarity are often unfounded. Computational and phylogenetic analyses suggest that only some BH3 motifs arose by divergent evolution from a common ancestor (homology), whereas others arose by convergent evolution or random coincidence (homoplasy), challenging current assumptions about which proteins constitute the extended Bcl-2 family.
Collapse
Affiliation(s)
- Abdel Aouacheria
- Molecular Biology of the Cell Laboratory, Ecole Normale Supérieure de Lyon, LBMC UMR 5239 CNRS - UCBL - ENS Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| | | | | | | |
Collapse
|
207
|
Azad A, Fox J, Leverrier S, Storey A. Blockade of the BAK hydrophobic groove by inhibitory phosphorylation regulates commitment to apoptosis. PLoS One 2012. [PMID: 23189150 PMCID: PMC3506661 DOI: 10.1371/journal.pone.0049601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The BCL-2 family protein BAK is a key regulator of mitochondrial apoptosis. BAK activation first involves N-terminal conformational changes that lead to the transient exposure of the BAK BH3 domain that then inserts into a hydrophobic groove on another BAK molecule to form symmetric dimers. We showed recently that post-translational modifications are important in the regulation of BAK conformational change and multimerization, with dephosphorylation at tyrosine 108 constituting an initial step in the BAK activation process. We now show that dephosphorylation of serine 117 (S117), located in the BAK hydrophobic groove, is also critical for BAK activation to proceed to completion. Phosphorylation of BAK at S117 has two important regulatory functions: first, it occludes the binding of BH3-containing peptides that bind to BAK causing activation and cytochrome c release from mitochondria; second, it prevents BAK-BH3:BAK-Groove interactions that nucleate dimer formation for subsequent multimerization. Hence, BH3-mediated BAK conformational change and subsequent BAK multimerization for cytochrome c release and cell death is intimately linked to, and dependent on, dephosphorylation at S117. Our study reveals important novel mechanistic and structural insights into the temporal sequence of events governing the process of BAK activation in commitment to cell death and how they are regulated.
Collapse
Affiliation(s)
- Abul Azad
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Joanna Fox
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sabrina Leverrier
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
208
|
Asciolla JJ, Renault TT, Chipuk JE. Examining BCL-2 family function with large unilamellar vesicles. J Vis Exp 2012:4291. [PMID: 23070252 DOI: 10.3791/4291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis(1). Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)(1). After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues(2). In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)(3-6). Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation(7,8). In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members(7,9). As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization(10). LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)(10). This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)(11). As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.
Collapse
Affiliation(s)
- James J Asciolla
- Department of Oncological Sciences, Department of Dermatology, The Tisch Cancer Institute, The Graduate School of Biological Sciences, Mount Sinai School of Medicine
| | | | | |
Collapse
|
209
|
Abstract
As intracellular parasites, viruses rely on many host cell functions to ensure their replication. The early induction of programmed cell death (PCD) in infected cells constitutes an effective antiviral host mechanism to restrict viral spread within an organism. As a countermeasure, viruses have evolved numerous strategies to interfere with the induction or execution of PCD. Slowly replicating viruses such as the cytomegaloviruses (CMVs) are particularly dependent on sustained cell viability. To preserve viability, the CMVs encode several viral cell death inhibitors that target different key regulators of the extrinsic and intrinsic apoptosis pathways. The best-characterized CMV-encoded inhibitors are the viral inhibitor of caspase-8-induced apoptosis (vICA), viral mitochondrial inhibitor of apoptosis (vMIA), and viral inhibitor of Bak oligomerization (vIBO). Moreover, a viral inhibitor of RIP-mediated signaling (vIRS) that blocks programmed necrosis has been identified in the genome of murine CMV (MCMV), indicating that this cell death mode is a particularly important part of the antiviral host response. This review provides an overview of the known cell death suppressors encoded by CMVs and their mechanisms of action.
Collapse
|
210
|
Fujikane R, Sanada M, Sekiguchi M, Hidaka M. The identification of a novel gene, MAPO2, that is involved in the induction of apoptosis triggered by O⁶-methylguanine. PLoS One 2012; 7:e44817. [PMID: 23028632 PMCID: PMC3454368 DOI: 10.1371/journal.pone.0044817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/14/2012] [Indexed: 01/21/2023] Open
Abstract
O6-Methylguanine, one of alkylated DNA bases, is especially mutagenic. Cells containing this lesion are eliminated by induction of apoptosis, associated with the function of mismatch repair (MMR) proteins. A retrovirus-mediated gene-trap mutagenesis was used to isolate new genes related to the induction of apoptosis, triggered by the treatment with an alkylating agent, N-methyl-N-nitrosourea (MNU). This report describes the identification of a novel gene, MAPO2 (O6-methylguanine-induced apoptosis 2), which is originally annotated as C1orf201. The MAPO2 gene is conserved among a wide variety of multicellular organisms and encodes a protein containing characteristic PxPxxY repeats. To elucidate the function of the gene product in the apoptosis pathway, a human cell line derived from HeLa MR cells, in which the MAPO2 gene was stably knocked down by expressing specific miRNA, was constructed. The knockdown cells grew at the same rate as HeLa MR, thus indicating that MAPO2 played no role in the cellular growth. After exposure to MNU, HeLa MR cells and the knockdown cells underwent cell cycle arrest at G2/M phase, however, the production of the sub-G1 population in the knockdown cells was significantly suppressed in comparison to that in HeLa MR cells. Moreover, the activation of BAK and caspase-3, and depolarization of mitochondrial membrane, hallmarks for the induction of apoptosis, were also suppressed in the knockdown cells. These results suggest that the MAPO2 gene product might positively contribute to the induction of apoptosis triggered by O6-methylguanine.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Masayuki Sanada
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Mutsuo Sekiguchi
- Advanced Science Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
211
|
Park HO, Bae J. Disturbed relaxin signaling pathway and testicular dysfunction in mouse offspring upon maternal exposure to simazine. PLoS One 2012; 7:e44856. [PMID: 22984576 PMCID: PMC3440368 DOI: 10.1371/journal.pone.0044856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/08/2012] [Indexed: 02/01/2023] Open
Abstract
Simazine is a triazine herbicide that is being widely applied worldwide and commonly detected in surface and groundwater. Despite its popular use in controlling weeds and algae, very limited information is available regarding its toxicity. In the present study, pregnant mice were orally exposed to low doses (0, 5, 50, or 500 µg/kg body weight per day) of simazine during gestation and lactation, during which no overt maternal toxic response was detected, and their offspring was assessed. Simazine-exposed male offspring showed decreased body, testicular, and epididymis weight, increased testicular apoptosis, and decreased sperm concentrations. Differentially-expressed genes in the testes of male offspring exposed to simazine were identified by DNA microarray, revealing 775 upregulated and 791 downregulated genes; among these, the relaxin-family peptide receptor 1 (Rxfp1), which is the receptor for relaxin hormone, was significantly downregulated. In addition, the expression of target genes in the relaxin pathway, including nitric oxide synthase 2 (Nos2) and Nos3, was significantly decreased in simazine-exposed F1 testes. Moreover, simazine inhibited NO release, and knockdown of Rxfp1 blocked the inhibitory action of simazine on NO production in testicular Leydig cells. Therefore, the present study provides a better understanding of the toxicities associated with the widely used herbicide simazine at environmentally relevant doses by demonstrating that maternal exposure interferes with the pleotropic relaxin-NO signaling pathway, impairing normal development and reproductive activity of male offspring.
Collapse
Affiliation(s)
- Ho-Oak Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | |
Collapse
|
212
|
Abstract
The Bcl-2 family of proteins is formed by pro- and antiapoptotic members. Together they regulate the permeabilization of the mitochondrial outer membrane, a key step in apoptosis. Their complex network of interactions both in the cytosol and on mitochondria determines the fate of the cell. In the past 2 decades, the members of the family have been identified and classified according to their function. Several competing models have been proposed to explain how the Blc-2 proteins orchestrate apoptosis signaling. However, basic aspects of the action of these proteins remain elusive. This review is focused on the biophysical mechanisms that are relevant for their action in apoptosis and on the challenging gaps in our knowledge that necessitate further exploration to finally understand how the Bcl-2 family regulates apoptosis.
Collapse
Affiliation(s)
- A J García-Sáez
- Membrane Biophysics, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| |
Collapse
|
213
|
Sutton VR, Sedelies K, Dewson G, Christensen ME, Bird PI, Johnstone RW, Kluck RM, Trapani JA, Waterhouse NJ. Granzyme B triggers a prolonged pressure to die in Bcl-2 overexpressing cells, defining a window of opportunity for effective treatment with ABT-737. Cell Death Dis 2012; 3:e344. [PMID: 22764103 PMCID: PMC3406577 DOI: 10.1038/cddis.2012.73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/23/2012] [Accepted: 05/02/2012] [Indexed: 01/08/2023]
Abstract
Overexpression of Bcl-2 contributes to resistance of cancer cells to human cytotoxic lymphocytes (CL) by blocking granzyme B (GraB)-induced mitochondrial outer membrane permeabilization (MOMP). Drugs that neutralise Bcl-2 (e.g., ABT-737) may therefore be effective adjuvants for immunotherapeutic strategies that use CL to kill cancer cells. Consistent with this we found that ABT-737 effectively restored MOMP in Bcl-2 overexpressing cells treated with GraB or natural killer cells. This effect was observed even if ABT-737 was added up to 16 h after GraB, after which the cells reset their resistant phenotype. Sensitivity to ABT-737 required initial cleavage of Bid by GraB (gctBid) but did not require ongoing GraB activity once Bid had been cleaved. This gctBid remained detectable in cells that were sensitive to ABT-737, but Bax and Bak were only activated if ABT-737 was added to the cells. These studies demonstrate that GraB generates a prolonged pro-apoptotic signal that must remain active for ABT-737 to be effective. The duration of this signal is determined by the longevity of gctBid but not activation of Bax or Bak. This defines a therapeutic window in which ABT-737 and CL synergise to cause maximum death of cancer cells that are resistant to either treatment alone, which will be essential in defining optimum treatment regimens.
Collapse
Affiliation(s)
- V R Sutton
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K Sedelies
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Dewson
- Cell Signalling and Cell Death Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M E Christensen
- Apoptosis and Cytotoxicity Laboratory, Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
| | - P I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - R W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Gene Regulation Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
- Victorian Comprehensive Cancer Centre, Parkville, Victoria 3052, Australia
| | - R M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J A Trapani
- Cancer Cell Death Laboratory, Cancer Immunology Program, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett Street, Melbourne, Victoria 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
- Victorian Comprehensive Cancer Centre, Parkville, Victoria 3052, Australia
| | - N J Waterhouse
- Apoptosis and Cytotoxicity Laboratory, Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane, Queensland 4101, Australia
- Department of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
214
|
Charge profile analysis reveals that activation of pro-apoptotic regulators Bax and Bak relies on charge transfer mediated allosteric regulation. PLoS Comput Biol 2012; 8:e1002565. [PMID: 22719244 PMCID: PMC3375244 DOI: 10.1371/journal.pcbi.1002565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/04/2012] [Indexed: 11/22/2022] Open
Abstract
The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure. Apoptosis is a physiological form of cell death that is fundamental for development, growth and homeostasis in multi-cellular organisms. Deviations in the apoptosis machinery are known to be involved in cancer, neurodegenerative disorders, and autoimmune diseases. The proteins Bax and Bak are essential for executing apoptosis, yet the mechanism of their activation is not properly understood at the structural level. To understand this mechanism, we investigated how the electronic density is reorganized (i.e., how charge is transferred) inside the Bax molecule when Bax binds a functional peptide of its natural activator protein. We identified the specific interactions responsible for the exposure of the functional sites of Bax, rendering Bax active. Furthermore, we found a network of charge transfer that conveys activation information from the Bax activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. This network consists of three residues inside the hydrophobic core of Bax, which are present also in the hydrophobic core of Bak, suggesting that these residues are functionally important and thus potential drug targets. We provide a straightforward and accessible methodology to identify the key residues involved in the fast activation of proteins during signal transduction.
Collapse
|
215
|
Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 2012; 148:988-1000. [PMID: 22385963 DOI: 10.1016/j.cell.2012.01.038] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/10/2011] [Accepted: 01/20/2012] [Indexed: 01/28/2023]
Abstract
Mitochondria are functionally and physically associated with heterotypic membranes, yet little is known about how these interactions impact mitochondrial outer-membrane permeabilization (MOMP) and apoptosis. We observed that dissociation of heterotypic membranes from mitochondria inhibited BAK/BAX-dependent cytochrome c (cyto c) release. Biochemical purification of neutral sphingomyelinases that correlated with MOMP sensitization suggested that sphingolipid metabolism coordinates BAK/BAX activation. Using purified lipids and enzymes, sensitivity to MOMP was achieved by in vitro reconstitution of the sphingolipid metabolic pathway. Sphingolipid metabolism inhibitors blocked MOMP from heavy membrane preparations but failed to influence MOMP in the presence of sphingolipid-reconstituted, purified mitochondria. Furthermore, the sphingolipid products, sphingosine-1-PO(4) and hexadecenal, cooperated specifically with BAK and BAX, respectively. Sphingolipid metabolism was also required for cellular responses to apoptosis. Our studies suggest that BAK/BAX activation and apoptosis are coordinated through BH3-only proteins and a specific lipid milieu that is maintained by heterotypic membrane-mitochondrial interactions.
Collapse
Affiliation(s)
- Jerry E Chipuk
- Mount Sinai School of Medicine, Department of Oncological Sciences, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Lee EF, Fairlie WD. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Comput Struct Biotechnol J 2012; 1:e201204007. [PMID: 24688636 PMCID: PMC3962096 DOI: 10.5936/csbj.201204007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/01/2012] [Accepted: 04/05/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Erinna F Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - W Douglas Fairlie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
217
|
Gores GJ, Kaufmann SH. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev 2012; 26:305-11. [PMID: 22345513 DOI: 10.1101/gad.186189.111] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bcl-2, Bcl-x(L), Mcl-1, and A1 are the predominant anti-apoptotic members of the Bcl-2 family in somatic cells. Malignant B lymphocytes are critically dependent on Bcl-2 or Bcl-x(L) for survival. In contrast, a new study by Glaser and colleagues in the January 15, 2012, issue of Genes & Development (pp. 120-125) demonstrates that Mcl-1 is essential for development and survival of acute myelogenous leukemia cells. These results provide new impetus for the generation of selective Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Gregory J Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
218
|
Mondal S, Bhattacharya K, Mallick A, Sangwan R, Mandal C. Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis. PLoS One 2012; 7:e34277. [PMID: 22479585 PMCID: PMC3315518 DOI: 10.1371/journal.pone.0034277] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/25/2012] [Indexed: 12/02/2022] Open
Abstract
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53−/− cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53−/− over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53−/− cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax−Bak−) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax−Bak+/HCT116Bax+Bak−) was only marginally effective after WithaD treatment. In HCT116p53−/− cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.
Collapse
Affiliation(s)
- Susmita Mondal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Kaushik Bhattacharya
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Asish Mallick
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Rajender Sangwan
- Metabolic and Structural Biology Division, Council of Scientific and Industrial Research - Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Chitra Mandal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
219
|
Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PLoS One 2012; 7:e31510. [PMID: 22442658 PMCID: PMC3307716 DOI: 10.1371/journal.pone.0031510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1. CONCLUSIONS/SIGNIFICANCE Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.
Collapse
Affiliation(s)
- Pedro Eitz Ferrer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Paul Frederick
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jacqueline M. Gulbis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruth M. Kluck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
220
|
Abstract
The mitochondrial pathway of apoptosis is the major mechanism of physiological cell death in vertebrates. In this pathway, proapoptotic members of the Bcl-2 family cause mitochondrial outer membrane permeabilization (MOMP), allowing the release of cytochrome c, which interacts with Apaf-1 to trigger caspase activation and apoptosis. Despite conservation of Bcl-2, Apaf-1, and caspases in invertebrate phyla, the existence of the mitochondrial pathway in any invertebrate is, at best, controversial. Here we show that apoptosis in a lophotrochozoan, planaria (phylum Platyhelminthes), is associated with MOMP and that cytochrome c triggers caspase activation in cytosolic extracts from these animals. Further, planarian Bcl-2 family proteins can induce and/or regulate cell death in yeast and can replace Bcl-2 proteins in mammalian cells to regulate MOMP. These results suggest that the mitochondrial pathway of apoptosis in animals predates the emergence of the vertebrates but was lost in some lineages (e.g., nematodes). In further support of this hypothesis, we surveyed the ability of cytochrome c to trigger caspase activation in cytosolic extracts from a variety of organisms and found this effect in cytosolic extracts from invertebrate deuterostomes (phylum Echinodermata).
Collapse
|
221
|
Pang YP, Dai H, Smith A, Meng XW, Schneider PA, Kaufmann SH. Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization. Sci Rep 2012; 2:257. [PMID: 22355769 PMCID: PMC3277102 DOI: 10.1038/srep00257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/16/2012] [Indexed: 11/09/2022] Open
Abstract
Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove.
Collapse
|
222
|
Zhao L, He F, Liu H, Zhu Y, Tian W, Gao P, He H, Yue W, Lei X, Ni B, Wang X, Jin H, Hao X, Lin J, Chen Q. Natural diterpenoid compound elevates expression of Bim protein, which interacts with antiapoptotic protein Bcl-2, converting it to proapoptotic Bax-like molecule. J Biol Chem 2011; 287:1054-65. [PMID: 22065578 DOI: 10.1074/jbc.m111.264481] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Overwhelming evidence indicates that Bax and Bak are indispensable for mediating cytochrome c release from mitochondria during apoptosis. Here we report a Bax/Bak-independent mechanism of cytochrome c release and apoptosis. We identified a natural diterpenoid compound that induced apoptosis in bax/bak double knock-out murine embryonic fibroblasts and substantially reduced the tumor growth from these cells implanted in mice. Treatment with the compound significantly increased expression of Bim, which migrated to mitochondria, altering the conformation of and forming oligomers with resident Bcl-2 to induce cytochrome c release and caspase activation. Importantly, purified Bim and Bcl-2 proteins cooperated to permeabilize a model mitochondrial outer membrane; this was accompanied by oligomerization of these proteins and deep embedding of Bcl-2 in the membrane. Therefore, the diterpenoid compound induces a structural and functional conversion of Bcl-2 through Bim to permeabilize the mitochondrial outer membrane, thereby inducing apoptosis independently of Bax and Bak. Because Bcl-2 family proteins play important roles in cancer development and relapse, this novel cell death mechanism can be explored for developing more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Lixia Zhao
- Joint Laboratory of Apoptosis and Mitochondrial Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Llambi F, Moldoveanu T, Tait SWG, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 2011; 44:517-31. [PMID: 22036586 DOI: 10.1016/j.molcel.2011.10.001] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/18/2011] [Accepted: 10/06/2011] [Indexed: 01/02/2023]
Abstract
During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Dewson G, Ma S, Frederick P, Hockings C, Tan I, Kratina T, Kluck RM. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ 2011; 19:661-70. [PMID: 22015607 DOI: 10.1038/cdd.2011.138] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.
Collapse
Affiliation(s)
- G Dewson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
225
|
Pang X, Moussa SH, Targy NM, Bose JL, George NM, Gries C, Lopez H, Zhang L, Bayles KW, Young R, Luo X. Active Bax and Bak are functional holins. Genes Dev 2011; 25:2278-90. [PMID: 22006182 DOI: 10.1101/gad.171645.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanism of Bax/Bak-dependent mitochondrial outer membrane permeabilization (MOMP), a central apoptotic event primarily controlled by the Bcl-2 family proteins, remains not well understood. Here, we express active Bax/Bak in bacteria, the putative origin of mitochondria, and examine their functional similarities to the λ bacteriophage (λ) holin. As critical effectors for bacterial lysis, holin oligomers form membrane lesions, through which endolysin, a muralytic enzyme, escapes the cytoplasm to attack the cell wall at the end of the infection cycle. We found that active Bax/Bak, but not any other Bcl-2 family protein, displays holin behavior, causing bacterial lysis by releasing endolysin in an oligomerization-dependent manner. Strikingly, replacing the holin gene with active alleles of Bax/Bak results in plaque-forming phages. Furthermore, we provide evidence that active Bax produces large membrane holes, the size of which is controlled by structural elements of Bax. Notably, lysis by active Bax is inhibited by Bcl-xL, and the lysis activity of the wild-type Bax is stimulated by a BH3-only protein. Together, these results mechanistically link MOMP to holin-mediated hole formation in the bacterial plasma membrane.
Collapse
Affiliation(s)
- Xiaming Pang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci 2011; 36:642-52. [PMID: 21978892 DOI: 10.1016/j.tibs.2011.08.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 02/07/2023]
Abstract
BAX, the BCL-2-associated X protein, is a cardinal proapoptotic member of the BCL-2 family, which regulates the critical balance between cellular life and death. Because so many medical conditions can be categorized as diseases of either too many or too few cells, dissecting the biochemistry of BCL-2 family proteins and developing pharmacological strategies to target them have become high priority scientific objectives. Here, we focus on BAX, a latent, cytosolic and monomeric protein that transforms into a lethal mitochondrial oligomer in response to cellular stress. New insights into the structural location of BAX's 'on switch', and the multi-step conformational changes that ensue upon BAX activation, are providing fresh opportunities to modulate BAX for potential benefit in human diseases characterized by pathologic cell survival or unwanted cellular demise.
Collapse
|
227
|
Crystal Structure of a BCL-W Domain-Swapped Dimer: Implications for the Function of BCL-2 Family Proteins. Structure 2011; 19:1467-76. [DOI: 10.1016/j.str.2011.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/08/2011] [Accepted: 07/24/2011] [Indexed: 11/20/2022]
|
228
|
Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 2011; 30:3667-83. [PMID: 21863020 DOI: 10.1038/emboj.2011.307] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/03/2011] [Indexed: 02/07/2023] Open
Abstract
Apoptosis, the major form of programmed cell death in metazoan organisms, plays critical roles in normal development, tissue homeostasis and immunity, and its disturbed regulation contributes to many pathological states, including cancer, autoimmunity, infection and degenerative disorders. In vertebrates, it can be triggered either by engagement of 'death receptors' of the tumour necrosis factor receptor family on the cell surface or by diverse intracellular signals that act upon the Bcl-2 protein family, which controls the integrity of the mitochondrial outer membrane through the complex interactions of family members. Both pathways lead to cellular demolition by dedicated proteases termed caspases. This review discusses the groundbreaking experiments from many laboratories that have clarified cell death regulation and galvanised efforts to translate this knowledge into novel therapeutic strategies for the treatment of malignant and perhaps certain autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | |
Collapse
|
229
|
Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011; 21:92-101. [PMID: 21763611 PMCID: PMC3156409 DOI: 10.1016/j.devcel.2011.06.017] [Citation(s) in RCA: 1112] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022]
Abstract
Mitochondria participate in apoptosis through a range of mechanisms that vary between vertebrates and invertebrates. In vertebrates, they release intermembrane space proteins, such as cytochrome c, to promote caspase activation in the cytosol. This process is the result of the loss of integrity of the outer mitochondrial membrane caused by proapoptotic members of the Bcl-2 family. This event is always accompanied by a fissioning of the organelle. Fission of mitochondria has also been reported to participate in apoptosis in Drosophila and Caenorhabditis elegans. However, in these organisms, mitochondrial membrane permeabilization does not occur and the mechanism by which mitochondrial dynamics participates in cell death remains elusive.
Collapse
Affiliation(s)
- Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Faculty of Sciences, 30 quai Ernest-Ansermet, Geneva 4, Switzerland.
| | | |
Collapse
|
230
|
Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. ACTA ACUST UNITED AC 2011; 194:39-48. [PMID: 21727192 PMCID: PMC3135403 DOI: 10.1083/jcb.201102027] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the proapoptotic Bcl-2 family members Bax and Bak release cytochrome c from mitochondria is incompletely understood. In this paper, we show that activator BH3-only proteins bind tightly but transiently to the Bak hydrophobic BH3-binding groove to induce Bak oligomerization, liposome permeabilization, mitochondrial cytochrome c release, and cell death. Analysis by surface plasmon resonance indicated that the initial binding of BH3-only proteins to Bak occurred with similar kinetics with or without detergent or mitochondrial lipids, but these reagents increase the strength of the Bak-BH3-only protein interaction. Point mutations in Bak and reciprocal mutations in the BH3-only proteins not only confirmed the identity of the interacting residues at the Bak-BH3-only protein interface but also demonstrated specificity of complex formation in vitro and in a cellular context. These observations indicate that transient protein-protein interactions involving the Bak BH3-binding groove initiate Bak oligomerization and activation.
Collapse
Affiliation(s)
- Haiming Dai
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
231
|
Eitz Ferrer P, Potthoff S, Kirschnek S, Gasteiger G, Kastenmüller W, Ludwig H, Paschen SA, Villunger A, Sutter G, Drexler I, Häcker G. Induction of Noxa-mediated apoptosis by modified vaccinia virus Ankara depends on viral recognition by cytosolic helicases, leading to IRF-3/IFN-β-dependent induction of pro-apoptotic Noxa. PLoS Pathog 2011; 7:e1002083. [PMID: 21698224 PMCID: PMC3116819 DOI: 10.1371/journal.ppat.1002083] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/11/2011] [Indexed: 01/16/2023] Open
Abstract
Viral infection is a stimulus for apoptosis, and in order to sustain viral replication many viruses are known to carry genes encoding apoptosis inhibitors. F1L, encoded by the orthopoxvirus modified vaccinia virus Ankara (MVA) has a Bcl-2-like structure. An MVA mutant lacking F1L (MVAΔF1L) induces apoptosis, indicating that MVA infection activates and F1L functions to inhibit the apoptotic pathway. In this study we investigated the events leading to apoptosis upon infection by MVAΔF1L. Apoptosis largely proceeded through the pro-apoptotic Bcl-2 family protein Bak with some contribution from Bax. Of the family of pro-apoptotic BH3-only proteins, only the loss of Noxa provided substantial protection, while the loss of Bim had a minor effect. In mice, MVA preferentially infected macrophages and DCs in vivo. In both cell types wt MVA induced apoptosis albeit more weakly than MVAΔF1L. The loss of Noxa had a significant protective effect in macrophages, DC and primary lymphocytes, and the combined loss of Bim and Noxa provided strong protection. Noxa protein was induced during infection, and the induction of Noxa protein and apoptosis induction required transcription factor IRF3 and type I interferon signalling. We further observed that helicases RIG-I and MDA5 and their signalling adapter MAVS contribute to Noxa induction and apoptosis in response to MVA infection. RNA isolated from MVA-infected cells induced Noxa expression and apoptosis when transfected in the absence of viral infection. We thus here describe a pathway leading from the detection of viral RNA during MVA infection by the cytosolic helicase-pathway, to the up-regulation of Noxa and apoptosis via IRF3 and type I IFN signalling. Viruses have come up with a diverse set of mechanisms to stop infected cells from committing suicide and hence secure their own propagation. In this study we use the DNA virus Modified Vaccinia virus Ankara, a highly attenuated version Vaccinia Virus, to study how cells detect viral infection and induce apoptosis. Modified Vaccinia virus Ankara is currently in clinical trials for its use in various vaccination protocols. By using a broad array of immortalized and primary cell types we observed that viral infection induced programmed cell death was controlled by proteins predominantly involved in detection of viral RNA, in particular proteins involved in the type 1 interferon response. The novelty of our findings lies on the observation that not only can RNA from DNA viruses be detected and activate the type 1 interferon response to infection, but that these responses can also directly modulate the levels of proteins regulating programmed cell death. Future treatments of infections by viral pathogens could exploit the synergistic ability of the type 1 interferon responses and programmed cell death in order to inhibit viral propagation.
Collapse
Affiliation(s)
- Pedro Eitz Ferrer
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- Institute of Medical Microbiology and Hygiene, University Freiburg, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Stephanie Potthoff
- Institute of Medical Microbiology and Hygiene, University Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, University Freiburg, Freiburg, Germany
| | - Georg Gasteiger
- Institute of Virology and Clinical Cooperation Group “Antigen-specific Immunotherapy”, TechnischeUniversitätMünchen and Helmholtz ZentrumMünchen, Munich, Germany
| | - Wolfgang Kastenmüller
- Institute of Virology and Clinical Cooperation Group “Antigen-specific Immunotherapy”, TechnischeUniversitätMünchen and Helmholtz ZentrumMünchen, Munich, Germany
| | - Holger Ludwig
- Division of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan A. Paschen
- Institute of Medical Microbiology and Hygiene, University Freiburg, Freiburg, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Gerd Sutter
- Division of Virology, Paul-Ehrlich-Institut, Langen, Germany
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ingo Drexler
- Institute of Virology and Clinical Cooperation Group “Antigen-specific Immunotherapy”, TechnischeUniversitätMünchen and Helmholtz ZentrumMünchen, Munich, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
232
|
Kim A, Park M, Yoon TK, Lee WS, Ko JJ, Lee K, Bae J. Maternal exposure to benzo[b]fluoranthene disturbs reproductive performance in male offspring mice. Toxicol Lett 2011; 203:54-61. [DOI: 10.1016/j.toxlet.2011.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/26/2011] [Accepted: 03/02/2011] [Indexed: 11/27/2022]
|
233
|
Abstract
Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.
Collapse
Affiliation(s)
- Jessica Plati
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
234
|
Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:521-31. [PMID: 21195116 DOI: 10.1016/j.bbamcr.2010.12.019] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/17/2010] [Accepted: 12/19/2010] [Indexed: 12/26/2022]
Abstract
Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells where they adopt a globular α-helical structure, seemingly as monomers. Following a variety of stress signals, they convert into pore-forming proteins by changing conformation and assembling into oligomeric complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in membrane-bound complexes, and how the complexes porate the membrane, is far from being understood. However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an interface between the α6-helices to form high order oligomers. Here, we review how Bax and Bak change conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
|
235
|
Landeta O, Landajuela A, Gil D, Taneva S, DiPrimo C, Sot B, Valle M, Frolov VA, Basañez G. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. J Biol Chem 2011; 286:8213-8230. [PMID: 21196599 PMCID: PMC3048708 DOI: 10.1074/jbc.m110.165852] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/18/2010] [Indexed: 12/11/2022] Open
Abstract
BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.
Collapse
Affiliation(s)
- Olatz Landeta
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Ane Landajuela
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - David Gil
- CIC-BIOGUNE Structural Biology Unit, Parque Tecnologico Zamudio, Bizkaia, 48160 Derio, Spain
| | - Stefka Taneva
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Carmelo DiPrimo
- Université de Bordeaux, INSERM U869, Institut Européen de Chimie et de Biologie, Pessac F-33607, France, and
| | - Begoña Sot
- the MRC Centre for Protein Engineering and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Mikel Valle
- CIC-BIOGUNE Structural Biology Unit, Parque Tecnologico Zamudio, Bizkaia, 48160 Derio, Spain
| | - Vadim A Frolov
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain,; the Departamento de Bioquímica y Biología Molecular, UPV/EHU, Leioa 48940, Spain,; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Gorka Basañez
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain,.
| |
Collapse
|
236
|
Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem 2011; 286:7123-31. [PMID: 21199865 PMCID: PMC3044969 DOI: 10.1074/jbc.m110.161281] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/15/2010] [Indexed: 11/06/2022] Open
Abstract
Pro-survival members of the Bcl-2 family of proteins restrain the pro-apoptotic activity of Bax, either directly through interactions with Bax or indirectly by sequestration of activator BH3-only proteins, or both. Mutations in Bax that promote apoptosis can provide insight into how Bax is regulated. Here, we describe crystal structures of the pro-survival proteins Mcl-1 and Bcl-x(L) in complex with a 34-mer peptide from Bax that encompasses its BH3 domain. These structures reveal canonical interactions between four signature hydrophobic amino acids from the BaxBH3 domain and the BH3-binding groove of the pro-survival proteins. In both structures, Met-74 from the Bax peptide engages with the BH3-binding groove in a fifth hydrophobic interaction. Various Bax Met-74 mutants disrupt interactions between Bax and all pro-survival proteins, but these Bax mutants retain pro-apoptotic activity. Bax/Bak-deficient mouse embryonic fibroblast cells reconstituted with several Bax Met-74 mutants are more sensitive to the BH3 mimetic compound ABT-737 as compared with cells expressing wild-type Bax. Furthermore, the cells expressing Bax Met-74 mutants are less viable in colony assays even in the absence of an external apoptotic stimulus. These results support a model in which direct restraint of Bax by pro-survival Bcl-2 proteins is a barrier to apoptosis.
Collapse
Affiliation(s)
- Peter E. Czabotar
- From the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and
| | - Erinna F. Lee
- From the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and
| | - Geoff V. Thompson
- From the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and
| | - Ahmad Z. Wardak
- From the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and
| | - W. Douglas Fairlie
- From the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter M. Colman
- From the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
237
|
Fox J, Azad A, Ismail F, Storey A. "Licensed to kill": tyrosine dephosphorylation and Bak activation. Cell Cycle 2011; 10:598-603. [PMID: 21293187 PMCID: PMC3174003 DOI: 10.4161/cc.10.4.14793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/04/2023] Open
Abstract
The genomes of multi-cellular organisms are under constant assault from a host of environmental agents. The efficient elimination of cells harbouring damage is essential to avoid the accumulation of deleterious changes that may promote tumorigenesis. Consequently, a complex and elaborate series of damage responses have evolved to either ensure that correct repair of the DNA has been carried out, or alternatively, to initiate programmes that result in the ablation of the damaged cell. Apoptosis is recognized as both a fast an efficient way of disposing of damaged or unwanted cells before they accumulate changes that may result in the acquisition of neoplastic autonomy. The mitochondrial apoptotic pathway relies upon two effector proteins of the Bcl2 family, Bax and Bak, that when activated form pores in the outer mitochondrial membrane that release cytochrome c and other apoptogenic factors. We have recently shown that the initiation of Bak activation is controlled by dephosphorylation. In particular, we found that a specific tyrosine dephosphorylation was required for Bak activation to proceed, and that tyrosine phosphatases may serve to integrate apoptotic signals that culminate in Bak dephosphorylation. Here, we discuss these findings and present additional data underlining the importance of dephosphorylation in the Bak activation process, and how the modulation of Bak phosphorylation status may be modified to enhance cell killing.
Collapse
Affiliation(s)
- Joanna Fox
- Department of Molecular Oncology; Weatherall Institute of Molecular Medicine; University of Oxford; John Radcliffe Hospital; Oxford, UK
| | - Abul Azad
- Department of Molecular Oncology; Weatherall Institute of Molecular Medicine; University of Oxford; John Radcliffe Hospital; Oxford, UK
| | - Ferina Ismail
- Cutaneous Research; Blizard Institute of Cell and Molecular Science; Queen Mary, University of London; London, UK
| | - Alan Storey
- Department of Molecular Oncology; Weatherall Institute of Molecular Medicine; University of Oxford; John Radcliffe Hospital; Oxford, UK
| |
Collapse
|
238
|
Llambi F, Green DR. Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 2011; 21:12-20. [PMID: 21236661 PMCID: PMC3040981 DOI: 10.1016/j.gde.2010.12.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/23/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023]
Abstract
The mitochondrial pathway of apoptosis constitutes one of the main safeguards against tumorigenesis. The BCL-2 family includes the central players of this pathway that regulate cell fate through the control of mitochondrial outer membrane permeabilization (MOMP), and important progress has been made in understanding the dynamic interactions between pro-apoptotic and anti-apoptotic BCL-2 proteins. In particular, recent studies have delineated a stepwise model for the induction of MOMP. BCL-2 proteins are often dysregulated in cancer, leading to increased survival of abnormal cells; however, recent studies have paradoxically shown that apoptosis induction can under some circumstances drive tumor formation, perhaps by inducing compensatory proliferation under conditions of cellular stress. These observations underline the complexity of BCL-2 protein function in oncogenesis.
Collapse
Affiliation(s)
- Fabien Llambi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 39105, USA
| | | |
Collapse
|
239
|
Abstract
It is becoming increasingly clear that most mammalian cells are capable of undergoing apoptosis and that, within particular lineages, specific apoptotic pathways have evolved to regulate survival and turnover. The role of apoptosis in the megakaryocyte lineage is an intriguing one. Various insults, such as chemotherapeutics, autoantibodies, and human immunodeficiency virus (HIV), have been suggested to induce the apoptotic death of megakaryocytes and/or their progenitors. Conversely, apoptotic processes have been implicated in megakaryocyte development and platelet production. Platelets also contain functional apoptotic pathways, which circumscribe their survival. It has even been suggested that platelet activation responses involve components of the apoptotic machinery, highlighting a potential role for apoptotic processes in hemostasis and thrombosis. This review discusses the current state of knowledge about how apoptosis and apoptotic proteins contribute to the generation and function of megakaryocytes and platelets.
Collapse
Affiliation(s)
- Michael J White
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
240
|
Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T. BH3 domains other than Bim and Bid can directly activate Bax/Bak. J Biol Chem 2011; 286:491-501. [PMID: 21041309 PMCID: PMC3013008 DOI: 10.1074/jbc.m110.167148] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/15/2010] [Indexed: 01/31/2023] Open
Abstract
Bcl-2 family proteins regulate a critical step in apoptosis referred to as mitochondrial outer membrane permeabilization (MOMP). Members of a subgroup of the Bcl-2 family, known as the BH3-only proteins, activate pro-apoptotic effectors (Bax and Bak) to initiate MOMP. They do so by neutralizing pro-survival Bcl-2 proteins and/or directly activating Bax/Bak. Bim and Bid are reported to be direct activators; however, here we show that BH3 peptides other than Bim and Bid exhibited various degrees of direct activation of the effector Bax or Bak, including Bmf and Noxa BH3s. In the absence of potent direct activators, such as Bim and Bid, we unmasked novel direct activator BH3 ligands capable of inducing effector-mediated cytochrome c release and liposome permeabilization, even when both Bcl-xL- and Mcl-1-type anti-apoptotic proteins were inhibited. The ability of these weaker direct activator BH3 peptides to cause MOMP correlated with that of the corresponding full-length proteins to induce apoptosis in the absence of Bim and Bid. We propose that, in certain contexts, direct activation by BH3-only proteins other than Bim and Bid may significantly contribute to MOMP and apoptosis.
Collapse
Affiliation(s)
- Han Du
- From the Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Jacob Wolf
- From the Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Blanca Schafer
- From the Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Tudor Moldoveanu
- the Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jerry E. Chipuk
- the Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Tomomi Kuwana
- From the Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| |
Collapse
|
241
|
Anvekar RA, Asciolla JJ, Missert DJ, Chipuk JE. Born to be alive: a role for the BCL-2 family in melanoma tumor cell survival, apoptosis, and treatment. Front Oncol 2011; 1. [PMID: 22268005 PMCID: PMC3260552 DOI: 10.3389/fonc.2011.00034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival.
Collapse
Affiliation(s)
- Rina A Anvekar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
242
|
Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: Orchestrators of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:508-20. [PMID: 21146563 DOI: 10.1016/j.bbamcr.2010.11.024] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
The BH3-only proteins of Bcl-2 family are essential initiators of apoptosis that propagate extrinsic and intrinsic cell death signals. The interaction of BH3-only proteins with other Bcl-2 family members is critical for understanding the core machinery that controls commitment to apoptosis by permeabilizing the mitochondrial outer membrane. BH3-only proteins promote apoptosis by both directly activating Bax and Bak and by suppressing the anti-apoptotic proteins at the mitochondria and the endoplasmic reticulum. To prevent constitutive cell death, BH3-only proteins are regulated by a variety of mechanisms including transcription and post-translational modifications that govern specific protein-protein interactions. Furthermore, BH3-only proteins also control the initiation of autophagy, another important pathway regulating cell survival and death. Emerging evidence indicates that the interaction of BH3-only proteins with membranes regulates binding to other Bcl-2 family members, thereby specifying function. Due to the important role of BH3-only proteins in the regulation of cell death, several promising BH3-mimetic drugs that are active in pre-clinical models are currently being tested as anti-cancer agents. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Aisha Shamas-Din
- Department of Biochemistry and Biomedical Sciences and McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
243
|
Bogner C, Leber B, Andrews DW. Apoptosis: embedded in membranes. Curr Opin Cell Biol 2010; 22:845-51. [DOI: 10.1016/j.ceb.2010.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 01/03/2023]
|
244
|
Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene 2010; 30:1653-63. [PMID: 21119601 DOI: 10.1038/onc.2010.541] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Some mutations in FOXL2 result in premature ovarian failure accompanied by blepharophimosis, ptosis, epicanthus inversus syndrome type I disease, and FOXL2-null mice exhibit developmental defects in granulosa cells. Recently, FOXL2 c.402C>G, a new somatic mutation that leads to a p.C134W change, was found in the majority of adult-type ovarian granulosa cell tumors (GCTs). In this study, we investigated the possible mechanisms by which the C134W mutation contributes to the development of GCTs. Wild-type (WT) and mutant FOXL2 displayed differential apoptotic activities. Specifically, WT FOXL2 induced significant granulosa cell death, but the mutant exhibited minimal cell death. The FOXL2-induced apoptotic response was greatly dependent on caspase 8, BID and BAK because the depletion of any of these three proteins inhibited FOXL2 from eliciting the full apoptotic response. Activation of caspase 8 and subsequent increased production of truncated BID, and oligomerization of BAK, and release of cytochrome c were all associated with the apoptosis induced by WT FOXL2 expression. In contrast, the mutant FOXL2 was unable to elicit the full array of apoptotic signaling responses. In addition, we found differential TNF-R1 (tumor necrosis factor-receptor 1) and Fas (CD95/APO-1) upregulation between the WT and the mutant, and the silencing of TNF-R1 or Fas and the blockage of the death signaling mediated by TNF-R1 or Fas using TNF-Fc or Fas-Fc, respectively, resulted in significant attenuations of FOXL2-induced apoptosis. Moreover, granulosa cells that expressed either WT FOXL2 or mutant exhibited distinct cell death sensitivities on activation of death receptors and deprivation of serum. Thus, the differential activities of FOXL2 and its mutant may partially account for the pathophysiology of GCT development.
Collapse
|
245
|
Fox JL, Ismail F, Azad A, Ternette N, Leverrier S, Edelmann MJ, Kessler BM, Leigh IM, Jackson S, Storey A. Tyrosine dephosphorylation is required for Bak activation in apoptosis. EMBO J 2010; 29:3853-68. [PMID: 20959805 PMCID: PMC2989102 DOI: 10.1038/emboj.2010.244] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 09/08/2010] [Indexed: 12/22/2022] Open
Abstract
Activation of the cell-death mediator Bak commits a cell to mitochondrial apoptosis. The initial steps that govern Bak activation are poorly understood. To further clarify these pivotal events, we have investigated whether post-translational modifications of Bak impinge on its activation potential. In this study, we report that on apoptotic stimulation Bak undergoes dephosphorylation at tyrosine residue 108 (Y108), a critical event that is necessary but not sufficient for Bak activation, but is required both for early exposure of the occluded N-terminal domain and multimerisation. RNA interference (RNAi) screening identified non-receptor tyrosine phosphatases (PTPNs) required for Bak dephosphorylation and apoptotic induction through chemotherapeutic agents. Specifically, modulation of PTPN5 protein expression by siRNA and overexpression directly affected both Bak-Y108 phosphorylation and the initiation of Bak activation. We further show that MEK/ERK signalling directly affects Bak phosphorylation through inhibition of PTPN5 to promote cell survival. We propose a model of Bak activation in which the regulation of Bak dephosphorylation constitutes the initial step in the activation process, which reveals a previously unsuspected mechanism controlling the initiation of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Joanna L Fox
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Abul Azad
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicola Ternette
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Mariola J Edelmann
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Henry Wellcome Building for Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Irene M Leigh
- College of Medicine Dentistry and Nursing, University of Dundee, Dundee, UK
| | - Sarah Jackson
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alan Storey
- Department of Molecular Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
246
|
Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell 2010; 40:481-92. [PMID: 21070973 PMCID: PMC3050027 DOI: 10.1016/j.molcel.2010.10.019] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/16/2010] [Accepted: 08/13/2010] [Indexed: 12/29/2022]
Abstract
BAX is a proapoptotic BCL-2 family member that lies dormant in the cytosol until converted into a killer protein in response to cellular stress. Having recently identified the elusive trigger site for direct BAX activation, we now delineate by NMR and biochemical methods the essential allosteric conformational changes that transform ligand-triggered BAX into a fully activated monomer capable of propagating its own activation. Upon BAX engagement by a triggering BH3 helix, the unstructured loop between α helices 1 and 2 is displaced, the carboxy-terminal helix 9 is mobilized for membrane translocation, and the exposed BAX BH3 domain propagates the death signal through an autoactivating interaction with the trigger site of inactive BAX monomers. Our structure-activity analysis of this seminal apoptotic process reveals pharmacologic opportunities to modulate cell death by interceding at key steps of the BAX activation pathway.
Collapse
Affiliation(s)
- Evripidis Gavathiotis
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, the Division of Hematology/Oncology, Children's Hospital Boston, and the Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Denis E. Reyna
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, the Division of Hematology/Oncology, Children's Hospital Boston, and the Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Marguerite L. Davis
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, the Division of Hematology/Oncology, Children's Hospital Boston, and the Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory H. Bird
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, the Division of Hematology/Oncology, Children's Hospital Boston, and the Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Loren D. Walensky
- Departments of Pediatric Oncology and the Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, the Division of Hematology/Oncology, Children's Hospital Boston, and the Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
247
|
Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 2010; 10:640-8. [DOI: 10.1016/j.mito.2010.08.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
|
248
|
Liu Q, Gehring K. Heterodimerization of BAK and MCL-1 activated by detergent micelles. J Biol Chem 2010; 285:41202-10. [PMID: 21036904 DOI: 10.1074/jbc.m110.144857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BAK is a key protein mediating mitochondrial outer membrane permeabilization; however, its behavior in the membrane is poorly understood. Here, we characterize the conformational changes in BAK and MCL-1 using detergents to mimic the membrane environment and study their interaction by in vitro pulldown experiments, size exclusion chromatography, titration calorimetry, and NMR spectroscopy. The nonionic detergent IGEPAL has little impact on the structure of MCL-1 but induces a conformational change in BAK, whereby its BH3 region is able to engage the hydrophobic groove of MCL-1. Although the zwitterionic detergent CHAPS induces only minor conformational changes in both proteins, it is still able to initiate heterodimerization. The complex of MCL-1 and BAK can be disrupted by a BID-BH3 peptide, which acts through binding to MCL-1, but a mutant peptide, BAK-BH3-L78A, with low affinity for MCL-1 failed to dissociate the complex. The mutation L78A in BAK prevented binding to MCL-1, thus demonstrating the essential role of the BH3 region of BAK in its regulation by MCL-1. Our results validate the current models for the activation of BAK and highlight the potential value of small molecule inhibitors that target MCL-1 directly.
Collapse
Affiliation(s)
- Qian Liu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | |
Collapse
|
249
|
Leber B, Lin J, Andrews DW. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 2010; 29:5221-30. [PMID: 20639903 PMCID: PMC6459407 DOI: 10.1038/onc.2010.283] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/27/2010] [Accepted: 06/04/2010] [Indexed: 12/19/2022]
Abstract
The dysregulation of apoptosis is a key step in developing tumours, and mediates resistance to cancer therapy. Many different signals for cell death converge on permeabilization of the outer mitochondrial membrane, which is controlled by the Bcl-2 family of proteins. The importance of this step is becoming increasingly relevant as the first generation of small molecules that inhibit the interaction of Bcl-2 family proteins enters clinical trials as anticancer agents. The Bcl-2 family can be divided into three classes: BH3-only proteins that are activated by various forms of cellular stress, Bax and Bak proteins that mediate mitochondrial membrane permeabilization, and inhibitory proteins such as Bcl-2 and Bcl-XL. The recently proposed embedded together model emphasizes the fact that many of the regulatory interactions between different classes of Bcl-2 family members occur at intracellular membranes, and binding to membranes causes conformational changes in the proteins that dictate functions in a dynamic manner. Within this context, recent results indicate that Bcl-XL functions as a dominant-negative Bax, a concept that resolves the paradox of similar structures but opposite functions of Bcl-XL and Bax. We have also shown that the conformational change that allows Bax to insert into the outer mitochondrial membrane is the rate-limiting step in the multistep process of Bax activation. Nevertheless, investigating the structure of activated Bax or Bak as monomers and as components of the oligomeric structures that mediate membrane permeabilization is the focus of ongoing research (and controversy) at many laboratories worldwide.
Collapse
Affiliation(s)
- B Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - J Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - DW Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
250
|
Lazarou M, Stojanovski D, Frazier AE, Kotevski A, Dewson G, Craigen WJ, Kluck RM, Vaux DL, Ryan MT. Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J Biol Chem 2010; 285:36876-83. [PMID: 20851889 DOI: 10.1074/jbc.m110.159301] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bax and Bak are pro-apoptotic factors that are required for cell death by the mitochondrial or intrinsic pathway. Bax is found in an inactive state in the cytosol and upon activation is targeted to the mitochondrial outer membrane where it releases cytochrome c and other factors that cause caspase activation. Although Bak functions in the same way as Bax, it is constitutively localized to the mitochondrial outer membrane. In the membrane, Bak activation is inhibited by the voltage-dependent anion channel isoform 2 (VDAC2) by an unknown mechanism. Using blue native gel electrophoresis, we show that in healthy cells endogenous inactive Bak exists in a 400-kDa complex that is dependent on the presence of VDAC2. Activation of Bak is concomitant with its release from the 400-kDa complex and the formation of lower molecular weight species. Furthermore, substitution of the Bak transmembrane anchor with that of the mitochondrial outer membrane tail-anchored protein hFis1 prevents association of Bak with the VDAC2 complex and increases the sensitivity of cells to an apoptotic stimulus. Our results suggest that VDAC2 interacts with the hydrophobic tail of Bak to sequester it in an inactive state in the mitochondrial outer membrane, thereby raising the stimulation threshold necessary for permeabilization of the mitochondrial outer membrane and cell death.
Collapse
Affiliation(s)
- Michael Lazarou
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|