201
|
|
202
|
Vera J, Schultz J, Ibrahim S, Raatz Y, Wolkenhauer O, Kunz M. Dynamical effects of epigenetic silencing of 14-3-3σ expression. ACTA ACUST UNITED AC 2009; 6:264-73. [DOI: 10.1039/b907863k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
203
|
14-3-3sigma expression and prognostic value in patients with epithelial ovarian carcinoma: a high throughput tissue microarray analysis. Eur J Surg Oncol 2008; 35:763-7. [PMID: 19081223 DOI: 10.1016/j.ejso.2008.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022] Open
Abstract
AIMS 14-3-3sigma is a potential tumor suppressor gene that when it is silenced by CpG methylation can contribute to cancer development. Previously, we showed that hypermethylation of 14-3-3sigma in human ovarian cancer and ovarian cancer cell lines, and that 14-3-3sigma hypermethylation correlated with loss of its expression by immunohistochemistry. In the present study, our aim is to determine the value of 14-3-3sigma in predicting disease outcome in series of patients with epithelial ovarian cancer. MATERIALS AND METHODS A tumor microarray (TMA) of 192 patients with a very detailed characteristic and follow-up was performed. The slides were immunostained with 14-3-3sigma antibody and its expression was correlated with age, tumor types, grade, stage, volume of residual tumor, response to therapy, overall survival (OS) and disease-free survival (DFS). RESULTS A marginal association with the volume of residual tumor after surgery (chi2 p = 0.044, Fischer's exact 0.051) was seen. There was no association between loss of 14-3-3sigma expression and any of age, stage, grade, tumor subtypes, and clinical response to therapy. Survival analysis according to Kaplan-Meier method showed that loss of 14-3-3sigma expression was not associated with OS or DFS (p = 0.702, p = 0.118, respectively). CONCLUSION Even though 14-3-3sigma is involved in ovarian tumorigenesis, it does not have a prognostic value as a biomarker to predict patients' outcome.
Collapse
|
204
|
Zhang Y, Zhang Z, Xu XY, Li XS, Yu M, Yu AM, Zong ZH, Yu BZ. Protein kinase a modulates Cdc25B activity during meiotic resumption of mouse oocytes. Dev Dyn 2008; 237:3777-86. [DOI: 10.1002/dvdy.21799] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
205
|
Rodrigues MS, Reddy MM, Sattler M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 2008; 10:1813-48. [PMID: 18593226 DOI: 10.1089/ars.2008.2071] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neoplastic expansion of myeloid cells is associated with specific genetic changes that lead to chronic activation of signaling pathways, as well as altered metabolism. It has become increasingly evident that transformation relies on the interdependency of both events. Among the various genetic changes, the oncogenic BCR-ABL tyrosine kinase in patients with Philadelphia chromosome positive chronic myeloid leukemia (CML) has been a focus of extensive research. Transformation by this oncogene is associated with elevated levels of intracellular reactive oxygen species (ROS). ROS have been implicated in processes that promote viability, cell growth, and regulation of other biological functions such as migration of cells or gene expression. Currently, the BCR-ABL inhibitor imatinib mesylate (Gleevec) is being used as a first-line therapy for the treatment of CML. However, BCR-ABL transformation is associated with genomic instability, and disease progression or resistance to imatinib can occur. Imatinib resistance is not known to cause or significantly alter signaling requirements in transformed cells. Elevated ROS are crucial for transformation, making them an ideal additional target for therapeutic intervention. The underlying mechanisms leading to elevated oxidative stress are reviewed, and signaling mechanisms that may serve as novel targeted approaches to overcome ROS-dependent cell growth are discussed.
Collapse
Affiliation(s)
- Margret S Rodrigues
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
206
|
Snow AJ, Puri P, Acker-Palmer A, Bouwmeester T, Vijayaraghavan S, Kline D. Phosphorylation-dependent interaction of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHA) with PADI6 following oocyte maturation in mice. Biol Reprod 2008; 79:337-47. [PMID: 18463355 PMCID: PMC2575841 DOI: 10.1095/biolreprod.108.069328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Proteins in the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein family (YWHA; also known as 14-3-3) are involved in the regulation of many intracellular processes. We have examined the interaction of YWHA with peptidylarginine deiminase type VI (PADI6), an abundant protein in mammalian oocytes, eggs, and early embryos. Peptidylarginine deiminases catalyze the posttranslational modification of peptidylarginine to citrulline. PADI6 is associated with oocyte cytoplasmic sheets, and PADI6-deficient mice are infertile because of disruption of development beyond the two-cell stage. We found that PADI6 undergoes a dramatic developmental change in phosphorylation during oocyte maturation. This change in phosphorylation is linked to an interaction of PADI6 with YWHA in the mature egg. Recombinant glutathione S-transferase YWHA pull-down experiments and transgenic tandem affinity purification with liquid chromatography-mass spectrometry demonstrate a binding interaction between YWHA and PADI6 in mature eggs. YWHA proteins modulate or complement intracellular events involving phosphorylation-dependent switching or protein modification. These results indicate that phosphorylation and/or YWHA binding may serve as a means of intracellular PADI6 regulation.
Collapse
Affiliation(s)
- Alan J Snow
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA
| | | | | | | | | | | |
Collapse
|
207
|
Dokmanovic-Chouinard M, Chung WK, Chevre JC, Watson E, Yonan J, Wiegand B, Bromberg Y, Wakae N, Wright CV, Overton J, Ghosh S, Sathe GM, Ammala CE, Brown KK, Ito R, LeDuc C, Solomon K, Fischer SG, Leibel RL. Positional cloning of "Lisch-Like", a candidate modifier of susceptibility to type 2 diabetes in mice. PLoS Genet 2008; 4:e1000137. [PMID: 18654634 PMCID: PMC2464733 DOI: 10.1371/journal.pgen.1000137] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 06/20/2008] [Indexed: 12/17/2022] Open
Abstract
In 404 Lepob/ob F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lepob. The phenotypes of B6.DBA congenic mice include reduced β-cell replication rates accompanied by reduced β-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated “Lisch-like” (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646–amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes. Type 2 diabetes (T2D) accounts for over 90% of instances of diabetes and is a leading cause of medical morbidity and mortality. Twin studies indicate a strong polygenic contribution to susceptibility within the context of obesity. Although approximately ten genes making important contributions to individual risk have been identified, it is clear that others remain to be identified. In this study, we intercrossed obese, diabetes-resistant and diabetes-prone mouse strains to implicate a genetic interval on mouse Chr1 associated with reduced β-cell numbers and elevated blood glucose. We narrowed the region using molecular genetics and computational approaches to identify a novel gene we designated “Lisch-like” (Ll). The orthologous human genetic interval has been repeatedly implicated in T2D. Mice with an induced mutation that reduces Ll expression are impaired in both β-cell development and glucose metabolism, and reduced expression of the homologous gene in zebrafish disrupts islet development. Ll is expressed in organs implicated in the pathophysiology of T2D (hypothalamus, islets, liver, and skeletal muscle) and is predicted to encode a transmembrane protein that could mediate cholesterol transport and/or convey signals related to cell division. Either mechanism could mediate effects on β-cell mass that would predispose to T2D.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blood Glucose/genetics
- Chromosomes, Mammalian
- Cloning, Molecular
- Crosses, Genetic
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 2/genetics
- Genetic Predisposition to Disease
- Glucose Tolerance Test/methods
- Haplotypes
- Homozygote
- Insulin/blood
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Obese
- Molecular Sequence Data
- Mutation
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Quantitative Trait Loci
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
| | - Wendy K. Chung
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Jean-Claude Chevre
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Elizabeth Watson
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Jason Yonan
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Beebe Wiegand
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Yana Bromberg
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Nao Wakae
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Chris V. Wright
- Vanderbilt University, Nashville, Tennessee, United States of America
| | - John Overton
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Sujoy Ghosh
- Clinical Pharmacology and Discovery Medicine, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Ganesh M. Sathe
- Discovery Technology Group, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania, United States of America
| | - Carina E. Ammala
- Center of Excellence for Drug Discovery, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Kathleen K. Brown
- Center of Excellence for Drug Discovery, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Rokuro Ito
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Charles LeDuc
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Keely Solomon
- Vanderbilt University, Nashville, Tennessee, United States of America
| | - Stuart G. Fischer
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
208
|
Wehr MC, Reinecke L, Botvinnik A, Rossner MJ. Analysis of transient phosphorylation-dependent protein-protein interactions in living mammalian cells using split-TEV. BMC Biotechnol 2008; 8:55. [PMID: 18620601 PMCID: PMC2483975 DOI: 10.1186/1472-6750-8-55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/13/2008] [Indexed: 01/18/2023] Open
Abstract
Background Regulated protein-protein interactions (PPIs) are pivotal molecular switches that are important for the regulation of signaling processes within eukaryotic cells. Cellular signaling is altered in various disease conditions and offers interesting options for pharmacological interventions. Constitutive PPIs are usually mediated by large interaction domains. In contrast, stimulus-regulated PPIs often depend on small post-translational modifications and are thus better suited targets for drug development. However, the detection of modification-dependent PPIs with biochemical methods still remains a labour- and material-intensive task, and many pivotal PPIs that are potentially suited for pharmacological intervention most likely remain to be identified. The availability of methods to easily identify and quantify stimulus-dependent, potentially also transient interaction events, is therefore essential. The assays should be applicable to intact mammalian cells, optimally also to primary cells in culture. Results In this study, we adapted the split-TEV system to quantify phosphorylation-dependent and transient PPIs that occur at the membrane and in the cytosol of living mammalian cells. Split-TEV is based on a PPI-induced functional complementation of two inactive TEV protease fragments fused to interaction partners of choice. Genetically encoded transcription-coupled and proteolysis-only TEV reporter systems were used to convert the TEV activity into an easily quantifiable readout. We measured the phosphorylation-dependent interaction between the pro-apoptotic protein Bad and the adapter proteins 14-3-3ε and ζ in NIH-3T3 fibroblasts and in primary cultured neurons. Using split-TEV assays, we show that Bad specifically interacts with 14-3-3 isoforms when phosphorylated by protein kinase Akt-1/PKB at Ser136. We also measured the phosphorylation-dependent Bad/14-3-3 interactions mediated by endogenous and transient Akt-1 activity. We furthermore applied split-TEV assays to measure the phosphorylation-dependent interactions of Neuregulin-1-stimulated ErbB4 receptors with several adapter proteins. Conclusion Split-TEV assays are well suited to measure phosphorylation-dependent and transient PPIs that occur specifically at the membrane and in the cytosol of heterologous and primary cultured mammalian cells. Given the high sensitivity of the split-TEV system, all assays were performed in multi-plate formats and could be adapted for higher throughput to screen for pharmacologically active substances.
Collapse
Affiliation(s)
- Michael C Wehr
- Research Group Gene Expression, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
209
|
Hsieh SY, Zhuang FH, Wu YT, Chen JK, Lee YL. Profiling the proteome dynamics during the cell cycle of human hepatoma cells. Proteomics 2008; 8:2872-84. [DOI: 10.1002/pmic.200800196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
210
|
Yue QX, Xie FB, Guan SH, Ma C, Yang M, Jiang BH, Liu X, Guo DA. Interaction of Ganoderma triterpenes with doxorubicin and proteomic characterization of the possible molecular targets of Ganoderma triterpenes. Cancer Sci 2008; 99:1461-70. [PMID: 18422750 PMCID: PMC11159042 DOI: 10.1111/j.1349-7006.2008.00824.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/30/2008] [Accepted: 03/03/2008] [Indexed: 01/11/2023] Open
Abstract
Triterpenes are the main components with cytotoxicity in Ganoderma lucidum, which is used popularly as a complementary treatment for cancer therapy in traditional Chinese medicine. To investigate the possible interaction between chemotherapeutic agents and triterpenes extracted from G. lucidum, the cytotoxicity of doxorubicin (DOX) combined with Ganoderma triterpenes (GTS) or lucidenic acid N (LCN), a purified compound, was examined in HeLa cells. The combinations targeting DOX with GTS or LCN resulted in a synergistic interaction in HeLa cells. Moreover, to identify the molecular targets of GTS, two-dimensional gel electrophoresis-based comparative proteomics was carried out and proteins with altered expression levels after GTS treatment in HeLa cells were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. The results of our proteomic study indicated that the GTS treatment caused regulated expression of 14 proteins, which play important roles in cell proliferation, the cell cycle, apoptosis, and oxidative stress. Flow cytometric analysis confirmed that GTS could induce weak G(0)-G(1) phase arrest and combined use of GTS with DOX could induce apoptosis in cells. Furthermore, GTS enhanced the reactive oxygen species (ROS)-producing effect of DOX, and a ROS scavenger could affect the synergism between GTS and DOX. In cells with high Ku80 protein expression, the synergism between GTS and DOX was also partly affected. Importantly, in cells with high Ku80 expression that were treated with a ROS scavenger, the synergism between GTS and DOX totally disappeared. These results suggest that the synergism between GTS and DOX might be based on GTS-induced sensitization of cells to chemotherapeutics through enhanced oxidative stress, DNA damage, and apoptosis.
Collapse
Affiliation(s)
- Qing-Xi Yue
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Shen J, Chen W, Yin X, Yu Y. Proteomic analysis of different temporal expression patterns induced by N-methyl-N'-nitro-N-nitrosoguanidine treatment. J Proteome Res 2008; 7:2999-3009. [PMID: 18549258 DOI: 10.1021/pr800133q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have previously shown that N-methyl- N'-nitro- N-nitrosoguanidine (MNNG), a well-known DNA alkylating agent and carcinogen, can induce multiple cellular responses with dynamic characteristics, including such responses as nontargeted mutations (NTM) at undamaged bases in DNA, up-regulation of low fidelity DNA polymerases, clustering of epidermal growth factor receptor (EGFR) and interference with its downstream signaling pathway. A dose-related analysis also revealed that different concentrations of MNNG can trigger diverse proteome changes associated with different cytotoxic effects. To further understand the dynamic cellular responses and hazardous effects caused by environmental carcinogen, a proteomic time-course study of whole cellular proteins from human amniotic epithelial cells after MNNG treatment was performed. Analysis at three different time points (3, 12 and 24 h after exposure) revealed that the major changes were taking place around 3 and 12 h after exposure. Using MALDI-TOF MS coupled with a micro solid-phase extraction (SPE) device, 90% ( n = 70) differentially expressed proteins were identified. Functional assignment revealed that many important pathways were affected, including the protein biosynthesis pathway and Ran GTPase system. We also carried out a network analysis of these proteins and the data suggest a central role for some key regulators in different pathways.
Collapse
Affiliation(s)
- Jing Shen
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | |
Collapse
|
212
|
Komiya Y, Kurabe N, Katagiri K, Ogawa M, Sugiyama A, Kawasaki Y, Tashiro F. A novel binding factor of 14-3-3beta functions as a transcriptional repressor and promotes anchorage-independent growth, tumorigenicity, and metastasis. J Biol Chem 2008; 283:18753-64. [PMID: 18460465 DOI: 10.1074/jbc.m802530200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 14-3-3 proteins form a highly conserved family of dimeric proteins that interact with various signal transduction proteins and regulate cell cycle, apoptosis, stress response, and malignant transformation. We previously demonstrated that the beta isoform of 14-3-3 proteins promotes tumorigenicity and angiogenesis of rat hepatoma K2 cells. In this study, to analyze the mechanism of 14-3-3beta-induced malignant transformation, yeast two-hybrid screening was performed, and a novel 14-3-3beta-binding factor, FBI1 (fourteen-three-three beta interactant 1), was identified. In vitro binding and co-immunoprecipitation analyses verified specific interaction of 14-3-3beta with FBI1. The strong expression of FBI1 was observed in several tumor cell lines but not in non-tumor cell lines. Forced expression of antisense FBI1 in K2 cells inhibited anchorage-independent growth but had no significant effect on cell proliferation in monolayer culture. Down-regulation of FBI1 also inhibited tumorigenicity and metastasis accompanying a decrease in MMP-9 (matrix metalloproteinase-9) expression. In addition, the duration of ERK1/2 activation was curtailed in antisense FBI1-expressing K2 cells. A luciferase reporter assay revealed that the FBI1-14-3-3beta complex could act as a transcriptional silencer, and MKP-1 (MAPK phosphatase-1) was one of the target genes of the FBI1-14-3-3beta complex. Moreover, chromatin immunoprecipitation analysis demonstrated that FBI1 and 14-3-3beta were presented on the MKP-1 promoter. These results indicate that FBI1 promotes sustained ERK1/2 activation through repression of MKP-1 transcription, resulting in promotion of tumorigenicity and metastasis.
Collapse
Affiliation(s)
- Yuko Komiya
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
213
|
Yue QX, Cao ZW, Guan SH, Liu XH, Tao L, Wu WY, Li YX, Yang PY, Liu X, Guo DA. Proteomics Characterization of the Cytotoxicity Mechanism of Ganoderic Acid D and Computer-automated Estimation of the Possible Drug Target Network. Mol Cell Proteomics 2008; 7:949-61. [DOI: 10.1074/mcp.m700259-mcp200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
214
|
Matta A, DeSouza LV, Shukla NK, Gupta SD, Ralhan R, Siu KWM. Prognostic significance of head-and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2008; 7:2078-87. [PMID: 18407684 DOI: 10.1021/pr7007797] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diagnostic oncoproteomics is an emerging field; at present, studies on evaluation of prognostic utility of potential biomarkers identified using proteomic techniques are limited. Analysis with isobaric mass tags (iTRAQ) by multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) to identify proteins that are differentially expressed in human head-and-neck/oral squamous cell carcinomas (HNOSCCs) versus noncancerous head-and-neck tissues has led to the discovery, identification, and verification of consistently increased expression of a panel of proteins, including stratifin (14-3-3sigma) and YWHAZ (14-3-3zeta), that may serve as potential cancer biomarkers. Herein, we describe the prognostic utility of these two candidate biomarkers for head-and-neck/oral squamous cell carcinoma (HNOSCC). To determine the clinical significance of stratifin and YWHAZ in head-and-neck tumorigenesis, the expressions of these two proteins were analyzed in HNOSCCs (51 cases) and nonmalignant tissues (39 cases) using immunohistochemistry. Significant increase in stratifin expression was observed in the HNOSCCs as compared to the nonmalignant mucosa [p=0.003, Odd's Ratio (OR)=3.8, 95% CI=1.6-9.2]. Kaplan-Meier survival analysis reveals correlation of stratifin overexpression with reduced disease-free survival of HNOSCC patients (p=0.06). The most intriguing finding is the significant decrease in median disease-free survival (13 months) in HNOSCC patients showing overexpression of both stratifin and YWHAZ proteins, as compared to patients that did not show overexpression of these proteins (median disease-free survival=38 months, p=0.019), underscoring their utility as adverse prognosticators for HNOSCCs. Co-immunoprecipitation assays show the formation of stratifin-YWHAZ heterodimers in HNOSCC cells and tissue samples, and interactions with NFkappaB, beta-catenin, and Bcl-2 proteins. These results suggest the involvement of these proteins in the development of head-and-neck cancer and their association with adverse disease outcome.
Collapse
Affiliation(s)
- Ajay Matta
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | |
Collapse
|
215
|
Anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cell line. Mol Cell Biochem 2008; 313:125-32. [PMID: 18398671 DOI: 10.1007/s11010-008-9749-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
To investigate the anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer, gastric cancer AGS cells were treated with luteolin and/or other chemotherapeutic agents. Cell growth was assessed by MTT assay, cell cycle and apoptosis were assessed by flow-cytometric analysis, and the expression of major proteins regulating cell cycle and apoptosis was also detected. The results showed that luteolin inhibited the growth of gastric cancer cells in a dose- and time-dependent manner. Flow cytometry revealed that the percentage of cells at G2/M phase increased dose-dependently. The protein levels of Cdc2, Cyclin B1 and Cdc25C were reduced and p21/cip1 was up-regulated after the treatment with luteolin. Furthermore, luteolin induced apoptosis in gastric cancer AGS cells. Western blotting showed that luteolin treatment significantly increased the levels of pro-apoptotic proteins, including Caspase-3, 6, 9, Bax, and p53, and decreased the levels of anti-apoptotic protein Bcl-2, thus shifting the Bax/Bcl ratio in favor of apoptosis. It was also demonstrated that a combinational treatment of cisplatin and luteolin induced more effectively cell growth inhibition, compared to cisplatin treatment alone. These findings indicate the anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cells and luteolin may be a promising candidate agent used in the treatment of gastric cancer.
Collapse
|
216
|
Ma C, Guan SH, Yang M, Liu X, Guo DA. Differential protein expression in mouse splenic mononuclear cells treated with polysaccharides from spores of Ganoderma lucidum. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:268-276. [PMID: 18222673 DOI: 10.1016/j.phymed.2007.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/27/2007] [Accepted: 11/22/2007] [Indexed: 05/25/2023]
Abstract
Polysaccharides were one of the main components of Ganoderma lucidum, a medicinal mushroom well known for its immuno-modulation effects. In the present study, we demonstrated that polysaccharides extracted from Ganoderma lucidum spores (GL-SP) could stimulate splenic mononuclear cells (MNCs) proliferation and cytokine production. To identify the possible cellular targets of GL-SP in MNCs, two-dimensional gel electrophoresis (2-DE)-based comparative proteomics was performed and proteins altered in expressional level after GL-SP treatment were identified by MALDI-TOF MS/MS. Ten proteins with >2-fold increase or decrease expression in GL-SP-treated MNCs compared with control were found and further identified by MALDI-TOF MS/MS analysis and database searching. In the GL-SP-treated MNCs, there were increases in the expression of myosin regulatory light chain 2-A, Rho GDP dissociation inhibitor beta, T-cell-specific GTPase, phosphatidylinositol transfer protein alpha, and decreases in the expression of apoptosis-associated speck-like protein containing a CARD, 14-3-3 tau, beta-actin, tubulin alpha 2, copine I, and gamma-actin. The results of the present study help to provide insight into the immuno-modulating activities of GL-SP.
Collapse
Affiliation(s)
- Chao Ma
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | |
Collapse
|
217
|
Ralhan R, Desouza LV, Matta A, Tripathi SC, Ghanny S, Datta Gupta S, Bahadur S, Siu KWM. Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics 2008; 7:1162-73. [PMID: 18339795 DOI: 10.1074/mcp.m700500-mcp200] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidimensional LC-MS/MS has been used for the analysis of biological samples labeled with isobaric mass tags for relative and absolute quantitation (iTRAQ) to identify proteins that are differentially expressed in human head-and-neck squamous cell carcinomas (HNSCCs) in relation to non-cancerous head-and-neck tissues (controls) for cancer biomarker discovery. Fifteen individual samples (cancer and non-cancerous tissues) were compared against a pooled non-cancerous control (prepared by pooling equal amounts of proteins from six non-cancerous tissues) in five sets by on-line and off-line separation. We identified 811 non-redundant proteins in HNSCCs, including structural proteins, signaling components, enzymes, receptors, transcription factors, and chaperones. A panel of proteins showing consistent differential expression in HNSCC relative to the non-cancerous controls was discovered. Some of the proteins include stratifin (14-3-3sigma); YWHAZ (14-3-3zeta); three calcium-binding proteins of the S100 family, S100-A2, S100-A7 (psoriasin), and S100-A11 (calgizarrin); prothymosin alpha (PTHA); L-lactate dehydrogenase A chain; glutathione S-transferase Pi; APC-binding protein EB1; and fascin. Peroxiredoxin2, carbonic anhydrase I, flavin reductase, histone H3, and polybromo-1D (BAF180) were underexpressed in HNSCCs. A panel of the three best performing biomarkers, YWHAZ, stratifin, and S100-A7, achieved a sensitivity of 0.92 and a specificity of 0.91 in discriminating cancerous from non-cancerous head-and-neck tissues. Verification of differential expression of YWHAZ, stratifin, and S100-A7 proteins in clinical samples of HNSCCs and paired and non-paired non-cancerous tissues by immunohistochemistry, immunoblotting, and RT-PCR confirmed their overexpression in head-and-neck cancer. Verification of YWHAZ, stratifin, and S100-A7 in an independent set of HNSCCs achieved a sensitivity of 0.92 and a specificity of 0.87 in discriminating cancerous from non-cancerous head-and-neck tissues, thereby confirming their overexpressions and utility as credible cancer biomarkers.
Collapse
Affiliation(s)
- Ranju Ralhan
- Department of Chemistry, York University, Toronto, Ontario M2J 1P3, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Hall MC, Jeong DE, Henderson JT, Choi E, Bremmer SC, Iliuk AB, Charbonneau H. Cdc28 and Cdc14 control stability of the anaphase-promoting complex inhibitor Acm1. J Biol Chem 2008; 283:10396-407. [PMID: 18287090 DOI: 10.1074/jbc.m710011200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.
Collapse
Affiliation(s)
- Mark C Hall
- Biochemistry Department, Purdue Cancer Center, and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
219
|
Siles-Lucas M, Merli M, Gottstein B. 14-3-3 proteins in Echinococcus: their role and potential as protective antigens. Exp Parasitol 2008; 119:516-523. [PMID: 18316081 DOI: 10.1016/j.exppara.2008.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/22/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
14-3-3 Proteins are a family of highly conserved proteins among all eukaryotic organisms studied so far. As basically intracellular proteins, they play a key role in basic cellular events related to cellular proliferation, including signal transduction, cell-cycle control, cell differentiation and cell survival. The 14-3-3 proteins have been described and characterized in several parasites, and mostly studied in Echinococcus granulosus and Echinococcus multilocularis. Here, we review the discoveries regarding this protein family in the genus Echinococcus, describing new data about specific aspects related with their implication in the parasite biology and immunology in the frame of the host-parasite relationship.
Collapse
Affiliation(s)
- Mar Siles-Lucas
- Unidad de Patología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | | | | |
Collapse
|
220
|
Cuervo P, Cupolillo E, Britto C, González LJ, E Silva-Filho FC, Lopes LC, Domont GB, De Jesus JB. Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J Proteomics 2008; 71:109-22. [PMID: 18541479 DOI: 10.1016/j.jprot.2008.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/18/2022]
Abstract
A comparative analysis of proteomic maps of long-term grown and fresh clinical Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes, respectively, was performed using two-dimensional gel electrophoresis and mass spectrometry. Of 29 protein spots differentially expressed between the isolates, 19 were over-expressed in the isolate exhibiting high virulence phenotype: proteins associated with cytoskeletal dynamics, such as coronin and several isoforms of actin, as well as proteins involved in signal transduction, protein turnover, proteolysis, and energetic and polyamine metabolisms were identified. Some malate dehydrogenase, fructose-1,6-bisphosphate aldolase and ornithine cyclodeamidase isoforms were exclusively expressed by the highly virulent isolate. During interaction assays with VEC, parasites exhibiting high virulence phenotype rapidly adhered and switched to amoeboid forms. In contrast, low adhesion and no morphological transformation were observed in parasites displaying low virulence phenotype. Our findings demonstrate that expression of specific proteins by high and low virulence parasites could be associated with the ability of each isolate to undergo morphological transformation and interact with host cells. Such data represent an important step towards understanding of the complex interaction network of proteins that participate in the mechanism of pathogenesis of this protozoan.
Collapse
Affiliation(s)
- Patrícia Cuervo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Human 14-3-3 gamma protein results in abnormal cell proliferation in the developing eye of Drosophila melanogaster. Cell Div 2008; 3:2. [PMID: 18194556 PMCID: PMC2246125 DOI: 10.1186/1747-1028-3-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/14/2008] [Indexed: 12/27/2022] Open
Abstract
Background 14-3-3 proteins are a family of adaptor proteins that participate in a wide variety of cellular processes. Recent evidence indicates that the expression levels of these proteins are elevated in some human tumors providing circumstantial evidence for their involvement in human cancers. However, the mechanism through which these proteins act in tumorigenesis is uncertain. Results To determine whether elevated levels of 14-3-3 proteins may perturb cell growth we overexpressed human 14-3-3 gamma (h14-3-3 gamma) in Drosophila larvae using the heat shock promoter or the GMR-Gal4 driver and then examined the effect that this had on cell proliferation in the eye imaginal discs of third instar larvae. We found that induction of h14-3-3 gamma resulted in the abnormal appearance of replicating cells in the differentiating proneural photoreceptor cells of eye imaginal discs where h14-3-3 gamma was driven by the heat shock promoter. Similarly, we found that driving h14-3-3 gamma expression specifically in developing eye discs with the GMR-Gal4 driver resulted in increased numbers of replicative cells following the morphogenetic furrow. Interestingly, we found that the effects of overexpressing h1433 gamma on eye development were increased in a genetic background where String (cdc25) function was compromised. Conclusion Taken together our results indicate that h14-3-3 gamma can promote abnormal cell proliferation and may act through Cdc25. This has important implications for 14-3-3 gamma as an oncogene as it suggests that elevated levels of 14-3-3 may confer a growth advantage to cells that overexpress it.
Collapse
|
222
|
Kodym E, Kodym R, Choy H, Saha D. Sustained Metaphase Arrest in Response to Ionizing Radiation in a Non-small Cell Lung Cancer Cell Line. Radiat Res 2008; 169:46-58. [DOI: 10.1667/rr0937.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 09/18/2007] [Indexed: 11/03/2022]
|
223
|
Zannis-Hadjopoulos M, Yahyaoui W, Callejo M. 14-3-3 Cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends Biochem Sci 2008; 33:44-50. [DOI: 10.1016/j.tibs.2007.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 08/31/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
|
224
|
Abstract
The p53 tumor suppressor plays a pivotal role in multicellular organism by enforcing benefits of the organism over those of an individual cell. The task of p53 is to control the integrity and correctness of all processes in each individual cell and in the organism as a whole. Information about the state of ongoing events in the cell is gathered through multiple signaling pathways that convey signals modifying activities of p53. Changes in the activities depend on the character of damages or deviations from optimum in processes, and the activity of p53 changes depending on the degree of the aberration, which results in either stimulation of repair processes and protective mechanisms, or the cessation of further cell divisions and the induction of programmed cell death. The strategy of p53 ensures genetic identity of cells and prevents the selection of abnormal cells. By accomplishing these strategic tasks, p53 may use a wide spectrum of activities, such as its ability to function as a transcription factor, by inducing or repressing different genes, or as an enzyme, by acting as an exonuclease during DNA reparation, or as an adaptor or a regulatory protein, intervening into functions of numerous signaling pathways. Loss of function of the p53 gene occurs in virtually every case of cancer, and deficiency in p53 is an unavoidable prerequisite to the development of malignancies. The functions of p53 play substantial roles in many other pathologies as well as in the aging process. This review is focused on strategies of the p53 gene, demonstrating individual mechanisms underlying its functions.
Collapse
Affiliation(s)
- P M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
225
|
|
226
|
The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. ACTA ACUST UNITED AC 2007; 8:107-19. [PMID: 17932789 PMCID: PMC2140095 DOI: 10.1007/s10969-007-9027-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 09/22/2007] [Indexed: 11/04/2022]
Abstract
As many of the structural genomics centers have ended their first phase of operation, it is a good point to evaluate the scientific impact of this endeavour. The Structural Genomics Consortium (SGC), operating from three centers across the Atlantic, investigates human proteins involved in disease processes and proteins from Plasmodium falciparum and related organisms. We present here some of the scientific output of the Oxford node of the SGC, where the target areas include protein kinases, phosphatases, oxidoreductases and other metabolic enzymes, as well as signal transduction proteins. The SGC has aimed to achieve extensive coverage of human gene families with a focus on protein–ligand interactions. The methods employed for effective protein expression, crystallization and structure determination by X-ray crystallography are summarized. In addition to the cumulative impact of accelerated delivery of protein structures, we demonstrate how family coverage, generic screening methodology, and the availability of abundant purified protein samples, allow a level of discovery that is difficult to achieve otherwise. The contribution of NMR to structure determination and protein characterization is discussed. To make this information available to a wide scientific audience, a new tool for disseminating annotated structural information was created that also represents an interactive platform allowing for a continuous update of the annotation by the scientific community.
Collapse
|
227
|
Schade B, Lam SHL, Cernea D, Sanguin-Gendreau V, Cardiff RD, Jung BL, Hallett M, Muller WJ. Distinct ErbB-2 coupled signaling pathways promote mammary tumors with unique pathologic and transcriptional profiles. Cancer Res 2007; 67:7579-88. [PMID: 17699761 DOI: 10.1158/0008-5472.can-06-4724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ErbB-2 overexpression and amplification occurs in 15% to 30% of human invasive breast carcinomas associated with poor clinical prognosis. Previously, we have shown that four ErbB-2/Neu tyrosine-autophosphorylation sites within the cytoplasmic tail of the receptor recruit distinct adaptor proteins and are sufficient to mediate transforming signals in vitro. Two of these sites, representing the growth factor receptor binding protein 2 (Grb2; Neu-YB) and the Src homology and collagen (Shc; Neu-YD) binding sites, can induce mammary tumorigenesis and metastasis. Here, we show that transgenic mice bearing the two other ErbB-2 autophosphorylation sites (Neu-YC and Neu-YE) develop metastatic mammary tumors. A detailed comparison of biological profiles among all Neu mutant mouse models revealed that Neu-YC, Neu-YD, and Neu-YE mammary tumors shared similar pathologic and transcriptional features. By contrast, the Neu-YB mouse model displayed a unique pathology with a high metastatic potential that correlates with a distinct transcriptional profile, including genes that promote malignant tumor progression such as metalloproteinases and chemokines. Furthermore, Neu-YB tumor epithelial cells showed abundant intracellular protein level of the chemokine CXCL12/SDF-1alpha, which may reflect the aggressive nature of this Neu mutant mouse model. Taken together, these findings indicate that activation of distinct Neu-coupled signaling pathways has an important impact on the biological behavior of Neu-induced tumors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Binding Sites
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chemokine CXCL12
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Enzyme Activation
- GRB2 Adaptor Protein/metabolism
- Gene Expression Profiling
- MAP Kinase Signaling System
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Mutation
- Phosphatidylinositol 3-Kinases/metabolism
- Receptor, ErbB-2/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription, Genetic
Collapse
Affiliation(s)
- Babette Schade
- Molecular Oncology Group, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Hattangadi SM, Lodish HF. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J Clin Invest 2007; 117:2075-7. [PMID: 17671642 PMCID: PMC1934567 DOI: 10.1172/jci32559] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The forkhead box O (Foxo) subfamily of transcription factors regulates expression of genes important for many cellular processes, ranging from initiation of cell cycle arrest and apoptosis to induction of DNA damage repair. Invertebrate Foxo orthologs such as DAF-16 also regulate longevity. Cellular responses inducing resistance to ROS are important for cellular survival and organism lifespan, but until recently, mammalian factors regulating resistance to oxidative stress have not been well characterized. Marinkovic and colleagues demonstrate in this issue of the JCI that Foxo3 is specifically required for induction of proteins that regulate the in vivo oxidative stress response in murine erythrocytes (see the related article beginning on page 2133). Their work offers the interesting hypothesis that in so doing, Foxo3 may regulate the lifespan of red blood cells, and underlies the importance of understanding the direct targets of this transcription factor and its regulation.
Collapse
Affiliation(s)
- Shilpa M. Hattangadi
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.
Children’s Hospital of Boston, Boston, Massachusetts, USA
| | - Harvey F. Lodish
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.
Children’s Hospital of Boston, Boston, Massachusetts, USA
| |
Collapse
|
229
|
Fan T, Li R, Todd NW, Qiu Q, Fang HB, Wang H, Shen J, Zhao RY, Caraway NP, Katz RL, Stass SA, Jiang F. Up-regulation of 14-3-3zeta in lung cancer and its implication as prognostic and therapeutic target. Cancer Res 2007; 67:7901-6. [PMID: 17699796 DOI: 10.1158/0008-5472.can-07-0090] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A functional genomic approach integrating microarray and proteomic analyses done in our laboratory has identified 14-3-3zeta as a putative oncogene whose activation was common and driven by its genomic amplification in lung adenocarcinomas. 14-3-3zeta is believed to function in cell signaling, cycle control, and apoptotic death. Following our initial finding, here, we analyzed its expression in lung tumor tissues obtained from 205 patients with various histologic and stage non-small cell lung cancers (NSCLC) using immunohistochemistry and then explored the effects of specific suppression of the gene in vitro and in a xenograft model using small interfering RNA. The increased 14-3-3zeta expression was positively correlated with a more advanced pathologic stage and grade of NSCLCs (P = 0.001 and P = 0.006, respectively) and was associated with overall and cancer-specific survival rates of the patients (P = 0.022 and P = 0.018, respectively). Down-regulation of 14-3-3zeta in lung cancer cells led to a dose-dependent increased sensitivity to cisplatin-induced cell death, which was associated with the inhibition of cell proliferation and increased G2-M arrest and apoptosis. The result was further confirmed in the animal model, which showed that the A549 lung cancer cells with reduced 14-3-3zeta grew significantly slower than the wild-type A549 cells after cisplatin treatment (P = 0.008). Our results suggest that 14-3-3zeta is a potential target for developing a prognostic biomarker and therapeutics that can enhance the antitumor activity of cisplatin for NSCLC.
Collapse
Affiliation(s)
- Tao Fan
- Department of Pathology, University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201-1192, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Matta A, Bahadur S, Duggal R, Gupta SD, Ralhan R. Over-expression of 14-3-3zeta is an early event in oral cancer. BMC Cancer 2007; 7:169. [PMID: 17764575 PMCID: PMC2082039 DOI: 10.1186/1471-2407-7-169] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 09/02/2007] [Indexed: 01/20/2023] Open
Abstract
Background The functional and clinical significance of 14-3-3 proteins in human cancers remain largely undetermined. Earlier, we have reported differential expression of 14-3-3ζ mRNA in oral squamous cell carcinoma (OSCC) by differential display. Methods The clinical relevance of 14-3-3ζ protein in oral tumorigenesis was determined by immunohistochemistry in paraffin embedded sections of oral pre-malignant lesions (OPLs), OSCCs and histologically normal oral tissues and corroborated by Western Blotting. Co-immunoprecipitation assays were carried out to determine its association with NFκB, β-catenin and Bcl-2. Results Intense immunostaining of 14-3-3ζ protein was observed in 61/89 (69%) OPLs and 95/120 (79%) OSCCs. Immunohistochemistry showed significant increase in expression of 14-3-3ζ protein from normal mucosa to OPLs to OSCCs (ptrend < 0.001). Significant increase in expression of 14-3-3ζ protein was observed as early as in hyperplasia (p = 0.009), with further elevation in moderate and severe dysplasia, that was sustained in OSCCs. These findings were validated by Western blotting. Using Co-immunoprecipitation, we demonstrated that 14-3-3ζ protein binds to NFκB, β-catenin and Bcl-2, suggesting its involvement in cellular signaling, leading to proliferation of oral cancer cells. Conclusion Our findings suggest that over-expression of 14-3-3ζ is an early event in oral tumorigenesis and may have an important role in its development and progression. Thus, 14-3-3ζ may serve as an important molecular target for designing novel therapy for oral cancer.
Collapse
Affiliation(s)
- Ajay Matta
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi -110029, India
| | - Sudhir Bahadur
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi -110029, India
| | - Ritu Duggal
- Department of Dental Surgery, All India Institute of Medical Sciences, Ansari Nagar, New Delhi -110029, India
| | - Siddhartha D Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi -110029, India
| | - Ranju Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi -110029, India
| |
Collapse
|
231
|
Kong L, Lv Z, Chen J, Nie Z, Wang D, Shen H, Wang X, Wu X, Zhang Y. Expression analysis and tissue distribution of two 14-3-3 proteins in silkworm (Bombyx mori). Biochim Biophys Acta Gen Subj 2007; 1770:1598-604. [PMID: 17949913 DOI: 10.1016/j.bbagen.2007.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/27/2022]
Abstract
14-3-3 proteins, which have been identified in a wide variety of eukaryotes, are highly conserved acidic proteins. In this study, we identified two genes in silkworm that encode 14-3-3 proteins (Bm14-3-3zeta and Bm14-3-3epsilon). Category of two 14-3-3 proteins was identified according to phylogenetic analysis. Bm14-3-3zeta shared 90% identity with that in Drosophila, while Bm14-3-3epsilon shared 86% identity with that in Drosophila. According to Western blot and real time PCR analysis, the Bm14-3-3zeta expression levels are higher than Bm14-3-3epsilon in seven tissues and in four silkworm developmental stages examined. Bm14-3-3zeta was expressed during every stage of silkworm and in every tissue of the fifth instar larvae that was examined, but Bm14-3-3epsilon expression was not detected in eggs or heads of the fifth instar larvae. Both 14-3-3 proteins were highly expressed in silk glands. These results suggest that Bm14-3-3zeta expression is universal and continuous, while Bm14-3-3epsilon expression is tissue and stage-specific. Based on tissue expression patterns and the known functions of 14-3-3 proteins, it may be that both 14-3-3 proteins are involved in the regulation of gene expression in silkworm silk glands.
Collapse
Affiliation(s)
- Lingyin Kong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.
Collapse
Affiliation(s)
- Rose Boutros
- LBCMCP-CNRS UMR5088, IFR109 Institut d'Exploration Fonctionnelle des Génomes, University of Toulouse, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
233
|
Lin CH, Chung MY, Chen WB, Chien CH. Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS J 2007; 274:2946-56. [PMID: 17488281 DOI: 10.1111/j.1742-4658.2007.05828.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian nitrilase (Nit) protein is a member of the nitrilase superfamily whose function remains to be characterized. We now show that the nitrilase family member 2 gene (NIT2) is ubiquitously expressed in multiple tissues and encodes protein mainly distributed in the cytosol. Ectopic expression of Nit2 in HeLa cells was found to inhibit cell growth through G(2) arrest rather than by apoptosis. Consistent with this, proteomic and RT-PCR analyses showed that Nit2 up-regulated the protein and mRNA levels of 14-3-3sigma, an inhibitor of both G(2)/M progression and protein kinase B (Akt)-activated cell growth, and down-regulated 14-3-3beta, a potential oncogenic protein. Genotype analysis in four types of primary tumor tissues showed 12.5-38.5% allelic imbalance surrounding the NIT2 locus. The results demonstrated that NIT2 plays an important role in cell growth inhibition and links to human malignancies, suggesting that Nit2 may be a potential tumor suppressor candidate.
Collapse
Affiliation(s)
- Chun-Hung Lin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, 155 Section 2 Linon Street, Taipei, Taiwan
| | | | | | | |
Collapse
|
234
|
Abstract
The tumor suppressor p53 plays a central role in the DNA damage response. After exposure to genotoxic stress, p53 can both positively and negatively regulate cell fate. Initially, p53 promotes cell survival by inducing cell cycle arrest, DNA repair, and other pro-survival pathways. However, when cells accumulate DNA damage or demonstrate aberrant growth, p53 can direct the elimination of damaged cells. In this review, we will discuss the transcriptional-dependent and -independent roles of p53 in regulating the DNA damage response.
Collapse
Affiliation(s)
- E Scott Helton
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
235
|
Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 2007; 313:2050-62. [PMID: 17512929 DOI: 10.1016/j.yexcr.2007.03.040] [Citation(s) in RCA: 573] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 02/07/2023]
Abstract
Vimentin is the major intermediate filament (IF) protein of mesenchymal cells. It shows dynamically altered expression patterns during different developmental stages and high sequence homology throughout all vertebrates, suggesting that the protein is physiologically important. Still, until recently, the real tasks of vimentin have been elusive, primarily because the vimentin-deficient mice were originally characterized as having a very mild phenotype. Recent studies have revealed several key functions for vimentin that were not obvious at first sight. Vimentin emerges as an organizer of a number of critical proteins involved in attachment, migration, and cell signaling. The highly dynamic and complex phosphorylation of vimentin seems to be a likely regulator mechanism for these functions. The implicated novel vimentin functions have broad ramifications into many different aspects of cell physiology, cellular interactions, and organ homeostasis.
Collapse
Affiliation(s)
- Johanna Ivaska
- VTT Medical Biotechnology, Itäinen Pitkäkatu 4C, FI-20520 Turku, Finland
| | | | | | | |
Collapse
|
236
|
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res 2007; 313:2021-32. [PMID: 17434482 DOI: 10.1016/j.yexcr.2007.03.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 12/11/2022]
Abstract
The diversity of epithelial functions is reflected by the expression of distinct keratin pairs that are responsible to protect epithelial cells against mechanical stress and to act as signaling platforms. The keratin cytoskeleton integrates these functions by forming a supracellular scaffold that connects at desmosomal cell-cell adhesions. Multiple human diseases and murine knockouts in which the integrity of this system is destroyed testify to its importance as a mechanical stabilizer in certain epithelia. Yet, surprisingly little is known about the precise mechanisms responsible for assembly and disease pathology. In addition to these structural aspects of keratin function, experimental evidence accumulating in recent years has led to a much more complex view of the keratin cytoskeleton. Distinct keratins emerge as highly dynamic scaffolds in different settings and contribute to cell size determination, translation control, proliferation, cell type-specific organelle transport, malignant transformation and various stress responses. All of these properties are controlled by highly complex patterns of phosphorylation and molecular associations.
Collapse
Affiliation(s)
- Thomas M Magin
- Institute for Physiological Chemistry, Division of Cell Biochemistry, Bonner Forum Biomedizin and LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | |
Collapse
|
237
|
Muñoz-Fontela C, Marcos-Villar L, Gallego P, Arroyo J, Da Costa M, Pomeranz KM, Lam EWF, Rivas C. Latent protein LANA2 from Kaposi's sarcoma-associated herpesvirus interacts with 14-3-3 proteins and inhibits FOXO3a transcription factor. J Virol 2007; 81:1511-6. [PMID: 17108038 PMCID: PMC1797526 DOI: 10.1128/jvi.01816-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/05/2006] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus latent protein LANA2 has been suggested to have an important role in the transforming activity of the virus based on its capacity to inhibit p53 and PKR-dependent apoptosis as well as the interferon-dependent response. Here, we describe a novel interaction between LANA2 and both the phosphoserine/phosphothreonine-binding 14-3-3 proteins and the transcription factor FOXO3a. In addition, our results indicate that LANA2 inhibits the transcriptional activity of FOXO3a and blocks the G2/M arrest induced by 14-3-3 protein overexpression. These results suggest a novel mechanism by which LANA2 may promote tumorigenesis.
Collapse
Affiliation(s)
- Cesar Muñoz-Fontela
- Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Genevière AM. The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 2006; 300:238-51. [PMID: 17078944 DOI: 10.1016/j.ydbio.2006.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 02/06/2023]
Abstract
A search of the Strongylocentrotus purpuratus genome for genes associated with cell cycle control and DNA metabolism shows that the known repertoire of these genes is conserved in the sea urchin, although with fewer family members represented than in vertebrates, and with some cases of echinoderm-specific gene diversifications. For example, while homologues of the known cyclins are mostly encoded by single genes in S. purpuratus (unlike vertebrates, which have multiple isoforms), there are additional genes encoding novel cyclins of the B and K/L types. Almost all known cyclin-dependent kinases (CDKs) or CDK-like proteins have an orthologue in S. purpuratus; CDK3 is one exception, whereas CDK4 and 6 are represented by a single homologue, referred to as CDK4. While the complexity of the two families of mitotic kinases, Polo and Aurora, is close to that found in the nematode, the diversity of the NIMA-related kinases (NEK proteins) approaches that of vertebrates. Among the nine NEK proteins found in S. purpuratus, eight could be assigned orthologues in vertebrates, whereas the ninth is unique to sea urchins. Most known DNA replication, DNA repair and mitotic checkpoint genes are also present, as are homologues of the pRB (two) and p53 (one) tumor suppressors. Interestingly, the p21/p27 family of CDK inhibitors is represented by one homologue, whereas the INK4 and ARF families of tumor suppressors appear to be absent, suggesting that these evolved only in vertebrates. Our results suggest that, while the cell cycle control mechanisms known from other animals are generally conserved in sea urchin, parts of the machinery have diversified within the echinoderm lineage. The set of genes uncovered in this analysis of the S. purpuratus genome should enhance future research on cell cycle control and developmental regulation in this model.
Collapse
Affiliation(s)
- Antonio Fernandez-Guerra
- Observatoire Océanologique de Banyuls-Laboratoire Arago, CNRS-UMR7628/UPMC, 66650 Banyuls-sur-Mer, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|