201
|
Yu JSL, Ramasamy TS, Murphy N, Holt MK, Czapiewski R, Wei SK, Cui W. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun 2015; 6:7212. [PMID: 25998442 PMCID: PMC4455068 DOI: 10.1038/ncomms8212] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/20/2015] [Indexed: 11/27/2022] Open
Abstract
Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator. Although crosstalk between the phosphatidylinositol 3-kinase (PI3K) and transforming growth factor-β pathways is important, the mechanism is obscure. Here, Yu et al. show that activation of mTORC2 downstream of PI3K leads to the linker phosphorylation of Smad2/3 and their ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Jason S L Yu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Thamil Selvee Ramasamy
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Nick Murphy
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Marie K Holt
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rafal Czapiewski
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Shi-Khai Wei
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
202
|
Li L, Cao F, Liu B, Luo X, Ma X, Hu Z. TGF-β induces fascin expression in gastric cancer via phosphorylation of smad3 linker area. Am J Cancer Res 2015; 5:1890-1896. [PMID: 26269751 PMCID: PMC4529611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Fascin is an actin-bundling protein critical for tumor invasion. TGF-β could induce fascin expression in gastric cancer cells. In this study, we attempted to explore the role of p-smad3L in the expression of fascin induced by TGF-β in gastric cancer cells. METHODS Pseudopodia were evaluated by immunofluorescence. Fascin expression was detected by RT-PCR and western blot. Smad3 siRNA was used to repress the endogenous smad3. The phosphorylations of smad3 linker region at sites s204, s208 and s213 were detected by western blot. The fascin promoter reporter activity was measured by dual luciferase assay. RESULTS TGF-β could increase the formation of pseudopodia and the expression of fascin in gastric cancer cells. Smad3 depletion abrogated the expression of fascin induced by TGF-β. The phosphorylation of smad3 linker region at serine 204, 208 and 213 was enhanced in gastric cancer cells after TGF-β treatment. The fascin promoter reporter activity was significantly enhanced with TGF-β treatment in both wild-type Smad3 group and Smad3EPSM group (P<0.05). Furthermore, the fascin promoter reporter activity in the wild-type Smad3 transfectant cells was significantly higher than that in Smad3EPSM cells (P<0.05). CONCLUSIONS fascin expression induced by TGF-β depends on smad3, at least in part, depends on smad3 linker phosphorylation.
Collapse
Affiliation(s)
- Liling Li
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Pathology, Xiangya Medical School, Central South UniversityChangsha, China
| | - Fang Cao
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Pathology, Xiangya Medical School, Central South UniversityChangsha, China
| | - Baoan Liu
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Pathology, Xiangya Medical School, Central South UniversityChangsha, China
| | - Xiaojuan Luo
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Pathology, Xiangya Medical School, Central South UniversityChangsha, China
| | - Xin Ma
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Pathology, Xiangya Medical School, Central South UniversityChangsha, China
| | - Zhongliang Hu
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, China
- Department of Pathology, Xiangya Medical School, Central South UniversityChangsha, China
| |
Collapse
|
203
|
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. ACTA ACUST UNITED AC 2015; 102:37-51. [PMID: 24677722 DOI: 10.1002/bdrc.21058] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | | | | |
Collapse
|
204
|
Li Y, Song D, Song Y, Zhao L, Wolkow N, Tobias JW, Song W, Dunaief JL. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium. J Biol Chem 2015; 290:11918-34. [PMID: 25802332 PMCID: PMC4424331 DOI: 10.1074/jbc.m115.645903] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/20/2015] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation.
Collapse
Affiliation(s)
- Yafeng Li
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Delu Song
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Ying Song
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Liangliang Zhao
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Natalie Wolkow
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | | | - Wenchao Song
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joshua L Dunaief
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute,
| |
Collapse
|
205
|
Macias MJ, Martin-Malpartida P, Massagué J. Structural determinants of Smad function in TGF-β signaling. Trends Biochem Sci 2015; 40:296-308. [PMID: 25935112 DOI: 10.1016/j.tibs.2015.03.012] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 02/08/2023]
Abstract
Smad transcription factors are central to the signal transduction pathway that mediates the numerous effects of the transforming growth factor β (TGF-β) superfamily of cytokines in metazoan embryo development as well as in adult tissue regeneration and homeostasis. Although Smad proteins are conserved, recent genome-sequencing projects have revealed their sequence variation in metazoan evolution, human polymorphisms, and cancer. Structural studies of Smads bound to partner proteins and target DNA provide a framework for understanding the significance of these evolutionary and pathologic sequence variations. We synthesize the extant mutational and structural data to suggest how genetic variation in Smads may affect the structure, regulation, and function of these proteins. We also present a web application that compares Smad sequences and displays Smad protein structures and their disease-associated variants.
Collapse
Affiliation(s)
- Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
206
|
Kuo RL, Lin YH, Wang RYL, Hsu CW, Chiu YT, Huang HI, Kao LT, Yu JS, Shih SR, Wu CC. Proteomics analysis of EV71-infected cells reveals the involvement of host protein NEDD4L in EV71 replication. J Proteome Res 2015; 14:1818-30. [PMID: 25785312 DOI: 10.1021/pr501199h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enterovirus 71 (EV71) is a human enterovirus that has seriously affected the Asia-Pacific area for the past two decades. EV71 infection can result in mild hand-foot-and-mouth disease and herpangina and may occasionally lead to severe neurological complications in children. However, the specific biological processes that become altered during EV71 infection remain unclear. To further explore host responses upon EV71 infection, we identified proteins differentially expressed in EV71-infected human glioblastoma SF268 cells using isobaric mass tag (iTRAQ) labeling coupled with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). Network analysis of proteins altered in cells infected with EV71 revealed that the changed biological processes are related to protein and ion transport, regulation of protein degradation, and homeostatic processes. We confirmed that the levels of NEDD4L and PSMF1 were increased and reduced, respectively, in EV71-infected cells compared to mock-infected control cells. To determine the physiological relevance of our findings, we investigated the consequences of EV71 infection in cells with NEDD4L or PSMF1 depletion. We found that the depletion of NEDD4L significantly reduced the replication of EV71, whereas PSMF1 knockdown enhanced EV71 replication. Collectively, our findings provide the first evidence of proteome-wide dysregulation by EV71 infection and suggest a novel role for the host protein NEDD4L in the replication of this virus.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,‡Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Ya-Han Lin
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,‡Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Robert Yung-Liang Wang
- ‡Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,§Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chia-Wei Hsu
- ∥Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Yi-Ting Chiu
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Hsing-I Huang
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,‡Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Li-Ting Kao
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,‡Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Jau-Song Yu
- ∥Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Shin-Ru Shih
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,‡Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,⊥Clinical Virology Laboratory, Linkou Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Chih-Ching Wu
- †Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,∥Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| |
Collapse
|
207
|
Liu J, Wan L, Liu P, Inuzuka H, Liu J, Wang Z, Wei W. SCF(β-TRCP)-mediated degradation of NEDD4 inhibits tumorigenesis through modulating the PTEN/Akt signaling pathway. Oncotarget 2015; 5:1026-37. [PMID: 24657926 PMCID: PMC4011580 DOI: 10.18632/oncotarget.1675] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HECT domain-containing ubiquitin E3 ligase NEDD4 is widely expressed in mammalian tissues and plays a crucial role in governing a wide spectrum of cellular processes including cell growth, tissue development and homeostasis. Recent reports have indicated that NEDD4 might facilitate tumorigenesis through targeted degradation of multiple tumor suppressor proteins including PTEN. However, the molecular mechanism by which NEDD4 stability is regulated has not been fully elucidated. Here we report that SCF(β-TRCP) governs NEDD4 protein stability by targeting it for ubiquitination and subsequent degradation in a Casein Kinase-I (CKI) phosphorylation-dependent manner. Specifically, depletion of β-TRCP, or inactivation of CKI, stabilized NEDD4, leading to down-regulation of its ubiquitin target PTEN and subsequent activation of the mTOR/Akt oncogenic pathway. Furthermore, we found that CKIδ-mediated phosphorylation of Ser347 and Ser348 on NEDD4 promoted its interaction with SCF(β-TRCP) for subsequent ubiquitination and degradation. As a result, compared to ectopic expression of wild-type NEDD4, introducing a non-degradable NEDD4 (S347A/S348A-NEDD4) promoted cancer cell growth and migration. Hence, our findings revealed the CKI/SCF(β-TRCP) signaling axis as the upstream negative regulator of NEDD4, and further suggested that enhancing NEDD4 degradation, presumably with CKI or SCF(β-TRCP) agonists, could be a promising strategy for treating human cancers.
Collapse
Affiliation(s)
- Jia Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
208
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 657] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
209
|
Kiparaki M, Zarifi I, Delidakis C. bHLH proteins involved in Drosophila neurogenesis are mutually regulated at the level of stability. Nucleic Acids Res 2015; 43:2543-59. [PMID: 25694512 PMCID: PMC4357701 DOI: 10.1093/nar/gkv083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Ioanna Zarifi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
210
|
Yoon WJ, Islam R, Cho YD, Ryu KM, Shin HR, Woo KM, Baek JH, Ryoo HM. Pin1 plays a critical role as a molecular switch in canonical BMP signaling. J Cell Physiol 2015; 230:640-7. [PMID: 25187260 DOI: 10.1002/jcp.24787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/29/2014] [Indexed: 12/30/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase that specifically binds to the phosphoserine-proline or phosphothreonine-proline motifs of numerous proteins. Previously, we reported that Pin1 deficiency resulted in defects in osteoblast differentiation during early bone development. In this study, we found that adult Pin1-deficient mice developed osteoporotic phenotypes compared to age-matched controls. Since BMP2 stored in the bone matrix plays a critical role in adult bone maintenance, we suspected that BMP R-Smads (Smad1 and Smad5) could be critical targets for Pin1 action. Pin1 specifically binds to the phosphorylated linker region of Smad1, which leads to structural modification and stabilization of the Smad1 protein. In this process, Pin1-mediated conformational modification of Smad1 directly suppresses the Smurf1 interaction with Smad1, thereby promoting sustained activation of the Smad1 molecule. Our data demonstrate that post-phosphorylational prolyl isomerization of Smad1 is a converging signal to stabilize the Smad1 molecule against the ubiquitination process mediated by Smurf1. Therefore, Pin1 is a critical molecular switch in the determination of Smad1 fate, opposing the death signal transmitted to the Smad1 linker region by phosphorylation cascades after its nuclear localization and transcriptional activation. Thus, Pin1 could be developed as a major therapeutic target in many skeletal diseases.
Collapse
Affiliation(s)
- Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Hayata T, Ezura Y, Asashima M, Nishinakamura R, Noda M, Noda M. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-β signaling. J Bone Miner Res 2015; 30:318-29. [PMID: 25155999 DOI: 10.1002/jbmr.2343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 08/10/2014] [Accepted: 08/17/2014] [Indexed: 01/04/2023]
Abstract
Transforming growth factor (TGF)-β signaling plays critical roles during skeletal development and its excessive signaling causes genetic diseases of connective tissues including Marfan syndrome and acromelic dysplasia. However, the mechanisms underlying prevention of excessive TGF-β signaling in skeletogenesis remain unclear. We previously reported that Dullard/Ctdnep1 encoding a small phosphatase is required for nephron maintenance after birth through suppression of bone morphogenetic protein (BMP) signaling. Unexpectedly, we found that Dullard is involved in suppression of TGF-β signaling during endochondral ossification. Conditional Dullard-deficient mice in the limb and sternum mesenchyme by Prx1-Cre displayed the impaired growth and ossification of skeletal elements leading to postnatal lethality. Dullard was expressed in early cartilage condensations and later in growth plate chondrocytes. The tibia growth plate of newborn Dullard mutant mice showed reduction of the proliferative and hypertrophic chondrocyte layers. The sternum showed deformity of cartilage primordia and delayed hypertrophy. Micromass culture experiments revealed that Dullard deficiency enhanced early cartilage condensation and differentiation, but suppressed mineralized hypertrophic chondrocyte differentiation, which was reversed by treatment with TGF-β type I receptor kinase blocker LY-364947. Dullard deficiency induced upregulation of protein levels of both phospho-Smad2/3 and total Smad2/3 in micromass cultures without increase of Smad2/3 mRNA levels, suggesting that Dullard may affect Smad2/3 protein stability. The phospho-Smad2/3 level was also upregulated in perichondrium and hypertrophic chondrocytes in Dullard-deficient embryos. Response to TGF-β signaling was enhanced in Dullard-deficient primary chondrocyte cultures at late, but not early, time point. Moreover, perinatal administration of LY-364947 ameliorated the sternum deformity in vivo. Thus, we identified Dullard as a new negative regulator of TGF-β signaling in endochondral ossification.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
212
|
Park HG, Yeo MK. Metabolic gene expression profiling of Zebrafish embryos exposed to silver nanocolloids and nanotubes. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0045-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
213
|
Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene 2014; 557:1-10. [PMID: 25433090 DOI: 10.1016/j.gene.2014.11.051] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
NEDD4-2 (also known as NEDD4L, neural precursor cell expressed developmentally down-regulated 4-like) is a ubiquitin protein ligase of the Nedd4 family which is known to bind and regulate a number of membrane proteins to aid in their internalization and turnover. Several of the NEDD4-2 substrates include ion channels, such as the epithelial and voltage-gated sodium channels. Given the critical function of NEDD4-2 in regulating membrane proteins, this ligase is essential for the maintenance of cellular homeostasis. In this article we review the biology and function of this important ubiquitin-protein ligase and discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Pranay Goel
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
214
|
Demasi M, Simões V, Bonatto D. Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1594-606. [PMID: 25450485 DOI: 10.1016/j.bbagen.2014.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Embryogenesis and stem cell differentiation are complex and orchestrated signaling processes. Reactive oxygen species (ROS) act as essential signal transducers in cellular differentiation, as has been shown through recent discoveries. On the other hand, the ubiquitin-proteasome system (UPS) has long been known to play an important role in all cellular regulated processes, including differentiation. SCOPE OF REVIEW In the present review, we focus on findings that highlight the interplay between redox signaling and the UPS regarding cell differentiation. Through systems biology analyses, we highlight major routes during cardiomyocyte differentiation based on redox signaling and UPS modulation. MAJOR CONCLUSION Oxygen availability and redox signaling are fundamental regulators of cell fate upon differentiation. The UPS plays an important role in the maintenance of pluripotency and the triggering of differentiation. GENERAL SIGNIFICANCE Cellular differentiation has been a matter of intense investigation mainly because of its potential therapeutic applications. Understanding regulatory mechanisms underlying cell differentiation is an important issue. Correspondingly, the role of UPS and regulation of redox processes have been emerged as essential factors to control the fate of cells upon differentiation. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil.
| | - Vanessa Simões
- Department of Genetics and Evolutive Biology, IB, Universidade de São Paulo, São Paulo, Brazil
| | - Diego Bonatto
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Porto Alegre, RS, Brazil.
| |
Collapse
|
215
|
Demagny H, Araki T, De Robertis EM. The tumor suppressor Smad4/DPC4 is regulated by phosphorylations that integrate FGF, Wnt, and TGF-β signaling. Cell Rep 2014; 9:688-700. [PMID: 25373906 DOI: 10.1016/j.celrep.2014.09.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/11/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022] Open
Abstract
Smad4 is a major tumor suppressor currently thought to function constitutively in the transforming growth factor β (TGF-β)-signaling pathway. Here, we report that Smad4 activity is directly regulated by the Wnt and fibroblast growth factor (FGF) pathways through GSK3 and mitogen-activated protein kinase (MAPK) phosphorylation sites. FGF activates MAPK, which primes three sequential GSK3 phosphorylations that generate a Wnt-regulated phosphodegron bound by the ubiquitin E3 ligase β-TrCP. In the presence of FGF, Wnt potentiates TGF-β signaling by preventing Smad4 GSK3 phosphorylations that inhibit a transcriptional activation domain located in the linker region. When MAPK is not activated, the Wnt and TGF-β signaling pathways remain insulated from each other. In Xenopus embryos, these Smad4 phosphorylations regulate germ-layer specification and Spemann organizer formation. The results show that three major signaling pathways critical in development and cancer are integrated at the level of Smad4.
Collapse
Affiliation(s)
- Hadrien Demagny
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Tatsuya Araki
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Edward M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
216
|
Zhao B, Chen YG. Regulation of TGF-β Signal Transduction. SCIENTIFICA 2014; 2014:874065. [PMID: 25332839 PMCID: PMC4190275 DOI: 10.1155/2014/874065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/02/2014] [Indexed: 05/30/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Bing Zhao
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
217
|
Bae E, Sato M, Kim RJ, Kwak MK, Naka K, Gim J, Kadota M, Tang B, Flanders KC, Kim TA, Leem SH, Park T, Liu F, Wakefield LM, Kim SJ, Ooshima A. Definition of smad3 phosphorylation events that affect malignant and metastatic behaviors in breast cancer cells. Cancer Res 2014; 74:6139-49. [PMID: 25205100 DOI: 10.1158/0008-5472.can-14-0803] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Smad3, a major intracellular mediator of TGFβ signaling, functions as both a positive and negative regulator in carcinogenesis. In response to TGFβ, the TGFβ receptor phosphorylates serine residues at the Smad3 C-tail. Cancer cells often contain high levels of the MAPK and CDK activities, which can lead to the Smad3 linker region becoming highly phosphorylated. Here, we report, for the first time, that mutation of the Smad3 linker phosphorylation sites markedly inhibited primary tumor growth, but significantly increased lung metastasis of breast cancer cell lines. In contrast, mutation of the Smad3 C-tail phosphorylation sites had the opposite effect. We show that mutation of the Smad3 linker phosphorylation sites greatly intensifies all TGFβ-induced responses, including growth arrest, apoptosis, reduction in the size of putative cancer stem cell population, epithelial-mesenchymal transition, and invasive activity. Moreover, all TGFβ responses were completely lost on mutation of the Smad3 C-tail phosphorylation sites. Our results demonstrate a critical role of the counterbalance between the Smad3 C-tail and linker phosphorylation in tumorigenesis and metastasis. Our findings have important implications for therapeutic intervention of breast cancer.
Collapse
Affiliation(s)
- Eunjin Bae
- CHA Cancer Research Institute, CHA University, Seoul, Korea
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Ran-Ju Kim
- CHA Cancer Research Institute, CHA University, Seoul, Korea
| | - Mi-Kyung Kwak
- CHA Cancer Research Institute, CHA University, Seoul, Korea
| | - Kazuhito Naka
- Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Jungsoo Gim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Mitsutaka Kadota
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Kathleen C Flanders
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tae-Aug Kim
- CHA Cancer Research Institute, CHA University, Seoul, Korea
| | - Sun-Hee Leem
- Department of Biology and Biomedical Science, Dong-A University, Busan, Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea. Department of Statistics, Seoul National University, Seoul, Korea
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Seong-Jin Kim
- CHA Cancer Research Institute, CHA University, Seoul, Korea.
| | - Akira Ooshima
- CHA Cancer Research Institute, CHA University, Seoul, Korea. Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
218
|
Hayashi A, Hirokawa YS, Kagaya M, Fujiwara M, Yoneda M, Kanayama K, Uchida K, Ishii K, Shiraishi T. Inflammatory suppressive effect of prostate cancer cells with prolonged exposure to transforming growth factor β on macrophage-differentiated cells via downregulation of prostaglandin E 2.. Oncol Lett 2014; 8:1513-1518. [PMID: 25202359 PMCID: PMC4156195 DOI: 10.3892/ol.2014.2402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 07/01/2014] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor β1 (TGFβ1) regulates a variety of cellular functions, including cell growth, apoptosis and differentiation. The aim of the current study was to investigate the alterations of phenotypic events in the long-term exposure of prostate cancer (PCa) cells to TGFβ1 and its effect on macrophage-differentiated cells. The PCa cell line, PC-3, and the subclone, M1, were exposed to TGFβ1 for short- or long-term periods. TGFβ1 signaling was assessed by Smad3 phosphorylation, and non-canonical signaling was analyzed by quantitative polymerase chain reaction-based regulatory gene expression profiles. TGFβ1-exposed PCa cells were also co-cultured with phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages as a model of the tumor microenvironment. The phosphorylation of Smad3 in the PCa cells with long-term exposure was lower than that in the PCa cells with short-term exposure. Interleukin-6 mRNA expression in the PMA-treated THP-1 macrophages was significantly downregulated by co-culture with the PCa cells with long-term exposure. Cyclooxygenase-2 expression in the long-term TGFβ1-exposed PCa cells was lower than that in the control PCa cells, and the production of prostaglandin E2 (PGE2) in the long-term TGFβ1-exposed PCa cells was also significantly lower. The results of the current study demonstrated that the long-term TGFβ1 exposure of PCa cells induces phenotypic changes, including the downregulation of PGE2 production. This indicates that prolonged TGFβ-exposed PCa cells may change the cytokine production of macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Akinobu Hayashi
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshifumi S Hirokawa
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Michiko Kagaya
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaya Fujiwara
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 510-0226, Japan
| | - Kazuki Kanayama
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Kenichiro Ishii
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Taizo Shiraishi
- Department of Oncologic Pathology, Institute of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
219
|
Gaarenstroom T, Hill CS. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol 2014; 32:107-18. [PMID: 24503509 DOI: 10.1016/j.semcdb.2014.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
Ligands of the TGF-β superfamily (including the TGF-βs, Nodal and BMPs) play instructive roles during embryonic development. This is achieved by regulation of genes important for both maintaining pluripotency and germ layer specification and differentiation. Here we review how the TGF-β superfamily ligands signal to the chromatin to regulate transcription during development. The effectors of the pathway, the Smad transcription factors, are regulated in a combinatorial and spatiotemporal manner. This occurs via post-translational modifications affecting stability, localization and activity, as well as through interactions with other transcription factors and chromatin modifying enzymes, which occur on DNA. Expression profiling and Chromatin Immunoprecipitation have defined Smad target genes and binding sites on a genome-wide scale, which vary between cell types and differentiation stages. This has led to the insight that Smad-mediated transcriptional responses are influenced by the presence of master transcription factors, such as OCT4, SOX2 and NANOG in embryonic stem cells, interaction with other signal-induced factors, as well as by the general chromatin remodeling machinery. Interplay with transcriptional repressors and the polycomb group proteins also regulates the balance between expression of self-renewal and mesendoderm-specific genes in embryonic stem cells and during early development.
Collapse
Affiliation(s)
- Tessa Gaarenstroom
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|
220
|
Kumar P. Role of Oxidative Stress, ER Stress and Ubiquitin Proteasome System in Neurodegeneration. ACTA ACUST UNITED AC 2014. [DOI: 10.15406/mojcsr.2014.01.00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
221
|
TGF-β signal shifting between tumor suppression and fibro-carcinogenesis in human chronic liver diseases. J Gastroenterol 2014; 49:971-81. [PMID: 24263677 DOI: 10.1007/s00535-013-0910-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
Perturbation of transforming growth factor (TGF)-β signaling in hepatocytes persistently infected with hepatitis viruses promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into hepatocytic fibro-carcinogenesis have emerged from recent detailed analyses of context-dependent and cell type-specific TGF-β signaling processes directed by multiple phosphorylated forms (phospho-isoforms) of Smad mediators. In the course of hepatitis virus-related chronic liver diseases, chronic inflammation, ongoing viral infection, and host genetic/epigenetic alterations additively shift hepatocytic Smad phospho-isoform signaling from tumor suppression to fibro-carcinogenesis, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma (HCC). After successful antiviral therapy, patients with chronic hepatitis can experience less risk of HCC occurrence by reversing Smad phospho-isoform signaling from fibro-carcinogenesis to tumor suppression. However, patients with cirrhosis can still develop HCC owing to sustained, intense fibro-carcinogenic signaling. Recent progress in understanding Smad phospho-isoform signaling should permit use of Smad phosphorylation as a tool predicting the likelihood of liver disease progression, and as a biomarker for assessing the effectiveness of interventions aimed at reducing fibrosis and cancer risk.
Collapse
|
222
|
Wisotzkey RG, Quijano JC, Stinchfield MJ, Newfeld SJ. New gene evolution in the bonus-TIF1-γ/TRIM33 family impacted the architecture of the vertebrate dorsal-ventral patterning network. Mol Biol Evol 2014; 31:2309-21. [PMID: 24881051 DOI: 10.1093/molbev/msu175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Uncovering how a new gene acquires its function and understanding how the function of a new gene influences existing genetic networks are important topics in evolutionary biology. Here, we demonstrate nonconservation for the embryonic functions of Drosophila Bonus and its newest vertebrate relative TIF1-γ/TRIM33. We showed previously that TIF1-γ/TRIM33 functions as an ubiquitin ligase for the Smad4 signal transducer and antagonizes the Bone Morphogenetic Protein (BMP) signaling network underlying vertebrate dorsal-ventral axis formation. Here, we show that Bonus functions as an agonist of the Decapentaplegic (Dpp) signaling network underlying dorsal-ventral axis formation in flies. The absence of conservation for the roles of Bonus and TIF1-γ/TRIM33 reveals a shift in the dorsal-ventral patterning networks of flies and mice, systems that were previously considered wholly conserved. The shift occurred when the new gene TIF1-γ/TRIM33 replaced the function of the ubiquitin ligase Nedd4L in the lineage leading to vertebrates. Evidence of this replacement is our demonstration that Nedd4 performs the function of TIF1-γ/TRIM33 in flies during dorsal-ventral axis formation. The replacement allowed vertebrate Nedd4L to acquire novel functions as a ubiquitin ligase of vertebrate-specific Smad proteins. Overall our data reveal that the architecture of the Dpp/BMP dorsal-ventral patterning network continued to evolve in the vertebrate lineage, after separation from flies, via the incorporation of new genes.
Collapse
Affiliation(s)
- Robert G Wisotzkey
- Department of Biological Sciences, California State University, East Bay
| | - Janine C Quijano
- Department of Biological Sciences, California State University, East BaySchool of Life Sciences, Arizona State University
| | | | | |
Collapse
|
223
|
Zhang Y, Ding Y, Chen YG, Tao Q. NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. Dev Biol 2014; 392:15-25. [PMID: 24833518 DOI: 10.1016/j.ydbio.2014.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
During the early vertebrate body plan formation, convergent extension (CE) of dorsal mesoderm and neurectoderm is coordinated by the evolutionarily conserved non-canonical Wnt/PCP signaling. Disheveled (Dvl), a key mediator of Wnt/PCP signaling, is essential for the medial-lateral polarity formation in the cells undergoing convergent extension movements. NEDD4L, a highly conserved HECT type E3 ligase, has been reported to regulate the stability of multiple substrates including Dvl2. Here we demonstrate that NEDD4L is required for the cellular polarity formation and convergent extension in the early Xenopus embryos. Depletion of NEDD4L in early Xenopus embryos results in the loss of mediolateral polarity of the convergent-extending mesoderm cells and the shortened body axis, resembling those defects caused by the disruption of non-canonical Wnt signaling. Depletion of xNEDD4L also blocks the elongation of the animal explants in response to endogenous mesoderm inducing signals and partially compromises the expression of Brachyury. Importantly, reducing Dvl2 expression can largely rescue the cellular polarity and convergent extension defects in NEDD4L-depleted embryos and explants. Together with the data that NEDD4L reduces Dvl2 protein expression in the frog embryos, our findings suggest that regulation of Dvl protein levels by NEDD4L is essential for convergent extension during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Yan Zhang
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Ding
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Qinghua Tao
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
224
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
225
|
Ndoja A, Cohen RE, Yao T. Ubiquitin signals proteolysis-independent stripping of transcription factors. Mol Cell 2014; 53:893-903. [PMID: 24613342 DOI: 10.1016/j.molcel.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/23/2013] [Accepted: 01/23/2014] [Indexed: 01/10/2023]
Abstract
Ubiquitination of transcription activators has been reported to regulate transcription via both proteolytic and nonproteolytic routes, yet the function of the ubiquitin (Ub) signal in the nonproteolytic process is poorly understood. By use of the heterologous transcription activator LexA-VP16 in Saccharomyces cerevisiae, we show that monoubiquitin fusion of the activator prevents stable interactions between the activator and DNA, leading to transcription inhibition without activator degradation. We identify the AAA(+) ATPase Cdc48 and its cofactors as the Ub receptor responsible for extracting the monoubiquitinated activator from DNA. Our results suggest that deubiquitination of the activator is critical for transcription activation. These findings with LexA-VP16 extend in both yeast and mammalian cells to native transcription activators Met4 and R-Smads, respectively, that are known to be oligo-ubiquitinated. The results illustrate a role for Ub and Cdc48 in transcriptional regulation and gene expression that is independent of proteolysis.
Collapse
Affiliation(s)
- Ada Ndoja
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
226
|
Cao S, Xiao L, Rao JN, Zou T, Liu L, Zhang D, Turner DJ, Gorospe M, Wang JY. Inhibition of Smurf2 translation by miR-322/503 modulates TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell 2014; 25:1234-43. [PMID: 24554769 PMCID: PMC3982989 DOI: 10.1091/mbc.e13-09-0560] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Smurf2 is an E3 ubiquitin ligase that regulates TGF-β/Smad signaling and is implicated in a wide variety of cellular responses. miR-322 and miR-503 repress Smurf2 translation and thus modulate TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that regulates transforming growth factor β (TGF-β)/Smad signaling and is implicated in a wide variety of cellular responses, but the exact mechanisms that control Smurf2 abundance are largely unknown. Here we identify microRNA-322 (miR-322) and miR-503 as novel factors that regulate Smurf2 expression posttranscriptionally. Both miR-322 and miR-503 interact with Smurf2 mRNA via its 3′-untranslated region (UTR) and repress Smurf2 translation but do not affect total Smurf2 mRNA levels. Studies using heterologous reporter constructs reveal a greater repressive effect of miR-322/503 through a single binding site in the Smurf2 3′-UTR, whereas point mutation of this site prevents miR-322/503–induced repression of Smurf2 translation. Increased levels of endogenous Smurf2 via antagonism of miR-322/503 inhibits TGF-β–induced Smad2 activation by increasing degradation of phosphorylated Smad2. Furthermore, the increase in Smurf2 in intestinal epithelial cells (IECs) expressing lower levels of miR-322/503 is associated with increased resistance to apoptosis, which is abolished by Smurf2 silencing. These findings indicate that miR-322/503 represses Smurf2 translation, in turn affecting intestinal epithelial homeostasis by altering TGF-β/Smad2 signaling and IEC apoptosis.
Collapse
Affiliation(s)
- Shan Cao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Drummond MJ, Addison O, Brunker L, Hopkins PN, McClain DA, LaStayo PC, Marcus RL. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 2014; 69:1040-8. [PMID: 24526667 DOI: 10.1093/gerona/glu004] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Reduced lean mass and physical function is a characteristic of frailty. However, it is currently unknown if proteolysis through the E3 ubiquitin ligases and the autophagic lysosomal pathway is dysregulated in inactive frail older women. The purpose of this study was to determine the expression of key markers of ubiquitin-mediated and autophagic lysosomal proteolysis in inactive (N = 7) compared with active (N = 7) older women. METHODS Strength, mobility, leg lean mass, and physical activity assessment were used to characterize activity levels and frailty in older women. Vastus lateralis biopsies were collected after an overnight fast and were assessed for gene and protein targets related to E3 ubiquitin ligases and the autophagic lysosomal system. RESULTS We found that AMP-activated protein kinase alpha (Thr172) was increased (p = .045), and forkhead box O3A (FOXO3A) gene expression (p = .047) was lower in inactive frail older women. Foxo3a (Ser253), Beclin1 (Ser93/96), and class III phosphatidylinositol-3-kinase (VPS34) protein expression were not different between the groups (p > .05). Neural precursor cell-expressed developmentally downregulated protein 4, muscle ring finger 1, muscle atrophy F-box, and the autophagy/mitophagy gene expression markers, Beclin1, autophagy-related-7, BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), dynamin-related protein 1, and Parkinson protein 2 (PARKIN) were lower in inactive frail older women (p < .05). Autophagy/mitophagy markers were positively correlated with the 6-minute walk and leg lean mass (p < .05). CONCLUSIONS We conclude that physical inactivity in frail older women is associated with a downregulation of ubiquitin-mediated and autophagic lysosomal skeletal muscle gene expression, perhaps related to low muscle mass and poor physical function.
Collapse
Affiliation(s)
| | | | | | | | - Donald A McClain
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
228
|
Frampton AE, Castellano L, Colombo T, Giovannetti E, Krell J, Jacob J, Pellegrino L, Roca-Alonso L, Funel N, Gall TMH, De Giorgio A, Pinho FG, Fulci V, Britton DJ, Ahmad R, Habib NA, Coombes RC, Harding V, Knösel T, Stebbing J, Jiao LR. MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression. Gastroenterology 2014; 146:268-77.e18. [PMID: 24120476 DOI: 10.1053/j.gastro.2013.10.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 09/05/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS There has not been a broad analysis of the combined effects of altered activities of microRNAs (miRNAs) in pancreatic ductal adenocarcinoma (PDAC) cells, and it is unclear how these might affect tumor progression or patient outcomes. METHODS We combined data from miRNA and messenger RNA (mRNA) expression profiles and bioinformatic analyses to identify an miRNA-mRNA regulatory network in PDAC cell lines (PANC-1 and MIA PaCa-2) and in PDAC samples from patients. We used this information to identify miRNAs that contribute most to tumorigenesis. RESULTS We identified 3 miRNAs (MIR21, MIR23A, and MIR27A) that acted as cooperative repressors of a network of tumor suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of MIR21, MIR23A, and MIR27A had synergistic effects in reducing proliferation of PDAC cells in culture and growth of xenograft tumors in mice. The level of inhibition was greater than that of inhibition of MIR21 alone. In 91 PDAC samples from patients, high levels of a combination of MIR21, MIR23A, and MIR27A were associated with shorter survival times after surgical resection. CONCLUSIONS In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to growth of PDACs. These findings indicate that miRNAs act together to promote tumor progression; therapeutic strategies might require inhibition of several miRNAs.
Collapse
Affiliation(s)
- Adam E Frampton
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK
| | - Leandro Castellano
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK.
| | - Teresa Colombo
- Department of Cellular Biotechnology and Haematology, La Sapienza University, Rome, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonathan Krell
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Jimmy Jacob
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Loredana Pellegrino
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Laura Roca-Alonso
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Niccola Funel
- Experimental and Molecular Oncology, Department of Surgery, University of Pisa, Pisa, Italy
| | - Tamara M H Gall
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK
| | - Alexander De Giorgio
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Filipa G Pinho
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Valerio Fulci
- Department of Cellular Biotechnology and Haematology, La Sapienza University, Rome, Italy
| | | | - Raida Ahmad
- Department of Pathology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Nagy A Habib
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK
| | - R Charles Coombes
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Victoria Harding
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Justin Stebbing
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Long R Jiao
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, London, UK.
| |
Collapse
|
229
|
TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2013; 111:E374-83. [PMID: 24324142 DOI: 10.1073/pnas.1306798111] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which--together with patch-clamp and flow cytometry studies--identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys(43). Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β-dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs.
Collapse
|
230
|
Tanksley JP, Chen X, Coffey RJ. NEDD4L is downregulated in colorectal cancer and inhibits canonical WNT signaling. PLoS One 2013; 8:e81514. [PMID: 24312311 PMCID: PMC3842946 DOI: 10.1371/journal.pone.0081514] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/23/2013] [Indexed: 12/14/2022] Open
Abstract
The NEDD4 family of E3 ubiquitin ligases includes nine members. Each is a modular protein, containing an N-terminal C2 domain for cell localization, two-to-four central WW domains for substrate recognition, and a C-terminal, catalytic HECT domain, which is responsible for catalyzing the ubiquitylation reaction. Members of this family are known to affect pathways central to the pathogenesis of colorectal cancer, including the WNT, TGFβ, EGFR, and p53 pathways. Recently, NEDD4 mRNA was reported to be overexpressed in colorectal cancer, but tumor stage was not considered in the analysis. Expression of the other family members has not been studied in colorectal cancer. Herein, we determined the expression patterns of all nine NEDD4 family members in 256 patients who presented with disease ranging from premalignant adenoma to stage IV colorectal cancer. NEDD4 mRNA was significantly increased in all stages of colorectal cancer. In contrast, NEDD4L mRNA, the closest homolog to NEDD4, was the most highly downregulated family member, and was significantly downregulated in all tumor stages. We also found NEDD4L protein was significantly decreased by western blotting in colorectal cancer samples compared to adjacent normal mucosa. In addition, NEDD4L, but not catalytically inactive NEDD4L, inhibited canonical WNT signaling at or below the level of β-catenin in vitro. These findings suggest that NEDD4L may play a tumor suppressive role in colorectal cancer, possibly through inhibition of canonical WNT signaling.
Collapse
Affiliation(s)
- Jarred P. Tanksley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert J. Coffey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
231
|
Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family signalling by ubiquitination and deubiquitination. J Biochem 2013; 154:481-9. [PMID: 24165200 DOI: 10.1093/jb/mvt097] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) family, including TGF-βs, activin and bone morphogenetic proteins (BMPs), are multifunctional proteins that regulate a wide variety of cellular responses, such as proliferation, differentiation, migration and apoptosis. TGF-β family signalling is mainly mediated by membranous serine/threonine kinase receptors and intracellular Smad proteins. This signalling is tightly regulated by various post-translational modifications including ubiquitination. Several E3 ubiquitin ligases play a crucial role in the recognition and ubiquitin-dependent degradation of TGF-β family receptors, Smad proteins and their interacted proteins to regulate positively and negatively TGF-β family signalling. In contrast, non-degradative ubiquitin modifications also regulate TGF-β family signalling. Recently, in addition to protein ubiquitination, deubiquitination by deubiquitinating enzymes has been reported to control TGF-β family signalling pathways. Interestingly, more recent studies suggest that TGF-β signalling is not only regulated via ubiquitination and/or deubiquitination, but also it relies on ubiquitination for its effect on other pathways. Thus, ubiquitin modifications play key roles in TGF-β family signal transduction and cross-talk between TGF-β family signalling and other signalling pathways. Here, we review the current understandings of the positive and negative regulatory mechanisms by ubiquitin modifications that control TGF-β family signalling.
Collapse
Affiliation(s)
- Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine; Division of Bio-imaging, Proteo-Science Center, Ehime University; Translational Research Center, Ehime University Hospital; and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Shitsukawa, Toon, Ehime 791-0295, Japan
| | | | | |
Collapse
|
232
|
Fu J, Akhmedov D, Berdeaux R. The short isoform of the ubiquitin ligase NEDD4L is a CREB target gene in hepatocytes. PLoS One 2013; 8:e78522. [PMID: 24147136 PMCID: PMC3798379 DOI: 10.1371/journal.pone.0078522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/21/2013] [Indexed: 02/02/2023] Open
Abstract
During cycles of fasting and feeding, liver function is regulated by both transcriptional and post-translational events. Regulated protein degradation has recently emerged as a key mechanism to control abundance of specific hepatic proteins under different nutritional conditions. As glucagon signaling through cAMP and PKA is central to glucose output during fasting, we hypothesized that this signaling pathway may also regulate ubiquitin ligases in the fasted state. Here we show that fasting stimuli promote expression of the short isoform of the E3 ubiquitin ligase Nedd4l in primary mouse hepatocytes. Nedd4l-short mRNA and NEDD4L (short isoform) protein accumulate in glucagon-treated primary mouse hepatocytes and in liver tissues during fasting. We identified a functional cAMP response element in the alternate Nedd4l-short promoter; mutation of this element blunts cAMP-induced expression of a Nedd4l reporter construct. CREB occupies the endogenous Nedd4l locus near this element. CREB and its co-activator CRTC2, both activated by fasting stimuli, contribute to glucagon-stimulated Nedd4l-short expression in primary hepatocytes. siRNA-mediated Nedd4l depletion in primary hepatocytes did not affect gluconeogenic gene expression, glucose output or glycogen synthesis. Our findings reveal a new mechanism of Nedd4l transcriptional regulation in liver cells.
Collapse
Affiliation(s)
- Jingqi Fu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rebecca Berdeaux
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
233
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
234
|
Browne JA, Liu X, Schnaper HW, Hayashida T. Serine-204 in the linker region of Smad3 mediates the collagen-I response to TGF-β in a cell phenotype-specific manner. Exp Cell Res 2013; 319:2928-37. [PMID: 24080014 DOI: 10.1016/j.yexcr.2013.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 11/28/2022]
Abstract
Regulation of TGF-β1/Smad3 signaling in fibrogenesis is complex. Previous work by our lab suggests that ERK MAP kinase phosphorylates the linker region (LR) of Smad3 to enhance TGF-β-induced collagen-I accumulation. However the roles of the individual Smad3LR phosphorylation sites (T179, S204, S208 and S213) in the collagen-I response to TGF-β are not clear. To address this issue, we tested the ability of Smad3 constructs expressing wild-type Smad3 or Smad3 with mutated LR phosphorylation sites to reconstitute TGF-β-stimulated COL1A2 promoter activity in Smad3-null or -knockdown cells. Blocking ERK in fibroblasts and renal mesangial cells inhibited both S204 phosphorylation and Smad3-mediated COL1A2 promoter activity. Mutations replacing serine at S204 or S208 in the linker region decreased Smad3-mediated COL1A2 promoter activity, whereas mutating T179 enhanced basal COL1A2 promoter activity and did not prevent TGF-β stimulation. Interestingly, mutation of all four Smad3LR sites (T179, S204, S208 and S213) was not inhibitory, suggesting primacy of the two inhibitory sites. These results suggest that in these mesenchymal cells, phosphorylation of the T179 and possibly S213 sites may act as a brake on the signal, whereas S204 phosphorylation by ERK in some manner releases that brake. Renal epithelial cells (HKC) respond differently from MEF or mesangial cells; blocking ERK neither changed TGF-β-stimulated S204 phosphorylation nor prevented Smad3-mediated COL1A2 promoter activity in HKC. Furthermore, re-expression of wild type-Smad3 or the S204A-Smad3 mutant in Smad3-knockdown HKC reconstituted Smad3-mediated COL1A2 promoter activity. Collectively, these data suggest that Serine-204 phosphorylation in the Smad3LR is a critical event by which ERK enhances Smad3-mediated COL1A2 promoter activity in mesenchymal cells.
Collapse
Affiliation(s)
- J A Browne
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University, Feinberg School of Medicine, 310 E Superior Street, Morton 4-685, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
235
|
Matsuzaki K. Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev 2013; 24:385-99. [PMID: 23871609 DOI: 10.1016/j.cytogfr.2013.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Better understanding of TGF-β signaling has deepened our appreciation of normal epithelial cell homeostasis and its dysfunction in such human disorders as cancer and fibrosis. Smad proteins, which convey signals from TGF-β receptors to the nucleus, possess intermediate linker regions connecting Mad homology domains. Membrane-bound, cytoplasmic, and nuclear protein kinases differentially phosphorylate Smad2 and Smad3 to create C-tail (C), the linker (L), or dually (L/C) phosphorylated (p, phospho-) isoforms. According to domain-specific phosphorylation, distinct transcriptional responses, and selective metabolism, Smad phospho-isoform pathways can be grouped into 4 types: cytostatic pSmad3C signaling, mitogenic pSmad3L (Ser-213) signaling, invasive/fibrogenic pSmad2L (Ser-245/250/255)/C or pSmad3L (Ser-204)/C signaling, and mitogenic/migratory pSmad2/3L (Thr-220/179)/C signaling. We outline how responses to TGF-β change through the multiple Smad phospho-isoforms as normal epithelial cells mature from stem cells through progenitors to differentiated cells, and further reflect upon how constitutive Ras-activating mutants favor the Smad phospho-isoform pathway promoting tumor progression. Finally, clinical analyses of reversible Smad phospho-isoform signaling during human carcinogenesis could assess effectiveness of interventions aimed at reducing human cancer risk. Spatiotemporally separate, functionally different Smad phospho-isoforms have been identified in specific cells and tissues, answering long-standing questions about context-dependent TGF-β signaling.
Collapse
Affiliation(s)
- Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 10-15 Fumizonocho, Moriguchi, Osaka 570-8506, Japan.
| |
Collapse
|
236
|
Al-Salihi MA, Herhaus L, Sapkota GP. Regulation of the transforming growth factor β pathway by reversible ubiquitylation. Open Biol 2013; 2:120082. [PMID: 22724073 PMCID: PMC3376735 DOI: 10.1098/rsob.120082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/20/2022] Open
Abstract
The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases.
Collapse
Affiliation(s)
- Mazin A Al-Salihi
- Medical Research Council-Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
237
|
Al-Salihi MA, Herhaus L, Macartney T, Sapkota GP. USP11 augments TGFβ signalling by deubiquitylating ALK5. Open Biol 2013; 2:120063. [PMID: 22773947 PMCID: PMC3390794 DOI: 10.1098/rsob.120063] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/31/2012] [Indexed: 12/20/2022] Open
Abstract
The TGFβ receptors signal through phosphorylation and nuclear translocation of SMAD2/3. SMAD7, a transcriptional target of TGFβ signals, negatively regulates the TGFβ pathway by recruiting E3 ubiquitin ligases and targeting TGFβ receptors for ubiquitin-mediated degradation. In this report, we identify a deubiquitylating enzyme USP11 as an interactor of SMAD7. USP11 enhances TGFβ signalling and can override the negative effects of SMAD7. USP11 interacts with and deubiquitylates the type I TGFβ receptor (ALK5), resulting in enhanced TGFβ-induced gene transcription. The deubiquitylase activity of USP11 is required to enhance TGFβ-induced gene transcription. RNAi-mediated depletion of USP11 results in inhibition of TGFβ-induced SMAD2/3 phosphorylation and TGFβ-mediated transcriptional responses. Central to TGFβ pathway signalling in early embryogenesis and carcinogenesis is TGFβ-induced epithelial to mesenchymal transition. USP11 depletion results in inhibition of TGFβ-induced epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Mazin A Al-Salihi
- Medical Research Council - Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
238
|
Shimmi O, Newfeld SJ. New insights into extracellular and post-translational regulation of TGF-β family signalling pathways. J Biochem 2013; 154:11-9. [PMID: 23698094 PMCID: PMC3693483 DOI: 10.1093/jb/mvt046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) family of secreted proteins are present in all multicellular animals. TGF-β proteins are versatile intercellular signalling molecules that orchestrate cell fate decisions during development and maintain homeostasis in adults. The Smad family of signal transducers implements TGF-β signals in responsive cells. Given the ability of TGF-β ligands to induce dramatic responses in target cells, numerous regulatory mechanisms exist to prevent unintended consequences. Here we review new reports of extracellular and post-translational regulation in Drosophila and vertebrates. Extracellular topics include the regulation of TGF-β signalling range and the coordination between tissue morphogenesis and TGF-β signalling. Post-translational topics include the regulation of TGF-β signal transduction by Gsk3-β phosphorylation of Smads and by cycles of Smad mono- and deubiquitylation. Extension of the ubiquitylation data to the Hippo pathway is also discussed.
Collapse
Affiliation(s)
- Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland and School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Stuart J. Newfeld
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland and School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
239
|
Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell Signal 2013; 25:2017-24. [PMID: 23770288 DOI: 10.1016/j.cellsig.2013.06.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-β (TGF-β) is a secreted homodimeric protein that plays an important role in regulating various cellular responses including cell proliferation and differentiation, extracellular matrix production, embryonic development and apoptosis. Disruption of the TGF-β signalling pathway is associated with diverse disease states including cancer, renal and cardiac fibrosis and atherosclerosis. At the cell surface TGF-β complex consists of two type I and two type II transmembrane receptors (TβRI and TβRII respectively) which have serine/threonine kinase activity. Upon TGF-β engagement TβRII phosphorylates TβRI which in turn phosphorylates Smad2/3 on two serine residues at their C-terminus which enables binding to Smad4 to form heteromeric Smad complexes that enter the nucleus to initiate gene transcription including for extracellular matrix proteins. TGF-β signalling is also known to activate other serine/threonine kinase signalling that results in the phosphorylation of the linker region of Smad2. The Smad linker region is defined as the domain which lies between the MH1 and MH2 domains of a Smad protein. Serine/threonine kinases that are known to phosphorylate the Smad linker region include mitogen-activated protein kinases, extracellular-signal regulated kinase, Jun N-terminal kinase and p38 kinase, the tyrosine kinase Src, phosphatidylinositol 3'-kinase, cyclin-dependent kinases, rho-associated protein kinase, calcium calmodulin-dependent kinase and glycogen synthase kinase-3. This review will cover the role of Smad linker region phosphorylation downstream of TGF-β signalling in vascular cells. Key factors including the identification of the kinases that phosphorylate individual Smad residues, the upstream agents that activate these kinases, the cellular location of the phosphorylation event and the importance of the linker region in regulation and expression of genes induced by TGF-β are covered.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC 3083 Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Wang JT, Chang LS, Chen CJ, Doong SL, Chang CW, Chen MR. Glycogen synthase kinase 3 negatively regulates IFN regulatory factor 3 transactivation through phosphorylation at its linker region. Innate Immun 2013; 20:78-87. [PMID: 23685991 DOI: 10.1177/1753425913485307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Upon virus infection, the host innate immune response is initiated through the activation of IFN regulatory factor 3 (IRF3) and NF-κB signaling pathways to induce IFN production. Previously, we demonstrated EBV BGLF4 kinase suppresses IRF3 function in a kinase activity-dependent manner. The replacement of Ser123, Ser173 and Thr180 into alanines at the proline-rich linker region of IRF3 abolishes BGLF4-mediated suppression. In this study, we show that BGLF4 phosphorylates glutathione-S-transferase (GST)-IRF3(110-202), but not GST-IRF3(110-202)3A mutant (S123/S173/T180A) in vitro. Compared with activation mimicking mutant IRF3(5D), the phosphorylation-defective IRF3(5D)3A shows a higher transactivation activity in reporter assays, whereas the phosphorylation-mimicking IRF3(5D)2D1E, with Ser123 and Ser173 mutated to aspartate and Thr180 to glutamate, has a much lower activity. To explore whether similar cellular regulation also exists in the absence of virus infection, candidate cellular kinases were predicted and the transactivation activity of IRF3 was examined with various kinase inhibitors. Glycogen synthase kinase 3 (GSK3) inhibitor LiCl specifically enhanced both IRF3(5D) and wild type IRF3 activity, even without stimulation. Expression of constitutive active GSK3β(S9A) represses LiCl-mediated enhancement of IRF3 transactivation activity. In vitro, both GSK3α and GSK3β phosphorylate IRF3 at the linker region. Collectively, data here suggest GSK3 phosphorylates IRF3 linker region in a way similar to viral kinase BGLF4.
Collapse
Affiliation(s)
- Jiin-Tarng Wang
- 1Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
241
|
Differential phosphorylation of Smad1 integrates BMP and neurotrophin pathways through Erk/Dusp in axon development. Cell Rep 2013; 3:1592-606. [PMID: 23665221 DOI: 10.1016/j.celrep.2013.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 02/11/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Sensory axon development requires concerted actions of growth factors for the precise control of axonal outgrowth and target innervation. How developing sensory neurons integrate different cues is poorly understood. We demonstrate here that Smad1 activation is required for neurotrophin-mediated sensory axon growth in vitro and in vivo. Through differential phosphorylation, Smad1 exerts transcriptional selectivity to regulate the expression and activity of Erk1 and Erk2-two key neurotrophin effectors. Specifically, bone morphogenetic proteins (BMPs) signal through carboxy-terminal phosphorylation of Smad1 (pSmad1C) to induce Erk1/2 transcription for enhanced neurotrophin responsiveness. Meanwhile, neurotrophin signaling results in linker phosphorylation of Smad1 (pSmad1L), which in turn upregulates an Erk-specific dual-specificity phosphatase, Dusp6, leading to reduced pErk1/2 and constituting a negative-feedback loop for the prevention of axon overgrowth. Together, the BMP and neurotrophin pathways form a tightly regulated signaling network with a balanced ratio of Erk1/2 and pErk1/2 to direct the precise connections between sensory neurons and peripheral targets.
Collapse
|
242
|
Yumoto K, Thomas PS, Lane J, Matsuzaki K, Inagaki M, Ninomiya-Tsuji J, Scott GJ, Ray MK, Ishii M, Maxson R, Mishina Y, Kaartinen V. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. J Biol Chem 2013; 288:13467-80. [PMID: 23546880 DOI: 10.1074/jbc.m112.431775] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The role of Smad-independent TGF-β signaling in craniofacial development is poorly elucidated. RESULTS In craniofacial mesenchymal cells, Tak1 regulates both R-Smad C-terminal and linker region phosphorylation in TGF-β signaling. CONCLUSION Tak1 plays an irreplaceable role in craniofacial ecto-mesenchyme during embryogenesis. SIGNIFICANCE Understanding the mechanisms of TGF-β signaling contributes to knowledge of pathogenetic mechanisms underlying common craniofacial birth defects. Although the importance of TGF-β superfamily signaling in craniofacial growth and patterning is well established, the precise details of its signaling mechanisms are still poorly understood. This is in part because of the concentration of studies on the role of the Smad-dependent (so-called "canonical") signaling pathways relative to the Smad-independent ones in many biological processes. Here, we have addressed the role of TGF-β-activated kinase 1 (Tak1, Map3k7), one of the key mediators of Smad-independent (noncanonical) TGF-β superfamily signaling in craniofacial development, by deleting Tak1 specifically in the neural crest lineage. Tak1-deficient mutants display a round skull, hypoplastic maxilla and mandible, and cleft palate resulting from a failure of palatal shelves to appropriately elevate and fuse. Our studies show that in neural crest-derived craniofacial ecto-mesenchymal cells, Tak1 is not only required for TGF-β- and bone morphogenetic protein-induced p38 Mapk activation but also plays a role in agonist-induced C-terminal and linker region phosphorylation of the receptor-mediated R-Smads. Specifically, we demonstrate that the agonist-induced linker region phosphorylation of Smad2 at Thr-220, which has been shown to be critical for full transcriptional activity of Smad2, is dependent on Tak1 activity and that in palatal mesenchymal cells TGFβRI and Tak1 kinases mediate both overlapping and distinct TGF-β2-induced transcriptional responses. To summarize, our results suggest that in neural crest-derived ecto-mesenchymal cells, Tak1 provides a critical point of intersection in a complex dialogue between the canonical and noncanonical arms of TGF-β superfamily signaling required for normal craniofacial development.
Collapse
Affiliation(s)
- Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Lang F, Voelkl J. Therapeutic potential of serum and glucocorticoid inducible kinase inhibition. Expert Opin Investig Drugs 2013; 22:701-14. [PMID: 23506284 DOI: 10.1517/13543784.2013.778971] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Expression of serum-and-glucocorticoid-inducible kinase-1 (SGK1) is low in most cells, but dramatically increases under certain pathophysiological conditions, such as glucocorticoid or mineralocorticoid excess, inflammation with TGFβ release, hyperglycemia, cell shrinkage and ischemia. SGK1 is activated by insulin and growth factors via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase and mammalian target of rapamycin. SGK1 sensitive functions include activation of ion channels (including epithelial Na(+) channel ENaC, voltage gated Na(+) channel SCN5A transient receptor potential channels TRPV4 - 6, Ca(2+) release activated Ca(2+) channel Orai1/STIM1, renal outer medullary K(+) channel ROMK, voltage gated K(+) channels KCNE1/KCNQ1, kainate receptor GluR6, cystic fibrosis transmembrane regulator CFTR), carriers (including Na(+),Cl(-) symport NCC, Na(+),K(+),2Cl(-) symport NKCC, Na(+)/H(+) exchangers NHE1 and NHE3, Na(+), glucose symport SGLT1, several amino acid transporters), and Na(+)/K(+)-ATPase. SGK1 regulates several enzymes (e.g., glycogen synthase kinase-3, ubiquitin-ligase Nedd4-2) and transcription factors (e.g., forkhead transcription factor 3a, β-catenin, nuclear factor kappa B). AREAS COVERED The phenotype of SGK1 knockout mice is mild and SGK1 is apparently dispensible for basic functions. Excessive SGK1 expression and activity, however, contributes to the pathophysiology of several disorders, including hypertension, obesity, diabetes, thrombosis, stroke, fibrosing disease, infertility and tumor growth. A SGK1 gene variant (prevalence ∼ 3 - 5% in Caucasians and ∼ 10% in Africans) is associated with hypertension, stroke, obesity and type 2 diabetes. SGK1 inhibitors have been developed and shown to reduce blood pressure of hyperinsulinemic mice and to counteract tumor cell survival. EXPERT OPINION Targeting SGK1 may be a therapeutic option in several clinical conditions, including metabolic syndrome and tumor growth.
Collapse
Affiliation(s)
- Florian Lang
- University of Tuebingen, Department of Physiology, Tuebingen, Germany.
| | | |
Collapse
|
244
|
Rejon CA, Ho CC, Wang Y, Zhou X, Bernard DJ, Hébert TE. Cycloheximide inhibits follicle-stimulating hormone β subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal 2013; 25:1403-12. [PMID: 23499904 DOI: 10.1016/j.cellsig.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production. Using the murine gonadotrope-like cell line, LβT2, as a model, we tested the hypothesis that a component of the activin pathway is highly labile in gonadotrope cells and that its rapid loss following CHX treatment impairs activin-stimulated Fshb transcription. Treatment of cells with CHX for 6h, but not 1h, blocked activin A-stimulated Fshb transcription. Pre-treatment of LβT2 cells with CHX for as few as 2-3h inhibited activin A-stimulated SMAD2/3 phosphorylation without altering total SMAD2/3 protein levels. These data indicated that CHX affects activin signalling upstream of SMAD proteins, most likely at the receptor level. Indeed, CHX rapidly reduced activin A binding to LβT2 cells. We went on to show that activin A signals via the type II receptor ACVR2, rather than ACVR2B, to regulate Fshb transcription and that the receptor has a half life of ~2h in LβT2 cells. The mechanism of ACVR2 turnover remains undefined, but appears to be ligand-, proteasome-, and lysosome-independent. Collectively, these data indicate that CHX produces inhibin-like effects in gonadotropes by preventing de novo synthesis of the highly labile ACVR2, thereby blocking activin signaling to the Fshb promoter.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
245
|
Sengupta S, Kundu S, Bhattacharyya A. Attenuation of Smad2 activity shows resistance to TGF-β signalling in mammary adenocarcinoma (MCF-7) cells. Cell Biol Int 2013; 37:449-57. [DOI: 10.1002/cbin.10061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/16/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology; University of Calcutta; Kolkata, West Bengal; 700019; India
| |
Collapse
|
246
|
Kovacevic Z, Chikhani S, Lui GYL, Sivagurunathan S, Richardson DR. The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxid Redox Signal 2013; 18:874-87. [PMID: 22462691 DOI: 10.1089/ars.2011.4273] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The metastasis suppressor gene, N-myc downstream regulated gene-1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, including pancreatic cancer. Moreover, NDRG1 is an iron-regulated gene that is markedly upregulated by cellular iron-depletion using novel antitumor agents such as the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), in pancreatic cancer cells. However, the exact function(s) of NDRG1 remain to be established and are important to elucidate. RESULTS In the current study, using gene-array analysis along with NDRG1 overexpression and silencing, we identified the molecular targets of NDRG1 in three pancreatic cancer cell lines. We demonstrate that NDRG1 upregulates neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) and GLI-similar-3 (GLIS3). Further studies examining the downstream effects of NEDD4L led to the discovery that NDRG1 affects the transforming growth factor-β (TGF-β) pathway, leading to the upregulation of two key tumor suppressor proteins, namely phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and mothers against decapentaplegic homolog-4 (SMAD4). Moreover, NDRG1 inhibited the phosphatidylinositol 3-kinase (PI3K) and Ras oncogenic pathways. INNOVATION This study provides significant insights into the mechanisms underlying the antitumor activity of NDRG1. For the first time, a role for NDRG1 is established in regulating the key signaling pathways involved in oncogenesis (TGF-β, PI3K, and Ras pathways). CONCLUSION The identified target genes of NDRG1 and their effect on the TGF-β signaling pathway reveal its molecular function in pancreatic cancer and a novel therapeutic avenue.
Collapse
Affiliation(s)
- Zaklina Kovacevic
- Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
247
|
Osman N, Grande-Allen KJ, Ballinger ML, Getachew R, Marasco S, O'Brien KD, Little PJ. Smad2-dependent glycosaminoglycan elongation in aortic valve interstitial cells enhances binding of LDL to proteoglycans. Cardiovasc Pathol 2013; 22:146-55. [PMID: 22999704 PMCID: PMC10584518 DOI: 10.1016/j.carpath.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/03/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Calcific aortic valve disease is a progressive condition that shares some common pathogenic features with atherosclerosis. Transforming growth factor-β1 is a recognized mediator of atherosclerosis and is expressed in aortic valve lesions. Transforming growth factorβ1 stimulates glycosaminoglycan elongation of proteoglycans that is associated with increased lipid binding. We investigated the presence of transforming growth factor-β1 and downstream signaling intermediates in diseased human aortic valves and the effects of activated transforming growth factor-β1 receptor signaling on aortic valve interstitial cell proteoglycan synthesis and lipid binding as a possible mechanism for the initiation of the early lesion of calcific aortic valve disease. METHODS AND RESULTS Diseased human aortic valve leaflets demonstrated strong immunohistochemical staining for transforming growth factor-β1 and phosphorylated Smad2/3. In primary porcine aortic valve interstitial cells, Western blots showed that transforming growth factor-β1 stimulated phosphorylation in both the carboxy and linker regions of Smad2/3, which was inhibited by the transforming growth factor-β1 receptor inhibitor SB431542. Gel electrophoresis and size exclusion chromatography demonstrated that SB431542 decreased transforming growth factor-β1-mediated [(35)S]-sulfate incorporation into proteoglycans in a dose-dependent manner. Further, in proteoglycans derived from transforming growth factor-β1-treated valve interstitial cells, gel mobility shift assays demonstrated that inhibition of transforming growth factor-β1 receptor signaling resulted in decreased lipid binding. CONCLUSIONS Classic transforming growth factor-β1 signaling is present in human aortic valves in vivo and contributes to the modification of proteoglycans expressed by valve interstitial cells in vitro. These findings suggest that transforming growth factor-β1 may promote increased low-density lipoprotein binding in the early phases of calcific aortic valve disease.
Collapse
Affiliation(s)
- Narin Osman
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia.
| | | | | | | | | | | | | |
Collapse
|
248
|
Zmajkovicova K, Jesenberger V, Catalanotti F, Baumgartner C, Reyes G, Baccarini M. MEK1 is required for PTEN membrane recruitment, AKT regulation, and the maintenance of peripheral tolerance. Mol Cell 2013; 50:43-55. [PMID: 23453810 PMCID: PMC3625979 DOI: 10.1016/j.molcel.2013.01.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/13/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
The Raf/MEK/ERK and PI3K/Akt pathways are prominent effectors of oncogenic Ras. These pathways negatively regulate each other, but the mechanism involved is incompletely understood. We now identify MEK1 as an essential regulator of lipid/protein phosphatase PTEN, through which it controls phosphatidylinositol-3-phosphate accumulation and AKT signaling. MEK1 ablation stabilizes AKT activation and, in vivo, causes a lupus-like autoimmune disease and myeloproliferation. Mechanistically, MEK1 is necessary for PTEN membrane recruitment as part of a ternary complex containing the multidomain adaptor MAGI1. Complex formation is independent of MEK1 kinase activity but requires phosphorylation of T292 on MEK1 by activated ERK. Thus, inhibiting the ERK pathway reduces PTEN membrane recruitment, increasing phosphatidylinositol-3-phosphate accumulation and AKT activation. Our data offer a conceptual framework for the observation that activation of the PI3K pathway frequently mediate resistance to MEK inhibitors and for the promising results obtained by combined MEK/PI3K inhibition in preclinical cancer models.
Collapse
Affiliation(s)
- Katarina Zmajkovicova
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
249
|
Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast 2013; 2013:196848. [PMID: 23476809 PMCID: PMC3586504 DOI: 10.1155/2013/196848] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/31/2012] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.
Collapse
|
250
|
Ding Y, Zhang Y, Xu C, Tao QH, Chen YG. HECT domain-containing E3 ubiquitin ligase NEDD4L negatively regulates Wnt signaling by targeting dishevelled for proteasomal degradation. J Biol Chem 2013; 288:8289-8298. [PMID: 23396981 DOI: 10.1074/jbc.m112.433185] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiquitination and targets Dvl2 for proteasomal degradation. Interestingly, the NEDD4L-mediated ubiquitination of Dvl2 is Lys-6, Lys-27, and Lys-29 linked but not typical Lys-48-linked ubiquitination. Consistent with the role of Dvl in both Wnt/β-catenin and Wnt/planar cell polarity signaling, NEDD4L regulates the cellular β-catenin level and Rac1, RhoA, and JNK activities. We have further identified a hierarchical regulation that Wnt5a induces JNK-mediated phosphorylation of NEDD4L, which in turn promotes its ability to degrade Dvl2. Finally, we show that NEDD4L inhibits Dvl2-induced axis duplication in Xenopus embryos. Our work thus demonstrates that NEDD4L is a negative feedback regulator of Wnt signaling.
Collapse
Affiliation(s)
- Yi Ding
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Xu
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qing-Hua Tao
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|