201
|
NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci 2010; 29:15542-50. [PMID: 20007478 DOI: 10.1523/jneurosci.3938-09.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful regeneration of damaged neurons depends on the coordinated expression of neuron-intrinsic genes. At present however, there is no comprehensive view of the transcriptional regulatory mechanisms underlying neuronal regeneration. We used high-content cellular screening to investigate the functional contribution of 62 transcription factors to regenerative neuron outgrowth. Ten transcription factors are identified that either increase or decrease neurite outgrowth. One of these, NFIL3, is specifically upregulated during successful regeneration in vivo. Paradoxically however, knockdown of NFIL3 and overexpression of dominant-negative NFIL3 both increase neurite outgrowth. Our data show that NFIL3, together with CREB, forms an incoherent feedforward transcriptional regulatory loop in which NFIL3 acts as a negative regulator of CREB-induced regeneration-associated genes.
Collapse
|
202
|
Joset A, Dodd DA, Halegoua S, Schwab ME. Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde signaling. ACTA ACUST UNITED AC 2010; 188:271-85. [PMID: 20083601 PMCID: PMC2812518 DOI: 10.1083/jcb.200906089] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RhoA is activated from internalized Nogo-A to promote growth cone collapse and inhibit neurite outgrowth. Nogo-A is one of the most potent myelin-associated inhibitors for axonal growth, regeneration, and plasticity in the adult central nervous system. The Nogo-A–specific fragment NogoΔ20 induces growth cone collapse, and inhibits neurite outgrowth and cell spreading by activating RhoA. Here, we show that NogoΔ20 is internalized into neuronal cells by a Pincher- and rac-dependent, but clathrin- and dynamin-independent, mechanism. Pincher-mediated macroendocytosis results in the formation of NogoΔ20-containing signalosomes that direct RhoA activation and growth cone collapse. In compartmentalized chamber cultures, NogoΔ20 is endocytosed into neurites and retrogradely transported to the cell bodies of dorsal root ganglion neurons, triggering RhoA activation en route and decreasing phosphorylated cAMP response element binding levels in cell bodies. Thus, Pincher-dependent macroendocytosis leads to the formation of Nogo-A signaling endosomes, which act both within growth cones and after retrograde transport in the cell body to negatively regulate the neuronal growth program.
Collapse
Affiliation(s)
- Armela Joset
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
203
|
Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. J Neurosci 2010; 29:14881-90. [PMID: 19940184 DOI: 10.1523/jneurosci.3641-09.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft-host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF-PBS treatment, GDNF-ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.
Collapse
|
204
|
Baptiste DC, Tighe A, Fehlings MG. Spinal cord injury and neural repair: focus on neuroregenerative approaches for spinal cord injury. Expert Opin Investig Drugs 2010; 18:663-73. [PMID: 19379122 DOI: 10.1517/13543780902897623] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND This review discusses the urgent need for improved therapeutic approaches aimed at restoring function following traumatic spinal cord injury (SCI). The focus of this paper is neuroregenerative approaches for SCI, with a highlighted comparison of recent advances in the field and comparisons to that made by Cethrin (Alseres Pharmaceuticals, Inc.), the leading nerve repair product. OBJECTIVE This review first provides the reader with an understanding of SCI. The market for promising therapeutics that can either intervene in secondary etiological mechanisms or ameliorate symptoms associated with SCI are then discussed. The reader will also learn about Cethrin and its current status in clinical evaluation. METHODS Review of the preclinical literature and clinical SCI trials relevant to the discovery and current development of Cethrin. RESULTS/CONCLUSION In a recently concluded Phase I/IIa clinical trial involving 37 patients with either cervical or thoracic SCIs, the evidence for Cethrin indicates that topical administration of either 0.3, 1, 3 or 6 mg of the recombinant rho inhibitor following surgical decompression is safe. Alseres has announced that planning is underway for a Phase IIB trial of Cethrin to include a placebo arm to assess better the drugs' clinical efficacy.
Collapse
Affiliation(s)
- Darryl C Baptiste
- University Health Network, Toronto Western Hospital, Toronto Western Research Institute, Krembil Neuroscience Centre, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
205
|
Lavdas AA, Chen J, Papastefanaki F, Chen S, Schachner M, Matsas R, Thomaidou D. Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury. Exp Neurol 2010; 221:206-16. [DOI: 10.1016/j.expneurol.2009.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/30/2009] [Accepted: 10/31/2009] [Indexed: 11/30/2022]
|
206
|
Kalous A, Keast JR. Conditioning lesions enhance growth state only in sensory neurons lacking calcitonin gene-related peptide and isolectin B4-binding. Neuroscience 2009; 166:107-21. [PMID: 20006678 DOI: 10.1016/j.neuroscience.2009.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 12/31/2022]
Abstract
A conditioning lesion improves regeneration of central and peripheral axons of dorsal root ganglion (DRG) neurons after a subsequent injury by enhancing intrinsic growth capacity. This enhanced growth state is also observed in cultured DRG neurons, which support a more sparsely and rapidly elongating mode of growth after a prior conditioning lesion in vivo. Here we examined differences in the capacity or requirements of specific types of sensory neurons for regenerative growth, which has important consequences for development of strategies to improve recovery after injury. We showed that after partial or complete injury of the sciatic nerve in mice, an elongating mode of growth in vitro was activated only in DRG neurons that did not express calcitonin gene-related peptide (CGRP) or bind Bandeiraea simplicifolia I-isolectin B4 (IB4). We also directly examined the response of conditioned sensory neurons to nerve growth factor (NGF), which does not enhance growth in injured peripheral nerves in vivo. We showed that after partial injury, NGF stimulated a highly branched and linearly restricted rather than elongating mode of growth. After complete injury, the function of NGF was impaired, which immunohistochemical studies of DRG indicated was at least partly due to downregulation of the NGF receptor, tropomyosin-related kinase A (TrkA). These results suggest that, regardless of the type of conditioning lesion, each type of DRG neuron has a distinct intrinsic capacity or requirement for the activation of rapidly elongating growth, which does not appear to be influenced by NGF.
Collapse
Affiliation(s)
- A Kalous
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | |
Collapse
|
207
|
Giovanni SD. Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opin Ther Targets 2009; 13:1387-98. [DOI: 10.1517/14728220903307517] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
208
|
Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J, Flanagan JG. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009; 326:592-6. [PMID: 19833921 PMCID: PMC2811318 DOI: 10.1126/science.1178310] [Citation(s) in RCA: 533] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) present a barrier to axon regeneration. However, no specific receptor for the inhibitory effect of CSPGs has been identified. We showed that a transmembrane protein tyrosine phosphatase, PTPsigma, binds with high affinity to neural CSPGs. Binding involves the chondroitin sulfate chains and a specific site on the first immunoglobulin-like domain of PTPsigma. In culture, PTPsigma(-/-) neurons show reduced inhibition by CSPG. A PTPsigma fusion protein probe can detect cognate ligands that are up-regulated specifically at neural lesion sites. After spinal cord injury, PTPsigma gene disruption enhanced the ability of axons to penetrate regions containing CSPG. These results indicate that PTPsigma can act as a receptor for CSPGs and may provide new therapeutic approaches to neural regeneration.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Alan P. Tenney
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah A. Busch
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kevin P. Horn
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fernando X. Cuascut
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kai Liu
- Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhigang He
- Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - John G. Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
209
|
Murray AJ, Peace AG, Shewan DA. cGMP promotes neurite outgrowth and growth cone turning and improves axon regeneration on spinal cord tissue in combination with cAMP. Brain Res 2009; 1294:12-21. [PMID: 19646425 DOI: 10.1016/j.brainres.2009.07.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 07/13/2009] [Accepted: 07/21/2009] [Indexed: 01/20/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) has been intensively studied in recent years in order to elucidate its contribution in intracellular signalling mechanisms that regulate axon growth and guidance, and also to test if its activation can promote axon regeneration after injury. Cyclic guanosine monophosphate (cGMP), however, has been given considerably less attention even though it too mediates intracellular signalling cascades activated by extracellular guidance cues. cGMP can promote neurite outgrowth in neuronal cell lines but its role in promoting growth and regeneration of primary neurons is not well established. Here, we have examined the effects of elevating cGMP activity on axon growth, guidance and regeneration in vitro. We have found that, like cAMP elevation, activation of cGMP increases rat dorsal root ganglion (DRG) neurite outgrowth on a polylysine substrate and that asymmetric cGMP elevation promotes attractive growth cone turning. When grown in an in vitro model of axon regeneration activation of cGMP alone was not sufficient to promote adult neurite outgrowth. However, when combined with cAMP elevation substantial regeneration of adult neurites is achieved, superior to that achieved with either cAMP or cGMP alone. Regeneration is enhanced still further with simultaneous application of a Nogo receptor blocking peptide, suggesting this combinatorial strategy could achieve far greater axon regeneration in vivo than targeting individual cell signalling mechanisms.
Collapse
Affiliation(s)
- Andrew J Murray
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
210
|
Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL. KLF family members regulate intrinsic axon regeneration ability. Science 2009; 326:298-301. [PMID: 19815778 DOI: 10.1126/science.1175737] [Citation(s) in RCA: 567] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurons in the central nervous system (CNS) lose their ability to regenerate early in development, but the underlying mechanisms are unknown. By screening genes developmentally regulated in retinal ganglion cells (RGCs), we identified Krüppel-like factor-4 (KLF4) as a transcriptional repressor of axon growth in RGCs and other CNS neurons. RGCs lacking KLF4 showed increased axon growth both in vitro and after optic nerve injury in vivo. Related KLF family members suppressed or enhanced axon growth to differing extents, and several growth-suppressive KLFs were up-regulated postnatally, whereas growth-enhancing KLFs were down-regulated. Thus, coordinated activities of different KLFs regulate the regenerative capacity of CNS neurons.
Collapse
Affiliation(s)
- Darcie L Moore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Li F, Li L, Song XY, Zhong JH, Luo XG, Xian CJ, Zhou XF. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats - possible roles of brain-derived
neurotrophic factor, TrkB and p75 neurotrophin receptor. Eur J Neurosci 2009; 30:1280-96. [DOI: 10.1111/j.1460-9568.2009.06920.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
212
|
Douglas MR, Morrison KC, Jacques SJ, Leadbeater WE, Gonzalez AM, Berry M, Logan A, Ahmed Z. Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth. ACTA ACUST UNITED AC 2009; 132:3102-21. [PMID: 19783665 DOI: 10.1093/brain/awp240] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Inhibition of central nervous system axon growth is reportedly mediated in part by calcium-dependent phosphorylation of axonal epidermal growth factor receptor, with local administration of the epidermal growth factor receptor kinase inhibitors AG1478 and PD168393 to an optic nerve lesion site promoting adult retinal ganglion cell axon regeneration. Here, we show that epidermal growth factor receptor was neither constitutively expressed, nor activated in optic nerve axons in our non-regenerating and regenerating optic nerve injury models, a finding that is inconsistent with phosphorylated epidermal growth factor receptor-dependent intra-axonal signalling of central nervous system myelin-related axon growth inhibitory ligands. However, epidermal growth factor receptor was localized and activated within most glia in the retina and optic nerve post-injury, and thus an indirect glial-dependent mechanism for stimulated retinal ganglion cell axon growth by epidermal growth factor receptor inhibitors seemed plausible. Using primary retinal cultures with added central nervous system myelin extracts, we confirmed previous reports that AG1478/PD168393 blocks epidermal growth factor receptor activation and promotes disinhibited neurite outgrowth. Paradoxically, neurites did not grow in central nervous system myelin extract-containing cultures after short interfering ribonucleic acid-mediated knockdown of epidermal growth factor receptor. However, addition of AG1478 restored neurite outgrowth to short interfering ribonucleic acid-treated cultures, implying that epidermal growth factor receptor does not mediate AG1478-dependent effects. TrkA-/B-/C-Fc fusion proteins and the kinase blocker K252a abrogated the neuritogenic activity in these cultures, correlating with the presence of the neurotrophins brain derived neurotrophic factor, nerve growth factor and neurotrophin-3 in the supernatant and increased intracellular cyclic adenosine monophosphate activity. Neurotrophins released by AG1478 stimulated disinhibited retinal ganglion cell axon growth in central nervous system myelin-treated cultures by the induction of regulated intramembraneous proteolysis of p75(NTR) and Rho inactivation. Retinal astrocytes/Müller cells and retinal ganglion cells were the source of neurotrophins, with neurite outgrowth halved in the presence of glial inhibitors. We attribute AG1478-stimulated neuritogenesis to the induced release of neurotrophins together with raised cyclic adenosine monophosphate levels in treated cultures, leading to axon growth and disinhibition by neurotrophin-induced regulated intramembraneous proteolysis of p75(NTR). These off-target effects of epidermal growth factor receptor kinase inhibition suggest a novel therapeutic approach for designing treatments to promote central nervous system axon regeneration.
Collapse
Affiliation(s)
- Michael R Douglas
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
213
|
A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A 2009; 106:17475-80. [PMID: 19805133 DOI: 10.1073/pnas.0908641106] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophages play an essential role in the resolution of tissue damage through removal of necrotic cells, thus paving the way for tissue regeneration. Macrophages also directly support the formation of new tissue to replace the injury, through their acquisition of an anti-inflammatory, or M2, phenotype, characterized by a gene expression program that includes IL-10, the IL-13 receptor, and arginase 1. We report that deletion of two CREB-binding sites from the Cebpb promoter abrogates Cebpb induction upon macrophage activation. This blocks the downstream induction of M2-specific Msr1, Il10, II13ra, and Arg-1 genes, whereas the inflammatory (M1) genes Il1, Il6, Tnfa, and Il12 are not affected. Mice carrying the mutated Cebpb promoter (betaDeltaCre) remove necrotic tissue from injured muscle, but exhibit severe defects in muscle fiber regeneration. Conditional deletion of the Cebpb gene in muscle cells does not affect regeneration, showing that the C/EBPbeta cascade leading to muscle repair is muscle-extrinsic. While betaDeltaCre macrophages efficiently infiltrate injured muscle they fail to upregulate Cebpb, leading to decreased Arg-1 expression. CREB-mediated induction of Cebpb expression is therefore required in infiltrating macrophages for upregulation of M2-specific genes and muscle regeneration, providing a direct genetic link between these two processes.
Collapse
|
214
|
Nash M, Pribiag H, Fournier AE, Jacobson C. Central nervous system regeneration inhibitors and their intracellular substrates. Mol Neurobiol 2009; 40:224-35. [PMID: 19763907 DOI: 10.1007/s12035-009-8083-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/27/2009] [Indexed: 12/11/2022]
Abstract
Injury to the central nervous system (CNS) initiates a cascade of responses that is inhibitory to the regeneration of neurons and full recovery. At the site of injury, glial cells conspire with an inhibitory biochemical milieu to construct both physical and chemical barriers that prevent the outgrowth of axons to or beyond the lesion site. These inhibitors include factors derived from myelin, repulsive guidance cues, and chondroitin sulfate proteoglycans. Each bind receptors on the axon surface to initiating intracellular signaling cascades that ultimately result in cytoskeletal reorganization and growth cone collapse. Here, we present an overview of the molecules, receptors, and signaling pathways that inhibit CNS regeneration, with a particular focus on the intracellular signaling machinery that may function as convergent targets for multiple inhibitory ligands.
Collapse
Affiliation(s)
- Michelle Nash
- Department of Biology, University of Waterloo, ON, Canada
| | | | | | | |
Collapse
|
215
|
Increased synthesis of spermidine as a result of upregulation of arginase I promotes axonal regeneration in culture and in vivo. J Neurosci 2009; 29:9545-52. [PMID: 19641117 DOI: 10.1523/jneurosci.1175-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult spinal axons do not spontaneously regenerate after injury. However, if the peripheral branch of dorsal root ganglion neurons is lesioned before lesioning the central branch of the same neurons in the dorsal column, these central axons will regenerate and, if cultured, are not inhibited from extending neurites by myelin-associated inhibitors of regeneration such as myelin-associated glycoprotein (MAG). This effect can be mimicked by elevating cAMP and is transcription dependent. The ability of cAMP to overcome inhibition by MAG in culture involves the upregulation of the enzyme arginase I (Arg I) and subsequent increase in synthesis of polyamines such as putrescine. Now we show that a peripheral lesion also induces an increase in Arg I expression and synthesis of polyamines. We also show that the conditioning lesion effect in overcoming inhibition by MAG is initially dependent on ongoing polyamine synthesis but, with time after lesion, becomes independent of ongoing synthesis. However, if synthesis of polyamines is blocked in vivo the early phase of good growth after a conditioning lesion is completely blocked and the later phase of growth, when ongoing polyamine synthesis is not required during culture, is attenuated. We also show that putrescine must be converted to spermidine both in culture and in vivo to overcome inhibition by MAG and that spermidine can promote optic nerve regeneration in vivo. These results suggest that spermidine could be a useful tool in promoting CNS axon regeneration after injury.
Collapse
|
216
|
Ahmed Z, Jacques SJ, Berry M, Logan A. Epidermal growth factor receptor inhibitors promote CNS axon growth through off-target effects on glia. Neurobiol Dis 2009; 36:142-50. [PMID: 19632327 DOI: 10.1016/j.nbd.2009.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/21/2009] [Accepted: 07/13/2009] [Indexed: 12/12/2022] Open
Abstract
Administration of epidermal growth factor receptor (EGFR) inhibitors (e.g. AG1478/PD168393) promotes central nervous system (CNS) axon regeneration in vivo by an unknown mechanism. Here, we show that EGFR activation is not required for AG1478-/PD168393-induced neurite outgrowth in cultures of dorsal root ganglion neurons (DRGN) with added inhibitory CNS myelin extract (CME), but is mediated by the paracrine and autocrine actions of the glia-/neuron-derived neurotrophins (NT) NGF, BDNF and NT-3 through Trk signalling in DRGN potentiated by elevated cAMP levels. The DRGN neurite growth seen in CME-inhibited cultures treated with AG1478 is eradicated by blocking Trk signalling but undiminished after siRNA knockdown of >90% EGFR. Moreover, addition of the combined triplet of NT restores neurite outgrowth in CME-inhibited cultures, when cAMP levels are raised. Accordingly, we suggest that chemical EGFR inhibitors act independently of EGFR, inducing glia and neurons to secrete NT and raising cAMP levels in DRG cultures, leading to Trk-dependent disinhibited DRGN neurite outgrowth.
Collapse
Affiliation(s)
- Zubair Ahmed
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Institute of Biomedical Research (West), Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
217
|
Zhou Z, Peng X, Fink DJ, Mata M. HSV-mediated transfer of artemin overcomes myelin inhibition to improve outcome after spinal cord injury. Mol Ther 2009; 17:1173-9. [PMID: 19293775 PMCID: PMC2835217 DOI: 10.1038/mt.2009.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/22/2009] [Indexed: 11/08/2022] Open
Abstract
Artemin is a neurotrophic factor of the glial cell line-derived neurotrophic factor (GDNF) family of ligands that acts through the GDNF family receptor alpha3 (GFRalpha3)/ret receptor found predominantly on sensory and sympathetic neurons. In order to explore the potential utility of artemin to improve functional outcome after spinal cord injury (SCI), we constructed a nonreplicating herpes simplex virus (HSV)-based vector to express artemin (QHArt). We found that QHArt efficiently transfects spinal cord neurons to produce artemin. Transgene-mediated artemin supported the extension of neurites by primary dorsal root ganglion neurons in culture, and allowed those cells to overcome myelin inhibition of neurite extension through activation of protein kinase A (PKA) to phosphorylate cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and increase expression of arginase I. Intraspinal injection of QHArt immediately after thoracic spinal cord dorsal over hemisection produced a statistically significant improvement in motor recovery over the course of four weeks measured by locomotor rating score.
Collapse
Affiliation(s)
- Zhigang Zhou
- Department of Neurology, University of Michigan, Ann Arbor, USA
| | | | | | | |
Collapse
|
218
|
Lee PR, Fields RD. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons. Front Neuroanat 2009; 3:4. [PMID: 19521541 PMCID: PMC2694662 DOI: 10.3389/neuro.05.004.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 05/19/2009] [Indexed: 01/04/2023] Open
Abstract
Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.
Collapse
Affiliation(s)
- Philip R Lee
- National Institutes of Health, NICHD Bethesda, MD, USA
| | | |
Collapse
|
219
|
Park KK, Hu Y, Muhling J, Pollett MA, Dallimore EJ, Turnley AM, Cui Q, Harvey AR. Cytokine-induced SOCS expression is inhibited by cAMP analogue: impact on regeneration in injured retina. Mol Cell Neurosci 2009; 41:313-24. [PMID: 19394427 DOI: 10.1016/j.mcn.2009.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/25/2009] [Accepted: 04/17/2009] [Indexed: 12/09/2022] Open
Abstract
Injured adult retinal ganglion cells (RGCs) regrow axons into peripheral nerve (PN) grafted onto cut optic nerve. Survival and regeneration of RGCs is increased by intraocular injections of ciliary neurotrophic factor (CNTF) and axonal regeneration is further enhanced by co-injection of a cyclic AMP analogue (CPT-cAMP). Based on these data, and because cytokine signaling is negatively regulated by suppressor of cytokine signaling (SOCS) proteins, we set out to determine whether CNTF injections increase retinal SOCS expression and whether any changes are attenuated by co-injection with CPT-cAMP. Using quantitative PCR we found increased SOCS1, SOCS2 and SOCS3 mRNA levels at various times after a single CNTF injection. Expression remained high for many days. SOCS protein levels were also increased. In situ hybridization revealed that RGCs express SOCS3 mRNA, and SOCS expression in cultured RGCs was increased by CNTF. Co-injection of CPT-cAMP reduced CNTF induced expression of SOCS1 and SOCS3 mRNA and decreased SOCS3 protein expression. CNTF injection also transiently increased retinal leukemia inhibitory factor (LIF) expression, an effect that was also moderated by CPT-cAMP. We propose that, along with known reparative effects of elevated cAMP on neurons, reducing SOCS upregulation may be an additional way in which cyclic nucleotides augment cytokine-induced regenerative responses in the injured CNS.
Collapse
Affiliation(s)
- Kevin K Park
- School of Anatomy and Human Biology M309, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
220
|
The CREB/CREM transcription factors negatively regulate early synaptogenesis and spontaneous network activity. J Neurosci 2009; 29:328-33. [PMID: 19144833 DOI: 10.1523/jneurosci.5252-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The family of CREB (cAMP response element-binding protein) transcription factors are involved in a variety of biological processes including the development and plasticity of the nervous system. In the maturing and adult brain, CREB genes are required for activity-dependent processes, including synaptogenesis, refinement of connections and long-term potentiation. Here, we use CREB1(Nescre)CREM(-/-) (cAMP-responsive element modulator) mutants to investigate the role of these genes in stimulus-independent patterns of neural activity at early stages. We show that lack of CREB/CREM genes specifically in neural tissue leads to increased synaptogenesis and to a dramatic increase in the levels of spontaneous network activity at embryonic stages. Thus, the functions of CREB/CREM genes in neural activity differ in distinct periods of neural development.
Collapse
|
221
|
Abstract
The cell body of a lesioned neuron must receive accurate and timely information on the site and extent of axonal damage, in order to mount an appropriate response. Specific mechanisms must therefore exist to transmit such information along the length of the axon from the lesion site to the cell body. Three distinct types of signals have been postulated to underlie this process, starting with injury-induced discharge of axon potentials, and continuing with two distinct types of retrogradely transported macromolecular signals. The latter includes, on the one hand, an interruption of the normal supply of retrogradely transported trophic factors from the target, and, on the other hand, activated proteins originating from the injury site. This chapter reviews the progress on understanding the different mechanistic aspects of the axonal response to injury, and how the information is conveyed from the injury site to the cell body to initiate regeneration.
Collapse
Affiliation(s)
- Keren Ben-Yaakov
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
222
|
Fujino H, Kitaoka Y, Hayashi Y, Munemasa Y, Takeda H, Kumai T, Kobayashi S, Ueno S. Axonal protection by brain-derived neurotrophic factor associated with CREB phosphorylation in tumor necrosis factor-alpha-induced optic nerve degeneration. Acta Neuropathol 2009; 117:75-84. [PMID: 18830614 DOI: 10.1007/s00401-008-0440-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/06/2008] [Accepted: 09/22/2008] [Indexed: 01/18/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent survival and developmental factor that is regulated by cyclic AMP-response element binding protein (CREB) and has a protective effect against retinal ganglion cell (RGC) death. However, the effect of BDNF on the optic nerve axonal degeneration remains to be examined. In this study, we show that intravitreal injection of tumor necrosis factor (TNF)-alpha induces transient increases in phosphorylated-CREB (p-CREB) and BDNF expression in the optic nerve. Administration of exogenous BDNF further increased the p-CREB and endogenous BDNF level and exerted a neuroprotective effect against TNF-alpha-induced axonal loss. The increases in BDNF mRNA and protein induced by TNF-alpha were inhibited significantly by a CRE decoy oligonucleotide. The protective effect of exogenous BDNF on axons was also inhibited by the CRE decoy oligonucleotide. These results suggest that the protective effect of exogenous BDNF may be associated with increases in CREB phosphorylation and endogenous BDNF in the optic nerve.
Collapse
Affiliation(s)
- Hiromi Fujino
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Molecular Mechanisms of Axonal Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:1-16. [DOI: 10.1007/978-0-387-76715-4_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
224
|
Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 2008; 16:543-54. [PMID: 19057620 DOI: 10.1038/cdd.2008.175] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcription regulates axon outgrowth and regeneration. However, to date, no transcription complexes have been shown to control axon outgrowth and regeneration by regulating axon growth genes. Here, we report that the tumor suppressor p53 and its acetyltransferases CBP/p300 form a transcriptional complex that regulates the axonal growth-associated protein 43, a well-characterized pro-axon outgrowth and regeneration protein. Acetylated p53 at K372-3-82 drives axon outgrowth, GAP-43 expression, and binds specific elements on the neuronal GAP-43 promoter in a chromatin environment through CBP/p300 signaling. Importantly, in an axon regeneration model, both CBP and p53 K372-3-82 are induced following axotomy in facial motor neurons, where p53 K372-3-82 occupancy of GAP-43 promoter is enhanced as shown by in vivo chromatin immunoprecipitation. Finally, by comparing wild-type and p53 null mice, we demonstrate that the p53/GAP-43 transcriptional module is specifically switched on during axon regeneration in vivo. These data contribute to the understanding of gene regulation in axon outgrowth and may suggest new molecular targets for axon regeneration.
Collapse
Affiliation(s)
- A Tedeschi
- Laboratory for NeuroRegeneration and Repair, Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
225
|
Murray AJ, Shewan DA. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol Cell Neurosci 2008; 38:578-88. [PMID: 18583150 DOI: 10.1016/j.mcn.2008.05.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/27/2008] [Accepted: 05/07/2008] [Indexed: 01/31/2023] Open
Abstract
A decline in developing neuronal cAMP levels appears to render mammalian axons susceptible to growth inhibitory factors in the damaged CNS. cAMP elevation enhances axon regeneration, but the cellular mechanisms involved have yet to be fully elucidated. Epac has been identified as a signaling protein that can be activated by cAMP independently of PKA, but little is known of its expression or role in the nervous system. We report that Epac expression is developmentally regulated in the rat nervous system, and that activation of Epac promotes DRG neurite outgrowth and is as effective as cAMP elevation in promoting neurite regeneration on spinal cord tissue. Additionally, siRNA mediated knockdown of Epac reduces DRG neurite outgrowth, prevents the increased growth promoted by cAMP elevation and also diminishes the ability of embryonic neurons to grow processes on spinal cord tissue. Furthermore, we show that asymmetric activation of Epac promotes attractive growth cone turning in a similar manner to cAMP activation. We propose that Epac plays a role in mediating cAMP-dependent axon growth and guidance, and may provide an important target for inducing axon regeneration in vivo.
Collapse
Affiliation(s)
- Andrew J Murray
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Forresterhill, Aberdeen AB25 2ZD, UK.
| | | |
Collapse
|
226
|
Hayashi A, Pannucci C, Moradzadeh A, Kawamura D, Magill C, Hunter DA, Tong AY, Parsadanian A, Mackinnon SE, Myckatyn TM. Axotomy or compression is required for axonal sprouting following end-to-side neurorrhaphy. Exp Neurol 2008; 211:539-50. [PMID: 18433746 PMCID: PMC2761726 DOI: 10.1016/j.expneurol.2008.02.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/25/2008] [Accepted: 02/29/2008] [Indexed: 12/22/2022]
Abstract
End-to-side (ETS) nerve repair remains an area of intense scrutiny for peripheral nerve surgeon-scientists. In this technique, the transected end of an injured nerve, representing the "recipient" is sutured to the side of an uninjured "donor" nerve. Some works suggest that the recipient limb is repopulated with regenerating collateral axonal sprouts from the donor nerve that go on to form functional synapses. Significant, unresolved questions include whether the donor nerve needs to be injured to facilitate regeneration, and whether a single donor neuron is capable of projecting additional axons capable of differentially innervating disparate targets. We serially imaged living transgenic mice (n=66) expressing spectral variants of GFP in various neuronal subsets after undergoing previously described atraumatic, compressive, or epineurotomy forms of ETS repair (n=22 per group). To evaluate the source, and target innervation of these regenerating axons, nerve morphometry and retrograde labeling were further supplemented by confocal microscopy as well as Western blot analysis. Either compression or epineurotomy with inevitable axotomy were required to facilitate axonal regeneration into the recipient limb. Progressively more injurious models were associated with improved recipient nerve reinnervation (epineurotomy: 184+/-57.6 myelinated axons; compression: 78.9+/-13.8; atraumatic: 0), increased Schwann cell proliferation (epineurotomy: 72.2% increase; compression: 39% increase) and cAMP response-element binding protein expression at the expense of a net deficit in donor axon counts distal to the repair. These differences were manifest by 150 days, at which point quantitative evidence for pruning was obtained. We conclude that ETS repair relies upon injury to the donor nerve.
Collapse
Affiliation(s)
- Ayato Hayashi
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| | - Christopher Pannucci
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| | - Arash Moradzadeh
- Department of Otolaryngology, Washington University School of Medicine
| | - David Kawamura
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| | - Christina Magill
- Department of Otolaryngology, Washington University School of Medicine
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| | - Alice Y. Tong
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| | - Alexander Parsadanian
- Department of Neurology and Hope Center for Neurological Disorders, Box 8518, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Ave., St. Louis, MO, 63110
| |
Collapse
|
227
|
Abstract
Although neurons within the peripheral nervous system (PNS) have a remarkable ability to repair themselves after injury, neurons within the central nervous system (CNS) do not spontaneously regenerate. This problem has remained recalcitrant despite a century of research on the reaction of axons to injury. The balance between inhibitory cues present in the environment and the intrinsic growth capacity of the injured neuron determines the extent of axonal regeneration following injury. The cell body of an injured neuron must receive accurate and timely information about the site and extent of axonal damage in order to increase its intrinsic growth capacity and successfully regenerate. One of the mechanisms contributing to this process is retrograde transport of injury signals. For example, molecules activated at the injury site convey information to the cell body leading to the expression of regeneration-associated genes and increased growth capacity of the neuron. Here we discuss recent studies that have begun to dissect the injury-signaling pathways involved in stimulating the intrinsic growth capacity of injured neurons.
Collapse
Affiliation(s)
- Namiko Abe
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 S Euclid Avenue, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
228
|
CC chemokine receptor 5 gene promoter activation by the cyclic AMP response element binding transcription factor. Blood 2008; 112:1610-9. [PMID: 18511806 DOI: 10.1182/blood-2008-01-135111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The chemokine receptor CCR5 is implicated in the pathogenesis of various inflammatory diseases, such as multiple sclerosis (MS), atherosclerosis, transplant rejection, and autoimmunity. In previous studies, we have shown that MS lesions are characterized by enhanced expression of transcription factors associated with stress responses, ie, IRF-1, NF-kappaB, and CREB-1, which modulate expression of both classes of major histocompatibility complex (MHC) molecules. The expression of MHC-I and MHC-II molecules greatly overlaps with the expression of CCR5 in MS lesions. Therefore, we investigated whether these factors are also involved in the transcriptional regulation of CCR5. Using in vitro assays, we determined that neither IRF-1 nor NF-kappaB is involved in the activation of the CCR5 promoter. This is corroborated by the finding that these factors are not involved in the induction of endogenous CCR5 transcription in various cell types. In contrast, we show that CCR5 expression is regulated by the cAMP/CREB pathway and that interference in this pathway affects endogenous CCR5 transcription. From this, we conclude that the cAMP/CREB pathway is involved in the regulation of CCR5 transcription and that, given the ubiquitous nature of CREB-1 protein expression, additional regulatory mechanisms must contribute to cell type-specific expression of CCR5.
Collapse
|
229
|
Spencer TK, Mellado W, Filbin MT. BDNF activates CaMKIV and PKA in parallel to block MAG-mediated inhibition of neurite outgrowth. Mol Cell Neurosci 2008; 38:110-6. [PMID: 18381242 PMCID: PMC2692908 DOI: 10.1016/j.mcn.2008.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/13/2008] [Indexed: 12/12/2022] Open
Abstract
The environment of the adult CNS prevents axonal regeneration after injury. This inhibition of axonal regeneration can be blocked by elevating cAMP. Previously, we showed that the cAMP pathway can be activated via pre-treatment with neurotrophins and requires activation of several signaling pathways which converge at activation of the transcription factor, CREB. Here, we show that calcium/calmodulin-dependent kinase IV (CaMKIV) is necessary for the neurotrophin-induced phosphorylation of CREB and the block of myelin-mediated inhibition of axonal growth. Pharmacological inhibition of CaMKIV or over-expression of a dominant-negative mutant form of CaMKIV blocks the neurotrophin effect. Interestingly, CaMKIV activation is not necessary if cAMP levels is already elevated. Finally, calcium flux from intracellular stores is necessary for this CaMKIV signaling. These results demonstrate that CaMKIV is another player in the neurotrophin-induced signaling which leads to axonal regeneration and therefore, is a potential target for therapeutic intervention following injury to the adult CNS.
Collapse
Affiliation(s)
- Timothy K Spencer
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10065, USA.
| | | | | |
Collapse
|
230
|
Abstract
BACKGROUND This review summarizes several promising pharmacological approaches for the therapeutic management of traumatic spinal cord injury (SCI), which are either in early-phase clinical trials or nearing clinical translation. OBJECTIVE This review provides the reader with an understanding of the key pathophysiological mechanisms that contribute to neurological deficits after SCI. Through discussion of the mechanism(s) of action of the selected therapeutic approaches potentially important targets to aid further drug discovery will be highlighted. METHODS Systematic literature review of the pre-clinical literature and clinical SCI trials related to neuroprotective, immunomodulatory and regenerative therapeutic approaches. RESULTS/CONCLUSION The next decade will witness an unprecedented number of clinical trials which will seek to translate key biomedical research discoveries. The promising drug-based therapeutic approaches include regenerative strategies to neutralize myelin-mediated neurite outgrowth inhibition, neuroprotective strategies to reduce apoptotic triggers, the targeting of cationic/glutamatergic toxicity, anti-inflammatory strategies and the use of approaches to stabilize disrupted cell membranes.
Collapse
Affiliation(s)
- Darryl C Baptiste
- Toronto Western Hospital, Division of Cellular & Molecular Biology, Toronto Western Research Institute and Krembil Neuroscience Centre, 12th Floor Room 407 McLaughlin Pavilion, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | | |
Collapse
|
231
|
Song XY, Li F, Zhang FH, Zhong JH, Zhou XF. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS One 2008; 3:e1707. [PMID: 18320028 PMCID: PMC2246162 DOI: 10.1371/journal.pone.0001707] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/04/2008] [Indexed: 12/12/2022] Open
Abstract
Background The blood brain barrier (BBB) and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF) applied into the peripheral (PNS) and central nervous system (CNS) thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. Methodology/Principal Findings The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG) neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. Conclusions/Significance Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.
Collapse
Affiliation(s)
- Xing-Yun Song
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Fang Li
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Feng-He Zhang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Jin-Hua Zhong
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Xin-Fu Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- *E-mail:
| |
Collapse
|
232
|
Xie F, Zheng B. White matter inhibitors in CNS axon regeneration failure. Exp Neurol 2008; 209:302-12. [PMID: 17706966 PMCID: PMC2259386 DOI: 10.1016/j.expneurol.2007.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 06/30/2007] [Accepted: 07/02/2007] [Indexed: 12/11/2022]
Abstract
Multiple lines of evidence have indicated that the inability of adult mammalian central nervous system (CNS) axons to regenerate after injury is partly due to the growth inhibitory property of central myelin. Three prototypical myelin-associated inhibitors of neurite outgrowth have been identified, including Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp). These inhibitory ligands, their receptors and signaling pathways are being intensively investigated for their roles in CNS axon regeneration failure. In addition, several members of the axon guidance molecules have been implicated in restricting CNS axon regeneration, some of which are expressed by mature oligodendrocytes. Here we review in vitro and in vivo studies of these molecules in neurite growth and in axon regeneration failure and discuss the implications of these studies. While the increasing number of potential axon regeneration inhibitors highlights the complexity of the restrictive CNS environment, it provides new windows of opportunity as well as new challenges for therapeutic development for spinal cord injury and related neurological conditions.
Collapse
Affiliation(s)
- Fang Xie
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0691
| | - Binhai Zheng
- Department of Neurosciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0691
| |
Collapse
|
233
|
Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 2008; 209:321-32. [PMID: 17720160 PMCID: PMC2692909 DOI: 10.1016/j.expneurol.2007.06.020] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 06/28/2007] [Indexed: 01/08/2023]
Abstract
The failure of axons to regenerate after spinal cord injury remains one of the greatest challenges facing both medicine and neuroscience, but in the last 20 years there have been tremendous advances in the field of spinal cord injury repair. One of the most important of these has been the identification of inhibitory proteins in CNS myelin, and this has led to the development of strategies that will enable axons to overcome myelin inhibition. Elevation of intracellular cyclic AMP (cAMP) has been one of the most successful of these strategies, and in this review we examine how cAMP signaling promotes axonal regeneration in the CNS. Intracellular cAMP levels can be increased through a peripheral conditioning lesion, administration of cAMP analogues, priming with neurotrophins or treatment with the phosphodiesterase inhibitor rolipram, and each of these methods has been shown to overcome myelin inhibition both in vitro and in vivo. It is now known that the effects of cAMP are transcription dependent, and that cAMP-mediated activation of CREB leads to upregulated expression of genes such as arginase I and interleukin-6. The products of these genes have been shown to directly promote axonal regeneration, which raises the possibility that other cAMP-regulated genes could yield additional agents that would be beneficial in the treatment of spinal cord injury. Further study of these genes, in combination with human clinical trials of existing agents such as rolipram, would allow the therapeutic potential of cAMP to be fully realized.
Collapse
Affiliation(s)
- Sari S. Hannila
- Department of Biological Sciences, Hunter College, City University of New York 695 Park Avenue, New York, NY 10021
| | - Marie T. Filbin
- Department of Biological Sciences, Hunter College, City University of New York 695 Park Avenue, New York, NY 10021
| |
Collapse
|
234
|
cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J Neurosci 2008; 27:13909-18. [PMID: 18077703 DOI: 10.1523/jneurosci.3850-07.2007] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To investigate the role of CREB-mediated gene expression on the excitability of CA1 pyramidal neurons, we obtained intracellular recordings from pyramidal neurons of transgenic mice expressing a constitutively active form of CREB, VP16-CREB, in a regulated and restricted manner. We found that transgene expression increased the neuronal excitability and inhibited the slow and medium afterhyperpolarization currents. These changes may contribute to the reduced threshold for LTP observed in these mice. When strong transgene expression was turned on for prolonged period of time, these mice also showed a significant loss of hippocampal neurons and sporadic epileptic seizures. These deleterious effects were dose dependent and could be halted, but not reversed by turning off transgene expression. Our experiments reveal a new role for hippocampal CREB-mediated gene expression, identify the slow afterhyperpolarization as a primary target of CREB action, provide a new mouse model to investigate temporal lobe epilepsy and associated neurodegeneration, and illustrate the risks of cell death associated to a sustained manipulation of this pathway. As a result, our study has important implications for both the understanding of the cellular bases of learning and memory and the consideration of therapies targeted to the CREB pathway.
Collapse
|
235
|
Kiryu-Seo S, Kato R, Ogawa T, Nakagomi S, Nagata K, Kiyama H. Neuronal injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the interaction with Sp1 in damaged neurons. J Biol Chem 2008; 283:6988-96. [PMID: 18192274 DOI: 10.1074/jbc.m707514200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve injury requires the expression of large ensembles of genes. The key molecular mechanism for this gene transcription regulation in injured neurons is poorly understood. Among many nerve injury-inducible genes, the gene encoding damage-induced neuronal endopeptidase (DINE) showed most marked expression response to various kinds of nerve injuries in central and peripheral nervous system neurons. This unique feature led us to examine the promoter region of the DINE gene and clarify both the injury-responsive element within the promoter and its related transcriptional machinery. This study showed that DINE promoter was activated by leukemia inhibitory factor and nerve growth factor withdrawal, which were pivotal for the up-regulation of DINE mRNA after nerve injury. The injury-inducible transcription factors such as activating transcription factor 3 (ATF3), c-Jun, and STAT3, which were located at the downstream of leukemia inhibitory factor and nerve growth factor withdrawal, seemed to be involved in the activation of the DINE promoter. Surprisingly, these transcription factors did not bind to the DINE promoter directly. Instead, the general transcription factor, Sp1, bound to a GC box within the promoter. ATF3, c-Jun, and STAT3 interacted with Sp1 and are associated with the GC box region of the DINE gene in injured neurons. These findings suggested that Sp1 recruit ATF3, c-Jun, and STAT3 to obtain the requisite synergistic effect. Of these transcription factors, ATF3 may be the most critical, because ATF3 is specifically expressed after nerve injury.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Anatomy and Neurobiology, Osaka City University, Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
236
|
Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M. GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 2007; 36:185-94. [PMID: 17702601 PMCID: PMC2034440 DOI: 10.1016/j.mcn.2007.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 11/26/2022] Open
Abstract
Axonal regeneration within the CNS fails due to the growth inhibitory environment and the limited intrinsic growth capacity of injured neurons. Injury to DRG peripheral axons induces expression of growth associated genes including members of the glial-derived neurotrophic factor (GDNF) signaling pathway and "preconditions" the injured cells into an active growth state, enhancing growth of their centrally projecting axons. Here, we show that preconditioning DRG neurons prior to culturing increased neurite outgrowth, which was further enhanced by GDNF in a bell-shaped growth response curve. In vivo, GDNF delivered directly to DRG cell bodies facilitated the preconditioning effect, further enhancing axonal regeneration beyond spinal cord lesions. Consistent with the in vitro results, the in vivo effect was seen only at low GDNF concentrations. We conclude that peripheral nerve injury upregulates GDNF signaling pathway components and that exogenous GDNF treatment selectively promotes axonal growth of injury-primed sensory neurons in a concentration-dependent fashion.
Collapse
Affiliation(s)
- Charles D Mills
- Neural Plasticity Research Group, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
237
|
Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 2007; 312:596-612. [PMID: 17949705 DOI: 10.1016/j.ydbio.2007.09.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 01/07/2023]
Abstract
Unlike mammals, teleost fish are able to mount an efficient and robust regenerative response following optic nerve injury. Although it is clear that changes in gene expression accompany axonal regeneration, the extent of this genomic response is not known. To identify genes involved in successful nerve regeneration, we analyzed gene expression in zebrafish retinal ganglion cells (RGCs) regenerating their axons following optic nerve injury. Microarray analysis of RNA isolated by laser capture microdissection from uninjured and 3-day post-optic nerve injured RGCs identified 347 up-regulated and 29 down-regulated genes. Quantitative RT-PCR and in situ hybridization were used to verify the change in expression of 19 genes in this set. Gene ontological analysis of the data set suggests regenerating neurons up-regulate genes associated with RGC development. However, not all regeneration-associated genes are expressed in differentiating RGCs indicating the regeneration is not simply a recapitulation of development. Knockdown of six highly induced regeneration-associated genes identified two, KLF6a and KLF7a, that together were necessary for robust RGC axon re-growth. These results implicate KLF6a and KLF7a as important mediators of optic nerve regeneration and suggest that not all induced genes are essential to mount a regenerative response.
Collapse
Affiliation(s)
- Matthew B Veldman
- Neuroscience Program, University of Michigan, 5045 Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
238
|
Abstract
Whereas the central nervous system (CNS) usually cannot regenerate, peripheral nerves regenerate spontaneously after injury because of a permissive environment and activation of the intrinsic growth capacity of neurons. Functional regeneration requires axon regrowth and remyelination of the regenerated axons by Schwann cells. Multiple factors including neurotrophic factors, extracellular matrix (ECM) proteins, and hormones participate in Schwann cell dedifferentiation, proliferation, and remyelination. We describe the current understanding of peripheral axon regeneration and focus on the molecules and potential mechanisms involved in remyelination.
Collapse
Affiliation(s)
- Zu-Lin Chen
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
239
|
Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 2007; 27:7911-20. [PMID: 17652582 PMCID: PMC6672733 DOI: 10.1523/jneurosci.5313-06.2007] [Citation(s) in RCA: 314] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral axons of dorsal root ganglion (DRG) neurons, but not their central axons in the dorsal columns, regenerate after injury. However, if the neurons are conditioned by a peripheral nerve injury into an actively growing state, the rate of peripheral axonal growth is accelerated and the injured central axons begin to regenerate. The growth-promoting effects of conditioning injuries have two components, increased axonal growth and a reduced response to inhibitory myelin cues. We have examined which transcription factors activated by peripheral axonal injury may mediate the conditioning effect by regulating expression of effectors that increase the intrinsic growth state of the neurons. Activating transcription factor 3 (ATF3) is a prime candidate because it is induced in all injured DRG neurons after peripheral, but not central, axonal damage. To investigate if ATF3 promotes regeneration, we generated transgenic mice that constitutively express this transcription factor in non-injured adult DRG neurons. The rate of peripheral nerve regeneration was enhanced in the transgenic mice to an extent comparable to that produced by a preconditioning nerve injury. The expression of some growth-associated genes, such as SPRR1A, but not others like GAP-43, was increased in the non-injured neurons. ATF3 increased DRG neurite elongation when cultured on permissive substrates but did not overcome the inhibitory effects of myelin or promote central axonal regeneration in the spinal cord in vivo. We conclude that ATF3 contributes to nerve regeneration by increasing the intrinsic growth state of injured neurons.
Collapse
Affiliation(s)
- Rhona Seijffers
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Charles D. Mills
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Clifford J. Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
240
|
Abstract
Numerous studies in the last two decades have resulted in significant progress in our understanding of the role of inhibitors on axonal regeneration and conditions that influence mature neurons to regrow in an inhibitory environment. These studies have revealed putative therapeutic targets and strategies to interfere in the inhibitory signaling cascade and promote axonal regeneration. Some agents that were successful in animal models are now being tested in human patients. All of these advances have raised hope of a cure for an injury that was once thought to be 'an ailment for which nothing is done' (Quote from Edwin Smith surgical papyrus, 1600BC).
Collapse
|
241
|
Fernandes ND, Sun Y, Price BD. Activation of the Kinase Activity of ATM by Retinoic Acid Is Required for CREB-dependent Differentiation of Neuroblastoma Cells. J Biol Chem 2007; 282:16577-84. [PMID: 17426037 DOI: 10.1074/jbc.m609628200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.
Collapse
Affiliation(s)
- Norvin D Fernandes
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
242
|
Filbin MT. Recapitulate development to promote axonal regeneration: good or bad approach? Philos Trans R Soc Lond B Biol Sci 2007; 361:1565-74. [PMID: 16939975 PMCID: PMC1664663 DOI: 10.1098/rstb.2006.1885] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the past decade there has been an explosion in our understanding, at the molecular level, of why axons in the adult, mammalian central nervous system (CNS) do not spontaneously regenerate while their younger counterparts do. Now a number of inhibitors of axonal regeneration have been described, some of the receptors they interact with to transduce the inhibitory signal are known, as are some of the steps in the signal transduction pathway that is responsible for inhibition. In addition, developmental changes in the environment and in the neurons themselves are also now better understood. This knowledge in turn reveals novel, putative sites for drug development and therapeutic intervention after injury to the brain and spinal cord. The challenge now is to determine which of these putative treatments are the most effective and if they would be better applied in combination rather than alone. In this review I will summarize what we have learnt about these molecules and how they signal. Importantly, I will also describe approaches that have been shown to block inhibitors and encourage regeneration in vivo. I will also speculate on what the differences are between the neonatal and adult CNS that allow the former to regenerate and the latter not to.
Collapse
Affiliation(s)
- Marie T Filbin
- Department of Biological Sciences, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA.
| |
Collapse
|
243
|
Chen J, Wu J, Apostolova I, Skup M, Irintchev A, Kügler S, Schachner M. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Brain 2007; 130:954-69. [PMID: 17438016 DOI: 10.1093/brain/awm049] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Paucity of permissive molecules and abundance of inhibitory molecules in the injured spinal cord of adult mammals prevent axons from successful regeneration and, thus, contribute to the failure of functional recovery. Using an adeno-associated viral (AAV) vector, we expressed the regeneration-promoting cell adhesion molecule L1 in both neurons and glia in the lesioned spinal cord of adult mice. Exogenous L1, detectable already 1 week after thoracic spinal cord compression and immediate vector injection, was expressed at high levels up to 5 weeks, the longest time-period studied. Dissemination of L1-transduced cells throughout the spinal cord was wide, spanning over more than 10 mm rostral and 10 mm caudal to the lesion scar. L1 was not detectable in the fibronectin-positive lesion core. L1 overexpression led to improved stepping abilities and muscle coordination during ground locomotion over a 5-week observation period. Superior functional improvement was associated with enhanced reinnervation of the lumbar spinal cord by 5-HT axons. Corticospinal tract axons did not regrow beyond the lesion scar but extended distally into closer proximity to the injury site in AAV-L1-treated compared with control mice. The expression of the neurite outgrowth-inhibitory chondroitin sulphate proteoglycan NG2 was decreased in AAV-L1-treated spinal cords, along with reduction of the reactive astroglial marker GFAP. In vitro experiments confirmed that L1 inhibits astrocyte proliferation, migration, process extension and GFAP expression. Analyses of intracellular signalling indicated that exogenous L1 activates diverse cascades in neurons and glia. Thus, AAV-mediated L1 overexpression appears to be a potent means to favourably modify the local environment in the injured spinal cord and promote regeneration. Our study demonstrates a clinically feasible approach of promising potential.
Collapse
Affiliation(s)
- Jian Chen
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
Kuo HS, Tsai MJ, Huang MC, Huang WC, Lee MJ, Kuo WC, You LH, Szeto KC, Tsai IL, Chang WC, Chiu CW, Ma H, Chak KF, Cheng H. The combination of peripheral nerve grafts and acidic fibroblast growth factor enhances arginase I and polyamine spermine expression in transected rat spinal cords. Biochem Biophys Res Commun 2007; 357:1-7. [PMID: 17418108 DOI: 10.1016/j.bbrc.2007.02.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/27/2007] [Indexed: 11/23/2022]
Abstract
Treatment with a combination of peripheral nerve grafts and acidic fibroblast growth factor improves hind limb locomotor function after spinal cord transection. This study examined the effect of treatment on expression of arginase I (Arg I) and polyamines. Arg I expression was low in the spinal cords of normal rats but increased following spinal injury. Only fully repaired spinal cords expressed higher Arg I levels 6-14 days following repair. In 10-day repaired spinal cords, high Arg I immunoreactivity was detected in motoneurons and alternatively activated macrophages in the graft area and graft-stump edges, and high levels of the polyamine spermine were expressed by macrophages within the intercostal nerve graft. Thus, in addition to enhancing the expression of Arg I and spermine in repaired spinal cords, our treatment may recruit activated macrophages and create a more favorable environment for axonal regrowth.
Collapse
Affiliation(s)
- Huai-Sheng Kuo
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Zurn AD, Bandtlow CE. Regeneration failure in the CNs: cellular and molecular mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 557:54-76. [PMID: 16955704 DOI: 10.1007/0-387-30128-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anne D Zurn
- Department of Experimental Surgery, Lausanne University Hospital, Faculty of Biology and Medicine, Switzerland
| | | |
Collapse
|
246
|
Abstract
Neurotrophins provide trophic and tropic support for different neuronal subpopulations in the developing and adult nervous systems. Expression of the neurotrophins and their receptors can be altered in several different disease or injury states that impact upon the functions in the central and peripheral nervous systems. The intracellular signals used by the neurotrophins are triggered by ligand binding to the cell surface Trk and p75NTR receptors. In general, signals emanating from Trk receptors support survival, growth and synaptic strengthening, while those emanating from p75NTR induce apoptosis, attenuate growth and weaken synaptic signaling. Mature neurotrophins are the preferred ligand for Trk proteins while p75NTR binds preferentially to the proneurotrophins and serves as a signaling component of the receptor complex for growth inhibitory molecules of central nervous system myelin [ie, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgP) and Nogo]. The functional antagonism between Trk and p75NTR signaling may significantly impact the pathogenesis of human neurodevelopmental and neurodegenerative diseases and further complicate therapeutic uses of exogenous neurotrophins. The potential for each is discussed in this review.
Collapse
Affiliation(s)
- Jeffery L Twiss
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | |
Collapse
|
247
|
Hannila SS, Siddiq MM, Filbin MT. Therapeutic Approaches to Promoting Axonal Regeneration in the Adult Mammalian Spinal Cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:57-105. [PMID: 17178472 DOI: 10.1016/s0074-7742(06)77003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sari S Hannila
- Department of Biological Sciences, Hunter College, City University of New York, New York 10021, USA
| | | | | |
Collapse
|
248
|
Martin JH. Chapter 3 Development of the corticospinal system and spinal motor circuits. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:39-56. [PMID: 18808888 DOI: 10.1016/s0072-9752(07)80006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
249
|
Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 2006; 81:1-28. [PMID: 17234322 DOI: 10.1016/j.pneurobio.2006.12.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/04/2006] [Accepted: 12/05/2006] [Indexed: 01/29/2023]
Abstract
Regulation of neuritic growth is crucial for neural development, adaptation and repair. The intrinsic growth potential of nerve cells is determined by the activity of specific molecular sets, which sense environmental signals and sustain structural extension of neurites. The expression and function of these molecules are dynamically regulated by multiple mechanisms, which adjust the actual growth properties of each neuron population at different ontogenetic stages or in specific conditions. The neuronal potential for axon elongation and regeneration are restricted at the end of development by the concurrent action of several factors associated with the final maturation of neurons and of the surrounding tissue. In the adult, neuronal growth properties can be significantly modulated by injury, but they are also continuously tuned in everyday life to sustain physiological plasticity. Strict regulation of structural remodelling and neuritic elongation is thought to be required to maintain specific patterns of connectivity in the highly complex mammalian CNS. Accordingly, procedures that neutralize such mechanisms effectively boost axon growth in both intact and injured nervous system. Even in these conditions, however, aberrant connections are only formed in the presence of unusual external stimuli or experience. Therefore, growth regulatory mechanisms play an essentially permissive role by setting the responsiveness of neural circuits to environmental stimuli. The latter exert an instructive action and determine the actual shape of newly formed connections. In the light of this notion, efficient therapeutic interventions in the injured CNS should combine targeted manipulations of growth control mechanisms with task-specific training and rehabilitation paradigms.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Rita Levi Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | | | | |
Collapse
|
250
|
Hu Y, Cui Q, Harvey AR. Interactive effects of C3, cyclic AMP and ciliary neurotrophic factor on adult retinal ganglion cell survival and axonal regeneration. Mol Cell Neurosci 2006; 34:88-98. [PMID: 17126028 DOI: 10.1016/j.mcn.2006.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/09/2006] [Accepted: 10/12/2006] [Indexed: 11/25/2022] Open
Abstract
We tested whether combined therapy involving Rho inactivation, elevation of cAMP and supply of ciliary neurotrophic factor (CNTF) (i) increased axotomized adult retinal ganglion cell (RGC) survival and (ii) promoted axonal regeneration into peripheral nerve (PN) autografted onto the cut optic nerve. PN-grafted eyes were injected with combinations of a Rho-inactivating enzyme C3 transferase (C3-11), CNTF and a cell-permeant analogue of cAMP (CPT-cAMP). Four weeks after PN transplantation, RGC survival was quantified using beta-III tubulin immunohistochemistry. Regeneration was assessed using retrograde fluorogold tracing and pan-neurofilament immunostaining of grafts. Treatment with C3-11 increased RGC survival but co-injection with CPT-cAMP, CNTF or combined CNTF/CPT-cAMP did not further enhance RGC viability. There were greater numbers of regenerating RGCs after multiple C3-11 injections and regeneration was further and significantly increased after intravitreal injections of all three factors. In the combined C3-11/CNTF/CPT-cAMP treatment group about 15% of RGCs remained viable of which more than half regenerated an axon. These data emphasize the power of combinatorial pharmacotherapeutic and transplant strategies in the treatment of neurotrauma.
Collapse
Affiliation(s)
- Ying Hu
- School of Anatomy and Human Biology M309, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | |
Collapse
|