201
|
Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B(-/-) mice. Nat Neurosci 2016; 19:716-724. [PMID: 26928064 PMCID: PMC4846490 DOI: 10.1038/nn.4260] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/29/2016] [Indexed: 01/24/2023]
Abstract
Some autistic individuals exhibit abnormal development of the caudate nucleus and associative cortical areas, suggesting potential dysfunction of cortico-basal ganglia (BG) circuits. Using optogenetic and electrophysiological approaches in mice, we identified a narrow postnatal period that is characterized by extensive glutamatergic synaptogenesis in striatal spiny projection neurons (SPNs) and a concomitant increase in corticostriatal circuit activity. SPNs during early development have high intrinsic excitability and respond strongly to cortical afferents despite sparse excitatory inputs. As a result, striatum and corticostriatal connectivity are highly sensitive to acute and chronic changes in cortical activity, suggesting that early imbalances in cortical function alter BG development. Indeed, a mouse model of autism with deletions in Shank3 (Shank3B(-/-)) shows early cortical hyperactivity, which triggers increased SPN excitatory synapse and corticostriatal hyperconnectivity. These results indicate that there is a tight functional coupling between cortex and striatum during early postnatal development and suggest a potential common circuit dysfunction that is caused by cortical hyperactivity.
Collapse
Affiliation(s)
- Rui T. Peixoto
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115
| | - Wengang Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115
| | - Donyell M. Croney
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115
| | - Bernardo L. Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115
| |
Collapse
|
202
|
Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry 2016; 17:174-86. [PMID: 26469219 DOI: 10.3109/15622975.2015.1085597] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. METHODS We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. RESULTS E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. CONCLUSIONS Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.
Collapse
Affiliation(s)
- Genoveva Uzunova
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| | - Stefano Pallanti
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA.,b Psychiatry and Behavioural Sciences, UC Davis Health System , CA , USA.,c Department Psychiatry , University of Florence , Florence , Italy.,d Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Eric Hollander
- a Albert Einstein College of Medicine and Montefiore Medical Center , Bronx , NY , USA
| |
Collapse
|
203
|
Costa V, Aigner S, Vukcevic M, Sauter E, Behr K, Ebeling M, Dunkley T, Friedlein A, Zoffmann S, Meyer CA, Knoflach F, Lugert S, Patsch C, Fjeldskaar F, Chicha-Gaudimier L, Kiialainen A, Piraino P, Bedoucha M, Graf M, Jessberger S, Ghosh A, Bischofberger J, Jagasia R. mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis. Cell Rep 2016; 15:86-95. [PMID: 27052171 DOI: 10.1016/j.celrep.2016.02.090] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/21/2022] Open
Abstract
Hyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD), including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells. Homozygous TSC2 deletion causes severe developmental abnormalities that recapitulate pathological hallmarks of cortical malformations in patients. Both TSC2(+/-) and TSC2(-/-) neurons display altered synaptic transmission paralleled by molecular changes in pathways associated with autism, suggesting the convergence of pathological mechanisms in ASD. Pharmacological inhibition of mTORC1 corrects developmental abnormalities and synaptic dysfunction during independent developmental stages. Our results uncouple stage-specific roles of mTORC1 in human neuronal development and contribute to a better understanding of the onset of neuronal pathophysiology in tuberous sclerosis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Stefan Aigner
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mirko Vukcevic
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Evelyn Sauter
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Katharina Behr
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Martin Ebeling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tom Dunkley
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arno Friedlein
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sannah Zoffmann
- Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Claas A Meyer
- Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Frédéric Knoflach
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sebastian Lugert
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Patsch
- Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fatiha Fjeldskaar
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laurie Chicha-Gaudimier
- Department of Neurosurgery, Universitätsspital Basel, ZLF 20 Hebelstrasse, 4031 Basel, Switzerland
| | - Anna Kiialainen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Paolo Piraino
- Pvalue Research SRL, 29015 Castel San Giovanni, Italy
| | - Marc Bedoucha
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martin Graf
- Roche Pharmaceutical Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sebastian Jessberger
- Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
| | - Anirvan Ghosh
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
204
|
Du C, Zheng F, Wang X. Exploring novel AEDs from drugs used for treatment of non-epileptic disorders. Expert Rev Neurother 2016; 16:449-61. [PMID: 27010915 DOI: 10.1586/14737175.2016.1158101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is a chronic neurological disease. Although many anti-epileptic drugs (AEDs) have been developed for clinical use, they have no effect on 20-30% of patients and do not generally prevent epileptogenesis. Because of the long development cycle for new AEDs and the high cost, increasing efforts are being made to find anti-epileptic effects among drugs that are already listed for the treatment of other diseases and repurpose them as potential anti-epileptic treatments. Here, we review the progress that has been made in this field as a result of animal and clinical trials of drugs such as rapamycin, everolimus, losartan, celecoxib, bumetanide and other non-epileptic drugs. These drugs can prevent the epileptogenesis, reduce the epileptic pathological changes, and even be used to treat intractable epilepsy. Their mechanisms of action are completely different from those of existing AEDs, prompting researchers to change their perspectives in the search for new AEDs.
Collapse
Affiliation(s)
- Chao Du
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Fangshuo Zheng
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Xuenfeng Wang
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
205
|
Jewett KA, Christian CA, Bacos JT, Lee KY, Zhu J, Tsai NP. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling. Mol Brain 2016; 9:32. [PMID: 27000207 PMCID: PMC4802718 DOI: 10.1186/s13041-016-0214-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 01/06/2023] Open
Abstract
Background Neural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown. Results In this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility. Conclusion Together, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0214-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine A Christian
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan T Bacos
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
206
|
Huberfeld G, Vecht CJ. Seizures and gliomas — towards a single therapeutic approach. Nat Rev Neurol 2016; 12:204-16. [DOI: 10.1038/nrneurol.2016.26] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
207
|
Juárez-Morales JL, Schulte CJ, Pezoa SA, Vallejo GK, Hilinski WC, England SJ, de Jager S, Lewis KE. Evx1 and Evx2 specify excitatory neurotransmitter fates and suppress inhibitory fates through a Pax2-independent mechanism. Neural Dev 2016; 11:5. [PMID: 26896392 PMCID: PMC4759709 DOI: 10.1186/s13064-016-0059-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/04/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND For neurons to function correctly in neuronal circuitry they must utilize appropriate neurotransmitters. However, even though neurotransmitter specificity is one of the most important and defining properties of a neuron we still do not fully understand how neurotransmitter fates are specified during development. Most neuronal properties are determined by the transcription factors that neurons express as they start to differentiate. While we know a few transcription factors that specify the neurotransmitter fates of particular neurons, there are still many spinal neurons for which the transcription factors specifying this critical phenotype are unknown. Strikingly, all of the transcription factors that have been identified so far as specifying inhibitory fates in the spinal cord act through Pax2. Even Tlx1 and Tlx3, which specify the excitatory fates of dI3 and dI5 spinal neurons work at least in part by down-regulating Pax2. METHODS In this paper we use single and double mutant zebrafish embryos to identify the spinal cord functions of Evx1 and Evx2. RESULTS We demonstrate that Evx1 and Evx2 are expressed by spinal cord V0v cells and we show that these cells develop into excitatory (glutamatergic) Commissural Ascending (CoSA) interneurons. In the absence of both Evx1 and Evx2, V0v cells still form and develop a CoSA morphology. However, they lose their excitatory fate and instead express markers of a glycinergic fate. Interestingly, they do not express Pax2, suggesting that they are acquiring their inhibitory fate through a novel Pax2-independent mechanism. CONCLUSIONS Evx1 and Evx2 are required, partially redundantly, for spinal cord V0v cells to become excitatory (glutamatergic) interneurons. These results significantly increase our understanding of the mechanisms of neuronal specification and the genetic networks involved in these processes.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Claus J Schulte
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sofia A Pezoa
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Grace K Vallejo
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - William C Hilinski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY, 13210, USA
| | - Samantha J England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sarah de Jager
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
208
|
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, Liang N, Treins C, Pende M, Roussel D, Le Van Quyen M, Mashimo T, Kaneko T, Yamamoto T, Sakuma T, Mahon S, Miles R, Leguern E, Charpier S, Baulac S. Depdc5 knockout rat: A novel model of mTORopathy. Neurobiol Dis 2016; 89:180-9. [PMID: 26873552 DOI: 10.1016/j.nbd.2016.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elise Marsan
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Saeko Ishida
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Adrien Schramm
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Weckhuysen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Giuseppe Muraca
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Lecas
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Delphine Roussel
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Michel Le Van Quyen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Séverine Mahon
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Richard Miles
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Eric Leguern
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Stéphane Charpier
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Stéphanie Baulac
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
| |
Collapse
|
209
|
Lu C, Chen Q, Zhou T, Bozic D, Fu Z, Pan JQ, Feng G. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3. Mol Psychiatry 2016; 21:159-68. [PMID: 26598066 DOI: 10.1038/mp.2015.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/27/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023]
Abstract
Numerous risk genes have recently been implicated in susceptibility to autism and schizophrenia. Translating such genetic findings into disease-relevant neurobiological mechanisms is challenging due to the lack of throughput assays that can be used to assess their functions on an appropriate scale. To address this issue, we explored the feasibility of using a micro-electrode array (MEA) as a potentially scalable assay to identify the electrical network phenotypes associated with risk genes. We first characterized local and global network firing in cortical neurons with MEAs, and then developed methods to analyze the alternation between the network active period (NAP) and the network inactive period (NIP), each of which lasts tens of seconds. We then evaluated the electric phenotypes of neurons derived from Shank3 knockout (KO) mice. Cortical neurons cultured on MEAs displayed a rich repertoire of spontaneous firing, and Shank3 deletion led to reduced firing activity. Enhancing excitation with CX546 rescued the deficit in the spike rate in the Shank3 KO network. In addition, the Shank3 KO network produced a shorter NIP, and this altered network firing pattern was normalized by clonazepam, a positive modulator of the GABAA receptor. MEA recordings revealed electric phenotypes that displayed altered excitation and inhibition in the network lacking Shank3. Thus, our study highlights MEAs as an experimental framework for measuring multiple robust neurobiological end points in dynamic networks and as an assay system that could be used to identify electric phenotypes in cultured neuronal networks and to analyze additional risk genes identified in psychiatric genetics.
Collapse
Affiliation(s)
- C Lu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Q Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - T Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D Bozic
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Z Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
210
|
Ko J, Choii G, Um JW. The balancing act of GABAergic synapse organizers. Trends Mol Med 2016; 21:256-68. [PMID: 25824541 DOI: 10.1016/j.molmed.2015.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/14/2022]
Abstract
GABA (γ-aminobutyric acid) is the main neurotransmitter at inhibitory synapses in the mammalian brain. It is essential for maintaining the excitation and inhibition (E/I) ratio, whose imbalance underlies various brain diseases. Emerging information about inhibitory synapse organizers provides a novel molecular framework for understanding E/I balance at the synapse, circuit, and systems levels. This review highlights recent advances in deciphering these components of the inhibitory synapse and their roles in the development, transmission, and circuit properties of inhibitory synapses. We also discuss how their dysfunction may lead to a variety of brain disorders, suggesting new therapeutic strategies based on balancing the E/I ratio.
Collapse
|
211
|
Sato A. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2016; 15:533-43. [PMID: 27071790 PMCID: PMC5070418 DOI: 10.2174/1871527315666160413120638] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator in various cellular processes, including cell growth, gene expression, and synaptic functions. Autism spectrum disorder (ASD) is frequently accompanied by monogenic disorders, such as tuberous sclerosis complex, phosphatase and tensin homolog tumor hamartoma syndrome, neurofibromatosis 1, and fragile X syndrome, in which mTOR is hyperactive. Mutations in the genes involved in the mTOR-mediated signaling pathway have been identified in some cases of syndromic ASD. Evidences indicate a pathogenic role for hyperactive mTOR-mediated signaling in ASD associated with these monogenic disorders, and mTOR inhibitors are a potential pharmacotherapy for ASD. Abnormal synaptic transmission through metabotropic glutamate receptor 5 may underlie in a part of ASD associated with hyperactive mTOR-mediated signaling. In this review, the relationship between mTOR and ASD is discussed.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113- 8655, Japan.
| |
Collapse
|
212
|
Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 2015; 15:146-67. [PMID: 25732149 DOI: 10.2174/1566524015666150303003028] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.
Collapse
Affiliation(s)
| | - P Penzes
- Department of Physiology, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
213
|
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep 2015; 13:2297-311. [PMID: 26670047 DOI: 10.1016/j.celrep.2015.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
Abnormal metabotropic glutamate receptor 5 (mGluR5) function, as a result of disrupted scaffolding with its binding partner Homer, contributes to the pathophysiology of fragile X syndrome, a common inherited form of intellectual disability and autism caused by mutations in Fmr1. How loss of Fmr1 disrupts mGluR5-Homer scaffolds is unknown, and little is known about the dynamic regulation of mGluR5-Homer scaffolds in wild-type neurons. Here, we demonstrate that brief (minutes-long) elevations in neural activity cause CaMKIIα-mediated phosphorylation of long Homer proteins and dissociation from mGluR5 at synapses. In Fmr1 knockout (KO) cortex, Homers are hyperphosphorylated as a result of elevated CaMKIIα protein. Genetic or pharmacological inhibition of CaMKIIα or replacement of Homers with dephosphomimetics restores mGluR5-Homer scaffolds and multiple Fmr1 KO phenotypes, including circuit hyperexcitability and/or seizures. This work links translational control of an FMRP target mRNA, CaMKIIα, to the molecular-, cellular-, and circuit-level brain dysfunction in a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Weirui Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Katie A Collins
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
214
|
Abstract
PURPOSE OF REVIEW This review discusses the ways that rodent models of autism spectrum disorders (ASDs) have been used to gain critical information about convergent molecular pathways, the mechanisms underlying altered microcircuit structure and function, and as a screen for potential cutting edge-treatments for ASDs. RECENT FINDINGS There is convergent evidence that impaired developmental pruning of connections may be a common finding among several mouse models of ASDs. Recent studies have uncovered impaired autophagy by pathological mTOR activation as a potential contributor to microcircuit dysfunction and behavior. ASD-related disinhibition and exaggerated synaptic plasticity in multiple distinct circuits in cortex and reward circuits in striatum also contribute to social dysfunction and repetitive behaviors. New exciting molecular therapeutic techniques have reversed cognitive deficits in models of ASD, indicating that mouse models could be used for preclinical translational studies of new treatments. SUMMARY Rodent models of ASDs coupled to new emerging technologies for genome editing, cell-specific functional and structural imaging, and neuronal activity manipulation will yield critical insights into ASD pathogenesis and fuel the emergence of new treatments.
Collapse
|
215
|
Abstract
PURPOSE OF REVIEW Recent studies have implicated hundreds of genetic variants in the cause of autism spectrum disorder (ASD). Genes involved in 'monogenic' forms of syndromic ASD converge on common pathways that are involved in synaptic development, plasticity and signaling. In this review, we discuss how these 'developmental synaptopathies' inform our understanding of the molecular disease in ASD and highlight promising approaches that have bridged the gap between the bench and the clinic. RECENT FINDINGS Accumulating evidence suggests that synaptic deficits in syndromic and nonsyndromic ASD can be mapped to gene mutations in pathways that control synaptic protein synthesis and degradation, postsynaptic scaffold architecture and neurotransmitter receptors. This is recapitulated in models of Fragile X syndrome (FXS), Tuberous Sclerosis Complex (TSC), Angelman syndrome and Phelan-McDermid syndrome (PMS), all of which cause syndromic ASD. Important recent advances include the development of mouse models and patient-derived induced pluripotent stem cell (iPSC) lines that enable a detailed investigation of synaptic deficits and the identification of potential targets for therapy. Examples of the latter include mGluR5 antagonists in FXS, mTOR inhibitors in TSC and insulin-like growth factor 1 (IGF-1) in PMS. SUMMARY Identifying converging pathways in syndromic forms of ASD will uncover novel therapeutic targets for non-syndromic ASD. Insights into developmental synaptopathies will lead to rational development of mechanism-based therapies and clinical trials that may provide a blueprint for other common pathways implicated in the molecular neuropathology of ASD.
Collapse
|
216
|
Baek ST, Copeland B, Yun EJ, Kwon SK, Guemez-Gamboa A, Schaffer AE, Kim S, Kang HC, Song S, Mathern GW, Gleeson JG. An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development. Nat Med 2015; 21:1445-54. [PMID: 26523971 PMCID: PMC4955611 DOI: 10.1038/nm.3982] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway are found in a wide range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3(E17K) mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.
Collapse
Affiliation(s)
- Seung Tae Baek
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
| | - Brett Copeland
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
| | - Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seok-Kyu Kwon
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Alicia Guemez-Gamboa
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
| | - Ashleigh E Schaffer
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon-Chul Kang
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinics, Severance Children's Hospital, Seoul, South Korea
- Epilepsy Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Saera Song
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
| | - Gary W Mathern
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Joseph G Gleeson
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
217
|
Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 2015; 87:684-98. [PMID: 26291155 DOI: 10.1016/j.neuron.2015.07.033] [Citation(s) in RCA: 731] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorders (ASDs) and related neurological disorders are associated with mutations in many genes affecting the ratio between neuronal excitation and inhibition. However, understanding the impact of these mutations on network activity is complicated by the plasticity of these networks, making it difficult in many cases to separate initial deficits from homeostatic compensation. Here we explore the contrasting evidence for primary defects in inhibition or excitation in ASDs and attempt to integrate the findings in terms of the brain's ability to maintain functional homeostasis.
Collapse
Affiliation(s)
- Sacha B Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Vera Valakh
- Department of Biology and Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
218
|
Gangarossa G, Sakkaki S, Lory P, Valjent E. Mouse hippocampal phosphorylation footprint induced by generalized seizures: Focus on ERK, mTORC1 and Akt/GSK-3 pathways. Neuroscience 2015; 311:474-83. [PMID: 26545981 DOI: 10.1016/j.neuroscience.2015.10.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock seizure (MES). Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally distinct patterns of phosphorylation of extracellular signal-related kinase (ERK), mammalian target of rapamycin complex (mTORC) and Akt/glycogen synthase kinase-3 (Akt/GSK-3) pathways in the mouse hippocampus. While the ERK pathway is transiently activated, the mTORC1 cascade follows a rapid inhibition followed by a transient activation. This rebound of mTORC1 activity leads to the selective phosphorylation of p70S6K, which is accompanied by an enhanced phosphorylation of the ribosomal subunit S6. In contrast, the Akt/GSK-3 pathway is weakly altered. Finally, MES triggers a rapid upregulation of several plasticity-associated genes as a consequence exacerbated hippocampal activity. The results reported in the present study are reminiscent of the one observed in other models of generalized seizures, thus defining a common molecular footprint induced by intense and aberrant hippocampal activities.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France.
| | - Sophie Sakkaki
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France
| | - Philippe Lory
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France; LabEx 'Ion Channel Science and Therapeutics', Montpellier F-34094, France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France.
| |
Collapse
|
219
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
220
|
The Stress-Induced Atf3-Gelsolin Cascade Underlies Dendritic Spine Deficits in Neuronal Models of Tuberous Sclerosis Complex. J Neurosci 2015. [PMID: 26224859 DOI: 10.1523/jneurosci.4796-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Hyperactivation of the mechanistic target of rapamycin (mTOR) kinase, as a result of loss-of-function mutations in tuberous sclerosis complex 1 (TSC1) or TSC2 genes, causes protein synthesis dysregulation, increased cell size, and aberrant neuronal connectivity. Dysregulated synthesis of synaptic proteins has been implicated in the pathophysiology of autism spectrum disorder (ASD) associated with TSC and fragile X syndrome. However, cell type-specific translational profiles in these disease models remain to be investigated. Here, we used high-fidelity and unbiased Translating Ribosome Affinity Purification (TRAP) methodology to purify ribosome-associated mRNAs and identified translational alterations in a rat neuronal culture model of TSC. We find that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed. Importantly, transcripts for the activating transcription factor-3 (Atf3) and mitochondrial uncoupling protein-2 (Ucp2) are highly induced in Tsc2-deficient neurons, as well as in a neuron-specific Tsc1 conditional knock-out mouse model, and show differential responses to the mTOR inhibitor rapamycin. Gelsolin, a known target of Atf3 transcriptional activity, is also upregulated. shRNA-mediated block of Atf3 induction suppresses expression of gelsolin, an actin-severing protein, and rescues spine deficits found in Tsc2-deficient neurons. Together, our data demonstrate that a cell-autonomous program consisting of a stress-induced Atf3-gelsolin cascade affects the change in dendritic spine morphology following mTOR hyperactivation. This previously unidentified molecular cascade could be a therapeutic target for treating mTORopathies. SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) is a genetic disease associated with epilepsy and autism. Dysregulated protein synthesis has been implicated as a cause of this disease. However, cell type-specific translational profiles that are aberrant in this disease are unknown. Here we show that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed in neurons missing the Tsc2 gene expression. Identification of genes whose translation is abnormal in TSC may provide insights to previously unidentified therapeutic targets.
Collapse
|
221
|
Niere F, Namjoshi S, Song E, Dilly GA, Schoenhard G, Zemelman BV, Mechref Y, Raab-Graham KF. Analysis of Proteins That Rapidly Change Upon Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Repression Identifies Parkinson Protein 7 (PARK7) as a Novel Protein Aberrantly Expressed in Tuberous Sclerosis Complex (TSC). Mol Cell Proteomics 2015; 15:426-44. [PMID: 26419955 DOI: 10.1074/mcp.m115.055079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states.
Collapse
Affiliation(s)
- Farr Niere
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas; ‖Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas
| | - Sanjeev Namjoshi
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas
| | - Ehwang Song
- **Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Geoffrey A Dilly
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas
| | - Grant Schoenhard
- ‡‡Pain Therapeutics, Inc., 7801 N Capital of Texas Hwy, #260, Austin, Texas 78731
| | - Boris V Zemelman
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas
| | - Yehia Mechref
- **Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Kimberly F Raab-Graham
- From the ‡Center for Learning and Memory, University of Texas, Austin, 1 University Station C7000, Texas 78712; §Institute for Cell and Molecular Biology, University of Texas, Austin, Texas; ¶Institute for Neuroscience, University of Texas, Austin, Texas; ‖Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas; ‡‡Pain Therapeutics, Inc., 7801 N Capital of Texas Hwy, #260, Austin, Texas 78731
| |
Collapse
|
222
|
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9:313. [PMID: 26483618 PMCID: PMC4586332 DOI: 10.3389/fnins.2015.00313] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Christina K Timmerman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Joshua L Schwartz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Daniel L Pham
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Mollie K Meffert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
223
|
Natarajan R, Barber K, Buckley A, Cho P, Egbejimi A, Wairkar YP. Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein. PLoS One 2015; 10:e0138188. [PMID: 26393506 PMCID: PMC4578898 DOI: 10.1371/journal.pone.0138188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022] Open
Abstract
Precise regulation of synapses during development is essential to ensure accurate neural connectivity and function of nervous system. Many signaling pathways, including the mTOR (mechanical Target of Rapamycin) pathway operate in neurons to maintain genetically determined number of synapses during development. mTOR, a kinase, is shared between two functionally distinct multi-protein complexes- mTORC1 and mTORC2, that act downstream of Tuberous Sclerosis Complex (TSC). We and others have suggested an important role for TSC in synapse development at the Drosophila neuromuscular junction (NMJ) synapses. In addition, our data suggested that the regulation of the NMJ synapse numbers in Drosophila largely depends on signaling via mTORC2. In the present study, we further this observation by identifying Tricornered (Trc) kinase, a serine/threonine kinase as a likely mediator of TSC signaling. trc genetically interacts with Tsc2 to regulate the number of synapses. In addition, Tsc2 and trc mutants exhibit a dramatic reduction in synaptic levels of WASP, an important regulator of actin polymerization. We show that Trc regulates the WASP levels largely, by regulating the transcription of WASP. Finally, we show that overexpression of WASP (Wiskott-Aldrich Syndrome Protein) in trc mutants can suppress the increase in the number of synapses observed in trc mutants, suggesting that WASP regulates synapses downstream of Trc. Thus, our data provide a novel insight into how Trc may regulate the genetic program that controls the number of synapses during development.
Collapse
Affiliation(s)
- Rajalaxmi Natarajan
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kara Barber
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amanda Buckley
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Phillip Cho
- Summer Undergraduate Research Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anuoluwapo Egbejimi
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yogesh P. Wairkar
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
224
|
Patil VV, Guzman M, Carter AN, Rathore G, Yoshor D, Curry D, Wilfong A, Agadi S, Swann JW, Adesina AM, Bhattacharjee MB, Anderson AE. Activation of extracellular regulated kinase and mechanistic target of rapamycin pathway in focal cortical dysplasia. Neuropathology 2015; 36:146-56. [PMID: 26381727 DOI: 10.1111/neup.12242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/26/2022]
Abstract
Neuropathology of resected brain tissue has revealed an association of focal cortical dysplasia (FCD) with drug-resistant epilepsy (DRE). Recent studies have shown that the mechanistic target of rapamycin (mTOR) pathway is hyperactivated in FCD as evidenced by increased phosphorylation of the ribosomal protein S6 (S6) at serine 240/244 (S(240/244) ), a downstream target of mTOR. Moreover, extracellular regulated kinase (ERK) has been shown to phosphorylate S6 at serine 235/236 (S(235/236) ) and tuberous sclerosis complex 2 (TSC2) at serine 664 (S(664) ) leading to hyperactive mTOR signaling. We evaluated ERK phosphorylation of S6 and TSC2 in two types of FCD (FCD I and FCD II) as a candidate mechanism contributing to mTOR pathway dysregulation. Tissue samples from patients with tuberous sclerosis (TS) served as a positive control. Immunostaining for phospho-S6 (pS6(240/244) and pS6(235/236) ), phospho-ERK (pERK), and phospho-TSC2 (pTSC2) was performed on resected brain tissue with FCD and TS. We found increased pS6(240/244) and pS6(235/236) staining in FCD I, FCD II and TS compared to normal-appearing tissue, while pERK and pTSC2 staining was increased only in FCD IIb and TS tissue. Our results suggest that both the ERK and mTOR pathways are dysregulated in FCD and TS; however, the signaling alterations are different for FCD I as compared to FCD II and TS.
Collapse
Affiliation(s)
- Vinit V Patil
- Program in Translational Biology and Molecular Medicine, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Pathology, Saint Louis University, Saint Louis, Missouri
| | - Miguel Guzman
- Department of Pathology, Saint Louis University, Saint Louis, Missouri
| | - Angela N Carter
- Department of Neuroscience, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Geetanjali Rathore
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Yoshor
- Department of Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Curry
- Department of Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Angus Wilfong
- Department of Neurology, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Satish Agadi
- Department of Neurology, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - John W Swann
- Department of Neuroscience, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Program in Translational Biology and Molecular Medicine, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | | | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, Texas, USA
| | - Anne E Anderson
- Department of Neurology, Texas Children's Hospital, Houston, Texas, USA.,Department of Neuroscience, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Program in Translational Biology and Molecular Medicine, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
225
|
Takano T. Interneuron Dysfunction in Syndromic Autism: Recent Advances. Dev Neurosci 2015; 37:467-75. [PMID: 26183392 DOI: 10.1159/000434638] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
Autism is an extremely heterogeneous disorder, but its frequent cooccurrence with epilepsy leads to speculation that there may be common mechanisms associated with these disorders. Inhibitory interneurons are considered to be the main cellular elements that control hyperexcitability in the brain, and interneuron dysfunction can cause pathological hyperexcitability linked to seizure susceptibility or epilepsy. This review summarizes some of the recent advances that support the relationship between interneuron dysfunction and cognitive impairment in human syndromic autism, with particular reference to the pathophysiological findings of murine experimental models of autism. Alterations in x03B3;-aminobutyric acid (GABA)ergic circuits include a wide variety of neurobiological dysfunctions and do not simply involve the loss or gain of any given type of inhibitory mechanism. The characteristics of interneuron dysfunction in each murine model of autism differ for each syndrome, and these diversities may be due to differences in genetic backgrounds or some other currently unknown variances. Future studies should give us a greater understanding of the involvement of different classes of GABAergic interneurons and allow us to define the relationship between the precise pathophysiological mechanisms and the corresponding clinical phenotypes in autism.
Collapse
Affiliation(s)
- Tomoyuki Takano
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
226
|
Heinzen EL, Neale BM, Traynelis SF, Allen AS, Goldstein DB. The Genetics of Neuropsychiatric Diseases: Looking In and Beyond the Exome. Annu Rev Neurosci 2015; 38:47-68. [DOI: 10.1146/annurev-neuro-071714-034136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Erin L. Heinzen
- Institute for Genomic Medicine,
- Department of Pathology and Cell Biology,
| | - Benjamin M. Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Andrew S. Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27710
| | - David B. Goldstein
- Institute for Genomic Medicine,
- Department of Genetics and Development, Columbia University, New York, NY 10032; ,
| |
Collapse
|
227
|
Wang T, de Kok L, Willemsen R, Elgersma Y, Borst JGG. In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome. Front Cell Neurosci 2015; 9:234. [PMID: 26190969 PMCID: PMC4490249 DOI: 10.3389/fncel.2015.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Defects in the rat sarcoma viral oncogene homolog (Ras)/extracellular-signal-regulated kinase and the phosphatidylinositol 3-kinase-mammalian target of rapamycin (mTOR) signaling pathways are responsible for several neurodevelopmental disorders. These disorders are an important cause for intellectual disability; additional manifestations include autism spectrum disorder, seizures, and brain malformations. Changes in synaptic function are thought to underlie the neurological conditions associated with these syndromes. We therefore studied morphology and in vivo synaptic transmission of the calyx of Held synapse, a relay synapse in the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, in mouse models of tuberous sclerosis complex (TSC), Fragile X syndrome (FXS), Neurofibromatosis type 1 (NF1), and Costello syndrome. Calyces from both Tsc1+/- and from Fmr1 knock-out (KO) mice showed increased volume and surface area compared to wild-type (WT) controls. In addition, in Fmr1 KO animals a larger fraction of calyces showed complex morphology. In MNTB principal neurons of Nf1+/- mice the average delay between EPSPs and APs was slightly smaller compared to WT controls, which could indicate an increased excitability. Otherwise, no obvious changes in synaptic transmission, or short-term plasticity were observed during juxtacellular recordings in any of the four lines. Our results in these four mutants thus indicate that abnormalities of mTOR or Ras signaling do not necessarily result in changes in in vivo synaptic transmission.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Laura de Kok
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands ; ENCORE Expertise Center for Neurodevelopmental disorders, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
228
|
Davis PE, Peters JM, Krueger DA, Sahin M. Tuberous Sclerosis: A New Frontier in Targeted Treatment of Autism. Neurotherapeutics 2015; 12:572-83. [PMID: 25986747 PMCID: PMC4489948 DOI: 10.1007/s13311-015-0359-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder with a high prevalence of autism spectrum disorder (ASD). Tremendous progress in understanding the pathogenesis of TSC has been made in recent years, along with initial trials of medical treatment aimed specifically at the underlying mechanism of the disorder. At the cellular level, loss of TSC1 or TSC2 results in upregulation of the mechanistic target of rapamycin (mTOR) pathway. At the circuitry level, TSC and mTOR play crucial roles in axonal, dendritic, and synaptic development and function. In this review, we discuss the molecular mechanism underlying TSC, and how this disease results in aberrant neural connectivity at multiple levels in the central nervous system, leading to ASD symptoms. We then review recent advances in mechanism-based treatments of TSC, and the promise that these treatments provide for future mechanism-based treatment of ASD. Because of these recent advances, TSC represents an ideal model for how to make progress in understanding and treating the mechanisms that underlie ASD in general.
Collapse
Affiliation(s)
- Peter E. Davis
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
| | - Jurriaan M. Peters
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
| | - Darcy A. Krueger
- />Division of Neurology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Mustafa Sahin
- />Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, 02115 MA USA
- />F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
229
|
Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, Bai N, Ito Y, Cui W, Aizawa H, Yanagisawa M, Nagai T, Takata N, Tanaka KF, Takayanagi R, Kano M, Götz M, Hirase H, Tanaka K. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology 2015; 40:1569-79. [PMID: 25662838 PMCID: PMC4915262 DOI: 10.1038/npp.2015.26] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 01/10/2015] [Accepted: 01/10/2015] [Indexed: 02/04/2023]
Abstract
An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLAST(CreERT2/+)/GLT1(flox/flox), iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors.
Collapse
Affiliation(s)
- Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Yoshida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Asami Tanimura
- Department of Neurophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Iino
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miho Soma
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ning Bai
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiko Ito
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanpeng Cui
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidenori Aizawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Yanagisawa
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Terumi Nagai
- Laboratory for Neuron-Glia Circuitry, Brain Science Institute, RIKEN, Saitama, Japan
| | - Norio Takata
- Laboratory for Neuron-Glia Circuitry, Brain Science Institute, RIKEN, Saitama, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Magdalena Götz
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hajime Hirase
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan,JST, CREST, Saitama, Japan,The Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan,Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan, Tel: +81 3 5803 5846, Fax: +81 3 5803 5843, E-mail:
| |
Collapse
|
230
|
Tang L, Wang Y, Leng T, Sun H, Zhou Y, Zhu W, Qiu P, Zhang J, Lu B, Yan M, Chen W, Su X, Yin W, Huang Y, Hu H, Yan G. Cholesterol metabolite cholestane-3β,5α,6β-triol suppresses epileptic seizures by negative modulation of voltage-gated sodium channels. Steroids 2015; 98:166-72. [PMID: 25578735 DOI: 10.1016/j.steroids.2014.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 11/24/2022]
Abstract
Imbalance of excitation and inhibition in neurons is implicated in the pathogenesis of epilepsy. Voltage-gated sodium channels, which play a vital role in regulating neuronal excitability, are one of the major targets for developing anti-epileptic drugs. Here we provide evidence that cholestane-3β,5α,6β-triol (triol), a major metabolic oxysterol of cholesterol, is an effective state-dependent negative sodium channels modulator. Triol reduced Na(+) current density in a concentration-dependent manner. 10 μM triol shifted steady-state/fast/slow inactivation curves of sodium channels toward the hyperpolarizing direction. Additionally, triol reduced voltage-gated sodium currents in a voltage- and frequency-dependent manner. In a kainic acid-induced seizures mouse model, triol (25 mg/kg) significantly increased the latency of seizure onset and attenuated seizure severity. Our findings provide novel insights for understanding the modulatory role of a small molecular oxysterol on voltage-gated sodium channels and suggest triol may represent a novel and promising candidate for epilepsy intervention.
Collapse
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Youqiong Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Tiandong Leng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Huanhuan Sun
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Yuehan Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China; Department of Pharmacology, Guilin Medical University, Guilin, GX 541004, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Jingxia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, GD 510006, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Xinwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, GD 510006, China.
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, GD 510080, China.
| |
Collapse
|
231
|
Kotajima-Murakami H, Sato A, Ikeda K. [Pathology and treatment of autism spectrum disorders]. Nihon Yakurigaku Zasshi 2015; 145:193-200. [PMID: 25864830 DOI: 10.1254/fpj.145.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
232
|
Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med 2015; 5:5/4/a022442. [PMID: 25833943 DOI: 10.1101/cshperspect.a022442] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade enhanced activation of the mammalian target of rapamycin (mTOR)-signaling cascade has been identified in focal malformations of cortical development (MCD) subtypes, which have been collectively referred to as "mTORopathies." Mutations in mTOR regulatory genes (e.g., TSC1, TSC2, AKT3, DEPDC5) have been associated with several focal MCD highly associated with epilepsy such as tuberous sclerosis complex (TSC), hemimegalencephaly (HME; brain malformation associated with dramatic enlargement of one brain hemisphere), and cortical dysplasia. mTOR plays important roles in the regulation of cell division, growth, and survival, and, thus, aberrant activation of the cascade during cortical development can cause dramatic alterations in cell size, cortical lamination, and axon and dendrite outgrowth often observed in focal MCD. Although it is widely believed that structural alterations induced by hyperactivated mTOR signaling are critical for epileptogenesis, newer evidence suggests that mTOR activation on its own may enhance neuronal excitability. Clinical trials with mTOR inhibitors have shown efficacy in the treatment of seizures associated with focal MCD.
Collapse
Affiliation(s)
- Peter B Crino
- Shriners Hospital Pediatric Research Center and Department of Neurology, Temple University, Philadelphia, Pennsylvania 19140
| |
Collapse
|
233
|
Buffington SA, Huang W, Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci 2015; 37:17-38. [PMID: 25032491 DOI: 10.1146/annurev-neuro-071013-014100] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activity-dependent changes in the strength of synaptic connections are fundamental to the formation and maintenance of memory. The mechanisms underlying persistent changes in synaptic strength in the hippocampus, specifically long-term potentiation and depression, depend on new protein synthesis. Such changes are thought to be orchestrated by engaging the signaling pathways that regulate mRNA translation in neurons. In this review, we discuss the key regulatory pathways that govern translational control in response to synaptic activity and the mRNA populations that are specifically targeted by these pathways. The critical contribution of regulatory control over new protein synthesis to proper cognitive function is underscored by human disorders associated with either silencing or mutation of genes encoding proteins that directly regulate translation. In light of these clinical implications, we also consider the therapeutic potential of targeting dysregulated translational control to treat cognitive disorders of synaptic dysfunction.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030; , ,
| | | | | |
Collapse
|
234
|
Curatolo P. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Pediatr Neurol 2015; 52:281-9. [PMID: 25591831 DOI: 10.1016/j.pediatrneurol.2014.10.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/29/2014] [Accepted: 10/29/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Tuberous sclerosis complex is a multiorgan disease resulting from a mutation of one of two TSC genes. The two gene products form a functional complex that regulates the mTOR signaling pathway (mTOR initially represented mammalian target of rapamycin, but increasingly the term mechanistic target of rapamycin is used to reflect the ubiquitous occurrence of mTOR). Epilepsy is the most common neurological symptom of tuberous sclerosis complex, occurring in 80% to 90% of affected individuals over the course of their lifetimes and causing significant morbidity and mortality. The mechanistic target of rapamycin (mTOR) signaling pathway is intricately involved in multiple cellular functions--including protein synthesis, cell growth and proliferation, and synaptic plasticity--which may influence neuronal excitability and precipitate epileptogenesis. Recent preclinical and clinical studies have increased interest in the potential role of mTOR inhibitors for the treatment of tuberous sclerosis complex-related epilepsy. METHODS Medline and PubMed database searches were used to identify relevant studies and other information on tuberous sclerosis complex-related epilepsies, the mTOR pathway, and current advances in treatment approaches. RESULTS Although current management strategies that provide symptomatic relief are effective at reducing the frequency of seizures in individuals with tuberous sclerosis complex, there is further room for the exploration of therapies that directly address hyperactive mTOR signaling--the underlying etiology of the disease. The role of the antiepileptic effect of mTOR inhibition was first demonstrated in knockout TSC1 mouse models. Additionally, several case studies demonstrated a positive effect on seizure frequency and severity in patients with pharmacoresistant epilepsy. In a phase 1/2 clinical trial with 28 patients, clinically relevant reduction in overall seizure frequency was documented in individuals treated with the mTOR inhibitor everolimus. In a phase 3 trial evaluating the role of everolimus in subependymal giant cell astrocytoma, seizures were a secondary end point. Because the median seizure frequency was zero in this study, the analysis was inconclusive. CONCLUSION Various preclinical models provide substantial evidence for the role of mTOR inhibition in the treatment of epilepsy in individuals with tuberous sclerosis complex. Preliminary clinical studies provide supportive evidence for a role of mTOR inhibition in the management of tuberous sclerosis complex-associated epilepsy and pave the way for new randomized placebo-controlled studies. This article reviews current treatment recommendations for the management of tuberous sclerosis complex-associated epilepsy as well as the rationale and evidence to support the use of mTOR inhibitors.
Collapse
Affiliation(s)
- Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
235
|
Scala F, Fusco S, Ripoli C, Piacentini R, Li Puma DD, Spinelli M, Laezza F, Grassi C, D'Ascenzo M. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3. Neurobiol Aging 2015; 36:886-900. [PMID: 25541422 PMCID: PMC4801354 DOI: 10.1016/j.neurobiolaging.2014.10.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022]
Abstract
Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K(+) currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K(+) currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer's mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Federico Scala
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | - Matteo Spinelli
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy.
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy.
| |
Collapse
|
236
|
Angliker N, Rüegg MA. In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. BIOARCHITECTURE 2015; 3:113-8. [PMID: 24721730 PMCID: PMC4201605 DOI: 10.4161/bioa.26497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mammalian target of rapamycin (mTOR) assembles into two distinct multi-protein complexes called mTORC1 and mTORC2. While mTORC1 controls the signaling pathways important for cell growth, the physiological function of mTORC2 is only partially known. Here we comment on recent work on gene-targeted mice lacking mTORC2 in the cerebellum or the hippocampus that provided strong evidence that mTORC2 plays an important role in neuron morphology and synapse function. We discuss that this phenotype might be based on the perturbed regulation of the actin cytoskeleton and the lack of activation of several PKC isoforms. The fact that PKC isoforms and their targets have been implicated in neurological disease including spinocerebellar ataxia and that they have been shown to affect learning and memory, suggests that aberration of mTORC2 signaling might be involved in diseases of the brain.
Collapse
|
237
|
Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett 2015; 601:30-40. [PMID: 25578949 DOI: 10.1016/j.neulet.2015.01.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023]
Abstract
The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target.
Collapse
Affiliation(s)
- Mary Phillips
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
238
|
Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok SM, Feldman DA, Bateup HS, Gao Q, Hockemeyer D, Mitalipova M, Lewis CA, Vander Heiden MG, Sur M, Young RA, Jaenisch R. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 2014; 13:446-58. [PMID: 24094325 DOI: 10.1016/j.stem.2013.09.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 01/15/2023]
Abstract
Rett syndrome (RTT) is caused by mutations of MECP2, a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show, using an isogenic human embryonic stem cell model of RTT, that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as a global activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depletion of PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells.
Collapse
Affiliation(s)
- Yun Li
- The Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from Drosophila to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the Drosophila, mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.
Collapse
Affiliation(s)
- Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158;
| | | |
Collapse
|
240
|
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Collapse
|
241
|
Duan Y, Wang SH, Song J, Mironova Y, Ming GL, Kolodkin AL, Giger RJ. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. eLife 2014; 3. [PMID: 25313870 PMCID: PMC4236683 DOI: 10.7554/elife.04390] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.
Collapse
Affiliation(s)
- Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Shih-Hsiu Wang
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Song
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yevgeniya Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guo-li Ming
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alex L Kolodkin
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
242
|
Morquette B, Morquette P, Agostinone J, Feinstein E, McKinney RA, Kolta A, Di Polo A. REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury. Cell Death Differ 2014; 22:612-25. [PMID: 25257176 PMCID: PMC4572858 DOI: 10.1038/cdd.2014.149] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022] Open
Abstract
Dendritic defects occur in neurodegenerative diseases accompanied by axonopathy, yet the mechanisms that regulate these pathologic changes are poorly understood. Using Thy1-YFPH mice subjected to optic nerve axotomy, we demonstrate early retraction of retinal ganglion cell (RGC) dendrites and selective loss of mammalian target of rapamycin (mTOR) activity, which precede soma loss. Axonal injury triggered rapid upregulation of the stress-induced protein REDD2 (regulated in development and DNA damage response 2), a potent inhibitor of mTOR. Short interfering RNA-mediated REDD2 knockdown restored mTOR activity and rescued dendritic length, area and branch complexity in a rapamycin-dependent manner. Whole-cell recordings demonstrated that REDD2 depletion leading to mTOR activation in RGCs restored their light response properties. Lastly, we show that REDD2-dependent mTOR activity extended RGC survival following axonal damage. These results indicate that injury-induced stress leads to REDD2 upregulation, mTOR inhibition and dendrite pathology causing neuronal dysfunction and subsequent cell death.
Collapse
Affiliation(s)
- B Morquette
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - P Morquette
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - J Agostinone
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| | - E Feinstein
- Quark Pharmaceuticals Inc., Research Division, Ness Ziona, Israel
| | - R A McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Kolta
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada [3] Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - A Di Polo
- 1] Department of Neuroscience, CHUM Research Center, University of Montreal, Montreal, QC, Canada [2] University of Montreal Hospital Research Center (CR-CHUM), Montreal, QC, Canada [3] Groupe de Recherche sur le Système Nerveux Central (GRSNC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
243
|
Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, Fowler SC, Malenka RC, Südhof TC. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 2014; 158:198-212. [PMID: 24995986 DOI: 10.1016/j.cell.2014.04.045] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/22/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
Abstract
In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Marc V Fuccillo
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Scott J Hayton
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Byung Kook Lim
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stephen C Fowler
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305, USA.
| |
Collapse
|
244
|
Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model. Neurosci Biobehav Rev 2014; 47:735-52. [PMID: 25155242 DOI: 10.1016/j.neubiorev.2014.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 07/02/2014] [Accepted: 07/12/2014] [Indexed: 11/23/2022]
Abstract
The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism.
Collapse
|
245
|
Lozovaya N, Gataullina S, Tsintsadze T, Tsintsadze V, Pallesi-Pocachard E, Minlebaev M, Goriounova NA, Buhler E, Watrin F, Shityakov S, Becker AJ, Bordey A, Milh M, Scavarda D, Bulteau C, Dorfmuller G, Delalande O, Represa A, Cardoso C, Dulac O, Ben-Ari Y, Burnashev N. Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat Commun 2014; 5:4563. [PMID: 25081057 PMCID: PMC4143949 DOI: 10.1038/ncomms5563] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC), caused by dominant mutations in either
TSC1 or
TSC2 tumour
suppressor genes is characterized by the presence of brain malformations, the
cortical tubers that are thought to contribute to the generation of
pharmacoresistant epilepsy. Here we report that tuberless heterozygote
Tsc1+/− mice show
functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an
mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early
postnatal life (<P19). Seizures are generated intracortically in the granular
layer of the neocortex. Slow kinetics of aberrant GluN2C-mediated currents in spiny stellate cells promotes
excessive temporal integration of persistent NMDAR-mediated recurrent excitation and
seizure generation. Accordingly, specific GluN2C/D antagonists block seizures in Tsc1+/− mice in vivo
and in vitro. Likewise, GluN2C expression is upregulated in TSC human surgical
resections, and a GluN2C/D
antagonist reduces paroxysmal hyperexcitability. Thus, GluN2C receptor constitutes a promising
molecular target to treat epilepsy in TSC patients. Tuberous sclerosis complex (TSC) is a rare genetic condition
characterized by epileptic seizures that start in infancy. Here, the authors show that
these seizures are modulated by GluN2C-containing NMDA receptors in the cortex of a
mouse model of TSC, and that suppressing their activity attenuates seizures.
Collapse
Affiliation(s)
- N Lozovaya
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - S Gataullina
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [4]
| | - T Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3]
| | - V Tsintsadze
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Pallesi-Pocachard
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - M Minlebaev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France [3] Laboratory of Neurobiology, Kazan Federal University, Kremlevskaya street 18, 420000 Kazan, Russia
| | - N A Goriounova
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - E Buhler
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - F Watrin
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - S Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, 97080 Würzburg, Germany
| | - A J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund Freud Street 25, D-53105 Bonn, Germany
| | - A Bordey
- Neurosurgery, and Cellular and Molecular Physiology Departments, Yale University School of Medicine, PO Box 208082, New Haven, Connecticut 06520-8082, USA
| | - M Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - D Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, 264 Rue Saint-Pierre, 13385 Marseille Cedex 5, France
| | - C Bulteau
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - G Dorfmuller
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - O Delalande
- Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France
| | - A Represa
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - C Cardoso
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - O Dulac
- 1] INSERM U1129; University Paris Descartes, CEA, Gif sur Yvette, 149 Rue de Sèvres, 75015 Paris, France [2] Department of Pediatric Neurosurgery, Foundation Rothschild, 29 Rue Manin, 75019 Paris, France [3] APHP, Necker Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Y Ben-Ari
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| | - N Burnashev
- 1] INSERM U901, INMED, Parc Scientifique et Technologique de Luminy 163, route de Luminy-BP 13, 13273 Marseille Cedex 09, France [2] UMR901, Aix-Marseille University, 58 Boulevard Charles Livon, 13284 Marseille, France
| |
Collapse
|
246
|
Gangarossa G, Ceolin L, Paucard A, Lerner-Natoli M, Perroy J, Fagni L, Valjent E. Repeated stimulation of dopamine D1-like receptor and hyperactivation of mTOR signaling lead to generalized seizures, altered dentate gyrus plasticity, and memory deficits. Hippocampus 2014; 24:1466-81. [DOI: 10.1002/hipo.22327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Alexia Paucard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Mireille Lerner-Natoli
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Laurent Fagni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier France
- INSERM, U661; Montpellier France
- Universités de Montpellier 1 & 2; UMR-5203 Montpellier France
| |
Collapse
|
247
|
Chen YW, Lin HC, Ng MC, Hsiao YH, Wang CC, Gean PW, Chen PS. Activation of mGluR2/3 underlies the effects of N-acetylcystein on amygdala-associated autism-like phenotypes in a valproate-induced rat model of autism. Front Behav Neurosci 2014; 8:219. [PMID: 24987341 PMCID: PMC4060031 DOI: 10.3389/fnbeh.2014.00219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2014] [Indexed: 01/22/2023] Open
Abstract
Autism-like phenotypes in male valproate (VPA)-exposed offspring have been linked to high glutamatergic neurotransmission in the thalamic-amygdala pathway. Glial cystine/glutamate exchange (system Xc−), which exchanges extracellular cystine for intracellular glutamate, plays a significant role in the maintenance of extracellular glutamate. N-acetylcysteine (NAC) is a cystine prodrug that restores extracellular glutamate by stimulating system Xc−. In this study, we examined the effects of NAC on autism-like phenotypes and neurotransmission in the thalamic–amygdala synapses, as well as the involvement of metabotropic glutamate receptors 2/3 (mGluR2/3). Valproate-treated rats received a single intraperitoneal injection of 500 mg/kg NaVPA on E12.5. On postnatal day 21 (P21), NAC or saline was administered once daily for 10 days. From day 8 to 10, NAC was given 1/2 h prior to behavioral testing. Chronic administration of NAC restored the duration and frequency of social interaction and ameliorated anxiety-like behaviors in VPA-exposed offspring. In amygdala slices, NAC treatment normalized the increased frequency of mEPSCs and decreased the paired pulse facilitation (PPF) induced by VPA exposure. The effects of NAC on social interaction and anxiety-like behavior in the VPA-exposed offspring were blocked after intra-amygdala infusion of mGluR2/3 antagonist LY341495. The expressions of mGluR2/3 protein and mGluR2 mRNA were significantly lower in the VPA-exposed offspring. In contrast, the mGluR3 mRNA level did not differ between the saline- and VPA-exposed offspring. These results provide the first evidence that the disruption of social interaction and enhanced presynaptic excitatory transmission in VPA-exposed offspring could be rescued by NAC, which depends on the activation of mGluR2/3.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng-Kung University Tainan, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan ; Brain Research Center, National Yang-Ming University Taipei, Taiwan
| | - Ming-Chong Ng
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng-Kung University Tainan, Taiwan
| | - Chao-Chuan Wang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng-Kung University Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University Tainan, Taiwan ; Addiction Research Center, National Cheng Kung University Tainan, Taiwan
| |
Collapse
|
248
|
Thomas MG, Pascual ML, Maschi D, Luchelli L, Boccaccio GL. Synaptic control of local translation: the plot thickens with new characters. Cell Mol Life Sci 2014; 71:2219-39. [PMID: 24212248 PMCID: PMC11113725 DOI: 10.1007/s00018-013-1506-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/18/2022]
Abstract
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Malena Lucía Pascual
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Darío Maschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- Present Address: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO USA
| | - Luciana Luchelli
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
249
|
New insights into the molecular pathophysiology of fragile X syndrome and therapeutic perspectives from the animal model. Int J Biochem Cell Biol 2014; 53:121-6. [PMID: 24831882 DOI: 10.1016/j.biocel.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/26/2014] [Accepted: 05/02/2014] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome is the most common monogenetic form of intellectual disability and is a leading cause of autism. This syndrome is produced by the reduced transcription of the fragile X mental retardation (FMR1) gene, and it is characterized by a range of symptoms heterogeneously expressed in patients such as cognitive impairment, seizure susceptibility, altered pain sensitivity and anxiety. The recent advances in the understanding of the pathophysiological mechanisms involved have opened novel potential therapeutic approaches identified in preclinical rodent models as a necessary preliminary step for the subsequent evaluation in patients. Among those possible therapeutic approaches, the modulation of the metabotropic glutamate receptor signaling or the GABA receptor signaling have focused most of the attention. New findings in the animal models open other possible therapeutic approaches such as the mammalian target of rapamycin signaling pathway or the endocannabinoid system. This review summarizes the emerging data recently obtained in preclinical models of fragile X syndrome supporting these new therapeutic perspectives.
Collapse
|
250
|
Lasarge CL, Danzer SC. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 2014; 7:18. [PMID: 24672426 PMCID: PMC3953715 DOI: 10.3389/fnmol.2014.00018] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/27/2014] [Indexed: 01/19/2023] Open
Abstract
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.
Collapse
Affiliation(s)
- Candi L Lasarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; Department of Anesthesia, University of Cincinnati Cincinnati, OH, USA ; Department of Pediatrics, University of Cincinnati Cincinnati, OH, USA
| |
Collapse
|