201
|
Pasque V, Plath K. X chromosome reactivation in reprogramming and in development. Curr Opin Cell Biol 2015; 37:75-83. [PMID: 26540406 DOI: 10.1016/j.ceb.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
Abstract
Dramatic epigenetic changes take place during mammalian differentiation from the naïve pluripotent state including the silencing of one of the two X chromosomes in female cells through X chromosome inactivation. Conversely, reprogramming of somatic cells to naive pluripotency is coupled to X chromosome reactivation (XCR). Recent studies in the mouse system have shed light on the mechanisms of XCR by uncovering the timing and steps of XCR during reprogramming to induced pluripotent stem cells (iPSCs), allowing the generation of testable hypotheses during embryogenesis. In contrast, analyses of the X chromosome in human iPSCs have revealed important differences between mouse and human reprogramming processes that can partially be explained by the establishment of distinct pluripotent states and impact disease modeling and the application of human pluripotent stem cells. Here, we review recent literature on XCR as a readout and determinant of reprogramming to pluripotency.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
202
|
Andrews PW, Baker D, Benvinisty N, Miranda B, Bruce K, Brüstle O, Choi M, Choi YM, Crook JM, de Sousa PA, Dvorak P, Freund C, Firpo M, Furue MK, Gokhale P, Ha HY, Han E, Haupt S, Healy L, Hei DJ, Hovatta O, Hunt C, Hwang SM, Inamdar MS, Isasi RM, Jaconi M, Jekerle V, Kamthorn P, Kibbey MC, Knezevic I, Knowles BB, Koo SK, Laabi Y, Leopoldo L, Liu P, Lomax GP, Loring JF, Ludwig TE, Montgomery K, Mummery C, Nagy A, Nakamura Y, Nakatsuji N, Oh S, Oh SK, Otonkoski T, Pera M, Peschanski M, Pranke P, Rajala KM, Rao M, Ruttachuk R, Reubinoff B, Ricco L, Rooke H, Sipp D, Stacey GN, Suemori H, Takahashi TA, Takada K, Talib S, Tannenbaum S, Yuan BZ, Zeng F, Zhou Q. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 2015; 10:1-44. [PMID: 25675265 DOI: 10.2217/rme.14.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- P W Andrews
- Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells. J Genet Genomics 2015; 42:661-70. [PMID: 26743984 DOI: 10.1016/j.jgg.2015.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.
Collapse
|
204
|
Zdravkovic T, Nazor KL, Larocque N, Gormley M, Donne M, Hunkapillar N, Giritharan G, Bernstein HS, Wei G, Hebrok M, Zeng X, Genbacev O, Mattis A, McMaster MT, Krtolica A, Valbuena D, Simón C, Laurent LC, Loring JF, Fisher SJ. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification. Development 2015; 142:4010-25. [PMID: 26483210 PMCID: PMC4712832 DOI: 10.1242/dev.122846] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/05/2015] [Indexed: 01/04/2023]
Abstract
Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines.
Collapse
Affiliation(s)
- Tamara Zdravkovic
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kristopher L Nazor
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Donne
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nathan Hunkapillar
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Harold S Bernstein
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Grace Wei
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aras Mattis
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael T McMaster
- The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Diana Valbuena
- Fundación Instituto Valenciano de Infertilidad (IVI), Parc Científic Universitat de València, 46980, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (IVI), Parc Científic Universitat de València, 46980, Valencia, Spain
| | - Louise C Laurent
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA Division of Maternal Fetal Medicine, University of California San Francisco, San Francisco, CA 94143, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA Human Embryonic Stem Cell Program, University of California San Francisco, San Francisco, CA 94143, USA Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
205
|
Baronchelli S, La Spada A, Conforti P, Redaelli S, Dalprà L, De Blasio P, Cattaneo E, Biunno I. Investigating DNA Methylation Dynamics and Safety of Human Embryonic Stem Cell Differentiation Toward Striatal Neurons. Stem Cells Dev 2015; 24:2366-77. [DOI: 10.1089/scd.2015.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Simona Baronchelli
- Institute of Genetic and Biomedical Research, National Research Council (UOS IRGB-CNR), Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (UOS IRGB-CNR), Milan, Italy
| | - Paola Conforti
- Department of Biosciences, Center for Stem Cell Research, University of Milan, Milan, Italy
| | - Serena Redaelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Leda Dalprà
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | | | - Elena Cattaneo
- Department of Biosciences, Center for Stem Cell Research, University of Milan, Milan, Italy
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (UOS IRGB-CNR), Milan, Italy
- IRCCS Multimedica, Milan, Italy
| |
Collapse
|
206
|
Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Res 2015; 9:513-35. [DOI: 10.1002/aur.1570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael W. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Andre W. Phillips
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Elena Artimovich
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Jonathan E. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - John P. Hussman
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Gene J. Blatt
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| |
Collapse
|
207
|
Slieker RC, Roost MS, van Iperen L, Suchiman HED, Tobi EW, Carlotti F, de Koning EJP, Slagboom PE, Heijmans BT, Chuva de Sousa Lopes SM. DNA Methylation Landscapes of Human Fetal Development. PLoS Genet 2015; 11:e1005583. [PMID: 26492326 PMCID: PMC4619663 DOI: 10.1371/journal.pgen.1005583] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.
Collapse
Affiliation(s)
- Roderick C. Slieker
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias S. Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Eka D. Suchiman
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Elmar W. Tobi
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J. P. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
208
|
Liu WQ, Li JL, Wang J, He WY, Va L, Sheng XM, Wu BL, Sun XF. Genetic Evaluation of Copy Number Variations, Loss of Heterozygosity, and Single-Nucleotide Variant Levels in Human Embryonic Stem Cells With or Without Skewed X Chromosome Inactivation. Stem Cells Dev 2015; 24:1779-92. [DOI: 10.1089/scd.2014.0463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Wei-Qiang Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Jie-Liang Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jian Wang
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Yin He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lip Va
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Xiao-Ming Sheng
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Bai-Lin Wu
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Xiao-Fang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
209
|
Masotti A, Celluzzi A, Petrini S, Bertini E, Zanni G, Compagnucci C. Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY) 2015; 6:1094-108. [PMID: 25567319 PMCID: PMC4298368 DOI: 10.18632/aging.100708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reprogramming of human fibroblasts into induced pluripotent stem cells (iPSCs) leads to mitochondrial rejuvenation, making iPSCs a candidate model to study the mitochondrial biology during stemness and differentiation. At present, it is generally accepted that iPSCs can be maintained and propagated indefinitely in culture, but no specific studies have addressed this issue. In our study, we investigated features related to the 'biological age' of iPSCs, culturing and analyzing iPSCs kept for prolonged periods in vitro. We have demonstrated that aged iPSCs present an increased number of mitochondria per cell with an altered mitochondrial membrane potential and fail to properly undergo in vitro neurogenesis. In aged iPSCs we have also found an altered expression of genes relevant to mitochondria biogenesis. Overall, our results shed light on the mitochondrial biology of young and aged iPSCs and explore how an altered mitochondrial status may influence neuronal differentiation. Our work suggests to deepen the understanding of the iPSCs biology before considering their use in clinical applications.
Collapse
|
210
|
Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov Today 2015; 20:799-811. [PMID: 25572405 PMCID: PMC4492921 DOI: 10.1016/j.drudis.2014.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/05/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Abstract
Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Shannalee R Martinez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
211
|
Gallego Romero I, Pavlovic BJ, Hernando-Herraez I, Zhou X, Ward MC, Banovich NE, Kagan CL, Burnett JE, Huang CH, Mitrano A, Chavarria CI, Friedrich Ben-Nun I, Li Y, Sabatini K, Leonardo TR, Parast M, Marques-Bonet T, Laurent LC, Loring JF, Gilad Y. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. eLife 2015; 4:e07103. [PMID: 26102527 PMCID: PMC4502404 DOI: 10.7554/elife.07103] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI:http://dx.doi.org/10.7554/eLife.07103.001 Comparing the genomes of different species can reveal how they are related to one another. Such comparative studies can also reveal how genomes are modified in species-specific ways to regulate gene activity. The genomes of humans and chimpanzees are very similar in sequence. It is therefore likely that differing patterns of gene regulation underlie many of the differences observed between the two species. However, only a few kinds of chimpanzee cell that can be grown in the laboratory are available for research; this lack of samples has limited the ability of researchers to perform such comparative studies. One way around this problem is to use induced pluripotent stem cells (or iPSCs). IPSCs are created by exposing mature cells—for example, skin cells—to conditions and molecules that convert them into an embryonic-like state. This state—called ‘induced pluripotency’—allows the cells to be coaxed into becoming many different cell types that can be grown in the laboratory. But it is more difficult to establish high quality iPSCs from chimpanzees than it is from humans or mice. Gallego Romero, Pavlovic et al. have now addressed this problem by creating iPSCs from skin cells taken from seven healthy chimpanzees. These cell lines were then analysed and compared to each other and to seven iPSC lines created from human cells. The chimpanzee iPSC lines were found to be much more similar to each other than the mature cells that were used to make them. Similar results were also observed for the human iSPCs, which likely reflects the conserved changes that take place when the genomes of mature cells are reprogrammed to pluripotency. This high level of similarity between iPSCs from different individuals of the same species allowed Gallego Romero, Pavlovic et al. to discover many subtle differences in gene regulation between chimpanzees and humans. For example, over 4500 genes were found to be expressed differently in human and chimpanzee iPSCs, and over 3500 genomic regions had different patterns of certain DNA modifications that can help to regulate gene expression. These newly created chimpanzee iPSC lines represent a valuable resource for comparative studies of gene regulation. In the future, this resource could help researchers to identify further differences in gene regulation between closely related primate species. DOI:http://dx.doi.org/10.7554/eLife.07103.002
Collapse
Affiliation(s)
| | - Bryan J Pavlovic
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, United States
| | - Michelle C Ward
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Courtney L Kagan
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Jonathan E Burnett
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Constance H Huang
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Amy Mitrano
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Inbar Friedrich Ben-Nun
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Yingchun Li
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Karen Sabatini
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Trevor R Leonardo
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Mana Parast
- Department of Pathology, University of California San Diego, San Diego, United States
| | | | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, La Jolla, United States
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
212
|
Gómez S, Castellano G, Mayol G, Suñol M, Queiros A, Bibikova M, Nazor KL, Loring JF, Lemos I, Rodríguez E, de Torres C, Mora J, Martín-Subero JI, Lavarino C. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Epigenomics 2015; 7:1137-53. [PMID: 26067621 DOI: 10.2217/epi.15.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To define the DNA methylation landscape of neuroblastoma and its clinicopathological impact. MATERIALS & METHODS Microarray DNA methylation data were analyzed and associated with functional/regulatory genome annotation data, transcriptional profiles and clinicobiological parameters. RESULTS DNA methylation changes in neuroblastoma affect not only promoters but also intragenic and intergenic regions at cytosine-phosphate-guanine (CpG) and non-CpG sites, and target functional chromatin domains of development and cancer-related genes such as CCND1. Tumors with diverse clinical risk showed differences affecting CpG and, remarkably, non-CpG sites. Non-CpG methylation observed essentially in clinically favorable cases was associated with the differentiation status of neuroblastoma and expression of key genes such as ALK. CONCLUSION This epigenetic fingerprint of neuroblastoma provides new insights into the pathogenesis and clinical behavior of this pediatric tumor.
Collapse
Affiliation(s)
- Soledad Gómez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Giancarlo Castellano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Gemma Mayol
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, 08950, Spain
| | - Ana Queiros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | | | - Kristopher L Nazor
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isadora Lemos
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - José I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.,Department of Anatomic Pathology, Pharmacology & Microbiology, University of Barcelona, Barcelona, 08036, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Edificio Docente 4th floor, C/Santa Rosa 39-57, 08950 Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
213
|
Roost MS, van Iperen L, Ariyurek Y, Buermans HP, Arindrarto W, Devalla HD, Passier R, Mummery CL, Carlotti F, de Koning EJP, van Zwet EW, Goeman JJ, Chuva de Sousa Lopes SM. KeyGenes, a Tool to Probe Tissue Differentiation Using a Human Fetal Transcriptional Atlas. Stem Cell Reports 2015; 4:1112-24. [PMID: 26028532 PMCID: PMC4472038 DOI: 10.1016/j.stemcr.2015.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022] Open
Abstract
Differentiated derivatives of human pluripotent stem cells in culture are generally phenotypically immature compared to their adult counterparts. Their identity is often difficult to determine with certainty because little is known about their human fetal equivalents in vivo. Cellular identity and signaling pathways directing differentiation are usually determined by extrapolating information from either human adult tissue or model organisms, assuming conservation with humans. To resolve this, we generated a collection of human fetal transcriptional profiles at different developmental stages. Moreover, we developed an algorithm, KeyGenes, which uses this dataset to quantify the extent to which next-generation sequencing or microarray data resemble specific cell or tissue types in the human fetus. Using KeyGenes combined with the human fetal atlas, we identified multiple cell and tissue samples unambiguously on a limited set of features. We thus provide a flexible and expandable platform to monitor and evaluate the efficiency of differentiation in vitro. NGS-derived transcriptional profiles of human fetal tissues/organs are generated Algorithm called KeyGenes uses a training set to predict the identity of a test set KeyGenes using the fetal atlas identifies NGS- and microarray-derived data KeyGenes is a flexible and expandable platform to monitor stem cell differentiations
Collapse
Affiliation(s)
- Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Yavuz Ariyurek
- Leiden Genome Technology Center, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Henk P Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Wibowo Arindrarto
- Sequence Analysis Support Core, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Harsha D Devalla
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Erik W van Zwet
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jelle J Goeman
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein 21, 6525 EZ Nijmegen, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
214
|
Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and In Vitro Disease Modeling. Stem Cells Int 2015; 2015:105172. [PMID: 26089911 PMCID: PMC4454762 DOI: 10.1155/2015/105172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs.
Collapse
|
215
|
Greenberg MV, Bourc'his D. Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems. Curr Opin Genet Dev 2015; 31:42-9. [PMID: 25974256 DOI: 10.1016/j.gde.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
Pluripotent stem cells (PSCs) in culture have become a widely used model for studying events occurring during mammalian development; they also present an exciting avenue for therapeutics. However, compared to their in vivo counterparts, cultured PSC derivatives have unique properties, and it is well established that their epigenome is sensitive to medium composition. Here we review the specific effects on genomic imprints in various PSC types and culture systems. Imprinted gene regulation is developmentally important, and imprinting defects have been associated with several human diseases. Therefore, imprint abnormalities in PSCs may have considerable consequences for downstream applications.
Collapse
|
216
|
Ho SM, Topol A, Brennand KJ. From "directed differentiation" to "neuronal induction": modeling neuropsychiatric disease. Biomark Insights 2015; 10:31-41. [PMID: 26045654 PMCID: PMC4444490 DOI: 10.4137/bmi.s20066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022] Open
Abstract
Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsychiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.
Collapse
Affiliation(s)
- Seok-Man Ho
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Aaron Topol
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kristen J Brennand
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
217
|
Vallot C, Ouimette JF, Makhlouf M, Féraud O, Pontis J, Côme J, Martinat C, Bennaceur-Griscelli A, Lalande M, Rougeulle C. Erosion of X Chromosome Inactivation in Human Pluripotent Cells Initiates with XACT Coating and Depends on a Specific Heterochromatin Landscape. Cell Stem Cell 2015; 16:533-46. [PMID: 25921272 DOI: 10.1016/j.stem.2015.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/07/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Human pluripotent stem cells (hPSCs) display extensive epigenetic instability, particularly on the X chromosome. In this study, we show that, in hPSCs, the inactive X chromosome has a specific heterochromatin landscape that predisposes it to erosion of X chromosome inactivation (XCI), a process that occurs spontaneously in hPSCs. Heterochromatin remodeling and gene reactivation occur in a non-random fashion and are confined to specific H3K27me3-enriched domains, leaving H3K9me3-marked regions unaffected. Using single-cell monitoring of XCI erosion, we show that this instability only occurs in pluripotent cells. We also provide evidence that loss of XIST expression is not the primary cause of XCI instability and that gene reactivation from the inactive X (Xi) precedes loss of XIST coating. Notably, expression and coating by the long non-coding RNA XACT are early events in XCI erosion and, therefore, may play a role in mediating this process.
Collapse
Affiliation(s)
- Céline Vallot
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Jean-François Ouimette
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Mélanie Makhlouf
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Olivier Féraud
- ESTeam Paris Sud, INSERM U935, Université Paris Sud 11, AP-HP, Villejuif 94802, France
| | - Julien Pontis
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France
| | - Julien Côme
- INSERM/UEVE UMR 861, ISTEM, AFM, 91030 Evry Cedex, France
| | | | | | - Marc Lalande
- Stem Cell and Systems Genomics Institutes, University of Connecticut, Farmington, CT 06030, USA
| | - Claire Rougeulle
- Epigenetics and Cell Fate, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France; CNRS, UMR7216 Epigenetics and Cell Fate, 75013 Paris, France.
| |
Collapse
|
218
|
Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations. Stem Cell Rev Rep 2015; 10:472-9. [PMID: 24633531 DOI: 10.1007/s12015-014-9505-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.
Collapse
|
219
|
Nityanandam A, Baldwin KK. Advances in reprogramming-based study of neurologic disorders. Stem Cells Dev 2015; 24:1265-83. [PMID: 25749371 DOI: 10.1089/scd.2015.0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.
Collapse
Affiliation(s)
- Anjana Nityanandam
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
220
|
Bogomazova AN, Vassina EM, Kiselev SL, Lagarkova MA, Lebedeva OS, Nekrasov ED, Panova AV, Philonenko ES, Khomyakova EA, Tskhovrebova LV, Chestkov IV, Shutova MV. Genetic cell reprogramming: A new technology for basic research and applied usage. RUSS J GENET+ 2015; 51:386-396. [DOI: 10.1134/s102279541504002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
221
|
Lenz M, Goetzke R, Schenk A, Schubert C, Veeck J, Hemeda H, Koschmieder S, Zenke M, Schuppert A, Wagner W. Epigenetic biomarker to support classification into pluripotent and non-pluripotent cells. Sci Rep 2015; 5:8973. [PMID: 25754700 PMCID: PMC4354028 DOI: 10.1038/srep08973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) can be performed by several methods. These methods are usually relatively labor-intensive, difficult to standardize, or they do not facilitate reliable quantification. Here, we describe a biomarker to distinguish between pluripotent and non-pluripotent cells based on DNA methylation (DNAm) levels at only three specific CpG sites. Two of these CpG sites were selected by their discriminatory power in 258 DNAm profiles – they were either methylated in pluripotent or non-pluripotent cells. The difference between these two β-values provides an Epi-Pluri-Score that was validated on independent DNAm-datasets (264 pluripotent and 1,951 non-pluripotent samples) with 99.9% specificity and 98.9% sensitivity. This score was complemented by a third CpG within the gene POU5F1 (OCT4), which better demarcates early differentiation events. We established pyrosequencing assays for the three relevant CpG sites and thereby correctly classified DNA of 12 pluripotent cell lines and 31 non-pluripotent cell lines. Furthermore, DNAm changes at these three CpGs were tracked in the course of differentiation of iPSCs towards mesenchymal stromal cells. The Epi-Pluri-Score does not give information on lineage-specific differentiation potential, but it provides a simple, reliable, and robust biomarker to support high-throughput classification into either pluripotent or non-pluripotent cells.
Collapse
Affiliation(s)
- Michael Lenz
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany [3] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Arne Schenk
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Bayer Technology Services GmbH, Leverkusen, Germany
| | - Claudia Schubert
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Hatim Hemeda
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- 1] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany [2] Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Andreas Schuppert
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany [3] Bayer Technology Services GmbH, Leverkusen, Germany
| | - Wolfgang Wagner
- 1] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany [2] Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
222
|
Carrió E, Suelves M. DNA methylation dynamics in muscle development and disease. Front Aging Neurosci 2015; 7:19. [PMID: 25798107 PMCID: PMC4350440 DOI: 10.3389/fnagi.2015.00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/15/2015] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis.
Collapse
Affiliation(s)
- Elvira Carrió
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Sciences Research Institute Germans Trias I Pujol (IGTP) Badalona, Spain
| | - Mònica Suelves
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Sciences Research Institute Germans Trias I Pujol (IGTP) Badalona, Spain
| |
Collapse
|
223
|
Wang YC, Lin V, Loring JF, Peterson SE. The 'sweet' spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine. Expert Opin Biol Ther 2015; 15:679-87. [PMID: 25736263 DOI: 10.1517/14712598.2015.1021329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Human pluripotent stem cells (hPSCs) promise for the future of regenerative medicine. The structural and biochemical diversity associated with glycans makes them a unique type of macromolecule modification that is involved in the regulation of a vast array of biochemical events and cellular activities including pluripotency in hPSCs. The primary focus of this review article is to highlight recent advances in stem cell research from a glycobiological perspective. We also discuss how our understanding of glycans and glycosylation may help overcome barriers hindering the clinical application of hPSC-derived cells. AREAS COVERED A literature survey using NCBI-PubMed and Google Scholar was performed in 2014. EXPERT OPINION Regenerative medicine hopes to provide novel strategies to combat human disease and tissue injury that currently lack effective therapies. Although progress in this field is accelerating, many critical issues remain to be addressed in order for cell-based therapy to become a practical and safe treatment option. Emerging evidence suggests that protein glycosylation may significantly influence the regulation of cellular pluripotency, and that the exploitation of protein glycosylation in hPSCs and their differentiated derivatives may lead to transformative and translational discoveries for regenerative medicine. In addition, hPSCs represent a novel research platform for investigating glycosylation-related disease.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- The University of North Texas Health Science Center, Department of Pharmaceutical Sciences , 3500 Camp Bowie Boulevard, RES-314G, Fort Worth, TX 76107 , USA +1 817 735 2944 ; +1 817 735 2603 ;
| | | | | | | |
Collapse
|
224
|
Garitaonandia I, Amir H, Boscolo FS, Wambua GK, Schultheisz HL, Sabatini K, Morey R, Waltz S, Wang YC, Tran H, Leonardo TR, Nazor K, Slavin I, Lynch C, Li Y, Coleman R, Gallego Romero I, Altun G, Reynolds D, Dalton S, Parast M, Loring JF, Laurent LC. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One 2015; 10:e0118307. [PMID: 25714340 PMCID: PMC4340884 DOI: 10.1371/journal.pone.0118307] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022] Open
Abstract
The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies.
Collapse
MESH Headings
- Cell Culture Techniques
- Cell Differentiation
- Cell Line
- Cell Self Renewal
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Chromosome Aberrations
- Chromosome Deletion
- Chromosome Duplication
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 20
- DNA Methylation
- Epigenesis, Genetic
- Gene Expression Profiling
- Genome, Human
- Genomic Instability
- Human Embryonic Stem Cells/cytology
- Human Embryonic Stem Cells/metabolism
- Human Embryonic Stem Cells/pathology
- Humans
- Phenotype
- Pluripotent Stem Cells/metabolism
- Polymorphism, Single Nucleotide
- Time Factors
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Ibon Garitaonandia
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Hadar Amir
- Department of Reproductive Medicine, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, San Diego, CA 92093, United States of America
| | - Francesca Sesillo Boscolo
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- Department of Reproductive Medicine, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, San Diego, CA 92093, United States of America
| | - Gerald K. Wambua
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Heather L. Schultheisz
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Karen Sabatini
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- Department of Reproductive Medicine, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, San Diego, CA 92093, United States of America
| | - Robert Morey
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- Department of Reproductive Medicine, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, San Diego, CA 92093, United States of America
| | - Shannon Waltz
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Yu-Chieh Wang
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Ha Tran
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Trevor R. Leonardo
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Kristopher Nazor
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Ileana Slavin
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Candace Lynch
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Yingchun Li
- Department of Pathology, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, La Jolla, CA 92093-0612, United States of America
| | - Ronald Coleman
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - Irene Gallego Romero
- Department of Human Genetics, University of Chicago, 920 E 58th St, CLSC 317, Chicago, IL, 60637, United States of America
| | - Gulsah Altun
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
| | - David Reynolds
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Mana Parast
- Department of Pathology, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, La Jolla, CA 92093-0612, United States of America
| | - Jeanne F. Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- * E-mail: (LCL); (JFL)
| | - Louise C. Laurent
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States of America
- Department of Reproductive Medicine, UCSD Healthcare, 9500 Gilman Drive, Mail Code 0695, San Diego, CA 92093, United States of America
- * E-mail: (LCL); (JFL)
| |
Collapse
|
225
|
Yuan T, Jiao Y, de Jong S, Ophoff RA, Beck S, Teschendorff AE. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genet 2015; 11:e1004996. [PMID: 25692570 PMCID: PMC4334892 DOI: 10.1371/journal.pgen.1004996] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/10/2015] [Indexed: 12/21/2022] Open
Abstract
Recent studies have demonstrated that the DNA methylome changes with age. This epigenetic drift may have deep implications for cellular differentiation and disease development. However, it remains unclear how much of this drift is functional or caused by underlying changes in cell subtype composition. Moreover, no study has yet comprehensively explored epigenetic drift at different genomic length scales and in relation to regulatory elements. Here we conduct an in-depth analysis of epigenetic drift in blood tissue. We demonstrate that most of the age-associated drift is independent of the increase in the granulocyte to lymphocyte ratio that accompanies aging and that enrichment of age-hypermethylated CpG islands increases upon adjustment for cellular composition. We further find that drift has only a minimal impact on in-cis gene expression, acting primarily to stabilize pre-existing baseline expression levels. By studying epigenetic drift at different genomic length scales, we demonstrate the existence of mega-base scale age-associated hypomethylated blocks, covering approximately 14% of the human genome, and which exhibit preferential hypomethylation in age-matched cancer tissue. Importantly, we demonstrate the feasibility of integrating Illumina 450k DNA methylation with ENCODE data to identify transcription factors with key roles in cellular development and aging. Specifically, we identify REST and regulatory factors of the histone methyltransferase MLL complex, whose function may be disrupted in aging. In summary, most of the epigenetic drift seen in blood is independent of changes in blood cell type composition, and exhibits patterns at different genomic length scales reminiscent of those seen in cancer. Integration of Illumina 450k with appropriate ENCODE data may represent a fruitful approach to identify transcription factors with key roles in aging and disease. Two well-known features of aging are the gradual decline of the body’s ability to regenerate tissues, as well as an increased incidence of diseases like cancer and Alzheimers. One of the most recent exciting findings which may underlie the aging process is a gradual modification of DNA, called epigenetic drift, which is effected by the covalent addition and removal of methyl groups, which in turn can deregulate the activity of nearby genes. However, this study presents the most convincing evidence to date that epigenetic drift acts to stabilize the activity levels of nearby genes. This study shows that instead, epigenetic drift may act primarly to disrupt DNA binding patterns of proteins which regulate the activity of many genes, and moreover identifies specific regulatory proteins with key roles in cancer and Alzheimers. The study also performs the most comprehensive analysis of epigenetic drift at different spatial scales, demonstrating that epigenetic drift on the largest length scales is highly reminiscent of those seen in cancer. In summary, this work substantially supports the view that epigenetic drift may contribute to the age-associated increased risk of diseases like cancer and Alzheimers, by disrupting master regulators of genomewide gene activity.
Collapse
Affiliation(s)
- Tian Yuan
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, Shanghai, China
| | - Yinming Jiao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, Shanghai, China
| | - Simone de Jong
- Center for Neurobehavioral Genetics, Los Angeles, California, USA
| | - Roel A. Ophoff
- Center for Neurobehavioral Genetics, Los Angeles, California, USA
| | - Stephan Beck
- Medical Genomics Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Andrew E. Teschendorff
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, Shanghai, China
- Statistical Genomics Group, UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail: (AET), (AET)
| |
Collapse
|
226
|
Brandl C, Grassmann F, Riolfi J, Weber BHF. Tapping Stem Cells to Target AMD: Challenges and Prospects. J Clin Med 2015; 4:282-303. [PMID: 26239128 PMCID: PMC4470125 DOI: 10.3390/jcm4020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/13/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly gaining attention in biomedicine as valuable resources to establish patient-derived cell culture models of the cell type known to express the primary pathology. The idea of "a patient in a dish" aims at basic, but also clinical, applications with the promise to mimic individual genetic and metabolic complexities barely reflected in current invertebrate or vertebrate animal model systems. This may particularly be true for the inherited and complex diseases of the retina, as this tissue has anatomical and physiological aspects unique to the human eye. For example, the complex age-related macular degeneration (AMD), the leading cause of blindness in Western societies, can be attributed to a large number of genetic and individual factors with so far unclear modes of mutual interaction. Here, we review the current status and future prospects of utilizing hPSCs, specifically induced pluripotent stem cells (iPSCs), in basic and clinical AMD research, but also in assessing potential treatment options. We provide an outline of concepts for disease modelling and summarize ongoing and projected clinical trials for stem cell-based therapy in late-stage AMD.
Collapse
Affiliation(s)
- Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Julia Riolfi
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
227
|
Getting off the ground state: X chromosome inactivation knocks down barriers to differentiation. Cell Stem Cell 2015; 14:131-2. [PMID: 24506876 DOI: 10.1016/j.stem.2014.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Female mouse embryonic stem cells (mESCs) contain two active X chromosomes, with one undergoing random inactivation upon differentiation. Schulz et al. (2014) now demonstrate that the presence of two active X chromosomes in mESCs prevents exit from pluripotency by blocking MAPK signaling, ensuring synchronization between X chromosome dosage compensation and development.
Collapse
|
228
|
Gubernator M, Slater SC, Spencer HL, Spiteri I, Sottoriva A, Riu F, Rowlinson J, Avolio E, Katare R, Mangialardi G, Oikawa A, Reni C, Campagnolo P, Spinetti G, Touloumis A, Tavaré S, Prandi F, Pesce M, Hofner M, Klemens V, Emanueli C, Angelini G, Madeddu P. Epigenetic profile of human adventitial progenitor cells correlates with therapeutic outcomes in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 2015; 35:675-88. [PMID: 25573856 DOI: 10.1161/atvbaha.114.304989] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia. APPROACH AND RESULTS Antigenic and functional features were analyzed throughout passaging in 15 saphenous vein (SV)-derived APC lines, of which 10 from SV leftovers of coronary artery bypass graft surgery and 5 from varicose SV removal. Moreover, 5 SV-APC lines were transplanted (8×10(5) cells, IM) in mice with limb ischemia. Blood flow and capillary and arteriole density were correlated with functional characteristics and DNA methylation/expressional markers of transplanted cells. We report successful expansion of tested lines, which reached the therapeutic target of 30 to 50 million cells in ≈10 weeks. Typical antigenic profile, viability, and migratory and proangiogenic activities were conserved through passaging, with low levels of replicative senescence. In vivo, SV-APC transplantation improved blood flow recovery and revascularization of ischemic limbs. Whole genome screening showed an association between DNA methylation at the promoter or gene body level and microvascular density and to a lesser extent with blood flow recovery. Expressional studies highlighted the implication of an angiogenic network centered on the vascular endothelial growth factor receptor as a predictor of microvascular outcomes. FLT-1 gene silencing in SV-APCs remarkably reduced their ability to form tubes in vitro and support tube formation by human umbilical vein endothelial cells, thus confirming the importance of this signaling in SV-APC angiogenic function. CONCLUSIONS DNA methylation landscape illustrates different therapeutic activities of human APCs. Epigenetic screening may help identify determinants of therapeutic vasculogenesis in ischemic disease.
Collapse
Affiliation(s)
- Miriam Gubernator
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Sadie C Slater
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Helen L Spencer
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Inmaculada Spiteri
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Andrea Sottoriva
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Federica Riu
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Jonathan Rowlinson
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Elisa Avolio
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Rajesh Katare
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Giuseppe Mangialardi
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Atsuhiko Oikawa
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Carlotta Reni
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Paola Campagnolo
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Gaia Spinetti
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Anestis Touloumis
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Simon Tavaré
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Francesca Prandi
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Maurizio Pesce
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Manuela Hofner
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Vierlinger Klemens
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Costanza Emanueli
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Gianni Angelini
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.)
| | - Paolo Madeddu
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK (M.G., S.C.S., H.L.S., F.R., J.R., E.A., R.K., G.M., A.O., C.R., C.E., G.A., P.M.); The Institute of Cancer Research, Evolutionary Genomics and Modelling Team, Centre for Evolution and Cancer, Sutton, UK (I.S., A.S.); Imperial College, London, UK (P.C., C.E., G.A.); MultiMedica Research Institute, Milan, Italy (G.S.); Cancer Research UK Cambridge Institute, Cambridge, UK (A.T., S.T.); Centro Cardiologico Monzino, Milan, Italy (F.P., M.P.); and Austrian Institute of Technology, Vienna, Austria (M.H., V.K.).
| |
Collapse
|
229
|
Simonson OE, Domogatskaya A, Volchkov P, Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann Med 2015; 47:370-80. [PMID: 26140342 DOI: 10.3109/07853890.2015.1051579] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have practically unlimited proliferation potential and a capability to differentiate into any cell type in the human body. Since the first derivation in 1998, they have been an attractive source of cells for regenerative medicine. Numerous ethical, technological, and regulatory complications have been hampering hPSC use in clinical applications. Human embryonic stem cells (ESCs), parthenogenetic human ESCs, human nuclear transfer ESCs, and induced pluripotent stem cells are four types of hPSCs that are different in many clinically relevant features such as propensity to epigenetic abnormalities, generation methods, and ability for development of autologous cell lines. Propensity to genetic mutations and tumorigenicity are common features of all pluripotent cells that complicate hPSC-based therapies. Several recent advances in methods of derivation, culturing, and monitoring of hPSCs have addressed many ethical concerns and technological challenges in development of clinical-grade hPSC lines. Generation of banks of such lines may be useful to minimize immune rejection of hPSC-derived allografts. In this review, we discuss different sources of hPSCs available at the moment, various safety risks associated with them, and possible solutions for successful use of hPSCs in the clinic. We also discuss ongoing clinical trials of hPSC-based treatments.
Collapse
Affiliation(s)
- Oscar E Simonson
- a Division of Cardiothoracic Surgery and Anesthesiology, Department of Molecular Medicine and Surgery , Karolinska Institutet, Karolinska University Hospital , 171 77 Stockholm , Sweden
| | | | | | | |
Collapse
|
230
|
Brändl B, Schneider SA, Loring JF, Hardy J, Gribbon P, Müller FJ. Stem cell reprogramming: basic implications and future perspective for movement disorders. Mov Disord 2014; 30:301-12. [PMID: 25546831 DOI: 10.1002/mds.26113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/03/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
The introduction of stem cell-associated molecular factors into human patient-derived cells allows for their reprogramming in the laboratory environment. As a result, human induced pluripotent stem cells (hiPSC) can now be reprogrammed epigenetically without disruption of their overall genomic integrity. For patients with neurodegenerative diseases characterized by progressive loss of functional neurons, the ability to reprogram any individual's cells and drive their differentiation toward susceptible neuronal subtypes holds great promise. Apart from applications in regenerative medicine and cell replacement-based therapy, hiPSCs are increasingly used in preclinical research for establishing disease models and screening for drug toxicities. The rapid developments in this field prompted us to review recent progress toward the applications of stem cell technologies for movement disorders. We introduce reprogramming strategies and explain the critical steps in the differentiation of hiPSCs to clinical relevant subtypes of cells in the context of movement disorders. We summarize and discuss recent discoveries in this field, which, based on the rapidly expanding basic science literature as well as upcoming trends in personalized medicine, will strongly influence the future therapeutic options available to practitioners working with patients suffering from such disorders.
Collapse
Affiliation(s)
- Björn Brändl
- Center for Psychiatry, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | | | | | | | | | | |
Collapse
|
231
|
Dowell KG, Simons AK, Bai H, Kell B, Wang ZZ, Yun K, Hibbs MA. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells 2014; 32:1161-72. [PMID: 24307629 DOI: 10.1002/stem.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G Dowell
- The Jackson Laboratory, Bar Harbor, Maine, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
232
|
Opportunities and Limitations of Modelling Alzheimer's Disease with Induced Pluripotent Stem Cells. J Clin Med 2014; 3:1357-72. [PMID: 26237606 PMCID: PMC4470188 DOI: 10.3390/jcm3041357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 01/16/2023] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has opened the way for patient-specific disease modelling. Following their differentiation into neuronal cell types, iPSC have enabled the investigation of human neurodegenerative diseases, such as Alzheimer's disease (AD). While human iPSCs certainly provide great opportunities to repeatedly interrogate specific human brain cell types of individuals with familial and sporadic forms of the disease, the complex aetiology and timescale over which AD develops in humans poses particular challenges to iPSC-based AD models. Here, we discuss the current state-of-play in the context of these and other iPSC model-related challenges and elaborate on likely future developments in this field of research.
Collapse
|
233
|
Celik S, Akcora D, Ozkan T, Varol N, Aydos S, Sunguroglu A. Methylation analysis of the DAPK1 gene in imatinib-resistant chronic myeloid leukemia patients. Oncol Lett 2014; 9:399-404. [PMID: 25435999 PMCID: PMC4246661 DOI: 10.3892/ol.2014.2677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
Death-associated protein kinase-1 (DAPK1) is a pro-apoptotic gene that induces cellular apoptosis in response to internal and external apoptotic stimulants. The silencing of DAPK1 can result in uncontrolled cell proliferation, indicating that it may have a role in tumor suppression. DAPK1 activity can be inhibited by the cytosine methylation that occurs in its promoter region. These methylation changes in the promoter region of DAPK1 have been reported in a range of solid and hematological malignancies. In the present study, DAPK1 methylation was investigated in chronic myeloid leukemia patients (n=43) using bisulfite conversion followed by methylation-specific polymerase chain reaction. The present study included a number of patients who were identified to be resistant to the common chemotherapeutic agent imatinib (STI571, Gleevec®, Glivec®), exhibiting at least one mutation in the breakpoint cluster region-Abelson murine leukemia (BCR-ABL) gene. Thus, the patients in the present study were divided into two groups according to their response to imatinib therapy: Non-resistant (n=26) and resistant (n=17) to imatinib. Resistant patients were characterized by the presence of single or multiple mutations of the BCR-ABL gene: i) T315I, ii) M351T, iii) E255K, iv) T315I and M351T or v) T315I, M351T and E255K. The present study identified that: i) The incidence of DAPK1 methylation was significantly higher in the resistant patients compared with the non-resistant patients; ii) the extent of resistance varied between mutation types; and iii) there was no DAPK1 methylation in any of the healthy controls. These findings indicate that DAPK1 methylation may be associated with a signaling pathway for imatinib resistance in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Selcen Celik
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Golbasi, Ankara 06830, Turkey
| | - Dilara Akcora
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey ; Department of Biology, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Burdur 15100, Turkey
| | - Tulin Ozkan
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Golbasi, Ankara 06830, Turkey
| | - Nuray Varol
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Sena Aydos
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Sihhiye, Ankara 06100, Turkey
| |
Collapse
|
234
|
Johannesson B, Sagi I, Gore A, Paull D, Yamada M, Golan-Lev T, Li Z, LeDuc C, Shen Y, Stern S, Xu N, Ma H, Kang E, Mitalipov S, Sauer MV, Zhang K, Benvenisty N, Egli D. Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell 2014; 15:634-42. [PMID: 25517467 DOI: 10.1016/j.stem.2014.10.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/19/2014] [Accepted: 10/06/2014] [Indexed: 12/26/2022]
Abstract
The recent finding that reprogrammed human pluripotent stem cells can be derived by nuclear transfer into human oocytes as well as by induced expression of defined factors has revitalized the debate on whether one approach might be advantageous over the other. Here we compare the genetic and epigenetic integrity of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal, and adult origin. The two cell types showed similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs had comparable numbers of de novo coding mutations, but significantly more than parthenogenetic ESCs. As iPSCs, NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of derivation approach.
Collapse
Affiliation(s)
- Bjarki Johannesson
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Ido Sagi
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Athurva Gore
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Mitsutoshi Yamada
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Tamar Golan-Lev
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Zhe Li
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles LeDuc
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Samantha Stern
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Nanfang Xu
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark V Sauer
- Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York, NY 10019, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nissim Benvenisty
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA; Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
235
|
Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: a year in review. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:1-16. [PMID: 24410501 DOI: 10.1089/ten.teb.2013.0668] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is an exciting time to be involved in tissue engineering and regenerative medicine (TERM) research. Despite its relative youth, the field is expanding fast and breaking new ground in both the laboratory and clinically. In this "Year in Review," we highlight some of the high-impact advances in the field. Building upon last year's article, we have identified the recent "hot topics" and the key publications pertaining to these themes as well as ideas that have high potential to direct the field. Based on a modified methodology grounded on last year's approach, we have identified and summarized some of the most impactful publications in five main themes: (1) pluripotent stem cells: efforts and hurdles to translation, (2) tissue engineering: complex scaffolds and advanced materials, (3) directing the cell phenotype: growth factor and biomolecule presentation, (4) characterization: imaging and beyond, and (5) translation: preclinical to clinical. We have complemented our review of the research directions highlighted within these trend-setting studies with a discussion of additional articles along the same themes that have recently been published and have yet to surface in citation analyses. We conclude with a discussion of some really interesting studies that provide a glimpse of the high potential for innovation of TERM research.
Collapse
Affiliation(s)
- Rachael H Harrison
- 1 Department of Materials, Imperial College London , London, United Kingdom
| | | | | |
Collapse
|
236
|
Cancer-like epigenetic derangements of human pluripotent stem cells and their impact on applications in regeneration and repair. Curr Opin Genet Dev 2014; 28:43-9. [PMID: 25461449 DOI: 10.1016/j.gde.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 01/27/2023]
Abstract
A growing body of work has raised concern that many human pluripotent stem cell (hPSC) lines possess tumorigenic potential following differentiation to clinically relevant lineages. In this review, we highlight recent work characterizing the spectrum of cancer-like epigenetic derangements in human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) that are associated with reprogramming errors or prolonged culture that may contribute to such tumorigenicity. These aberrations include cancer-like promoter DNA hypermethylation and histone marks associated with pluripotency, as well as aberrant X-chromosome regulation. We also feature recent work that suggests optimized high-fidelity reprogramming derivation methods can minimize cancer-associated epigenetic aberrations in hPSC, and thus ultimately improve the ultimate clinical utility of hiPSC in regenerative medicine.
Collapse
|
237
|
Ishii T. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential. J Clin Med 2014; 3:1064-83. [PMID: 26237592 PMCID: PMC4470171 DOI: 10.3390/jcm3041064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/15/2023] Open
Abstract
Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS) cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART) that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.
Collapse
Affiliation(s)
- Tetsuya Ishii
- Office of Health and Safety, Hokkaido University, Sapporo 060-0808, Japan.
| |
Collapse
|
238
|
Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, Gao Y, Gao S. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev 2014; 23:2283-96. [PMID: 24805295 DOI: 10.1089/scd.2014.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The deficiency of X-inactive specific transcript (XIST) on the inactive X chromosome affects the behavior of female human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), and further chromosomal erosion can occur with continued passaging of these cells. However, X chromosome instability has not been identified in other species. In the present study, we investigated three female rabbit ESC (rbESC) lines and found that two of them expressed Xist normally and obtained both Xist RNA coating and H3K27me3 foci, thus defined as Xi(Xist)Xa. Interestingly, the third female rbESC line lacked Xist expression during ESC maintenance and differentiation. This line showed H3K27me3 foci but no Xist RNA coating in the early passages and was thus defined as Xi(w/oXist)Xa. Similar to Xi(w/oXist)Xa hESCs or hiPSCs, Xi(w/oXist)Xa rbESCs lose H3K27me3 and undergo Xi erosion (Xe) with passaging. Moreover, Xist-deficient rbESCs also exhibit impaired differentiation ability and upregulation of cancer-related genes. By overexpressing OCT4, SOX2, KLF4, and c-MYC in Xist-deficient rbESCs under optimized culture conditions, we successfully obtained mouse ESC-like (mESC-like) cells. The mESC-like rbESCs displayed dome-shaped colony morphology, activation of the LIF/STAT3-dependent pathway, and conversion of disordered X chromosome. Importantly, the defective differentiation potential was also greatly improved. Our data demonstrate that variations in X chromosome inactivation occur in early passage of rbESCs; thus, Xi disorders are conserved across species and are reversible using the proper epigenetic reprogramming and culture conditions. These findings may be very useful for future efforts toward deriving fully pluripotent rbESCs or rabbit iPSCs (rbiPSCs).
Collapse
Affiliation(s)
- Yonghua Jiang
- 1 College of Biological Sciences, China Agricultural University , Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Xie P, Sun Y, Ouyang Q, Hu L, Tan Y, Zhou X, Xiong B, Zhang Q, Yuan D, Pan Y, Liu T, Liang P, Lu G, Lin G. Physiological oxygen prevents frequent silencing of the DLK1-DIO3 cluster during human embryonic stem cells culture. Stem Cells 2014; 32:391-401. [PMID: 24123616 DOI: 10.1002/stem.1558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/28/2013] [Accepted: 08/25/2013] [Indexed: 12/18/2022]
Abstract
Genetic and epigenetic alterations are observed in long-term culture (>30 passages) of human embryonic stem cells (hESCs); however, little information is available in early cultures. Through a large-scale gene expression analysis between initial-passage hESCs (ihESCs, <10 passages) and early-passage hESCs (ehESCs, 20-30 passages) of 12 hESC lines, we found that the DLK1-DIO3 gene cluster was normally expressed and showed normal methylation pattern in ihESC, but was frequently silenced after 20 passages. Both the DLK1-DIO3 active status in ihESCs and the inactive status in ehESCs were inheritable during differentiation. Silencing of the DLK1-DIO3 cluster did not seem to compromise the multilineage differentiation ability of hESCs, but was associated with reduced DNA damage-induced apoptosis in ehESCs and their differentiated hepatocyte-like cell derivatives, possibly through attenuation of the expression and phosphorylation of p53. Furthermore, we demonstrated that 5% oxygen, instead of the commonly used 20% oxygen, is required for preserving the expression of the DLK1-DIO3 cluster. Overall, the data suggest that active expression of the DLK1-DIO3 cluster represents a new biomarker for epigenetic stability of hESCs and indicates the importance of using a proper physiological oxygen level during the derivation and culture of hESCs.
Collapse
Affiliation(s)
- Pingyuan Xie
- Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China; Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2014; 14:R115. [PMID: 24138928 PMCID: PMC4015143 DOI: 10.1186/gb-2013-14-10-r115] [Citation(s) in RCA: 4166] [Impact Index Per Article: 378.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.
Collapse
|
241
|
Origin-Dependent Neural Cell Identities in Differentiated Human iPSCs In Vitro and after Transplantation into the Mouse Brain. Cell Rep 2014; 8:1697-1703. [DOI: 10.1016/j.celrep.2014.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/26/2014] [Accepted: 08/07/2014] [Indexed: 01/09/2023] Open
|
242
|
Nazor KL, Boland MJ, Bibikova M, Klotzle B, Yu M, Glenn-Pratola VL, Schell JP, Coleman RL, Cabral-da-Silva MC, Schmidt U, Peterson SE, He C, Loring JF, Fan JB. Application of a low cost array-based technique - TAB-Array - for quantifying and mapping both 5mC and 5hmC at single base resolution in human pluripotent stem cells. Genomics 2014; 104:358-67. [PMID: 25179373 DOI: 10.1016/j.ygeno.2014.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 11/27/2022]
Abstract
5-hydroxymethylcytosine (5hmC), an oxidized derivative of 5-methylcytosine (5mC), has been implicated as an important epigenetic regulator of mammalian development. Current procedures use DNA sequencing methods to discriminate 5hmC from 5mC, limiting their accessibility to the scientific community. Here we report a method that combines TET-assisted bisulfite conversion with Illumina 450K DNA methylation arrays for a low-cost high-throughput approach that distinguishes 5hmC and 5mC signals at base resolution. Implementing this approach, termed "TAB-array", we assessed DNA methylation dynamics in the differentiation of human pluripotent stem cells into cardiovascular progenitors and neural precursor cells. With the ability to discriminate 5mC and 5hmC, we identified a large number of novel dynamically methylated genomic regions that are implicated in the development of these lineages. The increased resolution and accuracy afforded by this approach provides a powerful means to investigate the distinct contributions of 5mC and 5hmC in human development and disease.
Collapse
Affiliation(s)
- Kristopher L Nazor
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Michael J Boland
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | | | | | - Miao Yu
- The University of Chicago, Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Victoria L Glenn-Pratola
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | - John P Schell
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Ronald L Coleman
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | | | | | - Suzanne E Peterson
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA
| | - Chuan He
- The University of Chicago, Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | - Jeanne F Loring
- The Scripps Research Institute, Department of Chemical Physiology, Center for Regenerative Medicine, La Jolla, CA 92037 USA.
| | | |
Collapse
|
243
|
Abstract
The precise, temporal order of gene expression during development is critical to ensure proper lineage commitment, cell fate determination, and ultimately, organogenesis. Epigenetic regulation of chromatin structure is fundamental to the activation or repression of genes during embryonic development. In recent years, there has been an explosion of research relating to various modes of epigenetic regulation, such as DNA methylation, post-translational histone tail modifications, noncoding RNA control of chromatin structure, and nucleosome remodeling. Technological advances in genome-wide epigenetic profiling and pluripotent stem cell differentiation have been primary drivers for elucidating the epigenetic control of cellular identity during development and nuclear reprogramming. Not only do epigenetic mechanisms regulate transcriptional states in a cell-type-specific manner but also they establish higher order genomic topology and nuclear architecture. Here, we review the epigenetic control of pluripotency and changes associated with pluripotent stem cell differentiation. We focus on DNA methylation, DNA demethylation, and common histone tail modifications. Finally, we briefly discuss epigenetic heterogeneity among pluripotent stem cell lines and the influence of epigenetic patterns on genome topology.
Collapse
Affiliation(s)
- Michael J Boland
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kristopher L Nazor
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeanne F Loring
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037.
| |
Collapse
|
244
|
Grybek V, Aubry L, Maupetit-Méhouas S, Le Stunff C, Denis C, Girard M, Linglart A, Silve C. Methylation and transcripts expression at the imprinted GNAS locus in human embryonic and induced pluripotent stem cells and their derivatives. Stem Cell Reports 2014; 3:432-43. [PMID: 25241742 PMCID: PMC4266011 DOI: 10.1016/j.stemcr.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B. GNAS locus methylation is DMR and cell line specific in human pluripotent stem cells Allelic transcript expression can be independent of allele-specific DNA methylation A/B transcript expression, a key for PHP1B, is correlated with A/B DMR methylation
Collapse
Affiliation(s)
- Virginie Grybek
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Laetitia Aubry
- UEVE UMR 861, I-Stem, AFM, Evry 91030, France; INSERM UMR 861, I-Stem, AFM, Evry 91030, France
| | | | | | - Cécile Denis
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Mathilde Girard
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Agnès Linglart
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre-AP-HP, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Caroline Silve
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat Claude Bernard-AP-HP, Paris 75018, France.
| |
Collapse
|
245
|
Sex-Dependent Gene Expression in Human Pluripotent Stem Cells. Cell Rep 2014; 8:923-32. [DOI: 10.1016/j.celrep.2014.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 05/05/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
|
246
|
Ma H, Morey R, O'Neil RC, He Y, Daughtry B, Schultz MD, Hariharan M, Nery JR, Castanon R, Sabatini K, Thiagarajan RD, Tachibana M, Kang E, Tippner-Hedges R, Ahmed R, Gutierrez NM, Van Dyken C, Polat A, Sugawara A, Sparman M, Gokhale S, Amato P, Wolf DP, Ecker JR, Laurent LC, Mitalipov S. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 2014; 511:177-83. [PMID: 25008523 PMCID: PMC4898064 DOI: 10.1038/nature13551] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/05/2014] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.
Collapse
Affiliation(s)
- Hong Ma
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3]
| | - Robert Morey
- 1] Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA [2]
| | - Ryan C O'Neil
- 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA
| | - Yupeng He
- 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA
| | - Brittany Daughtry
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Matthew D Schultz
- Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Manoj Hariharan
- Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Karen Sabatini
- Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA
| | - Rathi D Thiagarajan
- Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA
| | - Masahito Tachibana
- 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [2] Department of Obstetrics and Gynecology, South Miyagi Medical Center, Shibata-gun, Miyagi 989-1253, Japan (M.T.); Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden (A.P.)
| | - Eunju Kang
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Rebecca Tippner-Hedges
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Riffat Ahmed
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Nuria Marti Gutierrez
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Crystal Van Dyken
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Alim Polat
- 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [2] Department of Obstetrics and Gynecology, South Miyagi Medical Center, Shibata-gun, Miyagi 989-1253, Japan (M.T.); Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden (A.P.)
| | - Atsushi Sugawara
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Michelle Sparman
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Sumita Gokhale
- University Pathologists LLC, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02118, USA
| | - Paula Amato
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Don P Wolf
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | - Joseph R Ecker
- 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Louise C Laurent
- Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA
| | - Shoukhrat Mitalipov
- 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3] Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
247
|
Abstract
Genome‐wide SNP analyses have identified genomic variants associated with adult human height. However, these only explain a fraction of human height variation, suggesting that significant information might have been systematically missed by SNP sequencing analysis. A candidate for such non‐SNP‐linked information is DNA methylation. Regulation by DNA methylation requires the presence of CpG islands in the promoter region of candidate genes. Seventy two of 87 (82.8%), height‐associated genes were indeed found to contain CpG islands upstream of the transcription start site (USC CpG island searcher; validation: UCSC Genome Browser), which were shown to correlate with gene regulation. Consistent with this, DNA hypermethylation modules were detected in 42 height‐associated genes, versus 1.5% of control genes (P = 8.0199e−17), as were dynamic methylation changes and gene imprinting. Epigenetic heredity thus appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation are candidate to mediate environmental influence on epigenetic traits. This may help to explain progressive height changes over multiple generations, through trans‐generational heredity of progressive DNA methylation patterns. Epigenetic heredity appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation is candidate to mediate environmental influence on epigenetic traits.
Collapse
Affiliation(s)
- Pasquale Simeone
- Unit of Cancer Pathology, Department of Neuroscience and Imaging and CeSI, University "G. d'Annunzio" Foundation, Chieti Scalo, Italy
| | - Saverio Alberti
- Unit of Cancer Pathology, Department of Neuroscience and Imaging and CeSI, University "G. d'Annunzio" Foundation, Chieti Scalo, Italy
| |
Collapse
|
248
|
Wang T, Warren ST, Jin P. Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 2014; 4:820-32. [PMID: 24078387 DOI: 10.1007/s13238-013-3074-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/18/2013] [Indexed: 12/17/2022] Open
Abstract
The somatic epigenome can be reprogrammed to a pluripotent state by a combination of transcription factors. Altering cell fate involves transcription factors cooperation, epigenetic reconfiguration, such as DNA methylation and histone modification, posttranscriptional regulation by microRNAs, and so on. Nevertheless, such reprogramming is inefficient. Evidence suggests that during the early stage of reprogramming, the process is stochastic, but by the late stage, it is deterministic. In addition to conventional reprogramming methods, dozens of small molecules have been identified that can functionally replace reprogramming factors and significantly improve induced pluripotent stem cell (iPSC) reprogramming. Indeed, iPS cells have been created recently using chemical compounds only. iPSCs are thought to display subtle genetic and epigenetic variability; this variability is not random, but occurs at hotspots across the genome. Here we discuss the progress and current perspectives in the field. Research into the reprogramming process today will pave the way for great advances in regenerative medicine in the future.
Collapse
Affiliation(s)
- Tao Wang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
249
|
Micro-environment causes reversible changes in DNA methylation and mRNA expression profiles in patient-derived glioma stem cells. PLoS One 2014; 9:e94045. [PMID: 24728236 PMCID: PMC3984100 DOI: 10.1371/journal.pone.0094045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/11/2014] [Indexed: 12/12/2022] Open
Abstract
In vitro and in vivo models are widely used in cancer research. Characterizing the similarities and differences between a patient's tumor and corresponding in vitro and in vivo models is important for understanding the potential clinical relevance of experimental data generated with these models. Towards this aim, we analyzed the genomic aberrations, DNA methylation and transcriptome profiles of five parental tumors and their matched in vitro isolated glioma stem cell (GSC) lines and xenografts generated from these same GSCs using high-resolution platforms. We observed that the methylation and transcriptome profiles of in vitro GSCs were significantly different from their corresponding xenografts, which were actually more similar to their original parental tumors. This points to the potentially critical role of the brain microenvironment in influencing methylation and transcriptional patterns of GSCs. Consistent with this possibility, ex vivo cultured GSCs isolated from xenografts showed a tendency to return to their initial in vitro states even after a short time in culture, supporting a rapid dynamic adaptation to the in vitro microenvironment. These results show that methylation and transcriptome profiles are highly dependent on the microenvironment and growth in orthotopic sites partially reverse the changes caused by in vitro culturing.
Collapse
|
250
|
Abstract
The evolutionary mechanisms underlying duplicate gene maintenance and divergence remain highly debated. Epigenetic modifications, such as DNA methylation, may contribute to duplicate gene evolution by facilitating tissue-specific regulation. However, the role of epigenetic divergence on duplicate gene evolution remains little understood. Here we show, using comprehensive data across 10 diverse human tissues, that DNA methylation plays critical roles in several aspects of duplicate gene evolution. We first demonstrate that duplicate genes are initially heavily methylated, before gradually losing DNA methylation as they age. Within each pair, DNA methylation divergence between duplicate partners increases with evolutionary age. Importantly, tissue-specific DNA methylation of duplicates correlates with tissue-specific expression, implicating DNA methylation as a causative factor for functional divergence of duplicate genes. These patterns are apparent in promoters but not in gene bodies, in accord with the complex relationship between gene-body DNA methylation and transcription. Remarkably, many duplicate gene pairs exhibit consistent division of DNA methylation across multiple, divergent tissues: For the majority (73%) of duplicate gene pairs, one partner is always hypermethylated compared with the other. This is indicative of a common underlying determinant of DNA methylation. The division of DNA methylation is also consistent with their chromatin accessibility profiles. Moreover, at least two sequence motifs known to interact with the Sp1 transcription factor mark promoters of more hypomethylated duplicate partners. These results demonstrate critical roles of DNA methylation, as well as complex interaction between genome and epigenome, on duplicate gene evolution.
Collapse
|