201
|
Blanchette CR, Rodal AA. Mechanisms for biogenesis and release of neuronal extracellular vesicles. Curr Opin Neurobiol 2020; 63:104-110. [PMID: 32387925 PMCID: PMC7483335 DOI: 10.1016/j.conb.2020.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
Abstract
Neurons release membrane-bound extracellular vesicles (EVs) carrying proteins, nucleic acids, and other cargoes to mediate neuronal development, plasticity, inflammation, regeneration, and degeneration. Functional studies and therapeutic interventions into EV-dependent processes will require a deep understanding of how neuronal EVs are formed and released. However, unraveling EV biogenesis and trafficking mechanisms is challenging, since there are multiple pathways governing generation of different types of EVs, which overlap mechanistically with each other, as well as with intracellular endolysosomal trafficking pathways. Further, neurons present special considerations for EVs due to their extreme morphologies and specialization for membrane traffic. Here, we review recent work elucidating neuronal pathways that regulate EV biogenesis and release, with the goal of identifying directed strategies for experimental and therapeutic targeting of specific types of EVs.
Collapse
|
202
|
Zhang M, Vojtech L, Ye Z, Hladik F, Nance E. Quantum Dot Labeling and Visualization of Extracellular Vesicles. ACS APPLIED NANO MATERIALS 2020; 3:7211-7222. [PMID: 34568770 PMCID: PMC8460064 DOI: 10.1021/acsanm.0c01553] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. Their role in disease processes, uncovered mostly over the last two decades, makes them potential biomarkers, leading to a need to fundamentally understand EV biology. Direct visualization of EVs can provide insights into EV behavior, but current labeling techniques are often restricted by false-positive signals and rapid photobleaching. Hence, we developed a method of labeling EVs through conjugation with quantum dots (QDs)-high photoluminescent nanosized semi-conductors-using click chemistry. We showed that QD-EV conjugation could be tailored by altering QD to EV ratio or by using a catalyst. This conjugation chemistry was stable in a biological environment and upon storage for up to a week. Using size-exclusion chromatography, QD-EV conjugates could be separated from unconjugated QDs, enabling EV-specific signal detection. We demonstrate that these QD-EV conjugates can be live- and fixed-imaged in high resolution on cells and in tissue sheets, and the conjugates have better photostability compared with the commonly used EV dye DiI. We labeled two distinct EV populations: human semen EVs (sEVs) from fresh semen samples donated by healthy volunteers and brain EVs (bEVs) from excised rat brain tissues. We visualized QD-sEVs in epithelial sheets isolated from human vaginal mucosa and time-lapse imaged QD-bEV interactions with microglial BV-2 cells. The development of the QD-EV conjugate will benefit the study of EV localization, movement, and function and accelerate their potential use as biomarkers, therapeutic agents, or drug-delivery vehicles.
Collapse
Affiliation(s)
- Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195-6460, United States
| | - Ziming Ye
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195-6460, United States
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, Department of Chemical Engineering, Center on Human Development and Disability, and Department of Radiology, University of Washington, Seattle, Washington 98195-1652, United States
| |
Collapse
|
203
|
Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, Dooner MS, Borgovan T, Wen S, Goldberg LR, Aliotta JM, Ventetuolo CE, Quesenberry PJ, Liang OD. Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. Am J Respir Cell Mol Biol 2020; 62:577-587. [PMID: 31721618 DOI: 10.1165/rcmb.2019-0154oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mandy Pereira
- Division of Hematology and Oncology, Department of Medicine, and
| | | | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island; and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology and Oncology, Department of Medicine, and
| | - Mark S Dooner
- Division of Hematology and Oncology, Department of Medicine, and
| | | | - Sicheng Wen
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Laura R Goldberg
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jason M Aliotta
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Corey E Ventetuolo
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peter J Quesenberry
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
204
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
205
|
Matejuk A, Ransohoff RM. Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol 2020; 11:1416. [PMID: 32765501 PMCID: PMC7378357 DOI: 10.3389/fimmu.2020.01416] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Based on discoveries enabled by new technologies and analysis using novel computational tools, neuroscience can be re-conceived in terms of information exchange in dense networks of intercellular connections rather than in the context of individual populations, such as glia or neurons. Cross-talk between neurons and microglia or astrocytes has been addressed, however, the manner in which non-neuronal cells communicate and interact remains less well-understood. We review this intriguing crosstalk among CNS cells, focusing on astrocytes and microglia and how it contributes to brain development and neurodegenerative diseases. The goal of studying these intercellular communications is to promote our ability to combat incurable neurological disorders.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Richard M Ransohoff
- Third Rock Ventures, Boston, MA, United States.,Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
206
|
Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSDF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020; 21:E4977. [PMID: 32674523 PMCID: PMC7403962 DOI: 10.3390/ijms21144977] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleys´ Jequitinhonha and Mucuri, Minas Gerais 30000-000, Brazil;
| | - Roque Aras Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| |
Collapse
|
207
|
Uribe J, Liu HY, Mohamed Z, Chiou AE, Fischbach C, Daniel S. Supported Membrane Platform to Assess Surface Interactions between Extracellular Vesicles and Stromal Cells. ACS Biomater Sci Eng 2020; 6:3945-3956. [PMID: 33463350 DOI: 10.1021/acsbiomaterials.0c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated particles secreted by eukaryotic cells that stimulate cell communication and horizontal cargo exchange. EV interactions with stromal cells can result in molecular changes in the recipient cell and, in some cases, lead to disease progression. However, mechanisms leading to these changes are poorly understood. A few model systems are available for studying the outcomes of surface interactions between EV membranes with stromal cells. Here, we created a hybrid supported bilayer incorporating EVs membrane material, called an extracellular vesicle supported bilayer, EVSB. Using EVSBs, we investigated the surface interactions between breast cancer EVs and adipose-derived stem cells (ADSCs) by culturing ADSCs on EVSBs and analyzing cell adhesion, spreading, viability, vascular endothelial growth factor (VEGF) secretion, and myofibroblast differentiation. Results show that cell viability, adhesion, spreading, and proangiogenic activity were enhanced, conditions that promote oncogenic activity, but cell differentiation was not. This model system could be used to develop therapeutic strategies to limit EV-ADSC interactions and proangiogenic conditions. Finally, this model system is not limited to the study of cancer but can be used to study surface interactions between EVs from any origin and any target cell to investigate EV mechanisms leading to cellular changes in other diseases.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Aaron E Chiou
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
208
|
Yang C, Zhang M, Sung J, Wang L, Jung Y, Merlin D. Autologous Exosome Transfer: A New Personalised Treatment Concept to Prevent Colitis in a Murine Model. J Crohns Colitis 2020; 14:841-855. [PMID: 31710674 PMCID: PMC7346889 DOI: 10.1093/ecco-jcc/jjz184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Epigenetic information delivered by intestinal exosomes can be useful for diagnosing intestinal diseases, such as ulcerative colitis, but the therapeutic effects of intestinal exosomes have not been fully exploited. We herein developed an autologous exosome therapy that could treat intestinal disease without any risk of inducing a systemic immunological reaction. METHODS Intestinal exosomes were isolated and purified from faeces by our newly developed multi-step sucrose gradient ultracentrifugation method. Lipopolysaccharide [LPS]-activated macrophages were employed to test the in vitro anti-inflammatory ability of intestinal exosomes. To evaluate the in vivo anti-inflammatory activity of our system, we gavaged dextran sulphate sodium [DSS]-induced colitic mice with their own healing phase intestinal exosomes. RESULTS Mouse intestinal exosomes are round extracellular vesicles with a hydrodynamic diameter of ~140 [±20] nm and a surface charge of ~-12 [±3] mV. Among the exosomes obtained at four different stages of DSS-induced ulcerative colitis [1, before treatment; 2, DSS-treated; 3, healing phase; and 4, back to normal], the healing phase exosomes showed the best in vitro anti-inflammatory effects and promotion of wound healing. Moreover, oral co-administration of autologous healing phase exosomes with DSS was found to significantly reduce the risk of a second round of DSS-induced ulcerative colitis in mice. CONCLUSIONS Intestinal exosomes obtained during the healing phase that follows induced intestinal inflammation could strongly promote wound healing in the host. Oral administration of autologous exosomes from the healing phase could be a safe and effective approach for treating the ulcerative colitis of a given patient in the context of personalised medicine.
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mingzhen Zhang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Lixin Wang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Medical Center, Decatur, GA, USA
| | - Yunjin Jung
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Medical Center, Decatur, GA, USA
| |
Collapse
|
209
|
Aires ID, Ribeiro-Rodrigues T, Boia R, Catarino S, Girão H, Ambrósio AF, Santiago AR. Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. Glia 2020; 68:2705-2724. [PMID: 32645245 DOI: 10.1002/glia.23880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Glaucoma is a degenerative disease that causes irreversible loss of vision and is characterized by retinal ganglion cell (RGC) loss. Others and we have demonstrated that chronic neuroinflammation mediated by reactive microglial cells plays a role in glaucomatous pathology. Exosomes are extracellular vesicles released by most cells, including microglia, that mediate intercellular communication. The role of microglial exosomes in glaucomatous degeneration remains unknown. Taking the prominent role of microglial exosomes in brain neurodegenerative diseases, we studied the contribution of microglial-derived exosomes to the inflammatory response in experimental glaucoma. Microglial cells were exposed to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure, the main risk factor for glaucoma. Naïve microglia (BV-2 cells or retinal microglia) were exposed to exosomes derived from BV-2 cells under EHP conditions (BV-Exo-EHP) or cultured in control pressure (BV-Exo-Control). We found that BV-Exo-EHP increased the production of pro-inflammatory cytokines, promoted retinal microglia motility, phagocytic efficiency, and proliferation. Furthermore, the incubation of primary retinal neural cell cultures with BV-Exo-EHP increased cell death and the production of reactive oxygen species. Exosomes derived from retinal microglia (MG-Exo-Control or MG-Exo-EHP) were injected in the vitreous of C57BL/6J mice. MG-Exo-EHP sustained activation of retinal microglia, mediated cell death, and impacted RGC number. Herein, we show that exosomes derived from retinal microglia have an autocrine function and propagate the inflammatory signal in conditions of elevated pressure, contributing to retinal degeneration in glaucomatous conditions.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Steve Catarino
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Henrique Girão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
210
|
Tan N, Hu S, Hu Z, Wu Z, Wang B. Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy. Mol Med Rep 2020; 22:1257-1268. [PMID: 32468033 PMCID: PMC7339682 DOI: 10.3892/mmr.2020.11194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Severe hyperbilirubinemia causes neurotoxicity and may lead to acute bilirubin encephalopathy (ABE) during the critical period of central nervous system development. The aim of the present study was to identify differentially expressed proteins (DEPs) in microvesicles/exosomes (MV/E) isolated from the cerebrospinal fluid (CSF) of patients with ABE. Co-precipitation was used to isolate the MV/E from the CSF of patients with ABE and age-matched controls. Isobaric tagging for relative and absolute quantification-based proteomic technology combined with liquid chromatography/tandem mass spectrometry was used to identify DEPs in the MV/E. Bioinformatics analysis was subsequently performed to investigate Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes enriched signaling pathways of these DEPs. A total of four proteins were selected for further validation via western blotting. A total of 291 dysregulated proteins were identified by comparing the patients with ABE with the controls. Bioinformatics analysis indicated the involvement of immune-inflammation-associated cellular processes and signaling pathways in the pathophysiology of ABE. In conclusion, the present study identified the proteomic profile of MV/E isolated from the CSF of patients with ABE. These results may provide an improved understanding of the pathogenesis of ABE and may help to identify early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ning Tan
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen Hu
- National and Local Joint Engineering Laboratory for High‑through Molecular Diagnosis Technology, Translational Medicine Institute, Collaborative Research Center for Post‑doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Zhouli Wu
- Department of Neonatology, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
211
|
Kodidela S, Gerth K, Sinha N, Kumar A, Kumar P, Kumar S. Circulatory Astrocyte and Neuronal EVs as Potential Biomarkers of Neurological Dysfunction in HIV-Infected Subjects and Alcohol/Tobacco Users. Diagnostics (Basel) 2020; 10:diagnostics10060349. [PMID: 32481515 PMCID: PMC7345258 DOI: 10.3390/diagnostics10060349] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The diagnosis of neurocognitive disorders associated with HIV infection, alcohol, and tobacco using CSF or neuroimaging are invasive or expensive methods, respectively. Therefore, extracellular vesicles (EVs) can serve as reliable noninvasive markers due to their bidirectional transport of cargo from the brain to the systemic circulation. Hence, our objective was to investigate the expression of astrocytic (GFAP) and neuronal (L1CAM) specific proteins in EVs circulated in the plasma of HIV subjects, with and without a history of alcohol consumption and tobacco smoking. The protein expression of GFAP (p < 0.01) was significantly enhanced in plasma EVs obtained from HIV-positive subjects and alcohol users compared to healthy subjects, suggesting enhanced activation of astrocytes in those subjects. The L1CAM expression was found to be significantly elevated in cigarette smokers (p < 0.05). However, its expression was not found to be significant in HIV subjects and alcohol users. Both GFAP and L1CAM levels were not further elevated in HIV-positive alcohol or tobacco users compared to HIV-positive nonsubstance users. Taken together, our data demonstrate that the astrocytic and neuronal-specific markers (GFAP and L1CAM) can be packaged in EVs and circulate in plasma, which is further elevated in the presence of HIV infection, alcohol, and/or tobacco. Thus, the astroglial marker GFAP and neuronal marker L1CAM may represent potential biomarkers targeting neurological dysfunction upon HIV infection and/or alcohol/tobacco consumption.
Collapse
Affiliation(s)
- Sunitha Kodidela
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Kelli Gerth
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Namita Sinha
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Asit Kumar
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children’s Hospital, Memphis, TN 38103, USA;
| | - Santosh Kumar
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (S.K.); (K.G.); (N.S.); (A.K.)
- Correspondence: ; Tel.: +1-901-448-7157
| |
Collapse
|
212
|
Brites D. Regulatory function of microRNAs in microglia. Glia 2020; 68:1631-1642. [PMID: 32463968 DOI: 10.1002/glia.23846] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Microglia are CNS-resident cells involved in immune surveillance and maintenance of intercellular homeostasis, while also contributing to neurologic pathologies. MicroRNAs (miRNAs) are a class of small (~22 nucleotides) single-stranded noncoding RNAs that participate in gene regulation at the post-transcriptional level. miRNAs typically bind to the untranslated region (3' UTR) of RNAs. It has been shown that miRNAs are important players in controlling inflammation and that their abnormal expression is linked to cancer and ageing, and to the onset and progression of neurodegenerative disease. Furthermore, miRNAs participate in intercellular trafficking. Thus, miRNAs are released from cells in a free form, bound to proteins or packaged within extracellular vesicles (EVs), exerting paracrine and long distance signaling. In this review, recent findings on the role of miRNAs as drivers of microglia phenotypic changes and their cotribution in neurological disease are addressed. MAIN POINTS: miRNAs have a key role in microglia function/dysfunction, polarization, and restoration. Microglia are both a source and recipient of extracellular vesicles (EVs) containing miRNAs. Extracellular miRNAs may be found as soluble (free and EV cargo) and protein complexes.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
213
|
Rayamajhi S, Aryal S. Surface functionalization strategies of extracellular vesicles. J Mater Chem B 2020; 8:4552-4569. [PMID: 32377649 DOI: 10.1039/d0tb00744g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs) are lipid-protein bilayer vesicular constructs secreted to the extracellular spaces by cells. All cells secrete EVs as a regular biological process that appears to be conserved throughout the evolution. Owing to the rich molecular cargo of EVs with specific lipid and protein content and documented role in cellular communication, EVs have been exploited as a versatile agent in the biomedical arena, including as diagnostic, drug delivery, immunomodulatory, and therapeutic agents. With these multifaceted applications in the biomedical field, the functionalization of EVs to add diverse functionality has garnered rapid attention. EVs can be functionalized with an exogenous imaging and targeting moiety that allows for the target specificity and the real-time tracking of EVs for diagnostic and therapeutic applications. Importantly, such added functionalities can be used to explore EVs' biogenesis pathway and their role in cellular communication, which can lead to a better understanding of EVs' cellular mechanisms and processes. In this report, we have reviewed the existing surface functionalization strategies of EVs and broadly classified them into three major approaches: physical, biological, and chemical approaches. The physical approach of EV functionalization includes methods like sonication, extrusion, and freeze-thaw that can change the surface properties of EVs via membrane rearrangements. The biological approach includes genetically and metabolically engineering cells to express protein or cargo molecules of interest in secreted EVs. The chemical approach includes different facile click type chemistries that can be used to covalently conjugate the EV lipid or protein construct with different linker groups for diverse functionality. Different chemistries like thiol-maleimide, EDC/NHS, azide-alkyne cycloaddition, and amidation chemistry have been discussed to functionalize EVs. Finally, a comparative discussion of all approaches has been done focusing on the significance of each approach. The collective knowledge of the major approach of surface functionalization can be used to improve the limitation of one technique by combining it with another. An optimized surface functionalization approach developed accordingly can efficiently add required functionality to EVs while maintaining their natural integrity.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Chemistry, Nanotechnology Innovation Center of Kansas State (NICKS), Kansas State University, Manhattan, KS 66506, USA.
| | | |
Collapse
|
214
|
Pascual M, Ibáñez F, Guerri C. Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regen Res 2020; 15:796-801. [PMID: 31719239 PMCID: PMC6990780 DOI: 10.4103/1673-5374.268893] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years, a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions. These nanovesicles (30-150 nm) contain proteins, RNAs and lipids, and their internalization by bystander cells could alter their normal functions. This review focuses on recent knowledge about exosomes as messengers of neuron-glia communication and their participation in the physiological and pathological functions in the central nervous system. Special emphasis is placed on the role of exosomes under toxic or pathological stimuli within the brain, in which the glial exosomes containing inflammatory molecules are able to communicate with neurons and contribute to the pathogenesis of neuroinflammation and neurodegenerative disorders. Given the small size and characteristics of exosomes, they can cross the blood-brain barrier and be used as biomarkers and diagnosis for brain disorders and neuropathologies. Finally, although the application potential of exosome is still limited, current studies indicate that exosomes represent a promising strategy to gain pathogenic information to identify therapeutically targets and biomarkers for neurological disorders and neuroinflammation.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Francesc Ibáñez
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
215
|
Han P, Bartold PM, Salomon C, Ivanovski S. Salivary Small Extracellular Vesicles Associated miRNAs in Periodontal Status-A Pilot Study. Int J Mol Sci 2020; 21:E2809. [PMID: 32316600 PMCID: PMC7215885 DOI: 10.3390/ijms21082809] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
This pilot study aims to investigate whether salivary small extracellular vesicle (sEV)-associated microRNAs could act as potential biomarkers for periodontal disease status. Twenty-nine participants (10 who were healthy, nine with gingivitis, 10 with stage III/IV periodontitis) were recruited and unstimulated whole saliva samples were collected. Salivary sEVs were isolated using the size-exclusion chromatography (SEC) method and characterised by morphology, EV-protein and size distribution using transmission electron microscopy (TEM), Western Blot and Nanoparticle Tracking Analysis (NTA), respectively. Ten mature microRNAs (miRNAs) in salivary sEVs and saliva were evaluated using RT-qPCR. The discriminatory power of miRNAs as biomarkers in gingivitis and periodontitis versus healthy controls was evaluated by Receiver Operating Characteristics (ROC) curves. Salivary sEVs were comparable to sEVs morphology, mode, size distribution and particle concentration in healthy, gingivitis and periodontitis patients. Compared to miRNAs in whole saliva, three significantly increased miRNAs (hsa-miR-140-5p, hsa-miR-146a-5p and hsa-miR-628-5p) were only detected in sEVs in periodontitis when compared to that of healthy controls, with a good discriminatory power (area under the curve (AUC) = 0.96) for periodontitis diagnosis. Our study demonstrated that salivary sEVs are a non-invasive source of miRNAs for periodontitis diagnosis. Three miRNAs that are selectively enriched in sEVs, but not whole saliva, could be potential biomarkers for periodontal disease status.
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Peter Mark Bartold
- School of Dentistry, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, the University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD 4029, Australia;
- Department of Obstetrics and Gynecology, Ochsner Baptist Hospital, New Orleans, LA 70422, USA
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción 4030000, Chile
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
| |
Collapse
|
216
|
Kauscher U, Penders J, Nagelkerke A, Holme MN, Nele V, Massi L, Gopal S, Whittaker TE, Stevens MM. Gold Nanocluster Extracellular Vesicle Supraparticles: Self-Assembled Nanostructures for Three-Dimensional Uptake Visualization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3912-3923. [PMID: 32250120 PMCID: PMC7161082 DOI: 10.1021/acs.langmuir.9b03479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Extracellular vesicles (EVs) are secreted by the vast majority of cells and are being intensively studied due to their emerging involvement in a variety of cellular communication processes. However, the study of their cellular uptake and fate has been hampered by difficulty in imaging EVs against the cellular background. Here, we show that EVs combined with hydrophobic gold nanoclusters (AuNCs) can self-assemble into supraparticles, offering an excellent labeling strategy for high-resolution electron microscopic imaging in vitro. We have tracked and visualized the reuptake of breast cancer cell-derived EV AuNC supraparticles into their parent cells, from early endocytosis to lysosomal degradation, using focused ion beam-scanning electron microscopy (FIB-SEM). The presence of gold within the EVs and lysosomes was confirmed via DF-STEM EDX analysis of lift-out sections. The demonstrated formation of AuNC EV supraparticles will facilitate future applications in EV imaging as well as the EV-assisted cellular delivery of AuNCs.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anika Nagelkerke
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- University
of Groningen, Groningen Research Institute
of Pharmacy, Pharmaceutical Analysis,
POB 196 XB20, NL-9700 AD Groningen, The Netherlands
| | - Margaret N. Holme
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Valeria Nele
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lucia Massi
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Thomas E. Whittaker
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
217
|
Cheng Y, Pereira M, Raukar NP, Reagan JL, Quesenberry M, Goldberg L, Borgovan T, LaFrance Jr WC, Dooner M, Deregibus M, Camussi G, Ramratnam B, Quesenberry P. Inflammation-related gene expression profiles of salivary extracellular vesicles in patients with head trauma. Neural Regen Res 2020; 15:676-681. [PMID: 31638091 PMCID: PMC6975135 DOI: 10.4103/1673-5374.266924] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
At present, there is no reliable biomarker for the diagnosis of traumatic brain injury (TBI). Studies have shown that extracellular vesicles released by damaged cells into biological fluids can be used as potential biomarkers for diagnosis of TBI and evaluation of TBI severity. We hypothesize that the genetic profile of salivary extracellular vesicles in patients with head trauma differs from that in uninjured subjects. Findings from this hypothesis would help investigate the severity of TBI. This study included 19 subjects, consisting of seven healthy controls who denied history of head trauma, six patients diagnosed with concussion injury from an outpatient concussion clinic, and six patients with TBI who received treatment in the emergency department within 24 hours after injury. Real-time PCR analysis of salivary extracellular vesicles in participants was performed using TaqMan Human Inflammation array. Gene expression analysis revealed nine upregulated genes in emergency department patients (LOX5, ANXA3, CASP1, IL2RG, ITGAM, ITGB2, LTA4H, MAPK14, and TNFRSF1A) and 13 upregulated genes in concussion clinic patients compared with healthy participants (ADRB1, ADRB2, BDKRB1, HRH1, HRH2, LTB4R2, LTB4R, PTAFR, CYSLTR1, CES1, KLK1, MC2R, and PTGER3). Each patient group had a unique profile. Comparison between groups showed that 15 inflammation-related genes had significant expression change. Our results indicate that inflammation biomarkers can be used for diagnosis of TBI and evaluation of disease severity. This study was approved by the Institutional Review Board on December 18, 2015 (approval No. 0078-12) and on June 9, 2016 (approval No. 4093-16).
Collapse
Affiliation(s)
- Yan Cheng
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Mandy Pereira
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Neha P. Raukar
- Department of Emergency Medicine, Mayo Clinic, Rochester, MN, USA
| | - John L. Reagan
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Mathew Quesenberry
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Laura Goldberg
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Theodor Borgovan
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - W Curt LaFrance Jr
- Department of Psychiatry and Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Mark Dooner
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Maria Deregibus
- Department of Medical Sciences, University of Turin, Torino TO, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Torino TO, Italy
| | - Bharat Ramratnam
- Department of Medicine, Division of Infectious Diseases, Rhode Island Hospital, Providence, RI, USA
| | - Peter Quesenberry
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
218
|
A Novel Highly Sensitive Method for Measuring Inflammatory Neural-Derived APC Activity in Glial Cell Lines, Mouse Brain and Human CSF. Int J Mol Sci 2020; 21:ijms21072422. [PMID: 32244492 PMCID: PMC7177216 DOI: 10.3390/ijms21072422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Neural inflammation is linked to coagulation. Low levels of thrombin have a neuroprotective effect, mediated by activated protein C (APC). We describe a sensitive novel method for the measurement of APC activity at the low concentrations found in neural tissue. Methods: APC activity was measured using a fluorogenic substrate, Pyr-Pro-Arg-AMC, cleaved preferentially by APC. Selectivity was assessed using specific inhibitors and activators. APC levels were measured in human plasma, in glia cell lines, in mice brain slices following mild traumatic brain injury (mTBI) and systemic lipopolysaccharide (LPS) injection, and in cerebrospinal fluid (CSF) taken from viral meningoencephalitis patients and controls. Results: Selectivity required apixaban and alpha-naphthylsulphonylglycyl-4-amidinophenylalanine piperidine (NAPAP). APC levels were easily measurable in plasma and were significantly increased by Protac and CaCl2. APC activity was significantly higher in the microglial compared to astrocytic cell line and specifically lowered by LPS. Brain APC levels were higher in posterior regions and increased by mTBI and LPS. Highly elevated APC activity was measured in viral meningoencephalitis patients CSF. Conclusions: This method is selective and sensitive for the measurement of APC activity that significantly changes during inflammation in cell lines, animal models and human CSF.
Collapse
|
219
|
Angelopoulou E, Paudel YN, Shaikh MF, Piperi C. Flotillin: A Promising Biomarker for Alzheimer's Disease. J Pers Med 2020; 10:jpm10020020. [PMID: 32225073 PMCID: PMC7354424 DOI: 10.3390/jpm10020020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of beta amyloid (Aβ) in extracellular senile plaques and intracellular neurofibrillary tangles (NFTs) mainly consisting of tau protein. Although the exact etiology of the disease remains elusive, accumulating evidence highlights the key role of lipid rafts, as well as the endocytic pathways in amyloidogenic amyloid precursor protein (APP) processing and AD pathogenesis. The combination of reduced Aβ42 levels and increased phosphorylated tau protein levels in the cerebrospinal fluid (CSF) is the most well established biomarker, along with Pittsburgh compound B and positron emission tomography (PiB-PET) for amyloid imaging. However, their invasive nature, the cost, and their availability often limit their use. In this context, an easily detectable marker for AD diagnosis even at preclinical stages is highly needed. Flotillins, being hydrophobic proteins located in lipid rafts of intra- and extracellular vesicles, are mainly involved in signal transduction and membrane–protein interactions. Accumulating evidence highlights the emerging implication of flotillins in AD pathogenesis, by affecting APP endocytosis and processing, Ca2+ homeostasis, mitochondrial dysfunction, neuronal apoptosis, Aβ-induced neurotoxicity, and prion-like spreading of Aβ. Importantly, there is also clinical evidence supporting their potential use as biomarker candidates for AD, due to reduced serum and CSF levels that correlate with amyloid burden in AD patients compared with controls. This review focuses on the emerging preclinical and clinical evidence on the role of flotillins in AD pathogenesis, further addressing their potential usage as disease biomarkers.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Correspondence: (M.F.S.); (C.P.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: (M.F.S.); (C.P.)
| |
Collapse
|
220
|
Gu X, Song Q, Zhang Q, Huang M, Zheng M, Chen J, Wei D, Chen J, Wei X, Chen H, Zheng G, Gao X. Clearance of two organic nanoparticles from the brain via the paravascular pathway. J Control Release 2020; 322:31-41. [PMID: 32165238 DOI: 10.1016/j.jconrel.2020.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
The elaboration of nanotechnology offers valuable therapeutic options to overcome the blood-brain barrier and enable the treatment of brain diseases. However, to date, limit work has been done to reveal the fate of nanoparticles within the brain, which largely hinders their safe and effective applications. Here we demonstrated that the commonly-used organic nanoparticles reconstituted high density lipoprotein and poly(ethylene glycol)-b-poly(lactic acid) nanoparticles were cleared relatively fast from the brain (half-life <5 h). Notably, through various transgenic mice and pharmacological inhibition approaches, we revealed that the paravascular glymphatic pathway plays a key role (about 80%) in the brain clearance of the nanoparticles, and disclosed that microglia-mediated transportation is essential for facilitating nanoparticles elimination through the paravascular route. In addition, we witnessed a significant decline in the brain clearance of both of the nanoparticles in Alzheimer's model mice where the glymphatic system is impaired. These findings provide insightful data on the fate of nanoparticles in the brain, which would shed new light into the rational design and safe application of nanoparticles for brain drug delivery.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dan Wei
- Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
221
|
Zhao Y, Gan Y, Xu G, Yin G, Liu D. MSCs-Derived Exosomes Attenuate Acute Brain Injury and Inhibit Microglial Inflammation by Reversing CysLT2R-ERK1/2 Mediated Microglia M1 Polarization. Neurochem Res 2020; 45:1180-1190. [PMID: 32112178 DOI: 10.1007/s11064-020-02998-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory responses play a major role in the pathophysiology of cerebral ischemia. Mesenchymal stem cell-derived exosomes (MSC-exos) have important anti-inflammatory effects on the treatment of organ injury. This study aimed to determine the anti-inflammatory effect and furtherly investigate the potential mechanism of MSC-exos on acute cerebral ischemia. MSC-exos were isolated by ultracentrifugation, characterized by transmission electron microscopy and FACS. Rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) surgery were administered MSC-exos through the tail vein. In vitro, microglia exposed to oxygen- and glucose-deprivation (OGD) and leukotrienes were used to study the protective mechanism of exosomes against ischemia/reperfusion-induced inflammation. The intake of exosomes into microglia was visualized through immunofluorescence staining. The results showed that MSC-exos treatment significantly improved motor, learning and memory abilities of MCAO/R rats 7 days later. The production of pro-inflammatory factors decreased, while the anti-inflammatory cytokines and neurotrophic factors increased both in the cortex and hippocampus of ischemic hemisphere as well as in the culture supernatant of microglia treated with OGD and NMLTC4. MSC-exos treatment also significantly inhibited M1 microglia polarization and increased M2 microglia cells. Furthermore, western blot analysis demonstrated that CysLT2R expression and ERK1/2 phosphorylation were downregulated both in vivo and in vitro. Thus, MSC-exos attenuated brain injury and inhibited microglial inflammation by reversing CysLT2R-ERK1/2 mediated microglia M1 polarization.
Collapse
Affiliation(s)
- Yangmin Zhao
- School of Clinical Sciences, Hangzhou Medical College, Zhejiang, China
| | - Yunxiao Gan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China
| | - Gewei Xu
- School of Clinical Sciences, Hangzhou Medical College, Zhejiang, China
| | - Guoli Yin
- Shcool of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Zhejiang, China
| | - Dandan Liu
- Shcool of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Zhejiang, China.
| |
Collapse
|
222
|
Murgoci AN, Duhamel M, Raffo-Romero A, Mallah K, Aboulouard S, Lefebvre C, Kobeissy F, Fournier I, Zilkova M, Maderova D, Cizek M, Cizkova D, Salzet M. Location of neonatal microglia drives small extracellular vesicles content and biological functions in vitro. J Extracell Vesicles 2020; 9:1727637. [PMID: 32158520 PMCID: PMC7049881 DOI: 10.1080/20013078.2020.1727637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Combining proteomics and systems biology approaches, we demonstrate that neonatal microglial cells derived from two different CNS locations, cortex and spinal cord, and cultured in vitro displayed different phenotypes upon different physiological or pathological conditions. These cells also exhibited greater variability in terms of cellular and small extracellular vesicles (sEVs) protein content and levels. Bioinformatic data analysis showed that cortical microglia exerted anti-inflammatory and neurogenesis/tumorigenesis properties, while the spinal cord microglia were more inflammatory. Interestingly, while both sEVs microglia sources enhanced growth of DRGs processes, only the spinal cord-derived sEVs microglia under LPS stimulation significantly attenuated glioma proliferation. These results were confirmed using the neurite outgrowth assay on DRGs cells and glioma proliferation analysis in 3D spheroid cultures. Results from these in vitro assays suggest that the microglia localized at different CNS regions can ensure different biological functions. Together, this study indicates that neonatal microglia locations regulate their physiological and pathological functional fates and could affect the high prevalence of brain vs spinal cord gliomas in adults.
Collapse
Affiliation(s)
- Adriana-Natalia Murgoci
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Marie Duhamel
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Antonella Raffo-Romero
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Khalil Mallah
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Soulaimane Aboulouard
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Christophe Lefebvre
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Firas Kobeissy
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isabelle Fournier
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| | - Monika Zilkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Maderova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Cizek
- Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy in Košice, KošiceSlovakia
| | - Dasa Cizkova
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Michel Salzet
- Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université Lille, Villeneuve d’Ascq, France
| |
Collapse
|
223
|
Zhu L, Xu N, Zhang ZL, Zhang TC. Cell derived extracellular vesicles: from isolation to functionalization and biomedical applications. Biomater Sci 2020; 7:3552-3565. [PMID: 31313767 DOI: 10.1039/c9bm00580c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are shed from most mammalian cells by different processes. EVs possess several distinct advantages, including excellent biocompatibility, good bio-stability and low immunogenicity. Moreover, they play significant roles in physiological and pathological processes. Challenges in EV research mainly concern highly efficient isolation, specific membrane surface engineering and further development of EV applications in biomedical fields. In this review, we summarize the recent and representative research regarding isolation, engineering and biomedical applications of EVs, which represent important research focus areas. These three aspects have not ever been systematically classified and summarized in previous reviews. Finally, we give our insights into the key issues concerning EVs and their future development for biomedical applications.
Collapse
Affiliation(s)
- Lian Zhu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| | | | | | | |
Collapse
|
224
|
Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules 2020; 25:molecules25030630. [PMID: 32023992 PMCID: PMC7037443 DOI: 10.3390/molecules25030630] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Ceramides are important lipid metabolites for primal skin functions. There is increasing evidence that alteration of the profile and metabolism of ceramides is associated with skin diseases, such as psoriasis vulgaris. Most studies have reported alteration in ceramide content in the stratum corneum, but these have been scarcely reported for other skin layers. In the present work, we aimed to explore changes in the ceramide profile of fibroblasts and keratinocytes in patients with psoriasis vulgaris and healthy subjects. Using the reversed-phase liquid chromatography-quadrupole-time-of-flight-tandem-mass spectrometry (RPLC-QTOF-MS/MS) platform, we identified ceramide containing non-hydroxy fatty acid ([N]), α-hydroxy fatty acid ([A]), and esterified ω-hydroxy fatty acid ([EO]) and 3 sphingoid bases, dihydrosphingosine ([DS]), sphingosine ([S]), and phytosphingosine ([P]). We found that in the keratinocytes of patients with psoriasis, CER[NS], CER[NP], CER[AS], CER[ADS], CER[AP] and CER[EOS] tended to be expressed at higher relative levels, whereas CER[NDS] tended to be expressed with lower levels than in healthy subjects. In the case of fibroblasts, significant differences were observed, mainly in the three ceramide classes (CER[AS], CER[ADS] and CER[EOS]), which were expressed at significantly higher levels in patients with psoriasis. The most significant alteration in the fibroblasts involved elevated levels of CER[EOS] that contained ester-linked fatty acids. Our findings provide insights into the ceramide profile in the dermis and epidermis of patients with psoriasis and contribute for the research in this field, focusing on the role of keratinocyte-fibroblast crosstalk in the development of psoriasis vulgaris.
Collapse
|
225
|
Najrana T, Mahadeo A, Abu-Eid R, Kreienberg E, Schulte V, Uzun A, Schorl C, Goldberg L, Quesenberry P, Sanchez-Esteban J. Mechanical stretch regulates the expression of specific miRNA in extracellular vesicles released from lung epithelial cells. J Cell Physiol 2020; 235:8210-8223. [PMID: 31970782 DOI: 10.1002/jcp.29476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
The underlying mechanism of normal lung organogenesis is not well understood. An increasing number of studies are demonstrating that extracellular vesicles (EVs) play critical roles in organ development by delivering microRNAs (miRNA) to neighboring and distant cells. miRNAs are important for fetal lung growth; however, the role of miRNA-EVs (miRNAs packaged inside the EVs) during fetal lung development is unexplored. The aim of this study was to examine the expression of miRNA-EVs in MLE-12, a murine lung epithelial cell line subjected to mechanical stretch in vitro with the long-term goal to investigate their potential role in the fetal lung development. Both cyclic and continuous mechanical stretch regulate miRNA differentially in EVs released from MLE-12 and intracellularly, demonstrating that mechanical signals regulate the expression of miRNA-EVs in lung epithelial cells. These results provide a proof-of-concept for the potential role that miRNA-EVs could play in the development of fetal lung.
Collapse
Affiliation(s)
- Tanbir Najrana
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Anshu Mahadeo
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Rasha Abu-Eid
- Division of Life Sciences, Institute of Dentistry, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Elena Kreienberg
- Department of Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Victoria Schulte
- Department of Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Alper Uzun
- Department of Pediatrics, Center of Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Christoph Schorl
- Department of Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Laura Goldberg
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peter Quesenberry
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Juan Sanchez-Esteban
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
226
|
Deftu AF, Suter MR. Glia and Pain in Spinal Cord. THE SENSES: A COMPREHENSIVE REFERENCE 2020:235-248. [DOI: 10.1016/b978-0-12-809324-5.24214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
227
|
Wang L, Abhange KK, Wen Y, Chen Y, Xue F, Wang G, Tong J, Zhu C, He X, Wan Y. Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells with Ultrasonication for Skin Rejuvenation. ACS OMEGA 2019; 4:22638-22645. [PMID: 31909348 PMCID: PMC6941387 DOI: 10.1021/acsomega.9b03561] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/05/2019] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles of submicron size that are secreted by various cells. As mediators of intercellular communication, EVs can alter the physiological state of recipient cells by delivering encapsulated proteins and nucleic acids. Incontestably, growing evidence has shown important biological roles and the clinical relevance of EVs. The use of stem cell-derived EVs as a cell-free therapeutic modality for skin treatment has emerged as a promising application in dermatology. However, the moderate isolation efficiency of prevalent ultracentrifugation and low secretion rate make the massive low-cost production of EVs difficult. Here, we report development of engineered EVs (eEV) derived from human umbilical cord mesenchymal stem cells (hucMSCs) for skin treatment. Ultrasonication was used to shear intact hucMSCs for only 1 min, followed by regular centrifugation and filtration for producing nanoscale eEVs. This approach has ∼20-fold higher yield and ∼100-fold faster production than that of naturally secreted EVs (nsEV), while the production cost decreased to less than 10%. The eEVs have similar morphology, size distribution, and typical protein markers compared to nsEVs. Moreover, in vitro, both nsEVs and eEVs promote the proliferation and migration of dermal fibroblasts and increase in the expression of collagen, elastin, and fibronectin, whereas the matrix metalloproteinases-1 (MMP-1) and MMP-3 production can be significantly reduced. The wound-healing study in mice showed that both nsEVs and eEVs promote wound recovery in comparison with the controls. In sum, our results indicate that hucMSC-derived eEVs prepared by ultrasonication potentially can be used to increase skin extracellular matrix and enhance skin rejuvenation.
Collapse
Affiliation(s)
- Lixue Wang
- Department
of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of
Cancer Research, The Affiliated Cancer Hospital
of Nanjing Medical University, Nanjing, Jiangsu 210009, China
- Department
of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Komal K. Abhange
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Yi Wen
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Yundi Chen
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Fei Xue
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Guosheng Wang
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| | - Jinlong Tong
- Department
of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Chuandong Zhu
- Department
of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003, China
| | - Xia He
- Department
of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of
Cancer Research, The Affiliated Cancer Hospital
of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Yuan Wan
- The
Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, New York 13902, United States
| |
Collapse
|
228
|
Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci 2019; 21:ijms21010266. [PMID: 31906013 PMCID: PMC6982255 DOI: 10.3390/ijms21010266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023] Open
Abstract
Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.
Collapse
|
229
|
Mbagwu SI, Lannes N, Walch M, Filgueira L, Mantel PY. Human Microglia Respond to Malaria-Induced Extracellular Vesicles. Pathogens 2019; 9:pathogens9010021. [PMID: 31878288 PMCID: PMC7168629 DOI: 10.3390/pathogens9010021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Microglia are the chief immune cells of the brain and have been reported to be activated in severe malaria. Their activation may drive towards neuroinflammation in cerebral malaria. Malaria-infected red blood cell derived-extracellular vesicles (MiREVs) are produced during the blood stage of malaria infection. They mediate intercellular communication and immune regulation, among other functions. During cerebral malaria, the breakdown of the blood–brain barrier can promote the migration of substances such as MiREVs from the periphery into the brain, targeting cells such as microglia. Microglia and extracellular vesicle interactions in different pathological conditions have been reported to induce neuroinflammation. Unlike in astrocytes, microglia–extracellular vesicle interaction has not yet been described in malaria infection. Therefore, in this study, we aimed to investigate the uptake of MiREVs by human microglia cells and their cytokine response. Human blood monocyte-derived microglia (MoMi) were generated from buffy coats of anonymous healthy donors using Ficoll-Paque density gradient centrifugation. The MiREVs were isolated from the Plasmodium falciparum cultures. They were purified by ultracentrifugation and labeled with PKH67 green fluorescent dye. The internalization of MiREVs by MoMi was observed after 4 h of co-incubation on coverslips placed in a 24-well plate at 37 °C using confocal microscopy. Cytokine-gene expression was investigated using rt-qPCR, following the stimulation of the MoMi cells with supernatants from the parasite cultures at 2, 4, and 24 h, respectively. MiREVs were internalized by the microglia and accumulated in the perinuclear region. MiREVs-treated cells increased gene expression of the inflammatory cytokine TNFα and reduced gene expression of the immune suppressive IL-10. Overall, the results indicate that MiREVs may act on microglia, which would contribute to enhanced inflammation in cerebral malaria.
Collapse
Affiliation(s)
- Smart Ikechukwu Mbagwu
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria
- Correspondence: (S.I.M.); (L.F.)
| | - Nils Lannes
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Luis Filgueira
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Correspondence: (S.I.M.); (L.F.)
| | - Pierre-Yves Mantel
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
230
|
Cigarette Smoke Condensate Exposure Changes RNA Content of Extracellular Vesicles Released from Small Airway Epithelial Cells. Cells 2019; 8:cells8121652. [PMID: 31861112 PMCID: PMC6953119 DOI: 10.3390/cells8121652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Exposure to environmental tobacco smoke (ETS) is a known risk factor for the development of chronic lung diseases, cancer, and the exacerbation of viral infections. Extracellular vesicles (EVs) have been identified as novel mediators of cell–cell communication through the release of biological content. Few studies have investigated the composition/function of EVs derived from human airway epithelial cells (AECs) exposed to cigarette smoke condensate (CSC), as surrogates for ETS. Using novel high-throughput technologies, we identified a diverse range of small noncoding RNAs (sncRNAs), including microRNA (miRNAs), Piwi-interacting RNA (piRNAs), and transfer RNA (tRNAs) in EVs from control and CSC-treated SAE cells. CSC treatment resulted in significant changes in the EV content of miRNAs. A total of 289 miRNAs were identified, with five being significantly upregulated and three downregulated in CSC EVs. A total of 62 piRNAs were also detected in our EV preparations, with five significantly downregulated and two upregulated in CSC EVs. We used TargetScan and Gene Ontology (GO) analysis to predict the biological targets of hsa-miR-3913-5p, the most represented miRNA in CSC EVs. Understanding fingerprint molecules in EVs will increase our knowledge of the relationship between ETS exposure and lung disease, and might identify potential molecular targets for future treatments.
Collapse
|
231
|
Greig NH, Lecca D, Hsueh SC, Nogueras-Ortiz C, Kapogiannis D, Tweedie D, Glotfelty EJ, Becker RE, Chiang YH, Hoffer BJ. (-)-Phenserine tartrate (PhenT) as a treatment for traumatic brain injury. CNS Neurosci Ther 2019; 26:636-649. [PMID: 31828969 PMCID: PMC7248544 DOI: 10.1111/cns.13274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/21/2022] Open
Abstract
Aim Traumatic brain injury (TBI) is one of the most common causes of morbidity and mortality of both young adults and the elderly, and is a key contributing factor in about 30% of all injury‐associated deaths occurring within the United States of America. Albeit substantial impact has been made to improve our comprehension of the mechanisms that underpin the primary and secondary injury stages initiated by a TBI incident, this knowledge has yet to successfully translate into the development of an effective TBI pharmacological treatment. Developing consent suggests that a TBI can concomitantly trigger multiple TBI‐linked cascades that then progress in parallel and, if correct, the multifactorial nature of TBI would make the discovery of a single effective mechanism‐targeted drug unlikely. Discussion We review recent data indicating that the small molecular weight drug (−)‐phenserine tartrate (PhenT), originally developed for Alzheimer's disease (AD), effectively inhibits a broad range of mechanisms pertinent to mild (m) and moderate (mod)TBI, which in combination underpin the ensuing cognitive and motor impairments. In cellular and animal models at clinically translatable doses, PhenT mitigated mTBI‐ and modTBI‐induced programmed neuronal cell death (PNCD), oxidative stress, glutamate excitotoxicity, neuroinflammation, and effectively reversed injury‐induced gene pathways leading to chronic neurodegeneration. In addition to proving efficacious in well‐characterized animal TBI models, significantly mitigating cognitive and motor impairments, the drug also has demonstrated neuroprotective actions against ischemic stroke and the organophosphorus nerve agent and chemical weapon, soman. Conclusion In the light of its tolerability in AD clinical trials, PhenT is an agent that can be fast‐tracked for evaluation in not only civilian TBI, but also as a potentially protective agent in battlefield conditions where TBI and chemical weapon exposure are increasingly jointly occurring.
Collapse
Affiliation(s)
- Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Daniela Lecca
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shih-Chang Hsueh
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Carlos Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elliot J Glotfelty
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Robert E Becker
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,Aristea Translational Medicine Corporation, Park City, UT, USA
| | - Yung-Hsiao Chiang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
232
|
Reynolds JL, Mahajan SD. Transmigration of Tetraspanin 2 (Tspan2) siRNA Via Microglia Derived Exosomes across the Blood Brain Barrier Modifies the Production of Immune Mediators by Microglia Cells. J Neuroimmune Pharmacol 2019; 15:554-563. [PMID: 31823250 DOI: 10.1007/s11481-019-09895-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Microglia are implicated in the neuropathogenesis of HIV. Tetraspanin 2 (Tspan2) is closely related to CD9 and CD81 proteins, and are expressed on microglia cells. They have been implicated in cell fusion and adhesion and in the immune response, and neuroinflammation. Developing therapeutics that target microglia remains a challenge as these therapeutics must cross the Blood-Brain Barrier (BBB). Our goal was to use microglia derived exosomes as a vehicle to deliver siRNA across the BBB to target human telomerase reverse transcriptase immortalized human microglial cells (HTHU) latently infected by HIV (HTHU-HIV) and to evaluate if the knockdown of Tspan2 gene expression in changes the activation state of microglia cells, thereby modulating the neuroinflammatory response. A blood brain barrier (BBB) model that closely mimics and accurately reflects the characteristics and functional properties of the in vivo BBB was used to examine HTHU microglia exosome effects on BBB permeability, and their ability to migrate across the and delivery small interfering RNA (siRNA) to cells on the CNS side of the BBB model. Exosomes were loaded with Texas-Red control siRNA (20 pmol) or Cy5-Tspan2 siRNA and then placed in the apical side of the BBB model, 24 h after incubation, HTHU-HIV cells microglial cells on the lower chamber were either imaged for siRNA uptake or analyzed for gene expression induced modifications. HTHU exosomes transmigrate from the apical side of the BBB to deliver Texas-Red control siRNA or Cy5-Tspan2 siRNA to HTHU-HIV microglia cells on the CNS side of the BBB model. A dose dependent (5-40 pmol) increase in Cy5-Tspan2 uptake with a corresponding decrease in gene expression for Tspan2 occurred in HTHU-HIV microglia. A decrease in Tspan2 gene expression as a consequence of knockdown with Tspan2 siRNA at both 20 and 40 pmol concentrations resulted in a significant decrease in C-X-C motif chemokine 12 (CXCL12) and C-X-C chemokine receptor type 4 (CXCR4) gene expression in HTHU-HIV microglia. Furthermore, a decrease in the gene expression levels of the Interleukins, IL-13 and IL-10 and an increase in the gene expression levels for the Fc gamma receptor 2A(FCGR2A) and TNF-α occurred in HTHU-HIV microglial cells These data demonstrate that HTHU exosomes cross the BBB and are efficient delivery vehicles to the CNS. Moreover, modifying the expression levels of Tspan2, has downstream consequences that includes alterations in cytokines and microglia biomarkers. Graphical Abstract Microglia-derived exosomes loaded with Tspan2 siRNA transmigrate across the BBB and knockdown Tspan2 gene expression in human microglial cells latently infected by HIV. This knockdown increases CXCL12, CXCR4, FCGR2A and TNF-α while decreasing IL-13 and IL-10 gene expression in HTHU-HIV microglial cells. Modulating Tspan2 modulates microglia cytokines and phenotype biomarkers.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
233
|
Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy. Mol Neurobiol 2019; 57:1674-1687. [PMID: 31813125 DOI: 10.1007/s12035-019-01797-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
An initial precipitating injury in the brain, such as after status epilepticus (SE), evolves into chronic temporal lobe epilepsy (TLE). We investigated changes in the miRNA composition of extracellular vesicles (EVs) in the forebrain after the establishment of SE-induced chronic TLE. We induced SE in young Fischer 344 rats through graded intraperitoneal injections of kainic acid, which resulted in consistent spontaneous recurrent seizures at ~ 3 months post-SE. We isolated EVs from the entire forebrain of chronically epileptic rats and age-matched naïve control animals through an ultracentrifugation method and performed miRNA-sequencing studies to discern changes in the miRNA composition of forebrain-derived EVs in chronic epilepsy. EVs from both naïve and epileptic forebrains displayed spherical or cup-shaped morphology, a comparable size range, and CD63 expression but lacked the expression of a deep cellular marker GM130. However, miRNA-sequencing studies suggested downregulation of 3 miRNAs (miR-187-5p, miR-346, and miR-331-3p) and upregulation of 4 miRNAs (miR-490-5p, miR-376b-3p, miR-493-5p, and miR-124-5p) in EVs from epileptic forebrains with fold changes ranging from 1.5 to 2.4 (p < 0.0006; FDR < 0.05). By using geNorm and Normfinder software, we identified miR-487 and miR-221 as the best combination of reference genes for measurement of altered miRNAs found in the epileptic forebrain through qRT-PCR studies. The validation revealed that only miR-346 and miR-331-3p were significantly downregulated in EVs from the epileptic forebrain. The enrichment pathway analysis of these miRNAs showed an overrepresentation of signaling pathways that are linked to molecular mechanisms underlying chronic epilepsy, including GABA-ergic (miR-346 targets) and mTOR (miR-331-3p targets) systems. Thus, the packaging of two miRNAs into EVs in neural cells is considerably altered in chronic epilepsy. Functional studies on these two miRNAs may uncover their role in the pathophysiology and treatment of TLE.
Collapse
|
234
|
Guha D, Lorenz DR, Misra V, Chettimada S, Morgello S, Gabuzda D. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J Neuroinflammation 2019; 16:254. [PMID: 31805958 PMCID: PMC6896665 DOI: 10.1186/s12974-019-1617-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are nano-sized particles present in most body fluids including cerebrospinal fluid (CSF). Little is known about CSF EV proteins in HIV+ individuals. Here, we characterize the CSF EV proteome in HIV+ subjects and its relationship to neuroinflammation, stress responses, and HIV-associated neurocognitive disorders (HAND). METHODS CSF EVs isolated from 20 HIV+ subjects with (n = 10) or without (n = 10) cognitive impairment were characterized by electron microscopy, nanoparticle tracking analysis, immunoblotting, and untargeted LC/MS/MS mass spectrometry. Functional annotation was performed by gene ontology (GO) mapping and expression annotation using Biobase Transfac and PANTHER software. Cultured astrocytic U87 cells were treated with hydrogen peroxide for 4 h to induce oxidative stress and EVs isolated by ultracentrifugation. Selected markers of astrocytes (GFAP, GLUL), inflammation (CRP), and stress responses (PRDX2, PARK7, HSP70) were evaluated in EVs released by U87 cells following induction of oxidative stress and in CSF EVs from HIV+ patients by immunoblotting. RESULTS Mass spectrometry identified 2727 and 1626 proteins in EV fractions and EV-depleted CSF samples, respectively. CSF EV fractions were enriched with exosomal markers including Alix, syntenin, tetraspanins, and heat-shock proteins and a subset of neuronal, astrocyte, oligodendrocyte, and choroid plexus markers, in comparison to EV-depleted CSF. Proteins related to synapses, immune/inflammatory responses, stress responses, metabolic processes, mitochondrial functions, and blood-brain barrier were also identified in CSF EV fractions by GO mapping. HAND subjects had higher abundance of CSF EVs and proteins mapping to GO terms for synapses, glial cells, inflammation, and stress responses compared to those without HAND. GFAP, GLUL, CRP, PRDX2, PARK7, and HSP70 were confirmed by immunoblotting of CSF EVs from subjects with HAND and were also detected in EVs released by U87 cells under oxidative stress. CONCLUSIONS These findings suggest that CSF EVs derived from neurons, glial cells, and choroid plexus carry synaptic, immune/inflammation-related, and stress response proteins in HIV+ individuals with cognitive impairment, representing a valuable source for biomarker discovery.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience and Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
235
|
Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol 2019; 138:987-1012. [PMID: 31363836 PMCID: PMC6851224 DOI: 10.1007/s00401-019-02049-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.
Collapse
|
236
|
Cha DJ, Mengel D, Mustapic M, Liu W, Selkoe DJ, Kapogiannis D, Galasko D, Rissman RA, Bennett DA, Walsh DM. miR-212 and miR-132 Are Downregulated in Neurally Derived Plasma Exosomes of Alzheimer's Patients. Front Neurosci 2019; 13:1208. [PMID: 31849573 PMCID: PMC6902042 DOI: 10.3389/fnins.2019.01208] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
It was recently discovered that brain cells release extracellular vesicles (EV) which can pass from brain into blood. These findings raise the possibility that brain-derived EV’s present in blood can be used to monitor disease processes occurring in the cerebrum. Since the levels of certain micro-RNAs (miRNAs) have been reported to be altered in Alzheimer’s disease (AD) brain, we sought to assess miRNA dysregulation in AD brain tissue and to determine if these changes were reflected in neural EVs isolated from blood of subjects with AD. To this end, we employed high-content miRNA arrays to search for differences in miRNAs in RNA pools from brain tissue of AD (n = 5), high pathological control (HPC) (n = 5), or cognitively intact pathology-free controls (n = 5). Twelve miRNAs were altered by >1.5-fold in AD compared to controls, and six of these were also changed compared to HPCs. Analysis of hits in brain extracts from 11 AD, 7 HPCs and 9 controls revealed a similar fold difference in these six miRNAs, with three showing statistically significant group differences and one with a strong trend toward group differences. Thereafter, we focused on the four miRNAs that showed group differences and measured their content in neurally derived blood EVs isolated from 63 subjects: 16 patients with early stage dementia and a CSF Aβ42+ tau profile consistent with AD, 16 individuals with mild cognitive impairment (MCI) and an AD CSF profile, and 31 cognitively intact controls with normal CSF Aβ42+ tau levels. ROC analysis indicated that measurement of miR-132-3p in neurally-derived plasma EVs showed good sensitivity and specificity to diagnose AD, but did not effectively separate individuals with AD-MCI from controls. Moreover, when we measured the levels of a related miRNA, miR-212, we found that this miRNA was also decreased in neural EVs from AD patients compared to controls. Our results suggest that measurement of miR-132 and miR-212 in neural EVs should be further investigated as a diagnostic aid for AD and as a potential theragnostic.
Collapse
Affiliation(s)
- Diana J Cha
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Mengel
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Wen Liu
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,VA San Diego Healthcare System, La Jolla, CA, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush Medical College, Chicago, IL, United States
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Disease Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Alzheimer's Disease and Dementia Research Unit, Biogen Inc., Cambridge, MA, United States
| |
Collapse
|
237
|
Jiang JQ, Chanseau C, Alves ID, Nlate S, Durrieu MC. Dendron-Functionalized Surface: Efficient Strategy for Enhancing the Capture of Microvesicles. iScience 2019; 21:110-123. [PMID: 31655252 PMCID: PMC6820240 DOI: 10.1016/j.isci.2019.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Microvesicles (MVs) are used by various types of cells in the human body for intercellular communication, making them biomarkers of great potential for the early and non-evasive diagnosis of a spectrum of diseases. An integrated analysis including morphological, quantitative, and compositional studies is most desirable for the clinical application of MV detection; however, such integration is limited by the currently available analysis techniques. In this context, exploiting the phosphatidylserine (PS) exposure of MVs, we synthesized a series of dendritic molecules with PS-binding sites at the periphery. PS-dendron binding was studied at the molecular level using NMR approaches, whereas PS-containing membrane-dendron interaction was investigated in an aqueous environment using plasmon waveguide resonance spectroscopy. As a proof of concept, polyethylene terephthalate surface was functionalized with the synthetic dendrons, forming devices that can capture MVs to facilitate their subsequent analyses. Phosphatidylserine-dendron interaction studies with NMR techniques Lipid membrane binding enhancement using dendritic molecules Dendron-grafted material for effective MV capture
Collapse
Affiliation(s)
- Jian-Qiao Jiang
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France
| | - Christel Chanseau
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France
| | - Isabel D Alves
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France
| | - Sylvain Nlate
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France.
| | - Marie-Christine Durrieu
- Université de Bordeaux, Chimie et Biologie des Membranes et Nano-Objets (UMR5248 CBMN), Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; CNRS, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France; Bordeaux INP, CBMN UMR5248, Allée Geoffroy Saint Hilaire - Bât 14, Pessac 33600, France.
| |
Collapse
|
238
|
Kerr N, Dietrich DW, Bramlett HM, Raval AP. Sexually dimorphic microglia and ischemic stroke. CNS Neurosci Ther 2019; 25:1308-1317. [PMID: 31747126 PMCID: PMC6887716 DOI: 10.1111/cns.13267] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke kills more women compared with men thus emphasizing a significant sexual dimorphism in ischemic pathophysiological outcomes. However, the mechanisms behind this sexual dimorphism are yet to be fully understood. It is well established that cerebral ischemia activates a variety of inflammatory cascades and that microglia are the primary immune cells of the brain. After ischemic injury, microglia are activated and play a crucial role in progression and resolution of the neuroinflammatory response. In recent years, research has focused on the role that microglia play in this sexual dimorphism that exists in the response to central nervous system (CNS) injury. Evidence suggests that the molecular mechanisms leading to microglial activation and polarization of phenotypes may be influenced by sex, therefore causing a difference in the pro/anti‐inflammatory responses after CNS injury. Here, we review advances highlighting that sex differences in microglia are an important factor in the inflammatory responses that are seen after ischemic injury. We discuss the main differences between microglia in the healthy and diseased developing, adult, and aging brain. We also focus on the dimorphism that exists between males and females in microglial‐induced inflammation and energy metabolism after CNS injury. Finally, we describe how all of the current research and literature regarding sex differences in microglia contribute to the differences in poststroke responses between males and females.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dalton W Dietrich
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
239
|
Abstract
Japanese encephalitis (JE) is a clinical manifestation of the brain inflammation caused by JE virus (JEV). This virus imparts permanent neurological damage, thus imposing a heavy burden on public health and society. Neuro-inflammation is the hallmark of JEV infection. The prolonged pro-inflammatory response is due primarily to microglial activation, which eventually leads to severe encephalitis. A continual effort is going on in the scientific community toward an understanding of cellular and molecular factors that are involved in JEV neuro-invasion and inflammatory processes. This review not only gives a comprehensive update on the recent advances on understanding virus structure and mechanisms of pathogenesis but also briefly discusses crucial unresolved issues. We also highlight challenging areas of research that might open new avenues for controlling virus-induced neuro-inflammation.
Collapse
Affiliation(s)
- Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
240
|
What Do Microglia Really Do in Healthy Adult Brain? Cells 2019; 8:cells8101293. [PMID: 31652490 PMCID: PMC6829860 DOI: 10.3390/cells8101293] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022] Open
Abstract
Microglia originate from yolk sac-primitive macrophages and auto-proliferate into adulthood without replacement by bone marrow-derived circulating cells. In inflammation, stroke, aging, or infection, microglia have been shown to contribute to brain pathology in both deleterious and beneficial ways, which have been studied extensively. However, less is known about their role in the healthy adult brain. Astrocytes and oligodendrocytes are widely accepted to strongly contribute to the maintenance of brain homeostasis and to modulate neuronal function. On the other hand, contribution of microglia to cognition and behavior is only beginning to be understood. The ability to probe their function has become possible using microglial depletion assays and conditional mutants. Studies have shown that the absence of microglia results in cognitive and learning deficits in rodents during development, but this effect is less pronounced in adults. However, evidence suggests that microglia play a role in cognition and learning in adulthood and, at a cellular level, may modulate adult neurogenesis. This review presents the case for repositioning microglia as key contributors to the maintenance of homeostasis and cognitive processes in the healthy adult brain, in addition to their classical role as sentinels coordinating the neuroinflammatory response to tissue damage and disease.
Collapse
|
241
|
Li N, Wu Y, Zhu L, Huang Y, Liu Z, Shi M, Soltys D, Zhang J, Chang Q. Extracellular microvesicles-derived from microglia treated with unaggregated α-synuclein attenuate mitochondrial fission and toxicity-induced by Parkinsonian toxin MPP+. Biochem Biophys Res Commun 2019; 517:642-647. [DOI: 10.1016/j.bbrc.2019.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|
242
|
Jay TR, von Saucken VE, Muñoz B, Codocedo JF, Atwood BK, Lamb BT, Landreth GE. TREM2 is required for microglial instruction of astrocytic synaptic engulfment in neurodevelopment. Glia 2019; 67:1873-1892. [PMID: 31265185 DOI: 10.1002/glia.23664] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023]
Abstract
Variants in the microglial receptor TREM2 confer risk for multiple neurodegenerative diseases. However, it remains unknown how this receptor functions on microglia to modulate these diverse neuropathologies. To understand the role of TREM2 on microglia more generally, we investigated changes in microglial function in Trem2-/- mice. We found that loss of TREM2 impairs normal neurodevelopment, resulting in reduced synapse number across the cortex and hippocampus in 1-month-old mice. This reduction in synapse number was not due directly to alterations in interactions between microglia and synapses. Rather, TREM2 was required for microglia to limit synaptic engulfment by astrocytes during development. While these changes were largely normalized later in adulthood, high fat diet administration was sufficient to reinitiate TREM2-dependent modulation of synapse loss. Together, this identifies a novel role for microglia in instructing synaptic pruning by astrocytes to broadly regulate appropriate synaptic refinement, and suggests novel candidate mechanisms for how TREM2 and microglia could influence synaptic loss in brain injury and disease.
Collapse
Affiliation(s)
- Taylor R Jay
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Victoria E von Saucken
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Braulio Muñoz
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Juan F Codocedo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brady K Atwood
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
243
|
He J, Ren M, Li H, Yang L, Wang X, Yang Q. Exosomal Circular RNA as a Biomarker Platform for the Early Diagnosis of Immune-Mediated Demyelinating Disease. Front Genet 2019; 10:860. [PMID: 31611906 PMCID: PMC6777646 DOI: 10.3389/fgene.2019.00860] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/16/2019] [Indexed: 01/25/2023] Open
Abstract
Exosomes can pass through the blood-brain barrier and are present in the cerebrospinal fluid (CSF). The components in exosomes, such as DNA, RNA, protein, and lipids, change greatly and are closely related to disease progression. Circular RNA (circRNA) is stable in structure and has a long half-life in exosomes without degradation. Therefore, circRNA is considered an ideal biomarker and can be used to monitor a variety of central nervous system diseases. This study aimed to investigate the expression profiles of exosomal circRNA (exo-circRNA) in CSF from patients with immune-mediated demyelinating diseases to identify suitable biomarkers for the early diagnosis of immune-mediated demyelinating diseases. circRNA expression levels in exosomes obtained from five CSF samples from immune-mediated demyelinating disease patients and five paired CSF control samples were analyzed using a hybridization array. Hierarchical clustering analysis showed that 5,095 exo-circRNAs were differentially expressed between patients with immune-mediated demyelinating diseases and paired control samples. Of these exo-circRNAs, 26 were identified as significantly differentially expressed in CSF exosomes from patients with immune-mediated demyelinating diseases (FC ≥1.5 and p ≤ 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the upregulation or activation of protein tyrosine phosphatase receptor type F (PTPRF) and RAD23 homolog B, nucleotide excision repair protein (RAD23B) may be associated with the occurrence and development of immune-mediated demyelinating diseases. Then, a competing endogenous RNA network was constructed and centered on the most upregulated/downregulated exo-circRNAs to predict their function in immune-mediated demyelinating diseases. In addition, reverse transcription quantitative polymerase chain reaction results stating that hsa_circ_0087862 and hsa_circ_0012077 were validated in an independent cohort of subjects. Canonical correlation analysis results indicated a potential connection between exosomal hsa_circ_0012077 expression level and immunoglobulin G levels in CSF. Finally, the receiver operating characteristic (ROC) curve showed that when hsa_circ_0087862 or hsa_circ_0012077 was employed alone for diagnosing immune-mediated demyelinating diseases, the diagnostic accuracy was 100%. In conclusion, based on this study, exosomal hsa_circ_0087862 and hsa_circ_0012077 in CSF could be used as suitable biomarkers for the diagnosis of immune-mediated demyelinating disease based on their expression levels. Moreover, the upregulation or activation of PTPRF and RAD23B was potentially associated with the occurrence and development of immune-mediated demyelinating diseases.
Collapse
Affiliation(s)
- Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ren
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Medical Research Center, Second Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Haiqi Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People's Hospital of Jilin Province, Changchun, China
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Qiwei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Medical Research Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
244
|
Garofalo M, Villa A, Crescenti D, Marzagalli M, Kuryk L, Limonta P, Mazzaferro V, Ciana P. Heterologous and cross-species tropism of cancer-derived extracellular vesicles. Theranostics 2019; 9:5681-5693. [PMID: 31534511 PMCID: PMC6735396 DOI: 10.7150/thno.34824] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring cargo delivery vesicles that have recently received considerable attention for their roles in intercellular communication in many physiological and pathological processes, including tumourigenesis. EVs generated by different tissues demonstrated specific homing: in particular, cancer-derived EVs showed a selective tropism for the tumor tissue from which the vesicles originated. For this property, EVs have been proposed as drug delivery tools for anti-cancer therapies, although the limited knowledge about their in vivo tropism hinders their therapeutic applications. The current study aimed to characterize the targeting properties of cancer-derived EVs in vitro and their biodistribution in vivo, by using an imaging approach. Methods: EVs were generated from: i) murine lung (LL/2) and colon (MC-38) cancer lines, ii) human lung cancer cell line (A549) and iii) human liver biopsy samples from healthy individuals. EVs were loaded with fluorescent dyes alone or in combination with a biopharmaceutical agent, the oncolytic adenovirus (OV), characterized for charge and size and tested for their activity in cancer cell lines. Finally, optical imaging was extensively applied to study in vivo and ex vivo the biodistribution of EVs originated from different sources in different mouse models of cancer, including xenograft, syngeneic graft and the MMTV-NeuT genetically modified animal. Results: We initially demonstrated that even loading EVs even with a large biopharmaceutical oncolytic viruses (OVs) did not significantly change their charge and dimension properties, while increasing their anti-neoplastic activity compared to the virus or EVs alone. Interestingly, this activity was observed even if the EVs derived from lung cancer were applied to colon carcinoma cell lines and vice versa, suggesting that the EV uptake occurred in vitro without any specificity for the cancer cells from which the vesicles originated. When administered i.v (intravenously) to the mouse models of cancer, the tumour-derived EVs, but not the EVs derived from a healthy tissue, demonstrated a selective accumulation of the fluorescence at the tumour site 24 h after injection; adding OVs to the formulation did not change the tumour-specific tropism of the EVs also in vivo. Most interestingly, the in vivo experiments confirmed the in vitro observation of the generalized tropism of tumour-derived EVs for any neoplastic tissue, independent of the tumour type or even the species originating the vesicles. Conclusions: Taken together, our in vitro and in vivo data demonstrate for the first time a heterologous, cross-species tumour-tropism for cancer-derived EVs. This finding challenges our current view on the homing properties of EVs and opens new avenues for the selective delivery of diagnostic/therapeutic agents to solid tumours.
Collapse
Affiliation(s)
- Mariangela Garofalo
- Department of Oncology and Hemato-Oncology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Alessandro Villa
- Department of Oncology and Hemato-Oncology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Daniela Crescenti
- Department of Oncology and Hemato-Oncology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Lukasz Kuryk
- Targovax Oy, Clinical Science, Helsinki, Finland
- National Institute of Public Health - National Institute of Hygiene, Department of Virology, Warsaw, Poland
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
- Istituto Nazionale Tumori Fondazione IRCCS, Milan, Italy
| | - Paolo Ciana
- Department of Oncology and Hemato-Oncology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| |
Collapse
|
245
|
Liu Y, Ji J, Shao W, Luo M, Ma B. Bit1-a novel regulator of astrocyte function during retinal development: proliferation, migration, and paracrine effects on vascular endothelial cell. Hum Cell 2019; 32:418-427. [PMID: 31368047 DOI: 10.1007/s13577-019-00272-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/20/2019] [Indexed: 11/26/2022]
Abstract
Studies have shown that astrocyte plays an important role in the formation of retinal vasculature during development. For our study, we investigated the role of Bcl2 inhibitor of transcription 1 (Bit1) in regulating astrocyte function from developing retina and its paracrine effects on vascular endothelial cell. Expression pattern of Bit1 was analyzed by immunofluorescent staining of whole mount rat retina. Astrocytes and retinal microvascular endothelial cells (RMECs) were isolated from rat retina for cultural studies. The proliferation and migration of astrocytes and RMECs were evaluated by CCK-8 assay, scratch assay, and transwell migration assay. Cell apoptosis was detected by anoikis assay. Angiogenesis assay was used to measure the ability of RMECs to form tube-like microvascular structure. siRNA knockdown assay was employed to regulate Bit1 expression in astrocytes. Immunofluorescent staining showed Bit1 expression in migrating retinal astrocytes co-localized with the marker glial fibrillary acidic protein (GFAP). Isolated retinal astrocytes from post-natal rat eyes have an elevated expression of Bit1 and show increased cell survival and decreased anoikis as compared with retinal astrocytes from embryo. Suppressing Bit1 by siRNA assay leads to decreased cell proliferation, migration, and increased anoikis of astrocytes. Meanwhile, Bit1 knockdown could decrease the astrocytic vascular endothelial growth factor (VEGF) expression leading to inhibitory paracrine effects on RMECs angiogenesis. Our findings reveal that Bit1 promotes cell survival, proliferation, migration, and maintains VEGF expression of retinal astrocytes, leading to enhanced paracrine effects on angiogenesis of vascular endothelial cells. Bit1 may serve as a novel regulator of astrocyte biological behaviors interplaying with vascular endothelial cell during retinal development.
Collapse
Affiliation(s)
- Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiali Ji
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wanyu Shao
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Min Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bo Ma
- Department of Ophthalmology, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
246
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
247
|
Ghoreishy A, Khosravi A, Ghaemmaghami A. Exosomal microRNA and stroke: A review. J Cell Biochem 2019; 120:16352-16361. [PMID: 31219202 DOI: 10.1002/jcb.29130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Blood vessels rupture or occlusion in brain results in stroke. Stroke is the major reason for mortality and dysfunction worldwide. Despite several attempts, there are no any approved therapeutic approaches for stroke subjects. The most neuroprotective agents showed the positive effects in preclinical reports, while there are no significant therapeutic impacts in the clinical trials. MicroRNAs (miRNAs) are small noncoding RNAs which involved in the modulation of a variety of cellular and molecular pathways. Given that deregulation of these molecules is related to initiation and progression of stroke. Exosomes are nano-carriers which are able to transfer different cargos such as miRNAs to recipient cells. Increasing evidence revealed that exosomal miRNAs are one of very important factors which are involved in the pathogenesis of stroke. Hence, more understanding about the role of exosomal miRNAs in stroke pathogenesis could contribute in discovering and developing new therapeutic approaches. Moreover, it has been proved the exosomal miRNAs could be used as noninvasive biomarkers in diagnosis and monitoring response to therapy in subjects with stroke. Herein for first time, we summarized different exosomal miRNAs involved in pathogenesis of stroke.
Collapse
Affiliation(s)
- Abdolreza Ghoreishy
- Department of Neurology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Khosravi
- Department of Neurology, Clinical Immunology Research Center, School of Medicine, Zahedan University of Medical Science, Zahedan, Iran
| | - Amir Ghaemmaghami
- Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| |
Collapse
|
248
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
249
|
Increases in miR-124-3p in Microglial Exosomes Confer Neuroprotective Effects by Targeting FIP200-Mediated Neuronal Autophagy Following Traumatic Brain Injury. Neurochem Res 2019; 44:1903-1923. [PMID: 31190315 DOI: 10.1007/s11064-019-02825-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
In our recent study, we observed consistent increases in miR-124-3p levels in exosomes derived from cultured BV2 microglia which was treated with repetitive traumatic brain injury (rTBI) mouse model brain extracts. To clarify the mechanisms underlying increases in microglia-derived exosomal miR-124-3p and their role in regulating neuronal autophagy after TBI, we investigated the impact of exosomal miR-124-3p on neuronal autophagy in scratch-injured HT22 neurons and rTBI mice. We harvested injured brain extracts from rTBI mice at 3 to 21 days post injury (DPI) for the treatment of cultured BV2 microglia in vitro. We observed significant induction of autophagy following TBI in vitro, and that inhibition of activated neuronal autophagy could protect against trauma-induced injury. Our results indicated that co-culture of injured HT22 neurons with miR-124-3p overexpressing BV2 microglia exerted a protective effect by inhibiting neuronal autophagy in scratch-injured neurons. Further research revealed that these effects were achieved mainly via upregulation of exosomal miR-124-3p, and that Focal adhesion kinase family-interacting protein of 200 kDa (FIP200) plays a key role in trauma-induced autophagy. Injection of exosomes into the vena caudalis in in vivo experiments revealed that exosomal miR-124-3p was associated with decreases in the modified neurological severity score (mNSS) and improvements in Morris water maze (MWM) test results in rTBI mice. Altogether, our results indicate that increased miR-124-3p in microglial exosomes following TBI may inhibit neuronal autophagy and protect against nerve injury via their transfer into neurons. Thus, treatment with microglial exosomes enriched with miR-124-3p may represent a novel therapeutic strategy for the treatment of nerve injury after TBI.
Collapse
|
250
|
Watson LS, Hamlett ED, Stone TD, Sims-Robinson C. Neuronally derived extracellular vesicles: an emerging tool for understanding Alzheimer's disease. Mol Neurodegener 2019; 14:22. [PMID: 31182115 PMCID: PMC6558712 DOI: 10.1186/s13024-019-0317-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
In order for Alzheimer’s disease (AD) to manifest, cells must communicate “pathogenic material” such as proteins, signaling molecules, or genetic material to ensue disease propagation. Small extracellular vesicles are produced via the endocytic pathways and released by nearly all cell types, including neurons. Due to their intrinsic interrelationship with endocytic processes and autophagy, there has been increased interest in studying the role of these neuronally-derived extracellular vesicles (NDEVs) in the propagation of AD. Pathologic cargo associated with AD have been found in a number of studies, and NDEVs have been shown to induce pathogenesis in vivo and in vitro. Exogenous NDEVs are also shown to reduce plaque burden in AD models. Thus, the NDEV has the potential to become a useful biomarker, a pathologic potentiator, and a therapeutic opportunity. While the field of NDEV research in AD is still in its infancy, we review the current literature supporting these three claims.
Collapse
Affiliation(s)
- Luke S Watson
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 301 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA.,Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, Charleston, SC, 29425, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Tyler D Stone
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 301 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA.,Honors College, College of Charleston, Charleston, SC, 29424, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 301 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA. .,Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, Charleston, SC, 29425, USA.
| |
Collapse
|