201
|
Ramos JM. Perirhinal cortex lesions produce retrograde amnesia for spatial information in rats: Consolidation or retrieval? Learn Mem 2008; 15:587-96. [DOI: 10.1101/lm.1036308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
202
|
Cardoso A, Madeira MD, Paula-Barbosa MM, Lukoyanov NV. Retrosplenial granular b cortex in normal and epileptic rats: A stereological study. Brain Res 2008; 1218:206-14. [DOI: 10.1016/j.brainres.2008.04.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/29/2008] [Accepted: 04/29/2008] [Indexed: 11/29/2022]
|
203
|
Cassel JC, Mathis C, Majchrzak M, Moreau PH, Dalrymple-Alford JC. Coexisting cholinergic and parahippocampal degeneration: a key to memory loss in dementia and a challenge for transgenic models? NEURODEGENER DIS 2008; 5:304-17. [PMID: 18520165 DOI: 10.1159/000135615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 10/31/2007] [Indexed: 12/25/2022] Open
Abstract
One century after Alzheimer's initial report, a variety of animal models of Alzheimer's disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- LINC UMR 7191, Université Louis Pasteur, CNRS, Institut Fédératif de Recherche IFR 37, GDR CNRS 2905, Strasbourg, France.
| | | | | | | | | |
Collapse
|
204
|
Van Cauter T, Poucet B, Save E. Delay-dependent involvement of the rat entorhinal cortex in habituation to a novel environment. Neurobiol Learn Mem 2008; 90:192-9. [PMID: 18440248 DOI: 10.1016/j.nlm.2008.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Evidence has accumulated that the entorhinal cortex (EC) is involved in memory operations underlying formation of a long-term memory. Because entorhinal-lesioned rats are impaired for long delays in delayed matching and non-matching to sample tasks, it has been proposed that EC contributes to the maintenance of information in short-term memory. In the present study, we asked whether such a time-limited role applies also when learning complex spatial information in a novel environment. We therefore examined the effects of EC lesions on habituation in an object exploration task in which a delay of either 4min or 10min is imposed between successive sessions. EC-lesioned rats exhibited a deficit in habituation at 10min but not 4min delays. Following habituation, reactions to spatial change (object configuration) and non-spatial change (novel object) were also examined. EC-lesioned rats were impaired in detecting the spatial change but were able to detect a non-spatial change, irrespective of the delay. Overall, the results suggest that EC is involved in maintaining a large amount of novel, multidimensional information in short-term memory therefore enabling formation of long-term memory. Switching to a novelty detection mode would then allow the animal to rapidly adapt to environmental changes. In this mode, EC would preferentially process spatial information rather than non-spatial information.
Collapse
Affiliation(s)
- Tiffany Van Cauter
- Laboratory of Neurobiology and Cognition, UMR 6155 Aix Marseille Université, CNRS, Pôle 3C, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | | | | |
Collapse
|
205
|
Katz Y, Kath WL, Spruston N, Hasselmo ME. Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Comput Biol 2008; 3:e234. [PMID: 18085816 PMCID: PMC2134961 DOI: 10.1371/journal.pcbi.0030234] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/15/2007] [Indexed: 12/04/2022] Open
Abstract
Recent advances in single-neuron biophysics have enhanced our understanding of information processing on the cellular level, but how the detailed properties of individual neurons give rise to large-scale behavior remains unclear. Here, we present a model of the hippocampal network based on observed biophysical properties of hippocampal and entorhinal cortical neurons. We assembled our model to simulate spatial alternation, a task that requires memory of the previous path through the environment for correct selection of the current path to a reward site. The convergence of inputs from entorhinal cortex and hippocampal region CA3 onto CA1 pyramidal cells make them potentially important for integrating information about place and temporal context on the network level. Our model shows how place and temporal context information might be combined in CA1 pyramidal neurons to give rise to splitter cells, which fire selectively based on a combination of place and temporal context. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical basis of information processing in the hippocampus. Understanding how behavior is connected to cellular and network processes is one of the most important challenges in neuroscience, and computational modeling allows one to directly formulate hypotheses regarding the interactions between these scales. We present a model of the hippocampal network, an area of the brain important for spatial navigation and episodic memory, memory of “what, when, and where.” We show how the model, which consists of neurons and connections based on biophysical properties known from experiments, can guide a virtual rat through the spatial alternation task by storing a memory of the previous path through an environment. Our model shows how neurons that fire selectively based on both the current location and past trajectory of the animal (dubbed “splitter cells”) might emerge from a newly discovered biophysical interaction in these cells. Our model is not intended to be comprehensive, but rather to contain just enough detail to achieve performance of the behavioral task. Goals of this approach are to present a scenario by which the gap between biophysics and behavior can be bridged and to provide a framework for the formulation of experimentally testable hypotheses.
Collapse
Affiliation(s)
- Yael Katz
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - William L Kath
- Department of Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Nelson Spruston
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Michael E Hasselmo
- Center for Memory and Brain, Program in Neuroscience, Boston University, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
206
|
Arleo A, Rondi-Reig L. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J Integr Neurosci 2008; 6:327-66. [PMID: 17933016 DOI: 10.1142/s0219635207001593] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/05/2007] [Indexed: 11/18/2022] Open
Abstract
Flexible spatial behavior requires the ability to orchestrate the interaction of multiple parallel processes. At the sensory level, multimodal inputs must be combined to produce a robust description of the spatiotemporal properties of the environment. At the action-selection level, multiple concurrent navigation policies must be dynamically weighted in order to adopt the strategy that is the most adapted to the complexity of the task. Different neural substrates mediate the processing of spatial information. Elucidating their anatomo-functional interrelations is fundamental to unravel the overall spatial memory function. Here we first address the multisensory integration issue and we review a series of experimental findings (both behavioral and electrophysiological) concerning the neural bases of spatial learning and the way the brain builds unambiguous spatial representations from incoming multisensory streams. Second, we move at the navigation strategy level and present an overview of experimental data that begin to explain the cooperation-competition between the brain areas involved in spatial navigation. Third, we introduce the spatial cognition function from a computational neuroscience and neuro-robotics viewpoint. We provide an example of neuro-computational model that focuses on the importance of combining multisensory percepts to enable a robot to acquire coherent (spatial) memories of its interaction with the environment.
Collapse
|
207
|
Jones BF, Witter MP. Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat. Hippocampus 2008; 17:957-76. [PMID: 17598159 DOI: 10.1002/hipo.20330] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study we aimed to determine the topographical and laminar characteristics of cingulate projections to the parahippocampal region and hippocampal formation in the rat, using the anterograde tracers Phaseolus vulgaris-leucoagglutinin and biotinylated dextranamine. The results show that all areas of the cingulate cortex project extensively to the parahippocampal region but not to the hippocampal formation. Rostral cingulate areas (infralimbic-, prelimbic cortices, rostral 1/3 of the dorsal anterior cingulate cortex) primarily project to the perirhinal and lateral entorhinal cortices. Projections from the remaining cingulate areas preferentially target the postrhinal and medial entorhinal cortices as well as the presubiculum and parasubiculum. At a more detailed level the projections show differences in topographical specificities according to their site of origin within the cingulate cortex suggesting the functional contribution of cingulate areas may differ at an individual level. This organization of the cingulate-parahippocampal projections relates to the overall organization of postulated parallel parahippocampal-hippocampal processing streams mediated through the lateral and medial entorhinal cortex respectively. The mid-rostrocaudal part of the dorsal anterior cingulate cortex appears to be connected to both networks as well as to rostral and caudal parts of the cingulate cortex. This region may therefore responsible for integrating information across these specific networks.
Collapse
Affiliation(s)
- Bethany F Jones
- Graduate School Neuroscience Amsterdam, Institute for Clinical and Experimental Neurosciences, VU University Medical Center, Department of Anatomy and Neurosciences, P.O. Box 7057, MF-G102C, 1007 MB Amsterdam, The Netherlands
| | | |
Collapse
|
208
|
Giocomo LM, Hasselmo ME. Computation by oscillations: implications of experimental data for theoretical models of grid cells. Hippocampus 2008; 18:1186-99. [PMID: 19021252 PMCID: PMC2653064 DOI: 10.1002/hipo.20501] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recordings in awake, behaving animals demonstrate that cells in medial entorhinal cortex (mEC) show "grid cell" firing activity when a rat explores an open environment. Intracellular recording in slices from different positions along the dorsal to ventral axis show differences in intrinsic properties such as subthreshold membrane potential oscillations (MPO), resonant frequency, and the presence of the hyperpolarization-activated cation current (h-current). The differences in intrinsic properties correlate with differences in grid cell spatial scale along the dorsal-ventral axis of mEC. Two sets of computational models have been proposed to explain the grid cell firing phenomena: oscillatory interference models and attractor-dynamic models. Both types of computational models are briefly reviewed, and cellular experimental evidence is interpreted and presented in the context of both models. The oscillatory interference model has variations that include an additive model and a multiplicative model. Experimental data on the voltage-dependence of oscillations presented here support the additive model. The additive model also simulates data from ventral neurons showing large spacing between grid firing fields within the limits of observed MPO frequencies. The interactions of h-current with synaptic modification suggest that the difference in intrinsic properties could also contribute to differences in grid cell properties due to attractor dynamics along the dorsal to ventral axis of mEC. Mechanisms of oscillatory interference and attractor dynamics may make complementary contributions to the properties of grid cell firing in entorhinal cortex.
Collapse
Affiliation(s)
- Lisa M Giocomo
- Center for Memory and Brain, Program in Neuroscience, and Psychology Department, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
209
|
Dudman JT, Tsay D, Siegelbaum SA. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 2007; 56:866-79. [PMID: 18054862 PMCID: PMC2179894 DOI: 10.1016/j.neuron.2007.10.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 07/09/2007] [Accepted: 10/15/2007] [Indexed: 10/22/2022]
Abstract
Synaptic potentials originating at distal dendritic locations are severely attenuated when they reach the soma and, thus, are poor at driving somatic spikes. Nonetheless, distal inputs convey essential information, suggesting that such inputs may be important for compartmentalized dendritic signaling. Here we report a new plasticity rule in which stimulation of distal perforant path inputs to hippocampal CA1 pyramidal neurons induces long-term potentiation at the CA1 proximal Schaffer collateral synapses when the two inputs are paired at a precise interval. This subthreshold form of heterosynaptic plasticity occurs in the absence of somatic spiking but requires activation of both NMDA receptors and IP(3) receptor-dependent release of Ca(2+) from internal stores. Our results suggest that direct sensory information arriving at distal CA1 synapses through the perforant path provide compartmentalized, instructive signals that assess the saliency of mnemonic information propagated through the hippocampal circuit to proximal synapses.
Collapse
Affiliation(s)
- Joshua T Dudman
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | |
Collapse
|
210
|
Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. EMBO J 2007; 26:5143-52. [PMID: 18007595 DOI: 10.1038/sj.emboj.7601917] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/17/2007] [Indexed: 11/09/2022] Open
Abstract
To investigate how tau affects neuronal function during neurofibrillary tangle (NFT) formation, we examined the behavior, neural activity, and neuropathology of mice expressing wild-type human tau. Here, we demonstrate that aged (>20 months old) mice display impaired place learning and memory, even though they do not form NFTs or display neuronal loss. However, soluble hyperphosphorylated tau and synapse loss were found in the same regions. Mn-enhanced MRI showed that the activity of the parahippocampal area is strongly correlated with the decline of memory as assessed by the Morris water maze. Taken together, the accumulation of hyperphosphorylated tau and synapse loss in aged mice, leading to inhibition of neural activity in parahippocampal areas, including the entorhinal cortex, may underlie place learning impairment. Thus, the accumulation of hyperphosphorylated tau that occurs before NFT formation in entorhinal cortex may contribute to the memory problems seen in Alzheimer's disease (AD).
Collapse
|
211
|
Petrides T, Georgopoulos P, Kostopoulos G, Papatheodoropoulos C. The GABAA receptor-mediated recurrent inhibition in ventral compared with dorsal CA1 hippocampal region is weaker, decays faster and lasts less. Exp Brain Res 2007; 177:370-83. [PMID: 16988819 DOI: 10.1007/s00221-006-0681-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
Hippocampal functions appear to be segregated along the dorso-ventral axis of the structure. Differences at the cellular and local neuronal network level may be involved in this functional segregation. In this study the characteristics of CA1 recurrent inhibition (RI) were measured and compared between dorsal (DH, n = 95) and ventral (VH, n = 60) hippocampal slices, using recordings of suprathreshold field potentials. RI strength was estimated as the percentile decrease of the population spike (PS) amplitude evoked with an orthodromic stimulus (at the Schaffer collaterals) when preceded by an antidromic stimulus (at the alveus). Varying the interpulse interval (IPI) between the two stimuli, we estimated RI duration. Alvear stimulation produced significant PS suppression in both VH and DH at every IPI tested, from 10 to 270 ms. Moreover, gradually more oblique DH (but not VH) slices displayed increasing RI, which at IPIs < or = 125 ms was reversibly abolished by the GABAA receptor antagonist picrotoxin (10 microM). The GABAA-mediated RI, measured under the blockade of GABAB receptors, was weaker, decayed faster and lasted less in VH compared to DH slices, regardless of the slice orientation. Specifically, in VH compared to DH, the PS suppression at 20 ms was 34.4 +/- 4.5% versus 69.9 +/- 6.5% (P < 0.001), the time constant of RI decay was 29 +/- 2.4 versus 87.5 +/- 13.6 ms (P < 0.01) and the duration was 50 versus 125 ms (P < 0.001). Thus, GABAA-mediated RI may control the CA1 excitatory output less effectively in VH compared to DH. The observed dorso-ventral differences in RI contribute to the longitudinal diversification of the structure and may underlie to some extent the region-specificity of hippocampal functions.
Collapse
Affiliation(s)
- Theodoros Petrides
- Department of Physiology, Medical School, University of Patras, 26 504 Patras, Greece
| | | | | | | |
Collapse
|
212
|
Lei S, Deng PY, Porter JE, Shin HS. Adrenergic facilitation of GABAergic transmission in rat entorhinal cortex. J Neurophysiol 2007; 98:2868-77. [PMID: 17804573 DOI: 10.1152/jn.00679.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives noradrenergic innervations from the locus coeruleus of the pons and expresses adrenergic receptors, the function of norepinephrine (NE) in the EC is still elusive. We examined the effects of NE on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of NE dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III through activation of alpha(1) adrenergic receptors. NE increased the frequency and not the amplitude of miniature IPSCs (mIPSCs) recorded in the presence of TTX, suggesting that NE increases presynaptic GABA release with no effects on postsynaptic GABA(A) receptors. Application of Ca(2+) channel blockers (Cd(2+) and Ni(2+)), omission of Ca(2+) in the extracellular solution, or replacement of extracellular Na(+) with N-methyl-D-glucamine (NMDG) failed to alter NE-induced increase in mIPSC frequency, suggesting that Ca(2+) influx through voltage-gated Ca(2+) or other cationic channels is not required. Application of BAPTA-AM, thapsigargin, and ryanodine did not change NE-induced increase in mIPSC frequency, suggesting that Ca(2+) release from intracellular stores is not necessary for NE-induced increase in GABA release. Whereas alpha(1) receptors are coupled to G(q/11) resulting in activation of the phospholipase C (PLC) pathway, NE-mediated facilitation of GABAergic transmission was independent of PLC, protein kinase C, and tyrosine kinase activities. Our results suggest that NE-mediated facilitation of GABAergic function contributes to its antiepileptic effects in the EC.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| | | | | | | |
Collapse
|
213
|
Yoshida M, Alonso A. Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex. J Neurophysiol 2007; 98:2779-94. [PMID: 17728392 DOI: 10.1152/jn.00033.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The M-current (current through Kv7 channels) is a low-threshold noninactivating potassium current that is suppressed by muscarinic agonists. Recent studies have shown its role in spike burst generation and intrinsic subthreshold theta resonance, both of which are important for memory function. However, little is known about its role in principal cells of the entorhinal cortex (EC). In this study, using whole cell patch recording techniques in a rat EC slice preparation, we have examined the effects of the M-current blockers linopirdine and XE991 on the membrane dynamics of principal cells in the EC. When the M-current was blocked, layer II nonstellate cells (non-SCs) and layer III cells switched from tonic discharge to intermittent firing mode, during which layer II non-SCs showed high-frequency short-duration spike bursts due to increased fast spike afterdepolarization (ADP). When three spikes were elicited at 50 Hz, these two types of cells reacted with a slow ADP that drove delayed firing. In contrast, layer II stellate cells (SCs) and layer V cells never displayed intermittent firing, bursting behavior, or delayed firing. Under the M-current block, intrinsic excitability increased significantly in layer III and layer V cells but not in layer II SCs and non-SCs. The M-current block also had contrasting effects on the subthreshold excitability, greatly suppressing the subthreshold membrane potential oscillations in layer V cells but not in layer II SCs. Modulation of the M-current thus shifts the firing behavior, intrinsic excitability, and subthreshold membrane potential oscillations of EC principal cells in a cell-type-dependent manner.
Collapse
Affiliation(s)
- Motoharu Yoshida
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
214
|
Deng PY, Poudel SKS, Rojanathammanee L, Porter JE, Lei S. Serotonin inhibits neuronal excitability by activating two-pore domain k+ channels in the entorhinal cortex. Mol Pharmacol 2007; 72:208-18. [PMID: 17452494 DOI: 10.1124/mol.107.034389] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus; the superficial layers (layers I-III) of the EC convey the cortical input projections to the hippocampus, whereas deep layers of the EC relay hippocampal output projections back to the superficial layers of the EC or to other cortical regions. The superficial layers of the EC receive strong serotonergic projections from the raphe nuclei. However, the function of serotonin in the EC is still elusive. In the present study, we examined the molecular and cellular mechanisms underlying serotonin-mediated inhibition of the neuronal excitability in the superficial layers (layers II and III) of the EC. Application of serotonin inhibited the excitability of stellate and pyramidal neurons in the superficial layers of the EC by activating the TWIK-1 type of the two-pore domain K(+) channels. The effects of 5-HT were mediated via 5-HT(1A) receptors and required the function of Galpha(i3) subunit and protein kinase A. Serotonin-mediated inhibition of EC activity resulted in an inhibition of hippocampal function. Our study provides a cellular mechanism that might at least partially explain the roles of serotonin in many physiological functions and neurological diseases.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | |
Collapse
|
215
|
Lipton PA, White JA, Eichenbaum H. Disambiguation of overlapping experiences by neurons in the medial entorhinal cortex. J Neurosci 2007; 27:5787-95. [PMID: 17522322 PMCID: PMC6672778 DOI: 10.1523/jneurosci.1063-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neuronal activity distinguishes separate events that share common elements. Here, we examined whether the capacity to disambiguate overlapping experiences is an exclusive feature of hippocampal processing or whether information processing one stage earlier in the hippocampal system also disambiguates common elements of distinct experiences. We compared the spatial firing patterns of neurons in the dorsocaudal medial entorhinal cortex (dcMEC) and hippocampal CA1 neurons in animals continuously alternating left-turn and right-turn routes through a T-maze. Neurons in the dcMEC more strongly distinguished left-turn from right-turn trials compared with CA1 neurons, whereas CA1 neurons more selectivity encoded places traversed within each route. These results indicate that dcMEC spatial firing patterns are experience dependent and reflect the mnemonic demands of a spatial memory task. Furthermore, the results suggest that neuronal populations in the dcMEC and CA1 differentially emphasize complementary aspects of spatial memory representations.
Collapse
Affiliation(s)
- Paul A. Lipton
- Departments of Psychology and
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| | - John A. White
- Biomedical Engineering, and
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| | - Howard Eichenbaum
- Departments of Psychology and
- Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
216
|
Traissard N, Herbeaux K, Cosquer B, Jeltsch H, Ferry B, Galani R, Pernon A, Majchrzak M, Cassel JC. Combined damage to entorhinal cortex and cholinergic basal forebrain neurons, two early neurodegenerative features accompanying Alzheimer's disease: effects on locomotor activity and memory functions in rats. Neuropsychopharmacology 2007; 32:851-71. [PMID: 16760925 DOI: 10.1038/sj.npp.1301116] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Alzheimer's disease (AD), cognitive decline is linked to cholinergic dysfunctions in the basal forebrain (BF), although the earliest neuronal damage is described in the entorhinal cortex (EC). In rats, selective cholinergic BF lesions or fiber-sparing EC lesions may induce memory deficits, but most often of weak magnitude. This study investigated, in adult rats, the effects on activity and memory of both lesions, alone or in combination, using 192 IgG-saporin (OX7-saporin as a control) and L-N-methyl-D-aspartate to destroy BF and EC neurons, respectively. Rats were tested for locomotor activity in their home cage and for working- and/or reference-memory in various tasks (water maze, Hebb-Williams maze, radial maze). Only rats with combined lesions showed diurnal and nocturnal hyperactivity. EC lesions impaired working memory and induced anterograde memory deficits in almost all tasks. Lesions of BF cholinergic neurons induced more limited deficits: reference memory was impaired in the probe trial of the water-maze task and in the radial maze. When both lesions were combined, performance never improved in the water maze and the number of errors in the Hebb-Williams and the radial mazes was always larger than in any other group. These results (i) indicate synergistic implications of BF and EC in memory function, (ii) suggest that combined BF cholinergic and fiber-sparing EC lesions may model aspects of anterograde memory deficits and restlessness as seen in AD, (iii) challenge the cholinergic hypothesis of cognitive dysfunctions in AD, and (iv) contribute to open theoretical views on AD-related memory dysfunctions going beyond the latter hypothesis.
Collapse
Affiliation(s)
- Natalia Traissard
- Laboratoire de Neurosciences Comportementales et Cognitives, FRE 2855 CNRS, Université Louis Pasteur, IFR 37 Neurosciences, GDR 2905 CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Giocomo LM, Zilli EA, Fransén E, Hasselmo ME. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 2007; 315:1719-22. [PMID: 17379810 PMCID: PMC2950607 DOI: 10.1126/science.1139207] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Grid cells in layer II of rat entorhinal cortex fire to spatial locations in a repeating hexagonal grid, with smaller spacing between grid fields for neurons in more dorsal anatomical locations. Data from in vitro whole-cell patch recordings showed differences in frequency of subthreshold membrane potential oscillations in entorhinal neurons that correspond to different positions along the dorsal-to-ventral axis, supporting a model of physiological mechanisms for grid cell responses.
Collapse
Affiliation(s)
- Lisa M. Giocomo
- Center for Memory and Brain, Department of Psychology, Program in Neuroscience, Boston, University, 2 Cummington St., Boston, Massachusetts, 02215, U.S.A. (617) 353-1397, FAX: (617) 358-3269
| | - Eric A. Zilli
- Center for Memory and Brain, Department of Psychology, Program in Neuroscience, Boston, University, 2 Cummington St., Boston, Massachusetts, 02215, U.S.A. (617) 353-1397, FAX: (617) 358-3269
| | - Erik Fransén
- School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
| | - Michael E. Hasselmo
- Center for Memory and Brain, Department of Psychology, Program in Neuroscience, Boston, University, 2 Cummington St., Boston, Massachusetts, 02215, U.S.A. (617) 353-1397, FAX: (617) 358-3269
| |
Collapse
|
218
|
Fyhn M, Hafting T, Treves A, Moser MB, Moser EI. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 2007; 446:190-4. [PMID: 17322902 DOI: 10.1038/nature05601] [Citation(s) in RCA: 488] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 01/15/2007] [Indexed: 12/24/2022]
Abstract
A fundamental property of many associative memory networks is the ability to decorrelate overlapping input patterns before information is stored. In the hippocampus, this neuronal pattern separation is expressed as the tendency of ensembles of place cells to undergo extensive 'remapping' in response to changes in the sensory or motivational inputs to the hippocampus. Remapping is expressed under some conditions as a change of firing rates in the presence of a stable place code ('rate remapping'), and under other conditions as a complete reorganization of the hippocampal place code in which both place and rate of firing take statistically independent values ('global remapping'). Here we show that the nature of hippocampal remapping can be predicted by ensemble dynamics in place-selective grid cells in the medial entorhinal cortex, one synapse upstream of the hippocampus. Whereas rate remapping is associated with stable grid fields, global remapping is always accompanied by a coordinate shift in the firing vertices of the grid cells. Grid fields of co-localized medial entorhinal cortex cells move and rotate in concert during this realignment. In contrast to the multiple environment-specific representations coded by place cells in the hippocampus, local ensembles of grid cells thus maintain a constant spatial phase structure, allowing position to be represented and updated by the same translation mechanism in all environments encountered by the animal.
Collapse
Affiliation(s)
- Marianne Fyhn
- Centre for the Biology of Memory, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
219
|
Ramirez JJ, Campbell D, Poulton W, Barton C, Swails J, Geghman K, Courchesne SL, Wentworth S. Bilateral entorhinal cortex lesions impair acquisition of delayed spatial alternation in rats. Neurobiol Learn Mem 2007; 87:264-8. [PMID: 17049284 PMCID: PMC1839929 DOI: 10.1016/j.nlm.2006.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/03/2006] [Accepted: 09/06/2006] [Indexed: 01/18/2023]
Abstract
Entorhinal cortex lesions induce significant reorganization of several homotypic and heterotypic inputs to the hippocampus. This investigation determined whether surviving heterotypic inputs after bilateral entorhinal lesions would support the acquisition of a learned alternation task. Rats with entorhinal lesions or sham operations were trained to acquire a spatial alternation task. Although the sham-operated rats acquired the task within about 3 weeks postsurgery, rats with bilateral entorhinal lesions failed to learn the task after 12 consecutive weeks of training despite heterotypic sprouting of the cholinergic septodentate pathway and the expansion of the commissural/associational fiber plexus within the dentate gyrus. Thus, heterotypic sprouting failed to ameliorate significantly the effects of bilateral entorhinal lesions. Rather, entorhinal lesions produced a persistent impairment of spatial memory, characterized by a mixture of random error production and perseverative responding.
Collapse
Affiliation(s)
- Julio J Ramirez
- Department of Psychology and Neuroscience Program, Davidson College, Davidson, NC 28035, USA.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Rogers JL, Kesner RP. Hippocampal-parietal cortex interactions: evidence from a disconnection study in the rat. Behav Brain Res 2007; 179:19-27. [PMID: 17336404 PMCID: PMC2095781 DOI: 10.1016/j.bbr.2007.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 01/02/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
The goal of the present experiments was to use a disconnection paradigm to test the interactions between the hippocampus and parietal cortex (PC) during an object-place paired associate learning task, dry-land water maze task, and a reaction-to-change task. Previous research indicates that these tasks are sensitive to hippocampal or PC disruption. Unilateral lesions were made to the dorsal hippocampus or posterior PC in contralateral hemispheres or ipsilateral hemispheres. It was hypothesized that if the hippocampus and PC interact, then contralateral lesioned animals should be markedly impaired compared to ipsilateral lesions. The results indicate that contralateral lesioned animals were significantly more impaired than animals with ipsilateral lesions during object-place paired-associate learning; however, both groups readily learned single discriminations (i.e., objects or places). Furthermore, contralateral lesioned animals traveled further to find the reward during acquisition of the dry-land water maze task and spent less time in the rewarded quadrant during the probe trial. Conversely, contralateral lesioned animals' performance matched ipsilateral lesioned animals during the reaction-to-change paradigm. Thus, the hippocampus and PC interact during some tasks, presumably when tasks require multiple trials across days, but not during the detection of novelty within a single day.
Collapse
Affiliation(s)
- Jason L. Rogers
- Department of Neurosciences, Medical University of South Carolina
| | | |
Collapse
|
221
|
Ferretti V, Sargolini F, Oliverio A, Mele A, Roullet P. Effects of intra-accumbens NMDA and AMPA receptor antagonists on short-term spatial learning in the Morris water maze task. Behav Brain Res 2007; 179:43-9. [PMID: 17289166 DOI: 10.1016/j.bbr.2007.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 01/04/2007] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
Glutamatergic transmission within the nucleus accumbens (Nac) is considered to subserve the transfer of different types of information from the cortical and limbic regions. In particular, it has been suggested that glutamatergic afferences from the hippocampus and the prefrontal cortex provide the main source of contextual information to the Nac. Accordingly, several authors have demonstrated that the blockade of glutamate receptors within the Nac impairs various spatial tasks. However, the exact role of the different classes of glutamate receptors within the Nac in short-term spatial memory is still not clear. In this study we investigated the involvement of two major classes of glutamate receptors, NMDA and AMPA receptors, within the Nac in the acquisition of spatial information, using the Morris water maze task. Focal injections of the NMDA antagonist, AP-5 (0.1 and 0.15 microg/side), and the AMPA antagonist, DNQX (0.005, 0.01 microg/side), were performed before a massed training phase, and mice were tested for retention immediately after. NMDA and AMPA receptor blockade induced no effect during training. On the contrary, injection of the two glutamatergic antagonists impaired spatial localization during the probe test. These data demonstrate an involvement of the Nac in short-term spatial learning. Moreover, they prove that within this structure the short-term processing of spatial information needs the activation of both NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Valentina Ferretti
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, CNRS-UMR 5169, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
222
|
Lehmann H, Clark BJ, Whishaw IQ. Similar development of cued and learned home bases in control and hippocampal-damaged rats in an open field exploratory task. Hippocampus 2007; 17:370-80. [PMID: 17372977 DOI: 10.1002/hipo.20274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Spatial behavior was examined in control rats and rats with neurotoxic-induced damage of the hippocampus in an open field "exploratory" task. In Experiment 1, rats were placed on a large circular table for 30 min for four consecutive days with a short wall adjacent to the table and a large black box near the edge of the table diametrically opposite to the wall. On the fifth day, rats were given a probe test during which both cues were removed. Over the training exposures both control and hippocampal-damaged rats formed "home bases," operationally defined as places where the rats preferentially stopped and spent time, near the cues. When the cues were removed on the probe day, both groups visited, stopped near, and spent time at places adjacent to the cues' previous location. In Experiment 2, rats were given a similar training protocol, but only a single cue was used, which was a small box placed directly on the table that did not block visibility of the entire room. On the fifth day, the box was moved to the other end of the table. Despite the presence of a cued home base, control and hippocampal-damaged rats remembered the original location of the home base. The results are discussed in relation to the comparative task demands of formal and informal test procedures and with respect to their relevance to understanding the neural basis of spatial behavior.
Collapse
Affiliation(s)
- Hugo Lehmann
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, Lethbridge, Alberta, Canada T1K 4N6.
| | | | | |
Collapse
|
223
|
Kerr KM, Agster KL, Furtak SC, Burwell RD. Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas. Hippocampus 2007; 17:697-708. [PMID: 17607757 DOI: 10.1002/hipo.20315] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The entorhinal cortex (EC) serves a pivotal role in corticohippocampal interactions, but a complete description of its extrinsic connections has not been presented. Here, we have summarized the cortical, subcortical, and hippocampal connections of the lateral entorhinal area (LEA) and the medial entorhinal area (MEA) in the rat. We found that the targets and relative strengths of the entorhinal connections are strikingly different for the LEA and MEA. For example, the LEA receives considerably heavier input from the piriform and insular cortices, whereas the MEA is more heavily targeted by the visual, posterior parietal, and retrosplenial cortices. Regarding subcortical connections, the LEA receives heavy input from the amygdala and olfactory structures, whereas the MEA is targeted by the dorsal thalamus, primarily the midline nuclei and also the dorsolateral and dorsoanterior thalamic nuclei. Differences in the LEA and MEA connections with hippocampal and parahippocampal structures are also described. In addition, because the EC is characterized by bands of intrinsic connectivity that span the LEA and MEA and project to different septotemporal levels of the dentate gyrus, special attention was paid to the efferents and afferents of those bands. Finally, we summarized the connections of the dorsocaudal MEA, the region in which the entorhinal "grid cells" were discovered. The subregional differences in entorhinal connectivity described here provide further evidence for functional diversity within the EC. It is hoped that these findings will inform future studies of the role of the EC in learning and memory.
Collapse
Affiliation(s)
- Kristin M Kerr
- Department of Neuroscience, Brown University, 89 Waterman Street, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
224
|
Stouffer EM, White NM. Roles of learning and motivation in preference behavior: Mediation by entorhinal cortex, dorsal and ventral hippocampus. Hippocampus 2007; 17:147-60. [PMID: 17183529 DOI: 10.1002/hipo.20254] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the latent cue preference (LCP) task, water-deprived rats alternately drink a salt solution in one distinctive compartment of a conditioned cue preference (CCP) apparatus and water in the other compartment over 8 days (training trials). They are then given a choice between the two compartments with no solutions present (preference test). Previous findings showed that this training procedure results in two parallel forms of learning: conditioning to water-paired cues (a water-CCP) and latent learning of an association between salt and salt-paired compartment cues (a salt-LCP). Experiment 1 examined these two types of learning in isolation. Results showed that expression of the salt-LCP required salt deprivation during testing, but expression of the water-CCP did not require a deprivation state during testing. Other results showed that salt-LCP learning itself involves two distinct components: (1) the latent association among neutral cues in the salt-paired compartment, and (2) motivational information about salt deprivation during testing. Previous findings also demonstrated roles for the dorsal hippocampus (DH), ventral hippocampus (VH), and entorhinal cortex (EC) in salt-LCP learning. Experiment 2 examined the involvement of these structures during acquisition or expression of salt-LCP learning. Rats with cannulas aimed at DH, VH, or EC were given infusions of muscimol, either before exposure to the salt-paired, but not the water-paired, compartment during training or before the preference test. Inactivation of the DH or EC impaired both acquisition and expression of the association between salt and salt-paired compartment cues, while inactivation of the VH disrupted the influence of motivational information about salt deprivation required to express the salt-LCP. These results suggest unique roles for the EC-DH circuit and VH in salt-LCP learning, as well as a functional dissociation between the DH and VH.
Collapse
Affiliation(s)
- Eric M Stouffer
- Department of Psychology, McGill University, Montreal, Canada.
| | | |
Collapse
|
225
|
Witter MP. The perforant path: projections from the entorhinal cortex to the dentate gyrus. PROGRESS IN BRAIN RESEARCH 2007; 163:43-61. [PMID: 17765711 DOI: 10.1016/s0079-6123(07)63003-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This paper provides a comprehensive description of the organization of projections from the entorhinal cortex to the dentate gyrus, which together with projections to other subfields of the hippocampal formation form the so-called perforant pathway. To this end, data that are primarily from anatomical studies in the rat will be summarized, complimented with comparative data from other species. The analysis of the organization of any of the connections of the hippocampus, including that of the entorhinal cortex to the dentate gyrus, is severely hampered because of the complex three-dimensional shape of the hippocampus. In particular in rodents, but to a lesser extent also in primates, all traditional planes of sectioning will result in sections that at some point or another do not cut through the hippocampus at an angle that is perpendicular to its long axis. To amend this, we will describe own unpublished tracing data obtained in the rat with the use of the so-called extended preparation. A number of issues will be addressed. First, data will be summarized which will clarify the laminar origin of the perforant pathway within the entorhinal cortex. Second, we will discuss whether or not a radial organization, along the proximo-distal dendritic axis of granule cells, characterizes the entorhinal-dentate projection. Third, we will discuss whether this projection is governed by any transverse organization, and fourth, we will focus on the organization along the longitudinal axis. Finally, the synaptic organization and the contralateral entorhinal-dentate projection will be described briefly. Taken together, the available data suggest that the projection from the entorhinal cortex to the dentate gyrus is a fairly well conserved connection, present in all species studied, exhibiting a grossly similar organization.
Collapse
Affiliation(s)
- Menno P Witter
- Institute for Clinical and Experimental Neurosciences, Department of Anatomy & Neurosciences, VU University Medical Center, MF-G102C, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
226
|
Abstract
The hippocampus has a critical role in certain kinds of spatial memory processes. Hippocampal "place" cells, fire selectively when an animal is in a particular location within the environment. It is thought that this activity underlies a representation of the environment that can be used for memory-based spatial navigation. But how is this representation constructed and how is it "read"? A simple mechanism, based on place field density across an environment, is described that could allow hippocampal representations to be "read" by other brain regions for the purpose of navigation. The possible influence of activity in neighboring brain regions such as the perirhinal cortex, and pre- and para-subiculum on the construction of the hippocampal spatial representation is then discussed.
Collapse
Affiliation(s)
- David K Bilkey
- Department of Psychology, University of Otago, 95 Union Street, Dunedin, New Zealand.
| |
Collapse
|
227
|
Gaskin S, White NM. Unreinforced spatial (latent) learning is mediated by a circuit that includes dorsal entorhinal cortex and fimbria fornix. Hippocampus 2007; 17:586-94. [PMID: 17455197 DOI: 10.1002/hipo.20295] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The relationship of the entorhinal cortex (EC) and fimbria-fornix (FF) in unreinforced spatial (latent) learning was studied using the conditioned-cue-preference task on an eight-arm radial maze. The maze was turned before every trial to eliminate the use of local cues. During three pre-exposure sessions, food-deprived rats explored the center platform and two adjacent arms of the maze. Since most of the same cues were visible from both arm locations, discriminating them required spatial learning. The rats were then alternately confined to the end of each arm over several days: one arm always contained food, the other was empty. Finally, the rats were allowed free access to both arms with no food present. Normal rats spent more time in their food-paired than in their unpaired arms showing that they learned to discriminate between the arm locations. Bilateral micro-injections of muscimol into the dorsal, but not into the ventral EC, given before the pre-exposure sessions only, impaired the discrimination. The discrimination was also impaired in rats with unilateral lesions of FF and contralateral injections of muscimol into the dorsal EC given before the pre-exposure sessions. Ipsilateral FF lesions and entorhinal inactivation had no effect. These results indicate that the acquisition of information during unreinforced exploration of a novel environment requires an intact circuit involving the dorsal EC and fimbria fornix. Together with previous reports, that this form of learning does not require a functional hippocampus, (Gaskin et al. (2005) Hippocampus 15:1085-1093) the findings also suggest that the acquisition of certain kinds of unreinforced information by this circuit is independent of the hippocampus.
Collapse
Affiliation(s)
- Stephane Gaskin
- Department of Psychology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
228
|
Deng PY, Lei S. Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. J Neurophysiol 2006; 97:727-37. [PMID: 17135466 DOI: 10.1152/jn.01089.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The entorhinal cortex (EC) serves as a gateway to the hippocampus and plays a pivotal role in memory processing in the brain. Superficial layers of the EC convey the cortical input projections to the hippocampus, whereas deep layers of the EC relay hippocampal output projections back to the superficial layers of the EC or to other cortical regions. Whereas the EC expresses long-term potentiation (LTP) and depression (LTD), the underlying cellular and molecular mechanisms have not been determined. Because the axons of the stellate neurons in layer II of the EC form the perforant path that innervates the dentate gyrus granule cells of the hippocampus, we studied the mechanisms underlying the long-term plasticity in identified stellate neurons. Application of high-frequency stimulation (100 Hz for 1 s, repeated 3 times at an interval of 10 s) or forskolin (50 microM) failed to induce significant changes in synaptic strength, whereas application of pairing (presynaptic stimulation at 0.33 Hz paired with postsynaptic depolarization from -60 to -10 mV for 5 min) or low-frequency stimulation (LFS, 1 Hz for 15 min) paradigm-induced LTD. Pairing- or LFS-induced LTDs were N-methyl-D-aspartate receptor-dependent and occluded each other suggesting that they have the similar cellular mechanism. Pairing-induced LTD required the activity of calcineurin and involved AMPA receptor endocytosis that required the function of ubiquitin-proteasome system. Our study provides a cellular mechanism that might in part explain the role of the EC in memory.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
229
|
Teixeira CM, Pomedli SR, Maei HR, Kee N, Frankland PW. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 2006; 26:7555-64. [PMID: 16855083 PMCID: PMC6674278 DOI: 10.1523/jneurosci.1068-06.2006] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the hippocampus plays a crucial role in the formation of spatial memories, as these memories mature they may become additionally (or even exclusively) dependent on extrahippocampal structures. However, the identity of these extrahippocampal structures that support remote spatial memory is currently not known. Using a Morris water-maze task, we show that the anterior cingulate cortex (ACC) plays a key role in the expression of remote spatial memories in mice. To first evaluate whether the ACC is activated after the recall of spatial memory, we examined the expression of the immediate early gene, c-fos, in the ACC. Fos expression was elevated after expression of a remote (1 month old), but not recent (1 d old), water-maze memory, suggesting that ACC plays an increasingly important role as a function of time. Consistent with the gene expression data, targeted pharmacological inactivation of the ACC with the sodium channel blocker lidocaine blocked expression of remote, but spared recent, spatial memory. In contrast, inactivation of the dorsal hippocampus disrupted expression of spatial memory, regardless of its age. We further showed that inactivation of the ACC blocked expression of remote spatial memory in two different mouse strains, after training with either a hidden or visible platform in a constant location, and using the AMPA receptor antagonist CNQX. Together, our data provide evidence that circuits supporting spatial memory are reorganized in a time-dependent manner, and establish that activity in neurons intrinsic to the ACC is critical for processing remote spatial memories.
Collapse
|
230
|
Stouffer EM, White NM. Neural circuits mediating latent learning and conditioning for salt in the rat. Neurobiol Learn Mem 2006; 86:91-9. [PMID: 16439166 DOI: 10.1016/j.nlm.2005.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 12/08/2005] [Accepted: 12/15/2005] [Indexed: 11/17/2022]
Abstract
Male Long-Evans rats alternately drank a salt solution in one distinctive compartment of a conditioned cue preference (CCP) apparatus and water in a different compartment over 8 days (training trials) and were then given a choice between the two compartments with no solutions present (test trial). Rats that were water deprived during training, then salt+water deprived during testing, spent more time in their salt-paired compartments, a salt latent cue preference (LCP). Rats that were water-only deprived during training and testing spent more time in their water-paired compartments, a water CCP. Rats that were salt+water deprived during both training and testing spent more time in their salt-paired compartments, a salt CCP. Bilateral, pre-training lesions of the lateral amygdala impaired the water and salt CCPs but not the salt LCP, reflecting the role of the amygdala in Pavlovian conditioning. Lesions of the dorsal or ventral hippocampus impaired the salt LCP and the water and salt CCPs, possibly reflecting the role of the hippocampus in contextual learning. Lesions of the fimbria-fornix impaired the water and salt CCPs but not the salt LCP, while lesions of the entorhinal cortex impaired the salt LCP but not the CCPs. This suggests that the LCP depends on a circuit that includes dorsal and ventral hippocampus and entorhinal cortex, a major conduit of sensory information from the cortex. In contrast, the CCPs depend on the amygdala and a circuit that includes the hippocampus and fimbria-fornix, possibly as a conduit of motivational information from subcortical structures.
Collapse
Affiliation(s)
- Eric M Stouffer
- Department of Psychology, McGill University, Montreal, Que., Canada H3A 1B1.
| | | |
Collapse
|
231
|
Abstract
The entorhinal cortex functions as the gateway to the hippocampal formation. However, its role in formation and consolidation of hippocampus-dependent memory remains relatively unexplored. In this issue of Neuron, Yasuda and Mayford report an elegant cell-type restricted inducible transgenic mouse overexpressing a mutant form of CaM kinase II selectively in superficial layers of medial entorhinal cortex and its upstream regions. These animals display a selective spatial memory deficit during the immediate posttraining period as well as during acquisition in the Morris water maze. Similar to the hippocampus, this time-limited involvement of entorhinal cortex in spatial memory processing suggests a crucial role for hippocampal-entorhinal circuitry in spatial memory formation.
Collapse
Affiliation(s)
- Kazu Nakazawa
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 35 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
232
|
Yasuda M, Mayford MR. CaMKII Activation in the Entorhinal Cortex Disrupts Previously Encoded Spatial Memory. Neuron 2006; 50:309-18. [PMID: 16630840 DOI: 10.1016/j.neuron.2006.03.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 02/17/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
To investigate the role of the entorhinal cortex in memory at a molecular level, we developed transgenic mice in which transgene expression was inducible and limited to the superficial layers of the medial entorhinal cortex, pre- and parasubiculum. We found that expression of a constitutively active mutant form of CaMKII in these structures disrupted spatial memory formation. Immediate post-training activation of the transgene disrupted previously established memory while transgene activation 3 weeks following the training was ineffective. These results demonstrate that, similar to the hippocampus, the entorhinal cortex plays a time-limited role in spatial memory formation but is not a final cortical repository of long-term memory. Moreover, these results suggest that the indiscriminate activation of CaMKII is able to disrupt preexisting memories, possibly by altering the pattern of synaptic weight changes that are thought to form the basis of the memory trace.
Collapse
Affiliation(s)
- Masahiro Yasuda
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
233
|
Ros J, Pellerin L, Magara F, Dauguet J, Schenk F, Magistretti PJ. Metabolic activation pattern of distinct hippocampal subregions during spatial learning and memory retrieval. J Cereb Blood Flow Metab 2006; 26:468-77. [PMID: 16136058 DOI: 10.1038/sj.jcbfm.9600208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation dynamics of hippocampal subregions during spatial learning and their interplay with neocortical regions is an important dimension in the understanding of hippocampal function. Using the (14C)-2-deoxyglucose autoradiographic method, we have characterized the metabolic changes occurring in hippocampal subregions in mice while learning an eight-arm radial maze task. Autoradiogram densitometry revealed a heterogeneous and evolving pattern of enhanced metabolic activity throughout the hippocampus during the training period and on recall. In the early stages of training, activity was enhanced in the CA1 area from the intermediate portion to the posterior end as well as in the CA3 area within the intermediate portion of the hippocampus. At later stages, CA1 and CA3 activations spread over the entire longitudinal axis, while dentate gyrus (DG) activation occurred from the anterior to the intermediate zone. Activation of the retrosplenial cortex but not the amygdala was also observed during the learning process. On recall, only DG activation was observed in the same anterior part of the hippocampus. These results suggest the existence of a functional segmentation of the hippocampus, each subregion being dynamically but also differentially recruited along the acquisition, consolidation, and retrieval process in parallel with some neocortical sites.
Collapse
Affiliation(s)
- Jacqueline Ros
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
234
|
Rosenkranz JA, Johnston D. Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 2006; 26:3229-44. [PMID: 16554474 PMCID: PMC6674109 DOI: 10.1523/jneurosci.4333-05.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/20/2006] [Accepted: 02/13/2006] [Indexed: 11/21/2022] Open
Abstract
The entorhinal cortex (EC) is a significant component of the systems that underlie certain forms of memory formation and recall. Evidence has been emerging that the dopaminergic system in the EC facilitates these and other functions of the EC. The effects of dopamine (DA) on membrane properties and excitability of EC neurons, however, are not known. We used in vitro whole-cell patch-clamp recordings from layer V pyramidal neuronal somata and dendrites of the adult rat lateral EC to investigate the effects of DA on the excitability of these neurons. We found that brief application of DA caused a reduction in the excitability of layer V EC pyramidal neurons. This effect was attributable to voltage-dependent modification of membrane properties that can best be explained by an increase in a hyperpolarization-activated conductance. Furthermore, the effects of DA were blocked by pharmacological blockade of h-channels, but not by any of a number of other ion channels. These actions were produced by a D1 receptor-mediated increase of cAMP but were independent of protein kinase A. A portion of the actions of DA can be attributed to effects in the apical dendrites. The data suggest that DA can directly influence the membrane properties of layer V EC pyramidal neurons by modulation of h-channels. These actions may underlie some of the effects of DA on memory formation.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Learning and Memory, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
235
|
Palop JJ, Chin J, Bien-Ly N, Massaro C, Yeung BZ, Yu GQ, Mucke L. Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice. J Neurosci 2006; 25:9686-93. [PMID: 16237173 PMCID: PMC6725729 DOI: 10.1523/jneurosci.2829-05.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-induced expression of Arc is necessary for maintenance of long-term potentiation and for memory consolidation. In transgenic (TG) mice with neuronal production of human amyloid precursor protein (hAPP) and hAPP-derived amyloid-beta (Abeta) peptides, basal Arc expression was reduced primarily in granule cells of the dentate gyrus. After exploration of a novel environment, Arc expression in these neurons was unaltered in hAPP mice but increased markedly in nontransgenic controls. Other TG neuronal populations showed no or only minor deficits in Arc expression, indicating a special vulnerability of dentate granule cells. The phosphorylation states of NR2B and ERK1/2 were reduced in the dentate gyrus of hAPP mice, suggesting attenuated activity in NMDA-dependent signaling pathways that regulate synaptic plasticity as well as Arc expression. Arc reductions in hAPP mice correlated with reductions in the actin-binding protein alpha-actinin-2, which is located in dendritic spines and, like Arc, fulfills important functions in excitatory synaptic activity. Reductions in Arc and alpha-actinin-2 correlated tightly with reductions in Fos and calbindin, shown previously to reflect learning deficits in hAPP mice. None of these alterations correlated with the extent of plaque formation, suggesting a plaque-independent mechanism of hAPP/Abeta-induced neuronal deficits. The brain region-specific depletion of factors that participate in activity-dependent modification of synapses may critically contribute to cognitive deficits in hAPP mice and possibly in humans with Alzheimer's disease.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Klausberger T, Marton LF, O'Neill J, Huck JHJ, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P. Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 2006; 25:9782-93. [PMID: 16237182 PMCID: PMC6725722 DOI: 10.1523/jneurosci.3269-05.2005] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 +/- 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 +/- 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 +/- 81 degrees), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network.
Collapse
Affiliation(s)
- Thomas Klausberger
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford University, Oxford OX1 3TH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Rogers JL, Hunsaker MR, Kesner RP. Effects of ventral and dorsal CA1 subregional lesions on trace fear conditioning. Neurobiol Learn Mem 2006; 86:72-81. [PMID: 16504548 DOI: 10.1016/j.nlm.2006.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/03/2006] [Accepted: 01/12/2006] [Indexed: 11/22/2022]
Abstract
Recent lines of research have focused on dissociating function between the dorsal and ventral hippocampus along space and anxiety dimensions. In the dorsal hippocampus, the CA1 subregion has been implicated in the acquisition of contextual fear as well as in the trace interval in trace fear conditioning. The present study was designed to test the relative contributions of dorsal (dCA1) and ventral CA1 (vCA1) in trace fear conditioning. Long-Evans rats received ibotenate lesions of the ventral CA1 (n=7), dorsal CA1 (n=9), or vehicle control lesions (n=8) prior to trace fear conditioning acquisition. Results suggest dCA1 and vCA1 groups show no significant deficits during acquisition when compared to control groups. dCA1 and vCA1 both show deficits in the retention of contextual fear when tested 24 h post-acquisition (P<.05 and P<.01, respectively), and vCA1 was impaired relative to dCA1 (P<.05). This is suggestive of a graded involvement in contextual retention between the dorsal and ventral aspects of CA1. dCA1 showed no deficit for retention of conditioned fear to the tone or the trace when tested 48 h post-acquisition, whereas vCA1 did show a significant deficit for the trace interval and a slight, non-significant reduction in freezing to the tone, when compared to the control group (p<.05). Overall the data are suggestive of a graded involvement in retention of fear conditioning between the dorsal and ventral aspects of CA1, but it is likely that vCA1 may be critically involved in retention of trace fear conditioning.
Collapse
Affiliation(s)
- Jason L Rogers
- Department of Psychology, University of Utah, 380 South 1530 East, Room 502, Salt Lake City, UT 84112-0251, USA
| | | | | |
Collapse
|
238
|
Tahvildari B, Alonso A. Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. J Comp Neurol 2006; 491:123-40. [PMID: 16127693 DOI: 10.1002/cne.20706] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The intrinsic electrophysiology and morphology of neurons from layers II and III of the lateral entorhinal cortex (EC) was investigated in a rat brain slice preparation by intracellular recording and biocytin labeling. Morphologically, we distinguished three groups of layer II principal neurons. The most numerous group included cells with multiple radiating dendrites that spread over layers II and I in a fan-like fashion. While morphologically "fan" neurons were similar to the "stellate" cells of the medial EC, electrophysiologically the fan cells lacked the persistent rhythmic subthreshold oscillations and the very pronounced time-dependent inward rectification typical of the stellate cells. The second group consisted of pyramidal cells that manifested regular spike firing and had a more negative resting potential and a longer spike duration than the fan cells. In the third group we included all those neurons that had diverse multipolar appearances distinct from the fan cells. Neurons in this group had electrophysiological profiles intermediate between those of the fan and pyramidal cells. All neurons recorded in layer III were pyramidal in shape with a basal dendritic tree that could extend into layer V and an axon that could also give off collaterals into layer V. Electrophysiologically, layer III pyramidal cells were very similar to those of layer II. On the basis of these and other data we suggest that in different EC regions layer II neurons may be conducting more input-dependent specialized processing, while cells from layer III may perform a more global or generalized function.
Collapse
Affiliation(s)
- Babak Tahvildari
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | | |
Collapse
|
239
|
Leutgeb S, Leutgeb JK, Moser MB, Moser EI. Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol 2005; 15:738-46. [PMID: 16263261 DOI: 10.1016/j.conb.2005.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
The study of population dynamics in hippocampal place cells has emerged as one of the most powerful tools for understanding the encoding, storage and retrieval of declarative memory. Recent work has laid out the contours of an attractor-based hippocampal population code for memory in recurrent circuits of the hippocampus. The code is based on inputs from a topographically organized, path-integration-dependent spatial map that lies upstream in the medial entorhinal cortex. The recurrent networks of the hippocampal formation enable these spatial inputs to be synthesized with nonspatial event-related information.
Collapse
Affiliation(s)
- Stefan Leutgeb
- Centre for the Biology of Memory, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | |
Collapse
|
240
|
Li W, Cui Y, Kushner SA, Brown RAM, Jentsch JD, Frankland PW, Cannon TD, Silva AJ. The HMG-CoA Reductase Inhibitor Lovastatin Reverses the Learning and Attention Deficits in a Mouse Model of Neurofibromatosis Type 1. Curr Biol 2005; 15:1961-7. [PMID: 16271875 DOI: 10.1016/j.cub.2005.09.043] [Citation(s) in RCA: 304] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/24/2005] [Accepted: 09/19/2005] [Indexed: 11/26/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is a common neurological disorder caused by mutations in the gene encoding Neurofibromin, a p21Ras GTPase Activating Protein (GAP). Importantly, NF1 causes learning disabilities and attention deficits. A previous study showed that the learning and memory deficits of a mouse model of NF1 (nf1+/-) appear to be caused by excessive p21Ras activity leading to impairments in long-term potentiation (LTP), a cellular mechanism of learning and memory. Here, we identify lovastatin as a potent inhibitor of p21Ras/Mitogen Activated Protein Kinase (MAPK) activity in the brain. Lovastatin is a specific inhibitor of three-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, used commonly for the treatment of hypercholesterolemia. We report that lovastatin decreased the enhanced brain p21Ras-MAPK activity of the nf1+/- mice, rescued their LTP deficits, and reversed their spatial learning and attention impairments. Therefore, these results demonstrate that lovastatin may prove useful in the treatment of Neurofibromatosis Type 1.
Collapse
Affiliation(s)
- Weidong Li
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Niessen HG, Angenstein F, Vielhaber S, Frisch C, Kudin A, Elger CE, Heinze HJ, Scheich H, Kunz WS. Volumetric Magnetic Resonance Imaging of Functionally Relevant Structural Alterations in Chronic Epilepsy after Pilocarpine-induced Status Epilepticus in Rats. Epilepsia 2005; 46:1021-6. [PMID: 16026554 DOI: 10.1111/j.1528-1167.2005.60704.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE After pilocarpine-induced epilepsy in rats, volumetric magnetic resonance imaging (MRI) reveals significant morphologic changes in functionally relevant structures of the brain. To relate structural changes to functional alteration, we studied the correlation of regional brain atrophy (e.g., of the hippocampus) with lesion-induced learning deficits in the Morris water maze. METHODS MRI experiments were performed on an MR scanner at 4.7 Tesla. For volumetric analysis, various cerebral structures were segmented in horizontal and coronal T(2)-weighted MR images. Before the MRI investigations, animals were trained for 10 days in a Morris water maze. RESULTS Volumetric MRI revealed a significant loss in hippocampal size in both the dorsal and ventral parts, correlated with an increase in ventricular size. Furthermore, significant losses were found in the relative size of thalamus, putamen, cortex, and the combined areas of perirhinal, entorhinal, and piriform cortices adjacent to the hippocampus. A significant correlation of learning performance in the Morris water maze with the relative hippocampal area and not with other areas tested was observed in pilocarpine-treated animals. CONCLUSIONS The data provide a quantitative analysis of functionally relevant structural alterations in rats with chronic epilepsy. Water maze performance of pilocarpine-treated animals correlates with the degree of hippocampal but not with the degree of cortical damage, demonstrating the potential of this method for the investigation of cognitive impairments in relation to cerebral changes. In addition, the data point to an important role of even the residual hippocampus in memory formation.
Collapse
Affiliation(s)
- Heiko G Niessen
- Department of Neurology II, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature 2005; 436:801-6. [PMID: 15965463 DOI: 10.1038/nature03721] [Citation(s) in RCA: 2244] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/05/2005] [Indexed: 11/09/2022]
Abstract
The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
Collapse
Affiliation(s)
- Torkel Hafting
- Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|