201
|
Aging and Apolipoprotein E in HIV Infection. J Neurovirol 2018; 24:529-548. [PMID: 29987582 PMCID: PMC6244718 DOI: 10.1007/s13365-018-0660-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/21/2023]
Abstract
With the implementation of increasingly effective antiretroviral therapy (ART) over the past three decades, individuals infected with HIV live a much longer life. HIV infection is no longer a terminal but rather a chronic disease. However, the lifespan of infected individuals remains shorter than that of their uninfected peers. Even with ART, HIV infection may potentiate “premature” aging. Organ-associated disease and systemic syndromes that occur in treated HIV-infection are like that of older, uninfected individuals. Brain aging may manifest as structural changes or neurocognitive impairment that are beyond the chronological age. The spectrum of neurological, cognitive, and motor deficiencies, currently described as HIV-associated neurocognitive disorders (HAND), may reflect earlier onset of mechanisms common to HIV infection and aging (accelerated aging). HAND could also reflect the neurological impact of HIV infection superimposed on comorbidities linked to age and chronic inflammation, leading to a higher prevalence of neurocognitive impairment across the age span (accentuated aging). In addition, apolipoprotein E (ApoE), one of the most influential host risk factors for developing Alzheimer’s disease, has been implicated in the development of HAND. But studies differ as to whether ApoE is relevant, and whether age and ApoE interact to impair brain function in the HIV-infected patient. What is clear is that HIV-infected individuals are living longer with HIV, and therefore factors related to aging and health need to be examined in the context of current, effective ART. This review addresses the recent evidence for the influence of aging and ApoE on HIV-associated neurocognitive impairment.
Collapse
|
202
|
Abstract
OBJECTIVE To determine influence of age and HIV infection on influenza vaccine responses. DESIGN Evaluate serologic response to seasonal trivalent influenza vaccine (TIV) as the immunologic outcome in HIV-infected (HIV⁺) and age-matched HIV negative (HIV⁻) adults. METHODS During 2013-2016, 151 virologically controlled HIV⁺ individuals on antiretroviral therapy and 164 HIV⁻ volunteers grouped by age as young (<40 years), middle aged (40-59 years) and old (≥60 years) were administered TIV and investigated for serum antibody response to vaccine antigens. RESULTS At prevaccination (T0) titers were in seroprotective range in more than 90% of participants. Antibody titers increased in all participants postvaccination but frequency of classified vaccine responders to individual or all three vaccine antigens at 3-4 weeks was higher in HIV⁻ than HIV⁺ adults with the greatest differences manifesting in the young age group. Of the three vaccine strains in TIV, antibody responses at T2 were weakest against H3N2 with those to H1N1 and B antigens dominating. Among the age groups, the titers for H1N1 and B were lowest in old age, with evidence of an age-associated interaction in HIV⁺ persons with antibody to B antigen. CONCLUSION Greater frequencies of vaccine nonresponders are seen in HIV⁺ young compared with HIV⁻ adults and the observed age-associated interaction for B antigen in HIV⁺ persons are supportive of the concept of premature immune senescence in controlled HIV infection. High-potency influenza vaccination recommended for healthy aging could be considered for HIV⁺ adults of all ages.
Collapse
|
203
|
El Chakhtoura NG, Bonomo RA, Jump RLP. Influence of Aging and Environment on Presentation of Infection in Older Adults. Infect Dis Clin North Am 2018; 31:593-608. [PMID: 29079150 DOI: 10.1016/j.idc.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In older adults, pathophysiologic, clinical, and environmental factors all affect the presentation of infections. We explore how age-related changes influence the manifestation and evaluation of infections in this population. Specific topics include immunosenescence, age-related organ-specific physiologic changes, and frailty. We also describe clinical factors influencing infection risk and presentation in older adults, including temperature regulation, cognitive decline, and malnutrition. Finally, we discuss the influence of the setting in which older adults reside on the clinical evaluation of infection. Understanding the influence of all these changes may facilitate the prevention, early recognition, and treatment of infections in older adults.
Collapse
Affiliation(s)
- Nadim G El Chakhtoura
- Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center (LSCVAMC), 10701 East Boulevard, Cleveland, OH 44106, USA; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA
| | - Robert A Bonomo
- Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center (LSCVAMC), 10701 East Boulevard, Cleveland, OH 44106, USA; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Specialty Care Center of Innovation, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA; Research Services, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA
| | - Robin L P Jump
- Geriatric Research Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center (LSCVAMC), 10701 East Boulevard, Cleveland, OH 44106, USA; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44195-5029, USA; Specialty Care Center of Innovation, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA; Research Services, LSCVAMC, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
204
|
Singh HK, Del Carmen T, Freeman R, Glesby MJ, Siegler EL. From One Syndrome to Many: Incorporating Geriatric Consultation Into HIV Care. Clin Infect Dis 2018; 65:501-506. [PMID: 28387803 DOI: 10.1093/cid/cix311] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Antiretroviral therapy has enabled people to live long lives with human immunodeficiency virus (HIV). As a result, most HIV-infected adults in the United States are >50 years of age. In light of this changing epidemiology, HIV providers must recognize and manage multiple comorbidities and aging-related syndromes. Geriatric principles can help meet this new challenge, as preservation of function and optimization of social and psychological health are relevant to the care of aging HIV-infected adults, even those who are not yet old. Nonetheless, the field is still in its infancy. Although other subspecialties have started to explore the role of geriatricians, little is known about their role in HIV care, and few clinics have incorporated geriatricians. This article introduces basic geriatric nomenclature and principles, examines several geriatric consultation models from other subspecialties, and describes our HIV and Aging clinical program to encourage investigation of best practices for the care of this population.
Collapse
Affiliation(s)
| | - Tessa Del Carmen
- Geriatrics and Palliative Medicine, Weill Cornell Medical College
| | - Ryann Freeman
- Geriatrics and Palliative Medicine, Weill Cornell Medical College
- ACRIA, Center on HIV and Aging, New York
| | | | | |
Collapse
|
205
|
Dugué PA, Bassett JK, Joo JE, Baglietto L, Jung CH, Wong EM, Fiorito G, Schmidt D, Makalic E, Li S, Moreno-Betancur M, Buchanan DD, Vineis P, English DR, Hopper JL, Severi G, Southey MC, Giles GG, Milne RL. Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality. Am J Epidemiol 2018; 187:529-538. [PMID: 29020168 DOI: 10.1093/aje/kwx291] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/26/2017] [Indexed: 11/13/2022] Open
Abstract
Measures of biological age based on blood DNA methylation, referred to as age acceleration (AA), have been developed. We examined whether AA was associated with health risk factors and overall and cause-specific mortality. At baseline (1990-1994), blood samples were drawn from 2,818 participants in the Melbourne Collaborative Cohort Study (Melbourne, Victoria, Australia). DNA methylation was determined using the Infinium HumanMethylation450 BeadChip array (Illumina Inc., San Diego, California). Mixed-effects models were used to examine the association of AA with health risk factors. Cox models were used to assess the association of AA with mortality. A total of 831 deaths were observed during a median 10.7 years of follow-up. Associations of AA were observed with male sex, Greek nationality (country of birth), smoking, obesity, diabetes, lower education, and meat intake. AA measures were associated with increased mortality, and this was only partly accounted for by known determinants of health (hazard ratios were attenuated by 20%-40%). Weak evidence of heterogeneity in the association was observed by sex (P = 0.06) and cause of death (P = 0.07) but not by other factors. DNA-methylation-based AA measures are associated with several major health risk factors, but these do not fully explain the association between AA and mortality. Future research should investigate what genetic and environmental factors determine AA.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Julie K Bassett
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - JiHoon E Joo
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Laura Baglietto
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, Pisa, Italy
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Victoria, Australia
| | - Ee Ming Wong
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Daniel Schmidt
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Enes Makalic
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Shuai Li
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Margarita Moreno-Betancur
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Genetic Medicine and Familial Cancer Center, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paolo Vineis
- Italian Institute for Genomic Medicine, Turin, Italy
- MRC-PHE Center for Environment and Health, Imperial College London, London, United Kingdom
| | - Dallas R English
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - John L Hopper
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Gianluca Severi
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Centre de Recherche en Épidémiologie et Santé des Populations
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Melissa C Southey
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
206
|
de Almeida SM, Ribeiro CE, Rotta I, Piovesan M, Tang B, Vaida F, Raboni SM, Letendre S, Potter M, Batistela Fernandes MS, Ellis RJ. Biomarkers of neuronal injury and amyloid metabolism in the cerebrospinal fluid of patients infected with HIV-1 subtypes B and C. J Neurovirol 2018; 24:28-40. [PMID: 29063514 PMCID: PMC5792298 DOI: 10.1007/s13365-017-0591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
Based on prior reports that the HIV-1 Tat protein modulates amyloid-beta (Aβ) metabolism, this study aimed to compare CSF neural injury biomarkers between 27 patients with HIV subtype B, 26 patients with HIV subtype C, 18 healthy HIV-negative controls, and 24 patients with Alzheimer's disease (AD). Immunoassays were used to measure soluble amyloid precursor protein α and β (sAPPα, sAPPβ), Aβ oligomers 38, 40, 42, and Aβ-total; phosphorylated tau (P-tau181), and total tau (T-tau). Comparisons between HIV(+) and HIV(-) (including AD) were adjusted by linear regression for gender and age; HIV subtype comparisons were adjusted for nadir CD4 and plasma viral load suppression. The p values were corrected for multiple testing with the Benjamini-Hochberg procedure. CSF Aβ-42 and Hulstaert (P-tau181) index were lower in HIV1-C than B (p = 0.03, and 0.049 respectively); subtypes did not differ on other CSF biomarkers or ratios. Compared to AD, HIV(+) had lower CSF levels of T-tau, P-tau181 (p < 0.001), and sAPPα (p = 0.041); HIV(+) had higher CSF Aβ-42 (p = 0.002) and higher CSF indexes: [Aß-42/(240 + 1.18 T-tau)], P-tau181/Aβ-42, T-tau/Aβ-42, P-tau181/T-tau, sAPPα/β (all p ≤ 0.01) than AD. Compared to HIV(-), HIV(+) had lower CSF Aβ-42, and T-tau (all p ≤ 0.004). As conclusion, amyloid metabolism was influenced by HIV infection in a subtype-dependent manner. Aß-42 levels were lower in HIV1-C than B, suggesting that there may be greater deposition of Aß-42 in HIV1-C. These findings are supported by CSF Hulstaert (P-tau181) index. Differences between HIV and AD in the patterns of Aß and Tau biomarkers suggest that CNS HIV infection and AD may not share some of same mechanisms of neuronal injury.
Collapse
Affiliation(s)
- Sérgio Monteiro de Almeida
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil.
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Clea E Ribeiro
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Indianara Rotta
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Mauro Piovesan
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Bin Tang
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Florin Vaida
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Sonia Mara Raboni
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Scott Letendre
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Michael Potter
- HNRC-University of California-San Diego, San Diego, CA, USA
| | - Meire S Batistela Fernandes
- Hospital de Clínicas-UFPR, Universidade Federal do Paraná, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Ronald J Ellis
- HNRC-University of California-San Diego, San Diego, CA, USA
| |
Collapse
|
207
|
Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 2018; 174:18-29. [PMID: 29337038 DOI: 10.1016/j.mad.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is the most important risk factor for major human lifestyle diseases, including cancer, neurological and cardiometabolic disorders. Due to the complex interplay between genetics, lifestyle and environmental factors, some individuals seem to age faster than others, whereas centenarians seem to have a slower aging process. Therefore, a biochemical biomarker reflecting the relative biological age would be helpful to predict an individual's health status and aging disease risk. Although it is already known for years that cumulative epigenetic changes occur upon aging, DNA methylation patterns were only recently used to construct an epigenetic clock predictor for biological age, which is a measure of how well your body functions compared to your chronological age. Moreover, the epigenetic DNA methylation clock signature is increasingly applied as a biomarker to estimate aging disease susceptibility and mortality risk. Finally, the epigenetic clock signature could be used as a lifestyle management tool to monitor healthy aging, to evaluate preventive interventions against chronic aging disorders and to extend healthy lifespan. Dissecting the mechanism of the epigenetic aging clock will yield valuable insights into the aging process and how it can be manipulated to improve health span.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium.
| |
Collapse
|
208
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects roughly half the HIV-positive population. The symptoms of cognitive slowing, poor concentration, and memory problems can impact on everyday life. Its diagnosis is validated where possible by identifying deficits in two cognitive domains on neuropsychologic testing in patients either with or without symptoms. Corroborating evidence may be found on imaging, blood tests, and cerebrospinal fluid analysis, though sensitive and specific biomarkers are currently lacking. The introduction of combined antiretroviral therapy in the 1990s has generated a therapeutic paradox whereby the number of severe cases of HAND has fallen, yet milder forms continue to rise in prevalence. New emphasis has been placed on identifying the cause of apparent ongoing HIV infection and inflammation of the central nervous system (CNS) in the face of durable systemic viral suppression, and how this equates to the neuronal dysfunction underlying HAND. The interaction with aging and comorbidities is becoming increasingly common as the HIV-positive population enters older adulthood, with neurodegenerative, metabolic, and vascular causes of cognitive impairment combining and probably accelerating in the context of chronic HIV infection. Therapies targeted to the CNS, but without neurotoxic side-effects, are being investigated to attempt to reduce the likelihood of developing, and improving, HAND.
Collapse
Affiliation(s)
| | - Bruce James Brew
- Departments of Neurology and HIV Medicine, St. Vincent's Hospital and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
209
|
Van Epps P, Kalayjian RC. Human Immunodeficiency Virus and Aging in the Era of Effective Antiretroviral Therapy. Infect Dis Clin North Am 2017; 31:791-810. [DOI: 10.1016/j.idc.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
210
|
Falutz J. Frailty: is thy name…..universal? Evolving challenges of managing effectively treated older people living with HIV. Antivir Ther 2017; 23:101-104. [PMID: 29171838 DOI: 10.3851/imp3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
The increased survival of treated people living with HIV (PLWH) represents a tremendous accomplishment. However, this has not been accompanied by uniform improvements in quality of life. Many PLWH prematurely develop age-related complications and traditional geriatric syndromes, including frailty. This is a potentially reversible state of vulnerability to adverse outcomes. Its operationalization remains challenging. The most commonly used tools, the frailty phenotype and the frailty index, have their advantages and limitations, but predict similar poor outcomes. Yeoh et al. applied both metrics, and a simpler construct, the Edmonton Frail Scale, to a population of Australian PLWH. Although the prevalence of frailty was generally similar to that in other settings, distinct differences occurred between the tools. This paper adds to the literature on this serious condition in this already vulnerable population. Further research is needed before consensus is reached on how to reliably and simply diagnose frailty in PLWH.
Collapse
Affiliation(s)
- Julian Falutz
- Division of Geriatrics and Chronic Viral Illness Service, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
211
|
Impact of Antiretroviral Treatment Containing Tenofovir Difumarate on the Telomere Length of Aviremic HIV-Infected Patients. J Acquir Immune Defic Syndr 2017; 76:102-109. [PMID: 28418989 DOI: 10.1097/qai.0000000000001391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the in vivo relevance of the inhibitory effect of tenofovir on telomerase activity observed in vitro. DESIGN Cross-sectional study of HIV-infected patients with suppressed virological replication (HIV RNA <50 copies/mL for more than 1 year). METHODS Telomere length in whole blood was measured by quantitative real-time polymerase chain reaction. We performed a multivariate analysis to elucidate variables associated with telomere length and also evaluated the association between telomere length and use of tenofovir difumarate (TDF) adjusted by significant confounders. RESULTS 200 patients included, 72% men, median age 49 (IQR 45-54.5), 103 with exposure to a TDF containing antiretroviral treatment (ART) regimen (69.9% for more than 5 years) and 97 never exposed to a TDF containing ART regimen. In the multivariate analysis, significant predictors of shorter telomere length were older age (P = 0.008), parental age at birth (P = 0.038), white race (P = 0.048), and longer time of known HIV infection (10-20 and ≥20 years compared with <10 years, P = 0.003 and P = 0.056, respectively). There was no association between TDF exposure and telomere length after adjusting for possible confounding factors (age, parental age at birth, race, and time of HIV infection). Total time receiving ART and duration of treatment with nucleoside reverse transcriptase inhibitors were associated with shorter telomere length, but these associations were explained by time of known HIV infection. CONCLUSIONS Our data do not suggest that telomerase activity inhibition caused by TDF in vitro leads to telomere shortening in peripheral blood of HIV-infected patients.
Collapse
|
212
|
Boulias K, Lieberman J, Greer EL. An Epigenetic Clock Measures Accelerated Aging in Treated HIV Infection. Mol Cell 2017; 62:153-155. [PMID: 27105110 DOI: 10.1016/j.molcel.2016.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this issue of Molecular Cell, Gross et al. (2016) find a CpG DNA methylation signature in blood cells of patients with chronic well-controlled HIV infection that correlates with accelerated aging.
Collapse
Affiliation(s)
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
213
|
Pallikkuth S, de Armas L, Rinaldi S, Pahwa S. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection. Front Immunol 2017; 8:1380. [PMID: 29109730 PMCID: PMC5660291 DOI: 10.3389/fimmu.2017.01380] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lesley de Armas
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefano Rinaldi
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
214
|
de Armas LR, Pallikkuth S, George V, Rinaldi S, Pahwa R, Arheart KL, Pahwa S. Reevaluation of immune activation in the era of cART and an aging HIV-infected population. JCI Insight 2017; 2:e95726. [PMID: 29046481 PMCID: PMC5846952 DOI: 10.1172/jci.insight.95726] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/20/2017] [Indexed: 09/16/2023] Open
Abstract
Biological aging is associated with immune activation (IA) and declining immunity due to systemic inflammation. It is widely accepted that HIV infection causes persistent IA and premature immune senescence despite effective antiretroviral therapy and virologic suppression; however, the effects of combined HIV infection and aging are not well defined. Here, we assessed the relationship between markers of IA and inflammation during biological aging in HIV-infected and -uninfected populations. Antibody response to seasonal influenza vaccination was implemented as a measure of immune competence and relationships between IA, inflammation, and antibody responses were explored using statistical modeling appropriate for integrating high-dimensional data sets. Our results show that markers of IA, such as coexpression of HLA antigen D related (HLA-DR) and CD38 on CD4+ T cells, exhibit strong associations with HIV infection but not with biological age. Certain variables that showed a strong relationship with aging, such as declining naive and CD38+ CD4 and CD8+ T cells, did so regardless of HIV infection. Interestingly, the variable of biological age was not identified in a predictive model as significantly impacting vaccine responses in either group, while distinct IA and inflammatory variables were closely associated with vaccine response in HIV-infected and -uninfected populations. These findings shed light on the most relevant and persistent immune defects during virological suppression with antiretroviral therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Kristopher L. Arheart
- Department of Epidemiology and Public Health, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
215
|
Friedman H, Ator N, Haigwood N, Newsome W, Allan JS, Golos TG, Kordower JH, Shade RE, Goldberg ME, Bailey MR, Bianchi P. THE CRITICAL ROLE OF NONHUMAN PRIMATES IN MEDICAL RESEARCH. Pathog Immun 2017. [PMID: 29034361 DOI: 10.20411/pai.v2i3.186.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | | | - Nancy Haigwood
- Oregon Health & Science University, Portland, Oregon.,Oregon National Primate Research Center, Portland, Oregon
| | - William Newsome
- Stanford University School of Medicine, Stanford, California
| | - James S Allan
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
216
|
Hu G, Liao K, Yang L, Pendyala G, Kook Y, Fox HS, Buch S. Tat-Mediated Induction of miRs-34a & -138 Promotes Astrocytic Activation via Downregulation of SIRT1: Implications for Aging in HAND. J Neuroimmune Pharmacol 2017; 12:420-432. [PMID: 28236278 PMCID: PMC5546000 DOI: 10.1007/s11481-017-9730-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
Astrocyte activation is a hallmark of HIV infection and aging in the CNS. In chronically infected HIV patients, prolonged activation of astrocytes has been linked to accelerated aging including but not limited to neurocognitive impairment and frailty. The current study addresses the role of HIV protein Tat in inducing a set of small noncoding microRNAs (miRNA) that play critical role in astrogliosis. In our efforts to link astrocyte activation as an indicator of aging, we assessed the brains of both wild type and HIV transgenic rats for the expression of glial fibrillary acidic protein (GFAP). As expected, in the WT animals we observed age-dependent increase in astrogliosis in the older animals compared to the younger group. Interestingly, compared to the young WT group, young HIV Tg rats exhibited higher levels of GFAP in this trend was also observed in the older HIV Tg rats compared to the older WT group. Based on the role of SIRT1 in aging and the regulation of SIRT1 by miRNAs-34a and -138, we next assessed the expression levels of these miRs in the brains of both the young an old WT and HIV Tg rats. While there were no significant differences in the young WT versus the HIV Tg rats, in the older HIV Tg rats there was a significant upregulation in the expression of miRs-34a & -138 in the brains. Furthermore, increased expression of miRs-34a & -138 in the older Tg rats, correlated with a concomitant decrease in their common anti-aging target protein SIRT1, in the brains of these animals. To delineate the mechanism of action we assessed the role of HIV-Tat (present in the Tg rats) in inducing miRs-34a & -138 in both the primary astrocytes and the astrocytoma cell line A172, thereby leading to posttranscriptional suppression of SIRT1 with a concomitant up regulation of NF-kB driven expression of GFAP.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yeonhee Kook
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
217
|
Friedman H, Ator N, Haigwood N, Newsome W, Allan JS, Golos TG, Kordower JH, Shade RE, Goldberg ME, Bailey MR, Bianchi P. THE CRITICAL ROLE OF NONHUMAN PRIMATES IN MEDICAL RESEARCH. Pathog Immun 2017; 2:352-365. [PMID: 29034361 PMCID: PMC5636196 DOI: 10.20411/pai.v2i3.186] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The sponsors of this report endorse carefully regulated research with nonhuman primates. This research is essential to learning about the biology, treatment and prevention of diseases and conditions that cause human suffering.
Collapse
Affiliation(s)
| | | | - Nancy Haigwood
- Oregon Health & Science University, Portland, Oregon.,Oregon National Primate Research Center, Portland, Oregon
| | - William Newsome
- Stanford University School of Medicine, Stanford, California
| | - James S Allan
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|
219
|
Abstract
In the current era of therapy for human immunodeficiency virus (HIV), life expectancy for persons living with HIV (PLWH) approaches that of the general population. This newly prolonged survival among PLWH is associated with an increased prevalence of comorbidities due to the inflammation, immune activation and immune senescence associated with HIV infection. Higher prevalence of tobacco and alcohol use, co-infection with viral hepatitis and traditional cardiovascular risk factors such as hypertension and hyperlipidemia contribute as well. In this review, we hope to describe the current comorbidities occurring among PLWH and bring increased awareness for conditions that may otherwise not be considered given the younger age at time of presentation.
Collapse
Affiliation(s)
- Emma Kaplan-Lewis
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1090, New York, NY 10029, USA.
| | - Judith A Aberg
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1090, New York, NY 10029, USA
| | - Mikyung Lee
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1090, New York, NY 10029, USA
| |
Collapse
|
220
|
Cole JH, Underwood J, Caan MWA, De Francesco D, van Zoest RA, Leech R, Wit FWNM, Portegies P, Geurtsen GJ, Schmand BA, Schim van der Loeff MF, Franceschi C, Sabin CA, Majoie CBLM, Winston A, Reiss P, Sharp DJ. Increased brain-predicted aging in treated HIV disease. Neurology 2017; 88:1349-1357. [PMID: 28258081 PMCID: PMC5379929 DOI: 10.1212/wnl.0000000000003790] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/17/2017] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. METHODS A large sample of virologically suppressed HIV-positive adults (n = 162, age 45-82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18-90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age - chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. RESULTS HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (-0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. CONCLUSION Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging.
Collapse
Affiliation(s)
- James H Cole
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy.
| | - Jonathan Underwood
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Matthan W A Caan
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Davide De Francesco
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Rosan A van Zoest
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Robert Leech
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Ferdinand W N M Wit
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Peter Portegies
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Gert J Geurtsen
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Ben A Schmand
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Maarten F Schim van der Loeff
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Claudio Franceschi
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Caroline A Sabin
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Charles B L M Majoie
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Alan Winston
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Peter Reiss
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - David J Sharp
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| |
Collapse
|
221
|
Rinaldi S, Pallikkuth S, George VK, de Armas LR, Pahwa R, Sanchez CM, Pallin MF, Pan L, Cotugno N, Dickinson G, Rodriguez A, Fischl M, Alcaide M, Gonzalez L, Palma P, Pahwa S. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age. Aging (Albany NY) 2017; 9:1307-1325. [PMID: 28448963 PMCID: PMC5425129 DOI: 10.18632/aging.101229] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapies (cART)can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative "healthy controls" (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old (>60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction.
Collapse
Affiliation(s)
- Stefano Rinaldi
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Varghese K. George
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lesley R. de Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rajendra Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Celeste M. Sanchez
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Fernanda Pallin
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Pan
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO) Research Unit in Congenital and Perinatal Infections, Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Gordon Dickinson
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allan Rodriguez
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Margaret Fischl
- AIDS Clinical Research Unit, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Alcaide
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Louis Gonzalez
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO) Research Unit in Congenital and Perinatal Infections, Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
222
|
Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 2017; 18:58. [PMID: 28351383 PMCID: PMC5370462 DOI: 10.1186/s13059-017-1185-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.
Collapse
Affiliation(s)
- John J Cole
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Neil A Robertson
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Mohammed Iqbal Rather
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tony McBryan
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Claire Brock
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Richard A Miller
- Department of Pathology and Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA.
| | - Peter D Adams
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK.
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
223
|
Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-Borg HM, Adams PD, Ideker T. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 2017; 18:57. [PMID: 28351423 PMCID: PMC5371228 DOI: 10.1186/s13059-017-1186-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. RESULTS We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. CONCLUSIONS This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers.
Collapse
Affiliation(s)
- Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian Tsui
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Neil A Robertson
- Beatson Institute for Cancer Research and University of Glasgow, Glasgow, UK
| | - Andrew M Gross
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Ku Yu
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hannah Carter
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Peter D Adams
- Beatson Institute for Cancer Research and University of Glasgow, Glasgow, UK.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
224
|
Identification of HIV infection-related DNA methylation sites and advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. AIDS 2017; 31:571-575. [PMID: 27922854 DOI: 10.1097/qad.0000000000001360] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE HIV-positive individuals are at higher risk than healthy persons for aging-related diseases, including myocardial infarction and non-AIDS defining cancers. Recent evidence suggests that HIV infection may modulate changes in the host cell epigenome, and these changes represent a potential mechanism through which HIV infection accelerates aging. We assessed the difference in DNA methylation (DNAm) age, an aging marker involving multiple age-related cytosine-guanine dinucleotide (CpG) sites, among antiretroviral treatment (ART)-naive HIV-positive and HIV-negative individuals in a cohort of veterans from the Veterans Aging Cohort Study. DESIGN Peripheral blood samples were collected from 19 ART-naive, HIV-positive, and 19 HIV-negative male participants, matched by age and race. Blood samples were collected from HIV-positive participants 7-11 years after ART initiation. METHODS We compared DNAm age between HIV-positive and HIV-negative groups at baseline and between HIV-positive patients at baseline and follow-up. We also performed an epigenome-wide analysis to identify CpG methylation sites associated with HIV infection. RESULTS DNAm age in HIV-positive individuals is, on average, 11.2 years higher than HIV study participants at baseline, and two of 10 HIV-positive individuals showed an increase in DNAm age after ART initiation. Epigenome-wide association studies showed an association of HIV infection with one site, in gene VPS37B, which approached statistical significance in our cohort (P = 3.30 × 10, Bonferroni-corrected threshold = 1.22 × 10) and was replicated in a second, larger cohort. CONCLUSION ART treatment-naive HIV-positive individuals have significantly older DNAm age compared to HIV-negative individuals in the Veterans Aging Cohort Study cohort. Longitudinal changes in DNAm age are highly variable across individuals after initiation of antiretroviral therapy.
Collapse
|
225
|
Sardo VL, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A. Influence of donor age on induced pluripotent stem cells. Nat Biotechnol 2017; 35:69-74. [PMID: 27941802 PMCID: PMC5505172 DOI: 10.1038/nbt.3749] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are being pursued as a source of cells for autologous therapies, many of which will be aimed at aged patients. To explore the impact of age on iPSC quality, we produced iPSCs from blood cells of 16 donors aged 21-100. We find that iPSCs from older donors retain an epigenetic signature of age, which can be reduced through passaging. Clonal expansion via reprogramming also enables the discovery of somatic mutations present in individual donor cells, which are missed by bulk sequencing methods. We show that exomic mutations in iPSCs increase linearly with age, and all iPSC lines analyzed carry at least one gene-disrupting mutation, several of which have been associated with cancer or dysfunction. Unexpectedly, elderly donors (>90 yrs) harbor fewer mutations than predicted, likely due to a contracted blood progenitor pool. These studies establish that donor age is associated with an increased risk of abnormalities in iPSCs and will inform clinical development of reprogramming technology.
Collapse
Affiliation(s)
- Valentina Lo Sardo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - William Ferguson
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Galina A. Erikson
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, La Jolla, California
| | - Eric J Topol
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Ali Torkamani
- The Scripps Translational Science Institute, Scripps Health and The Scripps Research Institute, La Jolla, California
| |
Collapse
|
226
|
Kohanski RA, Deeks SG, Gravekamp C, Halter JB, High K, Hurria A, Fuldner R, Green P, Huebner R, Macchiarini F, Sierra F. Reverse geroscience: how does exposure to early diseases accelerate the age-related decline in health? Ann N Y Acad Sci 2016; 1386:30-44. [PMID: 27907230 DOI: 10.1111/nyas.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level. Indeed, the role of childhood or early adulthood exposure to chronic disease and/or treatment on accelerating aging phenotypes is well known in epidemiology, but the biological basis is poorly understood. A recent summit co-organized by the National Institutes of Health GeroScience Interest Group and the New York Academy of Sciences explored these relationships, using three chronic diseases as examples: cancer, HIV/AIDS, and diabetes. The epidemiological literature clearly indicates that early exposure to any of these diseases and/or their treatments results in an acceleration of the appearance of aging phenotypes, including loss of functional capacity and accelerated appearance of clinical symptoms of aging-related diseases not obviously related to the earlier event. The discussions at the summit focused on the molecular and cellular relationships between each of these diseases and the recently defined molecular and cellular pillars of aging. Two major conclusions from the meeting include the desire to refine an operational definition of aging and to concomitantly develop biomarkers of aging, in order to move from chronological to physiological age. The discussion also opened a dialogue on the possibility of improving late-life outcomes in patients affected by chronic disease by including age-delaying modalities along with the standard care for the disease in question.
Collapse
Affiliation(s)
- Ronald A Kohanski
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey B Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Kevin High
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Arti Hurria
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California
| | - Rebecca Fuldner
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Paige Green
- Biobehavioral and Psychologic Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robin Huebner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Felipe Sierra
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| |
Collapse
|
227
|
Mather KA, Armstrong NJ, Thalamuthu A, Kwok JBJ. Tick tock: DNA methylation, the epigenetic clock and exceptional longevity. Epigenomics 2016; 8:1577-1582. [DOI: 10.2217/epi-2016-0137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karen A Mather
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicola J Armstrong
- Department of Mathematics & Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - John BJ Kwok
- Neuroscience Research Australia, Sydney, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
228
|
Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH, Xu K. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11:750-760. [PMID: 27672717 PMCID: PMC5094631 DOI: 10.1080/15592294.2016.1221569] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = −6.03, Pnominal = 4.96 × 10−9; cg16411857: t = −7.63, Pnominal = 3.07 × 10−13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = −4.44, Pnominal = 1.61 × 10−5; cg16411857: t = −5.90; P = 1.99 × 10−8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10−4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Amy C Justice
- c Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System , West Haven , CT , USA
| | - Ying Hu
- d Center for Biomedical Informatics & Information Technology, National Cancer Institute , Bethesda , MD , USA
| | - Zuoheng Wang
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Hongyu Zhao
- f Department of Biostatistics , Yale School of Public Health , New Haven , CT , USA
| | - Guilin Wang
- g Yale Center of Genomic Analysis, West Campus , Orange , CT , USA
| | - Eric O Johnson
- h Fellow Program and Behavioral Health and Criminal Justice Division, RTI International , Research Triangle Park, NC , USA
| | - Brinda Emu
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Richard E Sutton
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - John H Krystal
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Ke Xu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| |
Collapse
|
229
|
Hernández-Aguilera A, Fernández-Arroyo S, Cuyàs E, Luciano-Mateo F, Cabre N, Camps J, Lopez-Miranda J, Menendez JA, Joven J. Epigenetics and nutrition-related epidemics of metabolic diseases: Current perspectives and challenges. Food Chem Toxicol 2016; 96:191-204. [PMID: 27503834 DOI: 10.1016/j.fct.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
We live in a world fascinated by the relationship between disease and nutritional disequilibrium. The subtle and slow effects of chronic nutrient toxicity are a major public health concern. Since food is potentially important for the development of "metabolic memory", there is a need for more information on the type of nutrients causing adverse or toxic effects. We now know that metabolic alterations produced by excessive intake of some nutrients, drugs and chemicals directly impact epigenetic regulation. We envision that understanding how metabolic pathways are coordinated by environmental and genetic factors will provide novel insights for the treatment of metabolic diseases. New methods will enable the assembly and analysis of large sets of complex molecular and clinical data for understanding how inflammation and mitochondria affect bioenergetics, epigenetics and health. Collectively, the observations we highlight indicate that energy utilization and disease are intimately connected by epigenetics. The challenge is to incorporate metabolo-epigenetic data in better interpretations of disease, to expedite therapeutic targeting of key pathways linking nutritional toxicity and metabolism. An additional concern is that changes in the parental phenotype are detectable in the methylome of subsequent offspring. The effect might create a menace to future generations and preconceptional considerations.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Noemi Cabre
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|