201
|
Wei SC, Tsai CH, Hsu WT, Chao YC. Baculovirus IE2 Interacts with Viral DNA through Daxx To Generate an Organized Nuclear Body Structure for Gene Activation in Vero Cells. J Virol 2019; 93:e00149-19. [PMID: 30728268 PMCID: PMC6450129 DOI: 10.1128/jvi.00149-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Upon virus infection of a cell, the uncoated DNA is usually blocked by the host intrinsic immune system inside the nucleus. Although it is crucial for the virus to counteract the host intrinsic immune system and access its genome, little is known about how viruses can knock down host restriction and identify their blocked genomes for later viral gene activation and replication. We found that upon baculovirus transduction into Vero E6 cells, the invading viral DNA is trapped by the cellular death domain-associated protein (Daxx) and histone H3.3 in the nucleus, resulting in gene inactivation. IE2, a baculovirus transactivator, targets host Daxx through IE2 SUMO-interacting motifs (SIMs) to indirectly access viral DNA and forms unique nuclear body structures, which we term clathrate cage-like apparatus (CCLAs), at the early transduction stage. At the later transduction stage, CCLAs gradually enlarge, and IE2 continues to closely interact with viral DNA but no longer associates with Daxx. The association with Daxx is essential for IE2 CCLA formation, and the enlarged CCLAs are capable of transactivating viral but not chromosomal DNA of Vero E6 cells. Our study reveals that baculovirus IE2 counteracts the cellular intrinsic immune system by specifically targeting Daxx and H3.3 to associate with viral DNA indirectly and efficiently. IE2 then utilizes this association with viral DNA to establish a unique CCLA cellular nanomachinery, which is visible under light microscopy as an enclosed environment for proper viral gene expression.IMPORTANCE The major breakthrough of this work is that viral protein IE2 localizes and transactivates its own viral DNA through a most unlikely route, i.e., host proteins Daxx and H3.3, which are designed to efficiently restrict viral DNA from expression. By interacting with these host intrinsic immune factors, IE2 can thus target the viral DNA and then form a unique spherical nuclear body, which we name the CCLA, to enclose the viral DNA and necessary factors to assist in high-level transactivation. Our study represents one of the most complete investigations of nuclear body formation. In addition, so far only RNA or protein molecules have been reported as potential nucleators for initiating nuclear body formation; our study may represent the first example showing that DNA can be a nucleator for a new class of nuclear body formation.
Collapse
Affiliation(s)
- Sung-Chan Wei
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Wei-Ting Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chan Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center and Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
202
|
Mahar JE, Hall RN, Shi M, Mourant R, Huang N, Strive T, Holmes EC. The discovery of three new hare lagoviruses reveals unexplored viral diversity in this genus. Virus Evol 2019; 5:vez005. [PMID: 30997155 PMCID: PMC6456799 DOI: 10.1093/ve/vez005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our knowledge of mammalian viruses has been strongly skewed toward those that cause disease in humans and animals. However, recent metagenomic studies indicate that most apparently healthy organisms carry viruses, and that these seemingly benign viruses may comprise the bulk of virus diversity. The bias toward studying viruses associated with overt disease is apparent in the lagoviruses (family Caliciviridae) that infect rabbits and hares: although most attention has been directed toward the highly pathogenic members of this genus—rabbit haemorrhagic disease virus and European brown hare syndrome virus—a number of benign lagoviruses have also been identified. To determine whether wild European brown hares in Australia might also carry undetected benign viruses, we used a meta-transcriptomics approach to explore the gut and liver RNA viromes of these invasive animals. This led to the discovery of three new lagoviruses. While one was only detected in a single hare, the other two viruses were detected in 20 per cent of all animals tested. All three viruses were most closely related to other hare lagoviruses, but were phylogenetically distinct from both known viruses and from each other, indicating that lagoviruses have circulated for longer than previously assumed. Their evolution was also characterised by complex recombination events. Mapping mutations onto the lagovirus phylogeny revealed no amino acid changes that were consistently associated with virulence phenotype. Overall, our study points to extensive unsampled diversity in this genus, such that additional metagenomic studies are needed to fill gaps in the lagovirus phylogeny and better understand the evolutionary history of this important group of mammalian viruses.
Collapse
Affiliation(s)
- Jackie E Mahar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Robyn N Hall
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, Australian Capital Territory, Australia.,Centre for Invasive Species Solutions, Building 22, University Drive South, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Roslyn Mourant
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, Australian Capital Territory, Australia
| | - Nina Huang
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, Australian Capital Territory, Australia.,Centre for Invasive Species Solutions, Building 22, University Drive South, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Tanja Strive
- CSIRO Health and Biosecurity, Clunies Ross St, Black Mountain, Australian Capital Territory, Australia.,Centre for Invasive Species Solutions, Building 22, University Drive South, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
203
|
Medusavirus, a Novel Large DNA Virus Discovered from Hot Spring Water. J Virol 2019; 93:JVI.02130-18. [PMID: 30728258 PMCID: PMC6450098 DOI: 10.1128/jvi.02130-18] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries of new large DNA viruses reveal high diversity in their morphologies, genetic repertoires, and replication strategies. Here, we report the novel features of medusavirus, a large DNA virus newly isolated from hot spring water in Japan. Medusavirus, with a diameter of 260 nm, shows a T=277 icosahedral capsid with unique spherical-headed spikes on its surface. It has a 381-kb genome encoding 461 putative proteins, 86 of which have their closest homologs in Acanthamoeba, whereas 279 (61%) are orphan genes. The virus lacks the genes encoding DNA topoisomerase II and RNA polymerase, showing that DNA replication takes place in the host nucleus, whereas the progeny virions are assembled in the cytoplasm. Furthermore, the medusavirus genome harbored genes for all five types of histones (H1, H2A, H2B, H3, and H4) and one DNA polymerase, which are phylogenetically placed at the root of the eukaryotic clades. In contrast, the host amoeba encoded many medusavirus homologs, including the major capsid protein. These facts strongly suggested that amoebae are indeed the most promising natural hosts of medusavirus, and that lateral gene transfers have taken place repeatedly and bidirectionally between the virus and its host since the early stage of their coevolution. Medusavirus reflects the traces of direct evolutionary interactions between the virus and eukaryotic hosts, which may be caused by sharing the DNA replication compartment and by evolutionarily long lasting virus-host relationships. Based on its unique morphological characteristics and phylogenomic relationships with other known large DNA viruses, we propose that medusavirus represents a new family, Medusaviridae IMPORTANCE We have isolated a new nucleocytoplasmic large DNA virus (NCLDV) from hot spring water in Japan, named medusavirus. This new NCLDV is phylogenetically placed at the root of the eukaryotic clades based on the phylogenies of several key genes, including that encoding DNA polymerase, and its genome surprisingly encodes the full set of histone homologs. Furthermore, its laboratory host, Acanthamoeba castellanii, encodes many medusavirus homologs in its genome, including the major capsid protein, suggesting that the amoeba is the genuine natural host from ancient times of this newly described virus and that lateral gene transfers have repeatedly occurred between the virus and amoeba. These results suggest that medusavirus is a unique NCLDV preserving ancient footprints of evolutionary interactions with its hosts, thus providing clues to elucidate the evolution of NCLDVs, eukaryotes, and virus-host interaction. Based on the dissimilarities with other known NCLDVs, we propose that medusavirus represents a new viral family, Medusaviridae.
Collapse
|
204
|
Abstract
Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution. RNA viruses, particularly genetically diverse members of the Picornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, and Heterosigma akashiwo RNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans. IMPORTANCE Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.
Collapse
|
205
|
Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M. Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. J Virol 2019; 93:e01998-18. [PMID: 30651361 PMCID: PMC6430534 DOI: 10.1128/jvi.01998-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Indirect evidence of mitochondrial viruses in plants comes from discovery of genomic fragments integrated into the nuclear and mitochondrial DNA of a number of plant species. Here, we report the existence of replicating mitochondrial virus in plants: from transcriptome sequencing (RNA-seq) data of infected Chenopodium quinoa, a plant species commonly used as a test plant in virus host range experiments, among other virus contigs, we could assemble a 2.7-kb contig that had highest similarity to mitoviruses found in plant genomes. Northern blot analyses confirmed the existence of plus- and minus-strand RNA corresponding to the mitovirus genome. No DNA corresponding to the genomic RNA was detected, excluding the endogenization of such virus. We have tested a number of C. quinoa accessions, and the virus was present in a number of commercial varieties but absent from a large collection of Bolivian and Peruvian accessions. The virus could not be transmitted mechanically or by grafting, but it is transmitted vertically through seeds at a 100% rate. Small RNA analysis of a C. quinoa line carrying the mitovirus and infected by alfalfa mosaic virus showed that the typical antiviral silencing response active against cytoplasmic viruses (21- to 22-nucleotide [nt] vsRNA peaks) is not active against CqMV1, since in this specific case the longest accumulating vsRNA length is 16 nt, which is the same as that corresponding to RNA from mitochondrial genes. This is evidence of a distinct viral RNA degradation mechanism active inside mitochondria that also may have an antiviral effect.IMPORTANCE This paper reports the first biological characterization of a bona fide plant mitovirus in an important crop, Chenopodium quinoa, providing data supporting that mitoviruses have the typical features of cryptic (persistent) plant viruses. We, for the first time, demonstrate that plant mitoviruses are associated with mitochondria in plants. In contrast to fungal mitoviruses, plant mitoviruses are not substantially affected by the antiviral silencing pathway, and the most abundant mitovirus small RNA length is 16 nt.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - G Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Di Silvestre
- Institute for Biomedical Technology, CNR, Segrate, Milan, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - W Chitarra
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| |
Collapse
|
206
|
Ouedraogo RS, Pita JS, Somda IP, Traore O, Roossinck MJ. Impact of Cultivated Hosts on the Recombination of Cucumber Mosaic Virus. J Virol 2019; 93:e01770-18. [PMID: 30787159 PMCID: PMC6430555 DOI: 10.1128/jvi.01770-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 01/30/2023] Open
Abstract
Cucumber mosaic virus (CMV) is one of the most successful viruses known, infecting over 1,200 species of plants. Like other single-stranded RNA viruses, CMV is known to have a high potential for population diversity due to error-prone replication and short generation times. Recombination is also a mechanism that allows viruses to adapt to new hosts. Host genes have been identified that impact the recombination of RNA viruses by using single-cell yeast systems. To determine the impact that the natural plant host has on virus recombination, we used a high-recombination-frequency strain of CMV, LS-CMV, which belongs to subgroup II, in three different cultivated hosts: Capsicum annuum cv. Marengo (pepper), Nicotiana tabacum cv. Xanthi nc (tobacco), and Cucurbita pepo cv. Black Beauty (zucchini). The recombination frequency was calculated by using an RNA 3 reporter carrying restriction enzyme sites created by introducing silent mutations. Our results show that the recombination frequency of LS-CMV is correlated with the infected host. The recombination events in pepper were 1.8-fold higher than those in tobacco and 5-fold higher than those in zucchini. Furthermore, we observed the generation of defective RNAs in inoculated pepper plants, but not in tobacco or zucchini. These results indicate that the host is involved in both intra- and intermolecular recombination events and that hosts like pepper could foster more rapid evolution of the virus. In addition, we report for the first time the production of defective RNAs in a CMV subgroup II isolate.IMPORTANCE Recombination is an important mechanism used by viruses for their diversification and to adapt to diverse hosts. Understanding the host role in the mechanisms of evolution is important for virus disease management and controlling the emergence of new strains. This study shows the impact that cultivated hosts are playing in the evolution of CMV. Furthermore, our results and previous studies show how some specific hosts could be an ideal environment for the emergence of new viral strains.
Collapse
Affiliation(s)
- Rimnoma S Ouedraogo
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
- Université Nazi Boni (UNB), Institut du Développement Rural (IDR), Unité Santé des Plantes du Laboratoire Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (Sy.N.A.I.E.), Bobo-Dioulasso, Burkina Faso
| | - Justin S Pita
- Université Félix Houphouët-Boigny, Laboratoire de Virologie Végétale, Pôle Scientifique et d'Innovation, Bingerville, Côte d'Ivoire
| | - Irenée P Somda
- Université Nazi Boni (UNB), Institut du Développement Rural (IDR), Unité Santé des Plantes du Laboratoire Systèmes Naturels, Agrosystèmes et Ingénierie de l'Environnement (Sy.N.A.I.E.), Bobo-Dioulasso, Burkina Faso
| | - Oumar Traore
- Laboratoire de Virologie et de Biotechnologie Végétale (LVBV), Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Marilyn J Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
207
|
Seligmann H. Giant viruses: spore‐like missing links betweenRickettsiaand mitochondria? Ann N Y Acad Sci 2019; 1447:69-79. [DOI: 10.1111/nyas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collectionsthe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
208
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
209
|
Mann KS, Chisholm J, Sanfaçon H. Strawberry Mottle Virus (Family Secoviridae, Order Picornavirales) Encodes a Novel Glutamic Protease To Process the RNA2 Polyprotein at Two Cleavage Sites. J Virol 2019; 93:e01679-18. [PMID: 30541838 PMCID: PMC6384087 DOI: 10.1128/jvi.01679-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.
Collapse
Affiliation(s)
- Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Joan Chisholm
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| |
Collapse
|
210
|
Abstract
Transposable elements (TEs) are ubiquitous in both prokaryotes and eukaryotes, and the dynamic character of their interaction with host genomes brings about numerous evolutionary innovations and shapes genome structure and function in a multitude of ways. In traditional classification systems, TEs are often being depicted in simplistic ways, based primarily on the key enzymes required for transposition, such as transposases/recombinases and reverse transcriptases. Recent progress in whole-genome sequencing and long-read assembly, combined with expansion of the familiar range of model organisms, resulted in identification of unprecedentedly long transposable units spanning dozens or even hundreds of kilobases, initially in prokaryotic and more recently in eukaryotic systems. Here, we focus on such oversized eukaryotic TEs, including retrotransposons and DNA transposons, outline their complex and often combinatorial nature and closely intertwined relationship with viruses, and discuss their potential for participating in transfer of long stretches of DNA in eukaryotes.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
- Corresponding author: E-mail:
| | - Irina A Yushenova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
211
|
Pischedda E, Scolari F, Valerio F, Carballar-Lejarazú R, Catapano PL, Waterhouse RM, Bonizzoni M. Insights Into an Unexplored Component of the Mosquito Repeatome: Distribution and Variability of Viral Sequences Integrated Into the Genome of the Arboviral Vector Aedes albopictus. Front Genet 2019; 10:93. [PMID: 30809249 PMCID: PMC6379468 DOI: 10.3389/fgene.2019.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
The Asian tiger mosquito Aedes albopictus is an invasive mosquito and a competent vector for public-health relevant arboviruses such as Chikungunya (Alphavirus), Dengue and Zika (Flavivirus) viruses. Unexpectedly, the sequencing of the genome of this mosquito revealed an unusually high number of integrated sequences with similarities to non-retroviral RNA viruses of the Flavivirus and Rhabdovirus genera. These Non-retroviral Integrated RNA Virus Sequences (NIRVS) are enriched in piRNA clusters and coding sequences and have been proposed to constitute novel mosquito immune factors. However, given the abundance of NIRVS and their variable viral origin, their relative biological roles remain unexplored. Here we used an analytical approach that intersects computational, evolutionary and molecular methods to study the genomic landscape of mosquito NIRVS. We demonstrate that NIRVS are differentially distributed across mosquito genomes, with a core set of seemingly the oldest integrations with similarity to Rhabdoviruses. Additionally, we compare the polymorphisms of NIRVS with respect to that of fast and slow-evolving genes within the Ae. albopictus genome. Overall, NIRVS appear to be less polymorphic than slow-evolving genes, with differences depending on whether they occur in intergenic regions or in piRNA clusters. Finally, two NIRVS that map within the coding sequences of genes annotated as Rhabdovirus RNA-dependent RNA polymerase and the nucleocapsid-encoding gene, respectively, are highly polymorphic and are expressed, suggesting exaptation possibly to enhance the mosquito's antiviral responses. These results greatly advance our understanding of the complexity of the mosquito repeatome and the biology of viral integrations in mosquito genomes.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
212
|
Koonin EV. CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. BIOLOGY & PHILOSOPHY 2019; 34:9. [PMID: 30930513 PMCID: PMC6404382 DOI: 10.1007/s10539-018-9658-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The CRISPR-Cas systems of bacterial and archaeal adaptive immunity have become a household name among biologists and even the general public thanks to the unprecedented success of the new generation of genome editing tools utilizing Cas proteins. However, the fundamental biological features of CRISPR-Cas are of no lesser interest and have major impacts on our understanding of the evolution of antivirus defense, host-parasite coevolution, self versus non-self discrimination and mechanisms of adaptation. CRISPR-Cas systems present the best known case in point for Lamarckian evolution, i.e. generation of heritable, adaptive genomic changes in response to encounters with external factors, in this case, foreign nucleic acids. CRISPR-Cas systems employ multiple mechanisms of self versus non-self discrimination but, as is the case with immune systems in general, are nevertheless costly because autoimmunity cannot be eliminated completely. In addition to the autoimmunity, the fitness cost of CRISPR-Cas systems appears to be determined by their inhibitory effect on horizontal gene transfer, curtailing evolutionary innovation. Hence the dynamic evolution of CRISPR-Cas loci that are frequently lost and (re)acquired by archaea and bacteria. Another fundamental biological feature of CRISPR-Cas is its intimate connection with programmed cell death and dormancy induction in microbes. In this and, possibly, other immune systems, active immune response appears to be coupled to a different form of defense, namely, "altruistic" shutdown of cellular functions resulting in protection of neighboring cells. Finally, analysis of the evolutionary connections of Cas proteins reveals multiple contributions of mobile genetic elements (MGE) to the origin of various components of CRISPR-Cas systems, furthermore, different biological systems that function by genome manipulation appear to have evolved convergently from unrelated MGE. The shared features of adaptive defense systems and MGE, namely the ability to recognize and cleave unique sites in genomes, make them ideal candidates for genome editing and engineering tools.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894 USA
| |
Collapse
|
213
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
214
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2019; 9:3255. [PMID: 30666247 PMCID: PMC6330349 DOI: 10.3389/fmicb.2018.03255] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G. Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|
215
|
Koonin EV, Yutin N. Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism. Adv Virus Res 2019; 103:167-202. [PMID: 30635076 DOI: 10.1016/bs.aivir.2018.09.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Nucleocytoplasmic Large DNA Viruses (NCLDV) of eukaryotes (proposed order "Megavirales") comprise an expansive group of eukaryotic viruses that consists of the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, Pithoviridae, and Mimiviridae, as well as Pandoraviruses, Molliviruses, and Faustoviruses that so far remain unaccounted by the official virus taxonomy. All these viruses have double-stranded DNA genomes that range in size from about 100 kilobases (kb) to more than 2.5 megabases. The viruses with genomes larger than 500kb are informally considered "giant," and the largest giant viruses surpass numerous bacteria and archaea in both particle and genome size. The discovery of giant viruses has been highly unexpected and has changed the perception of viral size and complexity, and even, arguably, the entire concept of a virus. Given that giant viruses encode multiple proteins that are universal among cellular life forms and are components of the translation system, the quintessential cellular molecular machinery, attempts have been made to incorporate these viruses in the evolutionary tree of cellular life. Moreover, evolutionary scenarios of the origin of giant viruses from a fourth, supposedly extinct domain of cellular life have been proposed. However, despite all the differences in the genome size and gene repertoire, the NCLDV can be confidently defined as monophyletic group, on the strength of the presence of about 40 genes that can be traced back to their last common ancestor. Using several most strongly conserved genes from this ancestral set, a well-resolved phylogenetic tree of the NCLDV was built and employed as the scaffold to reconstruct the history of gene gain and loss throughout the course of the evolution of this group of viruses. This reconstruction reveals extremely dynamic evolution that involved extensive gene gain and loss in many groups of viruses and indicates that giant viruses emerged independently in several clades of the NCLDV. Thus, these giants of the virus world evolved repeatedly from smaller and simpler viruses, rather than from a fourth domain of cellular life, and captured numerous genes, including those for translation system components, from eukaryotes, along with some bacterial genes. Even deeper evolutionary reconstructions reveal apparent links between the NCLDV and smaller viruses of eukaryotes, such as adenoviruses, and ultimately, derive all these viruses from tailless bacteriophages.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
216
|
Neupane A, Feng C, Feng J, Kafle A, Bücking H, Lee Marzano SY. Metatranscriptomic Analysis and In Silico Approach Identified Mycoviruses in the Arbuscular Mycorrhizal Fungus Rhizophagus spp. Viruses 2018; 10:E707. [PMID: 30545059 PMCID: PMC6316171 DOI: 10.3390/v10120707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF), including Rhizophagus spp., can play important roles in nutrient cycling of the rhizosphere. However, the effect of virus infection on AMF's role in nutrient cycling cannot be determined without first knowing the diversity of the mycoviruses in AMF. Therefore, in this study, we sequenced the R. irregularis isolate-09 due to its previously demonstrated high efficiency in increasing the N/P uptake of the plant. We identified one novel mitovirus contig of 3685 bp, further confirmed by reverse transcription-PCR. Also, publicly available Rhizophagus spp. RNA-Seq data were analyzed to recover five partial virus sequences from family Narnaviridae, among which four were from R. diaphanum MUCL-43196 and one was from R. irregularis strain-C2 that was similar to members of the Mitovirus genus. These contigs coded genomes larger than the regular mitoviruses infecting pathogenic fungi and can be translated by either a mitochondrial translation code or a cytoplasmic translation code, which was also reported in previously found mitoviruses infecting mycorrhizae. The five newly identified virus sequences are comprised of functionally conserved RdRp motifs and formed two separate subclades with mitoviruses infecting Gigasporamargarita and Rhizophagusclarus, further supporting virus-host co-evolution theory. This study expands our understanding of virus diversity. Even though AMF is notably hard to investigate due to its biotrophic nature, this study demonstrates the utility of whole root metatranscriptome.
Collapse
Affiliation(s)
- Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Chenchen Feng
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Jiuhuan Feng
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Arjun Kafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Heike Bücking
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Department of Agronomy, Horticulture, and Plant Sciences, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
217
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
218
|
Stewart H, Olspert A, Butt BG, Firth AE. Propensity of a picornavirus polymerase to slip on potyvirus-derived transcriptional slippage sites. J Gen Virol 2018; 100:199-205. [PMID: 30507373 PMCID: PMC6591135 DOI: 10.1099/jgv.0.001189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The substitution rates of viral polymerases have been studied extensively. However less is known about the tendency of these enzymes to 'slip' during RNA synthesis to produce progeny RNAs with nucleotide insertions or deletions. We recently described the functional utilization of programmed polymerase slippage in the family Potyviridae. This slippage results in either an insertion or a substitution, depending on whether the RNA duplex realigns following the insertion. In this study we investigated whether this phenomenon is a conserved feature of superfamily I viral RdRps, by inserting a range of potyvirus-derived slip-prone sequences into a picornavirus, Theiler's murine encephalomyelitis virus (TMEV). Deep-sequencing analysis of viral transcripts indicates that the TMEV polymerase 'slips' at the sequences U6-7 and A6-7 to insert additional nucleotides. Such sequences are under-represented within picornaviral genomes, suggesting that slip-prone sequences create a fitness cost. Nonetheless, the TMEV insertional and substitutional spectrum differed from that previously determined for the potyvirus polymerase.
Collapse
Affiliation(s)
- Hazel Stewart
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Allan Olspert
- 2School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Benjamin G Butt
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
219
|
Wolf YI, Kazlauskas D, Iranzo J, Lucía-Sanz A, Kuhn JH, Krupovic M, Dolja VV, Koonin EV. Origins and Evolution of the Global RNA Virome. mBio 2018; 9:e02329-18. [PMID: 30482837 PMCID: PMC6282212 DOI: 10.1128/mbio.02329-18] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/12/2023] Open
Abstract
Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the gene encoding the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple-sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches; 2 of the branches include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded RNA (dsRNA) viruses, and 2 consist of dsRNA and negative-sense (-) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas -RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, in particular, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy.IMPORTANCE The majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than was attainable previously. This reconstruction reveals the relationships between different Baltimore classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.
Collapse
Affiliation(s)
- Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriana Lucía-Sanz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Centro Nacional de Biotecnología, Madrid, Spain
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Mart Krupovic
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
220
|
Abstract
The nucleocytoplasmic large DNA viruses (NCLDVs) are a monophyletic group of diverse eukaryotic viruses that reproduce primarily in the cytoplasm of the infected cells and include the largest viruses currently known: the giant mimiviruses, pandoraviruses, and pithoviruses. With virions measuring up to 1.5 μm and genomes of up to 2.5 Mb, the giant viruses break the now-outdated definition of a virus and extend deep into the genome size range typical of bacteria and archaea. Additionally, giant viruses encode multiple proteins that are universal among cellular life forms, particularly components of the translation system, the signature cellular molecular machinery. These findings triggered hypotheses on the origin of giant viruses from cells, likely of an extinct fourth domain of cellular life, via reductive evolution. However, phylogenomic analyses reveal a different picture, namely multiple origins of giant viruses from smaller NCLDVs via acquisition of multiple genes from the eukaryotic hosts and bacteria, along with gene duplication. Thus, with regard to their origin, the giant viruses do not appear to qualitatively differ from the rest of the virosphere. However, the evolutionary forces that led to the emergence of virus gigantism remain enigmatic.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
221
|
Lauber C, Seifert M, Bartenschlager R, Seitz S. Discovery of highly divergent lineages of plant-associated astro-like viruses sheds light on the emergence of potyviruses. Virus Res 2018; 260:38-48. [PMID: 30452944 DOI: 10.1016/j.virusres.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/06/2023]
Abstract
RNA viruses are believed to have originated from a common ancestor, but how this ancestral genome evolved into the large variety of genomic architectures and viral proteomes we see today remains largely unknown. Tackling this question is hindered by the lack of universally conserved proteins other than the RNA-dependent RNA polymerase (RdRp) as well as a limited RNA virus sampling. The latter is still heavily biased towards relatively few viral lineages from a non-representative collection of hosts, which complicates studies aiming to reveal possible trajectories during the evolution of RNA virus genomes that are favored over others. We report the discovery of 11 highly divergent lineages of viruses with genomic architectures that resemble those of the astroviruses. These genomes were initially identified through a sequence homology search in more than 6600 plant transcriptome projects from the Sequence Read Archive (SRA) using astrovirus representatives as query. Seed-based viral genome assembly of unprocessed SRA data for several dozens of the most promising hits resulted in two viral genome sequences with full-length coding regions, nine partial genomes and a much larger number of short sequence fragments. Genomic and phylogenetic characterization of the 11 discovered viruses, which we coined plastroviruses (plant-associated astro-like viruses), showed that they are related to both astro- and potyviruses and allowed us to identify divergent Serine protease, RdRp and viral capsid domains encoded in the plastrovirus genome. Interestingly, some of the plastroviruses shared different features with potyviruses including the replacement of the catalytic Ser by a Cys residue in the protease active site. These results suggest that plastroviruses may have reached different points on an evolutionary trajectory from astro-like to poty-like genomes. A model how potyviruses might have emerged from (pl)astro-like ancestors in a multi-step process is discussed.
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany.
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ralf Bartenschlager
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Seitz
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
222
|
Parreira R. Laboratory Methods in Molecular Epidemiology: Viral Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0003-2018. [PMID: 30387412 PMCID: PMC11633636 DOI: 10.1128/microbiolspec.ame-0003-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 01/05/2023] Open
Abstract
Viruses, which are the most abundant biological entities on the planet, have been regarded as the "dark matter" of biology in the sense that despite their ubiquity and frequent presence in large numbers, their detection and analysis are not always straightforward. The majority of them are very small (falling under the limit of 0.5 μm), and collectively, they are extraordinarily diverse. In fact, the majority of the genetic diversity on the planet is found in the so-called virosphere, or the world of viruses. Furthermore, the most frequent viral agents of disease in humans display an RNA genome, and frequently evolve very fast, due to the fact that most of their polymerases are devoid of proofreading activity. Therefore, their detection, genetic characterization, and epidemiological surveillance are rather challenging. This review (part of the Curated Collection on Advances in Molecular Epidemiology of Infectious Diseases) describes many of the methods that, throughout the last few decades, have been used for viral detection and analysis. Despite the challenge of having to deal with high genetic diversity, the majority of these methods still depend on the amplification of viral genomic sequences, using sequence-specific or sequence-independent approaches, exploring thermal profiles or a single nucleic acid amplification temperature. Furthermore, viral populations, and especially those with RNA genomes, are not usually genetically uniform but encompass swarms of genetically related, though distinct, viral genomes known as viral quasispecies. Therefore, sequence analysis of viral amplicons needs to take this fact into consideration, as it constitutes a potential analytic problem. Possible technical approaches to deal with it are also described here. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Microbiologia Médica/Global Health and Tropical Medicine (GHTM) Research Centre, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal
| |
Collapse
|
223
|
Rosario K, Mettel KA, Benner BE, Johnson R, Scott C, Yusseff-Vanegas SZ, Baker CCM, Cassill DL, Storer C, Varsani A, Breitbart M. Virus discovery in all three major lineages of terrestrial arthropods highlights the diversity of single-stranded DNA viruses associated with invertebrates. PeerJ 2018; 6:e5761. [PMID: 30324030 PMCID: PMC6186406 DOI: 10.7717/peerj.5761] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/16/2018] [Indexed: 11/20/2022] Open
Abstract
Viruses encoding a replication-associated protein (Rep) within a covalently closed, single-stranded (ss)DNA genome are among the smallest viruses known to infect eukaryotic organisms, including economically valuable agricultural crops and livestock. Although circular Rep-encoding ssDNA (CRESS DNA) viruses are a widespread group for which our knowledge is rapidly expanding, biased sampling toward vertebrates and land plants has limited our understanding of their diversity and evolution. Here, we screened terrestrial arthropods for CRESS DNA viruses and report the identification of 44 viral genomes and replicons associated with specimens representing all three major terrestrial arthropod lineages, namely Euchelicerata (spiders), Hexapoda (insects), and Myriapoda (millipedes). We identified virus genomes belonging to three established CRESS DNA viral families (Circoviridae, Genomoviridae, and Smacoviridae); however, over half of the arthropod-associated viral genomes are only distantly related to currently classified CRESS DNA viral sequences. Although members of viral and satellite families known to infect plants (Geminiviridae, Nanoviridae, Alphasatellitidae) were not identified in this study, these plant-infecting CRESS DNA viruses and replicons are transmitted by hemipterans. Therefore, members from six out of the seven established CRESS DNA viral families circulate among arthropods. Furthermore, a phylogenetic analysis of Reps, including endogenous viral sequences, reported to date from a wide array of organisms revealed that most of the known CRESS DNA viral diversity circulates among invertebrates. Our results highlight the vast and unexplored diversity of CRESS DNA viruses among invertebrates and parallel findings from RNA viral discovery efforts in undersampled taxa.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Kaitlin A Mettel
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Bayleigh E Benner
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Ryan Johnson
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Catherine Scott
- Department of Biological Sciences, University of Toronto, Scarborough, Scarborough, ON, Canada
| | | | - Christopher C M Baker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Deby L Cassill
- Department of Biological Sciences, University of South Florida Saint Petersburg, Saint Petersburg, FL, USA
| | - Caroline Storer
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| |
Collapse
|
224
|
Navarro B, Zicca S, Minutolo M, Saponari M, Alioto D, Di Serio F. A Negative-Stranded RNA Virus Infecting Citrus Trees: The Second Member of a New Genus Within the Order Bunyavirales. Front Microbiol 2018; 9:2340. [PMID: 30333811 PMCID: PMC6176071 DOI: 10.3389/fmicb.2018.02340] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
A new RNA virus has been identified from a sweet orange tree in southern Italy. This virus, tentatively named citrus virus A (CiVA), has a bipartite genome composed of (i) a negative-stranded (ns) RNA1, encoding the viral RNA-dependent RNA polymerase (RdRp), and (ii) an ambisense RNA2, coding for the putative movement protein (MP) and nucleocapsid protein (NP), with the two open reading frames separated by a long AU-rich intergenic region (IR) adopting a hairpin conformation. CiVA genomic RNAs and the encoded proteins resemble those of the recently discovered citrus concave gum-associated virus (CCGaV). This CCGaV, a nsRNA virus associated with the ancient citrus concave gum disease, has been proposed as the representative member of a new genus tentatively named Coguvirus. Molecular and phylogenetic analyses presented here support the classification of CiVA, and likely of other two recently described nsRNA viruses infecting plants, in this new genus. By showing that the evolutionary origin of the MP of all the putative coguviruses likely differs from that of their respective RdRp and NP, this study also provides evidence of a likely modular genome evolution for these viruses. Moreover, phylogenetic data support the proposal that, during the evolutionary history of nsRNA viruses, the plant-infecting viruses most likely emerged from an invertebrate-infecting ancestor several times as independent events. CiVA was identified in a field sweet orange tree not showing any obvious symptom and was graft-transmitted to sweet orange, grapefruit, rough lemon and Dweet tangor indicator plants that did not developed symptoms. The capacity of infecting citrus hosts of several species was also confirmed by a preliminary survey that identified orange, mandarin, clementine and lemon trees as natural hosts of CiVA in several fields of southern Italy, again without any obvious association with specific symptoms.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Stefania Zicca
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria Minutolo
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Maria Saponari
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
225
|
Aguado LC, Jordan TX, Hsieh E, Blanco-Melo D, Heard J, Panis M, Vignuzzi M, tenOever BR. Homologous recombination is an intrinsic defense against antiviral RNA interference. Proc Natl Acad Sci U S A 2018. [PMID: 30209219 DOI: 10.1073/pnas.181022911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
RNA interference (RNAi) is the major antiviral defense mechanism of plants and invertebrates, rendering the capacity to evade it a defining factor in shaping the viral landscape. Here we sought to determine whether different virus replication strategies provided any inherent capacity to evade RNAi in the absence of an antagonist. Through the exploitation of host microRNAs, we recreated an RNAi-like environment in vertebrates and directly compared the capacity of positive- and negative-stranded RNA viruses to cope with this selective pressure. Applying this defense against four distinct viral families revealed that the capacity to undergo homologous recombination was the defining attribute that enabled evasion of this defense. Independent of gene expression strategy, positive-stranded RNA viruses that could undergo strand switching rapidly excised genomic material, while negative-stranded viruses were effectively targeted and cleared upon RNAi-based selection. These data suggest a dynamic relationship between host antiviral defenses and the biology of virus replication in shaping pathogen prevalence.
Collapse
Affiliation(s)
- Lauren C Aguado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tristan X Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Emily Hsieh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniel Blanco-Melo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John Heard
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institute Pasteur, 75015 Paris, France
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
226
|
Homologous recombination is an intrinsic defense against antiviral RNA interference. Proc Natl Acad Sci U S A 2018; 115:E9211-E9219. [PMID: 30209219 DOI: 10.1073/pnas.1810229115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) is the major antiviral defense mechanism of plants and invertebrates, rendering the capacity to evade it a defining factor in shaping the viral landscape. Here we sought to determine whether different virus replication strategies provided any inherent capacity to evade RNAi in the absence of an antagonist. Through the exploitation of host microRNAs, we recreated an RNAi-like environment in vertebrates and directly compared the capacity of positive- and negative-stranded RNA viruses to cope with this selective pressure. Applying this defense against four distinct viral families revealed that the capacity to undergo homologous recombination was the defining attribute that enabled evasion of this defense. Independent of gene expression strategy, positive-stranded RNA viruses that could undergo strand switching rapidly excised genomic material, while negative-stranded viruses were effectively targeted and cleared upon RNAi-based selection. These data suggest a dynamic relationship between host antiviral defenses and the biology of virus replication in shaping pathogen prevalence.
Collapse
|
227
|
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018; 17:751-767. [DOI: 10.1038/nrd.2018.132] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
228
|
Freitas-Astúa J, Ramos-González PL, Arena GD, Tassi AD, Kitajima EW. Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Curr Opin Virol 2018; 33:66-73. [PMID: 30081359 DOI: 10.1016/j.coviro.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
Although diseases caused by Brevipalpus-transmitted viruses (BTV) became relevant for agriculture a century ago, their causal agents have been only recently characterized and classified in two new genera of plant-infecting viruses: Cilevirus and Dichorhavirus. In this review, we highlight both similarities and differences between these viruses emphasizing their current taxonomy and historical classification, phylogeny, genomic organization, gene expression, and the latest research developments on BTVs. Additionally, we stress particular features of interactions with their mite vectors and plant hosts that support, from an evolutionary perspective, the potential convergence of both viral groups.
Collapse
Affiliation(s)
- Juliana Freitas-Astúa
- Embrapa Cassava and Fruits, 44380-000 Cruz das Almas, BA, Brazil; Instituto Biológico, 04014-900 São Paulo, SP, Brazil.
| | | | - Gabriella Dias Arena
- Centro Apta Citros Sylvio Moreira, IAC, 13490-000 Cordeirópolis, SP, Brazil; Instituto de Biologia, Unicamp, 13083-862 Campinas, SP, Brazil
| | - Aline Daniele Tassi
- Departmento de Fitopatologia e Nematologia, ESALQ/USP, 13418-900 Piracicaba, SP, Brazil
| | | |
Collapse
|
229
|
Medvedev KE, Kinch LN, Grishin NV. Functional and evolutionary analysis of viral proteins containing a Rossmann-like fold. Protein Sci 2018; 27:1450-1463. [PMID: 29722076 PMCID: PMC6153405 DOI: 10.1002/pro.3438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022]
Abstract
Viruses are the most abundant life form and infect practically all organisms. Consequently, these obligate parasites are a major cause of human suffering and economic loss. Rossmann-like fold is the most populated fold among α/β-folds in the Protein Data Bank and proteins containing Rossmann-like fold constitute 22% of all known proteins 3D structures. Thus, analysis of viral proteins containing Rossmann-like domains could provide an understanding of viral biology and evolution as well as could propose possible targets for antiviral therapy. We provide functional and evolutionary analysis of viral proteins containing a Rossmann-like fold found in the evolutionary classification of protein domains (ECOD) database developed in our lab. We identified 81 protein families of bacterial, archeal, and eukaryotic viruses in light of their evolution-based ECOD classification and Pfam taxonomy. We defined their functional significance using enzymatic EC number assignments as well as domain-level family annotations.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Departments of Biophysics and BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasTexas
| | - Nick V. Grishin
- Departments of Biophysics and BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexas
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasTexas
| |
Collapse
|
230
|
Conceição-Neto N, Deboutte W, Dierckx T, Machiels K, Wang J, Yinda KC, Maes P, Van Ranst M, Joossens M, Raes J, Vermeire S, Matthijnssens J. Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut 2018; 67:1558-1559. [PMID: 29066574 PMCID: PMC6204959 DOI: 10.1136/gutjnl-2017-315281] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/08/2022]
Affiliation(s)
- Nádia Conceição-Neto
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Viral Metagenomics, Rega Institute, Leuven, Belgium,Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Clinical Virology, Rega Institute, Leuven, Belgium
| | - Ward Deboutte
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Viral Metagenomics, Rega Institute, Leuven, Belgium
| | - Tim Dierckx
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Clinical Virology, Rega Institute, Leuven, Belgium
| | - Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Jun Wang
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium,Center for Microbiology, VIB, Leuven, Belgium
| | - Kwe Claude Yinda
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Viral Metagenomics, Rega Institute, Leuven, Belgium,Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Clinical Virology, Rega Institute, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Clinical Virology, Rega Institute, Leuven, Belgium
| | - Marc Van Ranst
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Clinical Virology, Rega Institute, Leuven, Belgium
| | - Marie Joossens
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium,Center for Microbiology, VIB, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Laboratory of Molecular Bacteriology, Rega Institute, Leuven, Belgium,Center for Microbiology, VIB, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, KU Leuven—University of Leuven, Laboratory of Viral Metagenomics, Rega Institute, Leuven, Belgium
| |
Collapse
|
231
|
Giant viruses as protein-coated amoeban mitochondria? Virus Res 2018; 253:77-86. [DOI: 10.1016/j.virusres.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
|
232
|
Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, Gifford R, Harrach B, Hull R, Johnson W, Kreuze JF, Lindemann D, Llorens C, Lockhart B, Mayer J, Muller E, Olszewski NE, Pappu HR, Pooggin MM, Richert-Pöggeler KR, Sabanadzovic S, Sanfaçon H, Schoelz JE, Seal S, Stavolone L, Stoye JP, Teycheney PY, Tristem M, Koonin EV, Kuhn JH. Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. J Virol 2018; 92:e00515-18. [PMID: 29618642 PMCID: PMC5974489 DOI: 10.1128/jvi.00515-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Jonas Blomberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew D Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roger Hull
- Child Okeford, Blandford Forum, Dorset, United Kingdom
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jan F Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, Germany
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Ben Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jens Mayer
- Institute of Human Genetics, University of Saarland, Homburg, Germany
| | - Emmanuelle Muller
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Neil E Olszewski
- Department of Microbial and Plant Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | | | - Katja R Richert-Pöggeler
- Julius Kühn-Institut, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom
| | - Livia Stavolone
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Jonathan P Stoye
- The Francis Crick Institute and Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP, Capesterre Belle Eau, Guadeloupe, France
- AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Michael Tristem
- Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
233
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
234
|
Rodamilans B, Shan H, Pasin F, García JA. Plant Viral Proteases: Beyond the Role of Peptide Cutters. FRONTIERS IN PLANT SCIENCE 2018; 9:666. [PMID: 29868107 PMCID: PMC5967125 DOI: 10.3389/fpls.2018.00666] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/30/2018] [Indexed: 05/23/2023]
Abstract
Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio Pasin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
235
|
Navarro B, Minutolo M, De Stradis A, Palmisano F, Alioto D, Di Serio F. The first phlebo-like virus infecting plants: a case study on the adaptation of negative-stranded RNA viruses to new hosts. MOLECULAR PLANT PATHOLOGY 2018; 19:1075-1089. [PMID: 28752569 PMCID: PMC6637980 DOI: 10.1111/mpp.12587] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 05/07/2023]
Abstract
A novel negative-stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum-associated virus, is flexuous and non-enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod-transmitted viruses infecting mammals, and with a group of still unclassified phlebo-like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA-dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo-like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate-restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans-kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly
| | - Maria Minutolo
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico II80055 PorticiNaplesItaly
| | - Angelo De Stradis
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly
| | - Francesco Palmisano
- Centro di RicercaSperimentazione e Formazione in Agricoltura Basile Caramia70010 LocorotondoBariItaly
| | - Daniela Alioto
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico II80055 PorticiNaplesItaly
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly
| |
Collapse
|
236
|
Mahmoudabadi G, Phillips R. A comprehensive and quantitative exploration of thousands of viral genomes. eLife 2018; 7:31955. [PMID: 29624169 PMCID: PMC5908442 DOI: 10.7554/elife.31955] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends.
Collapse
Affiliation(s)
- Gita Mahmoudabadi
- Department of Bioengineering, California Institute of Technology, Pasadena, United States
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| |
Collapse
|
237
|
Yutin N, Bäckström D, Ettema TJG, Krupovic M, Koonin EV. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol J 2018; 15:67. [PMID: 29636073 PMCID: PMC5894146 DOI: 10.1186/s12985-018-0974-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Analysis of metagenomic sequences has become the principal approach for the study of the diversity of viruses. Many recent, extensive metagenomic studies on several classes of viruses have dramatically expanded the visible part of the virosphere, showing that previously undetected viruses, or those that have been considered rare, actually are important components of the global virome. RESULTS We investigated the provenance of viruses related to tail-less bacteriophages of the family Tectiviridae by searching genomic and metagenomics sequence databases for distant homologs of the tectivirus-like Double Jelly-Roll major capsid proteins (DJR MCP). These searches resulted in the identification of numerous genomes of virus-like elements that are similar in size to tectiviruses (10-15 kilobases) and have diverse gene compositions. By comparison of the gene repertoires, the DJR MCP-encoding genomes were classified into 6 distinct groups that can be predicted to differ in reproduction strategies and host ranges. Only the DJR MCP gene that is present by design is shared by all these genomes, and most also encode a predicted DNA-packaging ATPase; the rest of the genes are present only in subgroups of this unexpectedly diverse collection of DJR MCP-encoding genomes. Only a minority encode a DNA polymerase which is a hallmark of the family Tectiviridae and the putative family "Autolykiviridae". Notably, one of the identified putative DJR MCP viruses encodes a homolog of Cas1 endonuclease, the integrase involved in CRISPR-Cas adaptation and integration of transposon-like elements called casposons. This is the first detected occurrence of Cas1 in a virus. Many of the identified elements are individual contigs flanked by inverted or direct repeats and appear to represent complete, extrachromosomal viral genomes, whereas others are flanked by bacterial genes and thus can be considered as proviruses. These contigs come from metagenomes of widely different environments, some dominated by archaea and others by bacteria, suggesting that collectively, the DJR MCP-encoding elements have a broad host range among prokaryotes. CONCLUSIONS The findings reported here greatly expand the known host range of (putative) viruses of bacteria and archaea that encode a DJR MCP. They also demonstrate the extreme diversity of genome architectures in these viruses that encode no universal proteins other than the capsid protein that was used as the marker for their identification. From a supposedly minor group of bacterial and archaeal viruses, these viruses are emerging as a substantial component of the prokaryotic virome.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine. National Institutes of Health, Bethesda, MD, 20894, USA
| | - Disa Bäckström
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, -75123, Uppsala, SE, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, -75123, Uppsala, SE, Sweden
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine. National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
238
|
Kazlauskas D, Varsani A, Krupovic M. Pervasive Chimerism in the Replication-Associated Proteins of Uncultured Single-Stranded DNA Viruses. Viruses 2018; 10:v10040187. [PMID: 29642587 PMCID: PMC5923481 DOI: 10.3390/v10040187] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022] Open
Abstract
Numerous metagenomic studies have uncovered a remarkable diversity of circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses, the majority of which are uncultured and unclassified. Unlike capsid proteins, the Reps show significant similarity across different groups of CRESS DNA viruses and have conserved domain organization with the N-terminal nuclease and the C-terminal helicase domain. Consequently, Rep is widely used as a marker for identification, classification and assessment of the diversity of CRESS DNA viruses. However, it has been shown that in certain viruses the Rep nuclease and helicase domains display incongruent evolutionary histories. Here, we systematically evaluated the co-evolutionary patterns of the two Rep domains across classified and unclassified CRESS DNA viruses. Our analysis indicates that the Reps encoded by members of the families Bacilladnaviridae, Circoviridae, Geminiviridae, Genomoviridae, Nanoviridae and Smacoviridae display largely congruent evolutionary patterns in the two domains. By contrast, among the unclassified CRESS DNA viruses, 71% appear to have chimeric Reps. Such massive chimerism suggests that unclassified CRESS DNA viruses represent a dynamic population in which exchange of gene fragments encoding the nuclease and helicase domains is extremely common. Furthermore, purging of the chimeric sequences uncovered six monophyletic Rep groups that may represent new families of CRESS DNA viruses.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7700, South Africa.
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| |
Collapse
|
239
|
Ohdera AH, Abrams MJ, Ames CL, Baker DM, Suescún-Bolívar LP, Collins AG, Freeman CJ, Gamero-Mora E, Goulet TL, Hofmann DK, Jaimes-Becerra A, Long PF, Marques AC, Miller LA, Mydlarz LD, Morandini AC, Newkirk CR, Putri SP, Samson JE, Stampar SN, Steinworth B, Templeman M, Thomé PE, Vlok M, Woodley CM, Wong JC, Martindale MQ, Fitt WK, Medina M. Upside-Down but Headed in the Right Direction: Review of the Highly Versatile Cassiopea xamachana System. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00035] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
240
|
Purification of Highly Active Alphavirus Replication Complexes Demonstrates Altered Fractionation of Multiple Cellular Membranes. J Virol 2018; 92:JVI.01852-17. [PMID: 29367248 DOI: 10.1128/jvi.01852-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 01/26/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-associated structures; alphaviruses and many other groups induce membrane invaginations called spherules. Here, we established a protocol to purify these membranous replication complexes (RCs) from cells infected with Semliki Forest virus (SFV). We isolated SFV spherules located on the plasma membrane and further purified them using two consecutive density gradients. This revealed that SFV infection strongly modifies cellular membranes. We removed soluble proteins, the Golgi membranes, and most of the mitochondria, but plasma membrane, endoplasmic reticulum (ER), and late endosome markers were retained in the membrane fraction that contained viral RNA synthesizing activity, replicase proteins, and minus- and plus-strand RNA. Electron microscopy revealed that the purified membranes displayed spherule-like structures with a narrow neck. This membrane enrichment was specific to viral replication, as such a distribution of membrane markers was only observed after infection. Besides the plasma membrane, SFV infection remodeled the ER, and the cofractionation of the RC-carrying plasma membrane and ER suggests that SFV recruits ER proteins or membrane to the site of replication. The purified RCs were highly active in synthesizing both genomic and subgenomic RNA. Detergent solubilization destroyed the replication activity, demonstrating that the membrane association of the complex is essential. Most of the newly made RNA was in double-stranded replicative molecules, but the purified complexes also produced single-stranded RNA as well as released newly made RNA. This indicates that the purification established here maintained the functionality of RCs and thus enables further structural and functional studies of active RCs.IMPORTANCE Similar to all positive-strand RNA viruses, the arthropod-borne alphaviruses induce membranous genome factories, but little is known about the arrangement of viral replicase proteins and the presence of host proteins in these replication complexes. To improve our knowledge of alphavirus RNA-synthesizing complexes, we isolated and purified them from infected mammalian cells. Detection of viral RNA and in vitro replication assays revealed that these complexes are abundant and highly active when located on the plasma membrane. After multiple purification steps, they remain functional in synthesizing and releasing viral RNA. Besides the plasma membrane, markers for the endoplasmic reticulum and late endosomes were enriched with the replication complexes, demonstrating that alphavirus infection modified cellular membranes beyond inducing replication spherules on the plasma membrane. We have developed here a gentle purification method to obtain large quantities of highly active replication complexes, and similar methods can be applied to other positive-strand RNA viruses.
Collapse
|
241
|
Abstract
In contrast to well-established internal ribosomal entry site (IRES)-mediated translational initiation in animals and plants, no IRESs were established in fungal viral or cellular RNAs. To identify IRES elements in mycoviruses, we developed a luciferase-based dual-reporter detection system in Cryphonectria parasitica, a model filamentous fungus for virus-host interactions. A bicistronic construct entails a codon-optimized Renilla and firefly luciferase (ORluc and OFluc, respectively) gene, between which potential IRES sequences can be inserted. In this system, ORluc serves as an internal control, while OFluc represents IRES activity. Virus sequences in the 5′ untranslated regions (UTRs) of the genomes of diverse positive-sense single-stranded RNA and double-stranded RNA (dsRNA) viruses were analyzed. The results show relatively high IRES activities for Cryphonectria hypovirus 1 (CHV1) and CHV2 and faint but measurable activity for CHV3. The weak IRES signal of CHV3 may be explained by its monocistronic nature, differing from the bicistronic nature of CHV1 and CHV2. This would allow these three hypoviruses to have similar rates of translation of replication-associated protein per viral mRNA molecule. The importance of 24 5′-proximal codons of CHV1 as well as the 5′ UTR for IRES function was confirmed. Furthermore, victoriviruses and chrysoviruses tested IRES positive, whereas mycoreoviruses, partitiviruses, and quadriviruses showed similar Fluc activities as the negative controls. Overall, this study represents the first development of an IRES identification system in filamentous fungi based on the codon-optimized dual-luciferase assay and provides evidence for IRESs in filamentous fungi. Cap-independent, internal ribosomal entry site (IRES)-mediated translational initiation is often used by virus mRNAs and infrequently by cellular mRNAs in animals and plants. However, no IRESs have been established in fungal virus RNAs or cellular RNAs in filamentous fungi. Here, we report the development of a dual-luciferase assay system and measurement of the IRES activities of fungal RNA viruses in a model filamentous fungal host, Cryphonectria parasitica. Viruses identified as IRES positive include hypoviruses (positive-sense RNA viruses, members of the expanded Picornavirus supergroup), totiviruses (nonsegmented dsRNA viruses), and chrysoviruses (tetrasegmented dsRNA viruses). No IRES activities were observed in the 5′ untranslated regions of mycoreoviruses (11-segmented dsRNA viruses), quadriviruses (tetrasegmented dsRNA viruses), or partitiviruses (bisegmented dsRNA viruses). This study provides the first evidence for IRES activities in diverse RNA viruses in filamentous fungi and is a first step toward identifying trans-acting host factors and cis-regulatory viral RNA elements.
Collapse
|
242
|
Brüwer JD, Voolstra CR. First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data. PeerJ 2018; 6:e4449. [PMID: 29507840 PMCID: PMC5835348 DOI: 10.7717/peerj.4449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/13/2018] [Indexed: 02/01/2023] Open
Abstract
Current research posits that all multicellular organisms live in symbioses with associated microorganisms and form so-called metaorganisms or holobionts. Cnidarian metaorganisms are of specific interest given that stony corals provide the foundation of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic Aiptasia CC7 anemones with Symbiodinium. Our approach included the selective removal of anemone host and algal endosymbiont sequences and subsequent microbial sequence annotation. Of a total of 297 million raw sequence reads, 8.6 million (∼3%) remained after host and endosymbiont sequence removal. Of these, 3,293 sequences could be assigned as of viral origin. Taxonomic annotation of these sequences suggests that Aiptasia is associated with a diverse viral community, comprising 116 viral taxa covering 40 families. The viral assemblage was dominated by viruses from the families Herpesviridae (12.00%), Partitiviridae (9.93%), and Picornaviridae (9.87%). Despite an overall stable viral assemblage, we found that some viral taxa exhibited significant changes in their relative abundance when Aiptasia engaged in a symbiotic relationship with Symbiodinium. Elucidation of viral taxa consistently present across all conditions revealed a core virome of 15 viral taxa from 11 viral families, encompassing many viruses previously reported as members of coral viromes. Despite the non-random selection of viral genetic material due to the nature of the sequencing data analyzed, our study provides a first insight into the viral community associated with Aiptasia. Similarities of the Aiptasia viral community with those of corals corroborate the application of Aiptasia as a model system to study coral holobionts. Further, the change in abundance of certain viral taxa across different symbiotic states suggests a role of viruses in the algal endosymbiosis, but the functional significance of this remains to be determined.
Collapse
Affiliation(s)
- Jan D Brüwer
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia
| |
Collapse
|
243
|
Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018; 10:v10020076. [PMID: 29439438 PMCID: PMC5850383 DOI: 10.3390/v10020076] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India.
| | - Burra V L S Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India.
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli 620102, India.
| |
Collapse
|
244
|
Koloniuk I, Přibylová J, Fránová J. Molecular characterization and complete genome of a novel nepovirus from red clover. Arch Virol 2018; 163:1387-1389. [PMID: 29397455 DOI: 10.1007/s00705-018-3742-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
Abstract
During high throughput sequencing (HTS) of leaves from a symptomatic red clover plant, a new RNA virus, tentatively named red clover nepovirus A (RCNVA), was discovered. The complete genomic sequence was determined and characterized. Particularly noteworthy was that RCNVA shares high sequence identities in RNA1 with a group of phylogenetically related nepoviruses while homologies in the RNA2 segments are markedly lower. Based on the genomic organization and phylogenetic attributes, RCNVA should be classified as a novel virus of the genus Nepovirus (subfamily Comovirinae, family Secoviridae, order Picornavirales).
Collapse
Affiliation(s)
- Igor Koloniuk
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, The Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Jaroslava Přibylová
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, The Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jana Fránová
- Department of Plant Virology, Biology Centre, Institute of Plant Molecular Biology, The Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
245
|
Berliner AJ, Mochizuki T, Stedman KM. Astrovirology: Viruses at Large in the Universe. ASTROBIOLOGY 2018; 18:207-223. [PMID: 29319335 DOI: 10.1089/ast.2017.1649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.
Collapse
Affiliation(s)
| | | | - Kenneth M Stedman
- 3 Center for Life in Extreme Environments and Biology Department, Portland State University , Oregon, USA
| |
Collapse
|
246
|
Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, VanInsberghe D, Elsherbini J, Sharma RS, Cutler MB, Kelly L, Polz MF. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 2018; 554:118-122. [DOI: 10.1038/nature25474] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
|
247
|
Kharchenko EP. OCCURRENCE OF SMALL HOMOLOGOUS AND COMPLEMENTARY FRAGMENTS IN HUMAN VIRUS GENOMES AND THEIR POSSIBLE ROLE. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018. [DOI: 10.15789/2220-7619-2017-4-393-404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
With computer analysis occurrence of small homologous and complementary fragments (21 nucleotides in length) has been studied in genomes of 14 human viruses causing most dangerous infections. The sample includes viruses with (+) and (–) single stranded RNA and DNA-containing hepatitis A virus. Analysis of occurrence of homologous sequences has shown the existence two extreme situations. On the one hand, the same virus contains homologous sequences to almost all other viruses (for example, Ebola virus, severe acute respiratory syndrome-related coronavirus, and mumps virus), and numerous homologous sequences to the same other virus (especially in severe acute respiratory syndrome-related coronavirus to Dengue virus and in Ebola virus to poliovirus). On the other hand, there are rare occurrence and not numerous homologous sequences in genomes of other viruses (rubella virus, hepatitis A virus, and hepatitis B virus). Similar situation exists for occurrence of complementary sequences. Rubella virus, the genome of which has the high content of guanine and cytosine, has no complementary sequences to almost all other viruses. Most viruses have moderate level of occurrence for homologous and complementary sequences. Autocomplementary sequences are numerous in most viruses and one may suggest that the genome of single stranded RNA viruses has branched secondary structure. In addition to possible role in recombination among strains autocomplementary sequences could be regulators of translation rate of virus proteins and determine its optimal proportion in virion assembly with genome and mRNA folding. Occurrence of small homologous and complementary sequences in RNA- and DNA-containing viruses may be the result of multiple recombinations in the past and the present and determine their adaptation and variability. Recombination may take place in coinfection of human and/or common hosts. Inclusion of homologous and complementary sequences into genome could not only renew viruses but also serve as memory of existence of a competitor for host and means of counteraction against a competitor in coinfection being an analogy of the bacterial CRISPR/Cas system.
Collapse
|
248
|
Greninger AL. A decade of RNA virus metagenomics is (not) enough. Virus Res 2018; 244:218-229. [PMID: 29055712 PMCID: PMC7114529 DOI: 10.1016/j.virusres.2017.10.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
Abstract
It is hard to overemphasize the role that metagenomics has had on our recent understanding of RNA virus diversity. Metagenomics in the 21st century has brought with it an explosion in the number of RNA virus species, genera, and families far exceeding that following the discovery of the microscope in the 18th century for eukaryotic life or culture media in the 19th century for bacteriology or the 20th century for virology. When the definition of success in organism discovery is measured by sequence diversity and evolutionary distance, RNA viruses win. This review explores the history of RNA virus metagenomics, reasons for the successes so far in RNA virus metagenomics, and methodological concerns. In addition, the review briefly covers clinical metagenomics and environmental metagenomics and highlights some of the critical accomplishments that have defined the fast pace of RNA virus discoveries in recent years. Slightly more than a decade in, the field is exhausted from its discoveries but knows that there is yet even more out there to be found.
Collapse
Affiliation(s)
- Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
249
|
Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 2018; 46:D708-D717. [PMID: 29040670 PMCID: PMC5753373 DOI: 10.1093/nar/gkx932] [Citation(s) in RCA: 706] [Impact Index Per Article: 100.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
The International Committee on Taxonomy of Viruses (ICTV) is charged with the task of developing, refining, and maintaining a universal virus taxonomy. This task encompasses the classification of virus species and higher-level taxa according to the genetic and biological properties of their members; naming virus taxa; maintaining a database detailing the currently approved taxonomy; and providing the database, supporting proposals, and other virus-related information from an open-access, public web site. The ICTV web site (http://ictv.global) provides access to the current taxonomy database in online and downloadable formats, and maintains a complete history of virus taxa back to the first release in 1971. The ICTV has also published the ICTV Report on Virus Taxonomy starting in 1971. This Report provides a comprehensive description of all virus taxa covering virus structure, genome structure, biology and phylogenetics. The ninth ICTV report, published in 2012, is available as an open-access online publication from the ICTV web site. The current, 10th report (http://ictv.global/report/), is being published online, and is replacing the previous hard-copy edition with a completely open access, continuously updated publication. No other database or resource exists that provides such a comprehensive, fully annotated compendium of information on virus taxa and taxonomy.
Collapse
Affiliation(s)
- Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Donald M Dempsey
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Donald B Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
250
|
Mushegian A, Karin EL, Pupko T. Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales". Virology 2018; 513:114-128. [PMID: 29065352 PMCID: PMC7172337 DOI: 10.1016/j.virol.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA.
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|