201
|
Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 2007; 117:910-8. [PMID: 17404617 PMCID: PMC1838937 DOI: 10.1172/jci30077] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/30/2007] [Indexed: 12/19/2022] Open
Abstract
Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH oxidase inhibitor apocynin in both cell culture and in vivo models of insulin-induced hypoglycemia. Superoxide production and neuronal death were also blocked in studies using mice or cultured neurons deficient in the p47(phox) subunit of NADPH oxidase. Chelation of zinc with calcium disodium EDTA blocked both the assembly of the neuronal NADPH oxidase complex and superoxide production. Inhibition of the hexose monophosphate shunt, which utilizes glucose to regenerate NADPH, also prevented superoxide formation and neuronal death, suggesting a mechanism linking glucose reperfusion to superoxide formation. Moreover, the degree of superoxide production and neuronal death increased with increasing glucose concentrations during the reperfusion period. These results suggest that high blood glucose concentrations following hypoglycemic coma can initiate neuronal death by a mechanism involving extracellular zinc release and activation of neuronal NADPH oxidase.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth T. Gum
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron M. Hamby
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Pak H. Chan
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Raymond A. Swanson
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
202
|
Glass MJ, Chan J, Frys KA, Oselkin M, Tarsitano MJ, Iadecola C, Pickel VM. Changes in the subcellular distribution of NADPH oxidase subunit p47phox in dendrites of rat dorsomedial nucleus tractus solitarius neurons in response to chronic administration of hypertensive agents. Exp Neurol 2007; 205:383-95. [PMID: 17418121 PMCID: PMC2708175 DOI: 10.1016/j.expneurol.2007.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/10/2007] [Accepted: 02/15/2007] [Indexed: 02/07/2023]
Abstract
NADPH oxidase-generated superoxide can modulate crucial intracellular signaling cascades in neurons of the nucleus tractus solitarius (NTS), a brain region that plays an important role in cardiovascular processes. Modulation of NTS signaling by superoxide may be linked to the subcellular location of the mobile NADPH oxidase p47(phox) subunit, which is known to be present in dendrites of NTS neurons. It is not known, however, if hypertension can produce changes in the trafficking of p47(phox) in defined NTS subregions, particularly the preferentially barosensitive dorsomedial NTS (dmNTS), or preferentially gastrointestinal medial NTS (mNTS). We used immunogold electron microscopy to determine if p47(phox) localization was differentially affected in dendritic profiles of neurons from these NTS subregions of the rat in response to distinct models of hypertension, namely chronic 7-day subcutaneous administration of angiotensin II (AngII), or phenylephrine. In small (<1 microm) dendritic processes, both AngII and phenylephrine produced a decrease in intracellular p47(phox) labeling selectively in dmNTS neurons. In intermediate-size (1-2 microm) dendritic profiles in the dmNTS region only, there was an increase in p47(phox) labeling in response to each hypertensive agent, although these changes occurred in different subcellular compartments. There was an increase in non-vesicular labeling in response to AngII, but an increase in surface labeling with phenylephrine. Moreover, each of the changes in p47(phox) targeting mentioned above occurred in dendritic profiles with, or without immunoperoxidase labeling for the AngII AT-1A receptor subtype (AT-1A). These results indicate that chronic administration of agents that induce hypertension can also produce changes in the subcellular localization in p47(phox) in dmNTS neurons. Thus, systemic hypertension may produce alterations in the trafficking of proteins associated with superoxide production in central autonomic neurons, thus revealing a potentially important neurogenic component of free radical production and systemic blood pressure elevation.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 E. 69th St., KB410, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Angiogenesis is a key process involved in normal development and wound repair, as well as ischemic heart and limb diseases, and atherosclerosis. Vascular endothelial growth factor (VEGF), a potent angiogenesis factor, stimulates proliferation, migration, and tube formation of endothelial cells (ECs), primarily through the VEGF receptor type2 (VEGFR2). Reactive oxygen species (ROS) function as signaling molecules to mediate biological responses. In ECs, NADPH oxidase is one of the major sources of ROS and consists of catalytic subunits (Nox1, Nox2, and Nox4), p22phox, p47phox, p67phox, and the small GTPase Rac1. VEGF stimulates ROS production via activation of gp91phox (Nox2)-based NADPH oxidase, and ROS are involved in VEGFR2-mediated signaling linked to EC migration and proliferation. Moreover, ROS derived from NADPH oxidase are involved in postnatal angiogenesis. Localizing NADPH oxidase and its regulators at the specific subcellular compartment is an important mechanism for activating specific redox signaling events. This review focuses on a role of NADPH oxidase-derived ROS in angiogenesis and critical regulators involved in generation of spatially and temporally restricted ROS-dependent VEGF signaling at leading edge, focal adhesions/complexes, caveolae/lipid rafts, and cell-cell junctions in ECs. Understanding these mechanisms should facilitate the development of new therapeutic strategies to modulate new blood vessel formation.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
204
|
Mouche S, Mkaddem SB, Wang W, Katic M, Tseng YH, Carnesecchi S, Steger K, Foti M, Meier CA, Muzzin P, Kahn CR, Ogier-Denis E, Szanto I. Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1015-27. [PMID: 17553579 DOI: 10.1016/j.bbamcr.2007.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 02/26/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Adipocyte differentiation is a complex process regulated among other factors by insulin and the production of reactive oxygen species (ROS). NOX4 is a ROS generating NADPH oxidase enzyme mediating insulin's action in 3T3L1 adipocytes. In the present paper we show that NOX4 is expressed at high levels both in white and brown preadipocytes and that differentiation into adipocytes results in a decrease in their NOX4 mRNA content. These in vitro results were confirmed in vivo by demonstrating that in intact adipose tissue the majority of NOX4 expressing cells are localized within the preadipocyte containing stromal/vascular fraction, rather than in the portion consisting of mature adipocytes. In line with these observations, quantification of NOX4 mRNA in fat derived from different rodent models of insulin resistance indicated that alteration in NOX4 expression reflects changes in the ratio of adipocyte/interstitial fractions. In conclusion, we reveal that decreased NOX4 mRNA content is a hallmark of adipocyte differentiation and that NOX4 expression measured in whole adipose tissue is not an unequivocal indicator of intact or impaired insulin action.
Collapse
Affiliation(s)
- Sarah Mouche
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Kunz A, Anrather J, Zhou P, Orio M, Iadecola C. Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab 2007; 27:545-51. [PMID: 16820798 DOI: 10.1038/sj.jcbfm.9600369] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We sought to determine whether reactive oxygen species (ROS) derived from cyclooxygenase-2 (COX-2) are involved in ischemic brain injury. Focal cerebral ischemia was induced by transient middle cerebral artery occlusion in C57BL/6 mice. The time course of neocortical ROS production was assessed in vivo using hydroethidine as a marker. The same brain sections were used for infarct volume measurements. Transient middle cerebral artery occlusion led to a biphasic increase in ROS production with peaks 2 and 72 h after reperfusion. The COX-2 inhibitor NS398 (10 mg/kg) attenuated the production of COX-2-derived prostaglandin E(2) and reduced brain injury, but did not affect ROS production at 2 and 72 h. Similarly, ROS production was not reduced in COX-2-null mice. In contrast, ROS production and brain injury were reduced in mice lacking the nox2 subunit of the superoxide-producing enzyme nicotinamide adenine dinucleotide phosphate (reduced form) oxidase. The data suggest that COX-2 is not a major source of oxygen radicals after cerebral ischemia and raise the possibility that other COX-2 reaction products, including prostanoids or nonoxygen-based radicals, mediate the COX-2-dependent component of the injury.
Collapse
Affiliation(s)
- Alexander Kunz
- Division of Neurobiology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
206
|
Yao H, Cui ZH, Masuda J, Nabika T. Congenic removal of a QTL for blood pressure attenuates infarct size produced by middle cerebral artery occlusion in hypertensive rats. Physiol Genomics 2007; 30:69-73. [PMID: 17327494 DOI: 10.1152/physiolgenomics.00149.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genome-wide screen found a blood pressure quantitative trait locus (QTL) on rat chromosome 1 in stroke-prone spontaneously hypertensive rats of a Japanese colony (SHRSP/Izm). In the present study, we investigated the effects of congenic removal of this QTL from SHRSP/Izm on infarct size produced by middle cerebral artery (MCA) occlusion. To establish the congenic strain (SHRSPwch1.0), the blood pressure QTL was introgressed from Wistar-Kyoto (WKY)/Izm to SHRSP/Izm by repeated backcrossing. Male SHRSP/Izm [10-12 wk old (young adult) n = 8, 5 mo old (adult) n = 17] and SHRSPwch1.0 (young adult n = 7, adult n = 15) were randomly assigned to distal MCA occlusion. Resting mean arterial blood pressure (MABP) was 212 +/- 23 mmHg in adult SHRSPwch1.0, which was significantly lower than 241 +/- 22 mmHg in SHRSP/Izm. Infarct volume in the congenic rats was significantly decreased compared with that in SHRSP/Izm (66.4 +/- 21.5 mm(3) vs. 103.4 +/- 24.8 mm(3)). Cerebral blood flow (CBF), determined at collaterally-perfused cortex with laser-Doppler flowmetry after MCA occlusion, was significantly greater in adult SHRSPwch1.0 compared with CBF in adult SHRSP/Izm. In young adult rats, there were no significant differences in MABP or in infarct volume between SHRSPwch1.0 and SHRSP/Izm. The congenic removal of a blood pressure QTL lowered blood pressure and caused a substantial reduction in infarct volume (-36%) with increased collateral CBF after MCA occlusion in the congenic rat. We demonstrated for the first time that the congenic strategy is useful to investigate the effects of genetic hypertension on focal ischemia or stroke.
Collapse
Affiliation(s)
- Hiroshi Yao
- Center for Emotional and Behavioral Disorders, National Hospital Organization Hizen Psychiatric Center, Saga, Japan.
| | | | | | | |
Collapse
|
207
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 5082] [Impact Index Per Article: 282.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
208
|
Abstract
Increasing evidence suggests that reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, act as necessary signaling molecules in processes underlying cognition. Moreover, ROS have been shown to be necessary in molecular process underlying signal transduction, synaptic plasticity, and memory formation. Research from several laboratories suggests that NADPH oxidase is an important source of superoxide in the brain. Evidence is presented here to show that ROS are in fact important signaling molecules involved in synaptic plasticity and memory formation. Moreover, evidence that the NADPH oxidase complex is a key regulator of ROS generation in synaptic plasticity and memory formation is discussed. Understanding redox signaling in the brain, including the sources and molecular targets of ROS, are important for a full understanding of the signaling pathways that underlie synaptic plasticity and memory. Knowledge of ROS function in the brain also is critical for understanding aging and neurodegenerative diseases of the brain given that several of these disorders, including Alzheimer's disease and Parkinson disease, may be exacerbated by the unregulated generation of ROS.
Collapse
Affiliation(s)
- Kenneth T Kishida
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
209
|
Guichard C, Pedruzzi E, Fay M, Ben Mkaddem S, Coant N, Daniel F, Ogier-Denis E. [The Nox/Duox family of ROS-generating NADPH oxidases]. Med Sci (Paris) 2007; 22:953-9. [PMID: 17101097 DOI: 10.1051/medsci/20062211953] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.
Collapse
Affiliation(s)
- Cécile Guichard
- Inserm U773, Centre de Recherche Bichat Beaujon CRB3, Université Paris 7 Denis Diderot, BP416, 46, Rue Henri Huchard, 75018 Paris, France
| | | | | | | | | | | | | |
Collapse
|
210
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
211
|
Glass MJ, Huang J, Oselkin M, Tarsitano MJ, Wang G, Iadecola C, Pickel VM. Subcellular localization of nicotinamide adenine dinucleotide phosphate oxidase subunits in neurons and astroglia of the rat medial nucleus tractus solitarius: relationship with tyrosine hydroxylase immunoreactive neurons. Neuroscience 2006; 143:547-64. [PMID: 17027166 PMCID: PMC1808229 DOI: 10.1016/j.neuroscience.2006.08.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/06/2006] [Accepted: 08/04/2006] [Indexed: 02/07/2023]
Abstract
Superoxide produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediates crucial intracellular signaling cascades in the medial nucleus of the solitary tract (mNTS), a brain region populated by catecholaminergic neurons, as well as astroglia that play an important role in autonomic function. The mechanisms mediating NADPH oxidase (phagocyte oxidase) activity in the neural regulation of cardiovascular processes are incompletely understood, however the subcellular localization of superoxide produced by the enzyme is likely to be an important regulatory factor. We used immunogold electron microscopy to determine the phenotypic and subcellular localization of the NADPH oxidase subunits p47(phox), gp91(phox,) and p22(phox) in the mNTS in rats. The mNTS contains a large population of neurons that synthesize catecholamines. Significantly, catecholaminergic signaling can be modulated by redox reactions. Therefore, the relationship of NADPH oxidase subunit labeled neurons or glia with respect to catecholaminergic neurons was also determined by dual labeling for the superoxide producing enzyme and tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. In the mNTS, NADPH oxidase subunits were present primarily in somatodendritic processes and astrocytes, some of which also contained TH, or were contacted by TH-labeled axons, respectively. Immunogold quantification of NADPH oxidase subunit localization showed that p47(phox) and gp91(phox) were present on the surface membrane, as well as vesicular organelles characteristic of calcium storing smooth endoplasmic reticula in dendritic and astroglial processes. These results indicate that NADPH oxidase assembly and consequent superoxide formation are likely to occur near the plasmalemma, as well as on vesicular organelles associated with intracellular calcium storage within mNTS neurons and glia. Thus, NADPH oxidase-derived superoxide may participate in intracellular signaling pathways linked to calcium regulation in diverse mNTS cell types. Moreover, NADPH oxidase-derived superoxide in neurons and glia may directly or indirectly modulate catecholaminergic neuron activity in the mNTS.
Collapse
Affiliation(s)
- M J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
212
|
Wilkinson BL, Landreth GE. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease. J Neuroinflammation 2006; 3:30. [PMID: 17094809 PMCID: PMC1637099 DOI: 10.1186/1742-2094-3-30] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/09/2006] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Brandy L Wilkinson
- Alzheimer Laboratory, Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Alzheimer Laboratory, Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
213
|
Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E. Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol 2006; 26:5908-20. [PMID: 16847341 PMCID: PMC1592752 DOI: 10.1128/mcb.00269-06] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-D-aspartate (NMDA) receptor-dependent signal transduction in the hippocampus, suggesting that NADPH oxidase may be required for NMDA receptor-dependent long-term potentiation (LTP) and hippocampus-dependent memory. Herein we present the first evidence that NADPH oxidase is involved in hippocampal synaptic plasticity and memory. We have found that pharmacological inhibitors of NADPH oxidase block LTP. Moreover, mice that lack the NADPH oxidase proteins gp91(phox) and p47(phox), both of which are mouse models of human chronic granulomatous disease (CGD), also lack LTP. We also found that the gp91(phox) and p47(phox) mutant mice have mild impairments in hippocampus-dependent memory. The gp91(phox) mutant mice exhibited a spatial memory deficit in the Morris water maze, and the p47(phox) mutant mice exhibited impaired context-dependent fear memory. Taken together, our results are consistent with NADPH oxidase being required for hippocampal synaptic plasticity and memory and are consistent with reports of cognitive dysfunction in patients with CGD.
Collapse
Affiliation(s)
- Kenneth T Kishida
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza BCM 335, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
214
|
Yap YW, Whiteman M, Cheung NS. Chlorinative stress: an under appreciated mediator of neurodegeneration? Cell Signal 2006; 19:219-28. [PMID: 16959471 DOI: 10.1016/j.cellsig.2006.06.013] [Citation(s) in RCA: 394] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/29/2006] [Indexed: 01/23/2023]
Abstract
Oxidative stress has been implicated as playing a role in neurodegenerative disorders, such as ischemic stroke, Alzheimer's, Huntington's, and Parkinson's disease. Persuasive evidences have shown that microglial-mediated oxidative stress contributes significantly to cell loss and accompanying cognitive decline characteristic of the diseases. Based on the facts that (i) levels of catalytically active myeloperoxidase are elevated in diseased brains and (ii) myeloperoxidase polymorphism is associated with the risk of developing neurodegenerative disorders, HOCl as a major oxidant produced by activated phagocytes in the presence of myeloperoxidase is therefore suggested to be involved in neurodegeneration. Its association with neurodegeneration is further showed by elevated level of 3-chlorotyrosine (bio-marker of HOCl in vivo) in affected brain regions as well as HOCl scavenging ability of neuroprotectants, desferrioxamine and uric acid. In this review, we will summary the current understanding concerning the association of HOCl and neuronal cell death where production of HOCl will lead to further formation of reactive nitrogen and oxygen species. In addition, HOCl also causes tissue destruction and cellular damage leading cell death.
Collapse
Affiliation(s)
- Yann Wan Yap
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
215
|
Miller AA, Dusting GJ, Roulston CL, Sobey CG. NADPH-oxidase activity is elevated in penumbral and non-ischemic cerebral arteries following stroke. Brain Res 2006; 1111:111-6. [PMID: 16879806 DOI: 10.1016/j.brainres.2006.06.082] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 06/21/2006] [Accepted: 06/27/2006] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species play a role in neuronal damage following cerebral ischemia-reperfusion. We tested whether activity of the superoxide-generating enzyme, NADPH-oxidase, is enhanced in cerebral arteries within, adjacent and distant from the ischemic core. The right middle cerebral artery (MCA) of conscious rats was temporarily occluded by perivascular injection of endothelin-1 to induce stroke (ET-1; n=19). Control rats were injected with saline (n=9). At 24 h or 72 h post-administration of ET-1, the MCA and its branches within the ipsilateral penumbra and infarcted core, corresponding arteries in the contralateral hemisphere, and basilar artery were excised. Anatomically similar arteries were excised from saline-injected rats. At 24 h after stroke, NADPH-stimulated superoxide production by arteries from the infarcted core did not differ from levels generated by arteries from control rats, whereas levels were significantly lower 72 h after stroke. However, at both time points after stroke, superoxide production by arteries from the ischemic penumbra was 8-fold greater than levels generated by arteries from control rats. Surprisingly, even in the non-ischemic arteries from the contralateral hemisphere and in the basilar artery, superoxide production was increased approximately 4- to 6-fold at 24 h, but had returned to normal 72 h after stroke. The NADPH-oxidase inhibitor, diphenyleneiodonium, virtually abolished superoxide production by all arteries. Thus, the activity of NADPH-oxidase is enhanced in cerebral arteries from the ischemic penumbra at 24 h and 72 h following cerebral ischemia. Additionally, NADPH-oxidase activity is temporarily enhanced after cerebral ischemia within arteries from non-ischemic parts of the brain.
Collapse
Affiliation(s)
- Alyson A Miller
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
216
|
Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther 2006; 111:928-48. [PMID: 16616784 DOI: 10.1016/j.pharmthera.2006.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Reactive oxygen species (ROS) are thought to play an important role in the initiation and progression of a variety of vascular diseases. Furthermore, accumulating evidence indicates that ROS may also serve as important cell signalling molecules for the regulation of normal vascular function. Recently, a novel family of proteins (Nox1, 2 and 4) that act as the catalytic subunit of the superoxide (O2-) producing enzyme NADPH-oxidase has been discovered in vascular cells. There is now preliminary evidence suggesting that NADPH-oxidase-derived ROS may serve as a physiological vasodilator mechanism in the cerebral circulation. Moreover, the activity of NADPH-oxidase is profoundly greater in cerebral versus systemic arteries. Studies have shown that Nox1, Nox2 (also known as gp91phox) and Nox4 are all expressed in cerebral arteries, suggesting that multiple isoforms of NADPH-oxidase may be important for ROS production by cerebral arteries. Enhanced NADPH-oxidase activity is associated with several vascular-related diseases, including hypertension, stroke, subarachnoid haemorrhage and Alzheimer's dementia; however, the consequences of this for cerebral vascular function are controversial. For example, there is some evidence suggesting that NADPH-oxidase-derived O2- may play a role in endothelial dysfunction of cerebral arteries and a subsequent rise in cerebral vascular tone, associated with hypertension. However, activation of NADPH-oxidase elicits cerebral vasodilatation in vivo, and this mechanism is enhanced in chronic hypertension. While further supportive evidence is needed, it is an intriguing possibility that NADPH-oxidase-derived ROS may play a protective role in regulating cerebral vascular tone during disease.
Collapse
Affiliation(s)
- Alyson A Miller
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
217
|
Abstract
The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.
Collapse
Affiliation(s)
- David W Infanger
- Department of Anatomy and Cell Biology, Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, 52245, USA
| | | | | |
Collapse
|
218
|
Ostrowski RP, Colohan ART, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:188-93. [PMID: 16671452 DOI: 10.1007/3-211-30714-1_41] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute brain ischemia after subarachnoid hemorrhage (SAH) induces oxidative stress in brain tissues. Up-regulated NADPH oxidase (NOX), a major enzymatic source of superoxide anion in the brain, may contribute to early brain injury after SAH. We evaluated the effects of hyperbaric oxygen (HBO) on protein expression of gp91(phox) catalytic subunit of NOX, lipid peroxidation as a marker of oxidative stress, and on neurological and neuropathological outcomes after SAH. Twenty-nine male Sprague-Dawley rats (300 to 350 g) were randomly allocated to control (sham operation), SAH (endovascular perforation), and SAH treated with HBO groups (2.8 ATA for 2 hours, at 1 hour after SAH). Cerebral blood flow was measured using laser Doppler flowmetry. Rats were sacrificed after 24 hours and brain tissues collected for histology (Nissl staining and gp91 (phox) immunohistochemistry) and biochemistry. Mortality and neurological scores were evaluated. Neuronal injury associated with enhanced gp91 (phox) immunostaining was observed in the cerebral cortex after SAH. The lipid peroxidation product, malondialdehyde, accumulated in the ipsilateral cerebral cortex. HBO treatment reduced expression of NOX, diminished lipid peroxidation, and reduced neuronal damage. HBO caused a drop in mortality and ameliorated functional deficits. HBO-induced neuroprotection after SAH may involve down-regulation of NOX and a subsequent reduction in oxidative stress.
Collapse
Affiliation(s)
- R P Ostrowski
- Department of Physiology, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
219
|
Li J, Stouffs M, Serrander L, Banfi B, Bettiol E, Charnay Y, Steger K, Krause KH, Jaconi ME. The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 2006; 17:3978-88. [PMID: 16775014 PMCID: PMC1556380 DOI: 10.1091/mbc.e05-06-0532] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Reactive oxygen species (ROS) generated by the NOX family of NADPH oxidases have been described to act as second messengers regulating cell growth and differentiation. However, such a function has hitherto not been convincingly demonstrated. We investigated the role of NOX-derived ROS in cardiac differentiation using mouse embryonic stem cells. ROS scavengers prevented the appearance of spontaneously beating cardiac cells within embryoid bodies. Down-regulation of NOX4, the major NOX isoform present during early stages of differentiation, suppressed cardiogenesis. This was rescued by a pulse of low concentrations of hydrogen peroxide 4 d before spontaneous beating appears. Mechanisms of ROS-dependent signaling included p38 mitogen-activated protein kinase (MAPK) activation and nuclear translocation of the cardiac transcription factor myocyte enhancer factor 2C (MEF2C). Our results provide first molecular evidence that the NOX family of NADPH oxidases regulate vertebrate developmental processes.
Collapse
Affiliation(s)
- Jian Li
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Michael Stouffs
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Lena Serrander
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Botond Banfi
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Esther Bettiol
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Yves Charnay
- Division of Neuropsychiatry, Geneva University Hospitals, 1225 Chêne-Bourg, Switzerland; and
| | - Klaus Steger
- Justus-Liebig-University, Institute of Veterinary Anatomy, Histology, and Embryology, Giessen, Germany
| | - Karl-Heinz Krause
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| | - Marisa E. Jaconi
- *Laboratory of Biology of Aging, Department of Rehabilitation and Geriatrics, and
| |
Collapse
|
220
|
Covey MV, Murphy MP, Hobbs CE, Smith RAJ, Oorschot DE. Effect of the mitochondrial antioxidant, Mito Vitamin E, on hypoxic-ischemic striatal injury in neonatal rats: a dose-response and stereological study. Exp Neurol 2006; 199:513-9. [PMID: 16480978 DOI: 10.1016/j.expneurol.2005.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Accepted: 12/30/2005] [Indexed: 11/20/2022]
Abstract
A mitochondria-targeted antioxidant, Mito Vitamin E (MitoVit E), has previously been shown to prevent mitochondrial oxidative damage. The aim of this study was to investigate the effect of MitoVit E on neuronal survival in the rat striatum after acute perinatal hypoxia-ischemia. Continuous striatal infusion with 4.35 microM, 43.5 microM, or 148 microM of MitoVit E before, during, and after hypoxia-ischemia was not neuroprotective for striatal medium-spiny neurons. Pre- or posttreatment with 435 microM MitoVit E was neurotoxic. These results suggest that MitoVit E is not significantly neuroprotective for striatal medium-spiny neurons after acute perinatal hypoxic-ischemic brain injury. The results also suggest that mitochondrial oxidative damage does not contribute significantly to the death of striatal medium-spiny neurons after perinatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Matthew V Covey
- Department of Anatomy and Structural Biology, University of Otago, PO Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
221
|
Millán M, Arenillas J. Gene Expression in Cerebral Ischemia: A New Approach for Neuroprotection. Cerebrovasc Dis 2006; 21 Suppl 2:30-7. [PMID: 16651812 DOI: 10.1159/000091701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials.
Collapse
Affiliation(s)
- Mónica Millán
- Neurology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | | |
Collapse
|
222
|
Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 2006; 1090:182-9. [PMID: 16650838 DOI: 10.1016/j.brainres.2006.03.060] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/28/2022]
Abstract
Increased production of reactive oxygen species (ROS) following cerebral ischemia-reperfusion (I/R) is an important underlying cause for neuronal injury leading to delayed neuronal death (DND). In this study, apocynin, a specific inhibitor for NADPH oxidase, was used to test whether suppression of ROS by the NADPH oxidase inhibitor can protect against ischemia-induced ROS generation and decrease DND. Global cerebral ischemia was induced in gerbils by a 5-min occlusion of bilateral common carotid arteries (CCA). Using measurement of 4-hydroxy-2-nonenal (HNE) as a marker for lipid peroxidation, apocynin (5 mg/kg body weight) injected i.p. 30 min prior to ischemia significantly attenuated the early increase in HNE in hippocampus measured at 3 h after I/R. Apocynin also protected against I/R-induced neuronal degeneration and DND, oxidative DNA damage, and glial cell activation. Taken together, the neuroprotective effects of apocynin against ROS production during early phase of I/R and subsequent I/R-induced neuronal damage provide strong evidence that inhibition of NADPH oxidase could be a promising therapeutic mechanism to protect against stroke damage in the brain.
Collapse
Affiliation(s)
- Qun Wang
- Department of Biochemistry, M743 Medical Sciences Building, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
223
|
Imhof A, Charnay Y, Vallet PG, Aronow B, Kovari E, French LE, Bouras C, Giannakopoulos P. Sustained astrocytic clusterin expression improves remodeling after brain ischemia. Neurobiol Dis 2006; 22:274-83. [PMID: 16473512 DOI: 10.1016/j.nbd.2005.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/16/2022] Open
Abstract
Clusterin is a glycoprotein highly expressed in response to tissue injury. Using clusterin-deficient (Clu-/-) mice, we investigated the role of clusterin after permanent middle cerebral artery occlusion (MCAO). In wild-type (WT) mice, clusterin mRNA displayed a sustained increase in the peri-infarct area from 14 to 30 days post-MCAO. Clusterin transcript was still present up to 90 days post-ischemia in astrocytes surrounding the core infarct. Western blot analysis also revealed an increase of clusterin in the ischemic hemisphere of WT mice, which culminates up to 30 days post-MCAO. Concomitantly, a worse structural restoration and higher number of GFAP-reactive astrocytes in the vicinity of the infarct scar were observed in Clu-/- as compared to WT mice. These findings go beyond previous data supporting a neuroprotective role of clusterin in early ischemic events in that they demonstrate that this glycoprotein plays a central role in the remodeling of ischemic damage.
Collapse
Affiliation(s)
- Anouk Imhof
- Department of Psychiatry, HUG, Belle-Idée, 2, ch. du Petit-Bel-Air, 1225 Chêne-Bourg Geneva Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Nikolova S, Lee YS, Lee YS, Kim JA. Rac1-NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic Res 2005; 39:1295-304. [PMID: 16298859 DOI: 10.1080/10715760500176866] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.
Collapse
Affiliation(s)
- Sevdalina Nikolova
- Department of Biotechnology, Graduate School, Yeungnam University, Gyeongsan, 712-749, South Korea
| | | | | | | |
Collapse
|