201
|
Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 2006; 354:2006-13. [PMID: 16687713 DOI: 10.1056/nejmoa051140] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Imatinib mesylate inhibits several tyrosine kinases, including BCR-ABL, the C-KIT receptor, and the platelet-derived growth factor receptors alpha and beta, all of which are associated with disease. We observed that hypophosphatemia developed in some patients with either chronic myelogenous leukemia or gastrointestinal stromal tumors who were receiving imatinib. METHODS We identified 16 patients who had low serum phosphate levels and 8 patients who had normal serum phosphate levels, all of whom were receiving imatinib. We performed the following biochemical measurements: whole-blood levels of ionized calcium, plasma levels of intact parathyroid hormone, and serum levels of total calcium, phosphate, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, magnesium, and markers of bone formation (bone alkaline phosphatase and osteocalcin) and bone resorption (N-telopeptide of collagen cross-links); urinalysis; and phosphate, calcium, and creatinine levels in "spot" urine specimens. RESULTS Patients in the low-phosphate group (median serum phosphate level, 2.0 mg per deciliter [0.6 mmol per liter]; normal level, >2.5 mg per deciliter [0.8 mmol per liter]) had elevated parathyroid hormone levels and low-to-normal serum calcium levels, were younger, and were receiving a higher dose of imatinib than patients in the normal-phosphate group (median level, 3.2 mg per deciliter [1.0 mmol per liter]). Both groups had high levels of phosphate excreted in the urine and markedly decreased serum levels of osteocalcin and N-telopeptide of collagen cross-links. CONCLUSIONS Hypophosphatemia, with associated changes in bone and mineral metabolism, develops in a proportion of patients taking imatinib for either chronic myelogenous leukemia or gastrointestinal stromal tumors. The drug may inhibit bone remodeling (formation and resorption), even in patients with normal serum phosphate levels.
Collapse
Affiliation(s)
- Ellin Berman
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D, Shokat KM, Weiss WA. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9:341-9. [PMID: 16697955 PMCID: PMC2925230 DOI: 10.1016/j.ccr.2006.03.029] [Citation(s) in RCA: 487] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/02/2006] [Accepted: 03/21/2006] [Indexed: 12/21/2022]
Abstract
The PI3 kinase family of lipid kinases promotes cell growth and survival by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate. To define targets critical for cancers driven by activation of PI3 kinase, we screened a panel of potent and structurally diverse drug-like molecules that target this enzyme family. Surprisingly, a single agent (PI-103) effected proliferative arrest in glioma cells, despite the ability of many compounds to block PI3 kinase signaling through its downstream effector, Akt. The unique cellular activity of PI-103 was traced directly to its ability to inhibit both PI3 kinase alpha and mTOR. PI-103 showed significant activity in xenografted tumors with no observable toxicity. These data demonstrate an emergent efficacy due to combinatorial inhibition of mTOR and PI3 kinase alpha in malignant glioma.
Collapse
Affiliation(s)
- Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California 94143
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
| | - Zachary A. Knight
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California 94143
| | - David D. Goldenberg
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California 94143
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
| | - Wei Yu
- Department of Anatomy, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143
| | - Keith E. Mostov
- Department of Anatomy, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143
| | - David Stokoe
- Cancer Research Institute, University of California, San Francisco, San Francisco, California 94143
| | - Kevan M. Shokat
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143
| | - William A. Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94143
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California 94143
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
- Correspondence:
| |
Collapse
|
203
|
Munchhof AM, Li F, White HA, Mead LE, Krier TR, Fenoglio A, Li X, Yuan J, Yang FC, Ingram DA. Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 2006; 15:1858-69. [PMID: 16648142 DOI: 10.1093/hmg/ddl108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic inactivation of tumor suppressor genes initiates human cancers. However, interaction of accessory cells with the tumor-initiating cell within the microenvironment is often required for tumor progression. This paradigm is relevant to understanding neurofibroma development in neurofibromatosis type I patients. Somatic inactivation of the Nf1 tumor suppressor gene, which encodes neurofibromin, is necessary but not sufficient to initiate neurofibroma development. In contrast, neurofibromas occur with high penetrance in mice in which Nf1 is ablated in Schwann cells in the context of a heterozygous mutant (Nf1+/-) microenvironment. Neurofibromas are highly vascularized, and recent studies suggest that Nf1+/- mice have increased angiogenesis in vivo. However, the function of neurofibromin in human endothelial cells (ECs) and the biochemical mechanism by which neurofibromin regulates neoangiogenesis are not known. Utilizing Nf1+/- mice, primary human ECs and endothelial progenitor cells harvested from NF1 patients, we identified a discrete Ras effector pathway, which alters the proliferation and migration of neurofibromin-deficient ECs in response to neurofibroma-derived growth factors both in vitro and in vivo. Thus, these studies identify a unique biochemical pathway in Nf1+/- ECs as a potential therapeutic target in the neurofibroma microenvironment.
Collapse
Affiliation(s)
- Amy M Munchhof
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Lloyd DG, Golfis G, Knox AJS, Fayne D, Meegan MJ, Oprea TI. Oncology exploration: charting cancer medicinal chemistry space. Drug Discov Today 2006; 11:149-59. [PMID: 16533713 DOI: 10.1016/s1359-6446(05)03688-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Approaches for the experimental determination of protein-ligand molecular interactions are reliant on the quality of the compounds being tested. The application of large, randomly designed combinatorial libraries has given way to the creation of more-focused 'drug-like' libraries. Prior to synthesis, we wish to screen the potential compounds to remove undesired chemical moieties and to be within a required range of physiochemical properties. We have used a principal-component analysis (PCA) computational approach to analyze the 3D descriptor space of active and non-active (hit-like) cancer medicinal chemistry compounds. We define hit-like those molecules passing the unmodified OpenEye FILTER program. Our analysis indicates that these compounds occupy quite different regions in space. Cancer-active compounds exist in a much greater volume of space than generic hit-like space and most of them fail the commonly applied filters for orally bioavailable drugs. This is of great significance when designing orally bioavailable cancer target drugs.
Collapse
Affiliation(s)
- David G Lloyd
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
205
|
|
206
|
Meyer-Monard S, Parlier V, Passweg J, Mühlematter D, Hess U, Bargetzi M, Kühne T, Cabrol C, Gratwohl A, Jotterand M, Tichelli A. Combination of broad molecular screening and cytogenetic analysis for genetic risk assignment and diagnosis in patients with acute leukemia. Leukemia 2006; 20:247-53. [PMID: 16408102 DOI: 10.1038/sj.leu.2404044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the impact of genetic analysis combining cytogenetics and broad molecular screening on leukemia diagnosis according to World Health Organization (WHO) and on genetic risk assignment. A two-step nested multiplex RT-PCR assay was used that allowed the detection of 29 fusion transcripts. A total of 186 patients (104 males (56%), 174 adults (94%), 12 children (6%), 155 AML (83%), 31 ALL (17%)) characterized by morphology and immunophenotyping were included. Of these 186 patients, 120 (65%) had a genetic abnormality. Molecular typing revealed a fusion transcript in 49 (26%) patients and cytogenetic analysis revealed an abnormal karyotype in 119 (64%). A total of 27 (14%) cases were genetically classified as favorable, 107 (58%) intermediate and 52 (28%) unfavorable. For 38 (20%) patients, there was a discrepancy in the genetic risk assignments obtained from broad molecular screening and cytogenetics. Cryptic fusion transcripts in nine (5%) patients changed the genetic risk assignment in four and the WHO classification in four patients. In 34 patients (18%), cytogenetics defined the risk assignment by revealing structural and numerical chromosomal abnormalities not detected by molecular screening. Broad molecular screening and cytogenetics are complementary in the diagnosis and genetic risk assignment of acute leukemia.
Collapse
Affiliation(s)
- S Meyer-Monard
- Hematology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Fiskus W, Pranpat M, Bali P, Balasis M, Kumaraswamy S, Boyapalle S, Rocha K, Wu J, Giles F, Manley PW, Atadja P, Bhalla K. Combined effects of novel tyrosine kinase inhibitor AMN107 and histone deacetylase inhibitor LBH589 against Bcr-Abl-expressing human leukemia cells. Blood 2006; 108:645-52. [PMID: 16537804 DOI: 10.1182/blood-2005-11-4639] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AMN107 (Novartis Pharmaceuticals, Basel, Switzerland) has potent in vitro and in vivo activity against the unmutated and most common mutant forms of Bcr-Abl. Treatment with the histone deacetylase inhibitor LBH589 (Novartis) depletes Bcr-Abl levels. We determined the effects of AMN107 and/or LBH589 in Bcr-Abl-expressing human K562 and LAMA-84 cells, as well as in primary chronic myelogenous leukemia (CML) cells. AMN107 was more potent than imatinib mesylate (IM) in inhibiting Bcr-Abl tyrosine kinase (TK) activity and attenuating p-STAT5, p-AKT, Bcl-x(L), and c-Myc levels in K562 and LAMA-84 cells. Cotreatment with LBH589 and AMN107 exerted synergistic apoptotic effects with more attenuation of p-STAT5, p-ERK1/2, c-Myc, and Bcl-x(L) and increases in p27 and Bim levels. LBH589 attenuated Bcr-Abl levels and induced apoptosis of mouse pro-B BaF3 cells containing ectopic expression of Bcr-Abl or the IM-resistant, point-mutant Bcr-AblT315I and Bcr-AblE255K. Treatment with LBH589 also depleted Bcr-Abl levels and induced apoptosis of IM-resistant primary human CML cells, including those with expression of Bcr-AblT315I. As compared with either agent alone, cotreatment with AMN107 and LBH589 induced more loss of cell viability of primary IM-resistant CML cells. Thus, cotreatment with LBH589 and AMN107 is active against cultured or primary IM-resistant CML cells, including those with expression of Bcr-AblT315I.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Benzamides
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Drug Synergism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- Imatinib Mesylate
- Indoles
- Leukemia/drug therapy
- Leukemia/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Panobinostat
- Piperazines/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Warren Fiskus
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Affiliation(s)
- P Mark Bartold
- Colgate Australian Clinical Dental Resource Centre, University of Adelaide, South Australia, Australia
| | | |
Collapse
|
209
|
Mocellin S, Rossi CR, Brandes A, Nitti D. Adult soft tissue sarcomas: Conventional therapies and molecularly targeted approaches. Cancer Treat Rev 2006; 32:9-27. [PMID: 16338075 DOI: 10.1016/j.ctrv.2005.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/21/2005] [Indexed: 01/12/2023]
Abstract
The therapeutic approach to soft tissue sarcomas (STS) has evolved over the past two decades based on the results from randomized controlled trials, which are guiding physicians in the treatment decision-making process. Despite significant improvements in the control of local disease, a significant number of patients ultimately die of recurrent/metastatic disease following radical surgery due to a lack of effective adjuvant treatments. In addition, the characteristic chemoresistance of STS has compromised the therapeutic value of conventional antineoplastic agents in cases of unresectable advanced/metastatic disease. Therefore, novel therapeutic strategies are urgently needed to improve the prognosis of patients with STS. Recent advances in STS biology are paving the way to the development of molecularly targeted therapeutic strategies, the efficacy of which relies not only on the knowledge of the molecular mechanisms underlying cancer development/progression but also on the personalization of the therapeutic regimen according to the molecular features of individual tumours. In this work, we review the state-of-the-art of conventional treatments for STS and summarize the most promising findings in the development of molecularly targeted therapeutic approaches.
Collapse
Affiliation(s)
- Simone Mocellin
- Surgery Branch, Department of Oncological and Surgical Sciences, University of Padova, Via Giustiniani 2, 35128 Padua, Italy.
| | | | | | | |
Collapse
|
210
|
Abstract
The molecular chaperone Hsp90 is a protein with important roles in maintaining the functional stability and viability of cells under a transforming pressure. Cancer cells harbour mutated oncogenic proteins or proteins with dysregulated function and the chaperone is required to maintain their folded and functionally active conformation. In addition, by chaperoning key proteins such as Raf-1, Akt, survivin and hTERT, Hsp90 regulates signalling pathways necessary for the growth, survival and limitless replicative potential of most tumours. Important elements of the apoptotic pathways are also regulated by Hsp90. Overall, these characteristics propose Hsp90 as an important target of whose inhibition may aim at a wide-range of oncogenic transformations. Several years into Hsp90 research have shed light into the feasibility, but also the limitations, of such an approach. In this review, the authors present the current understanding on the relevance and possibility of translating Hsp90 inhibitors into therapeutic agents in cancer therapy.
Collapse
Affiliation(s)
- Gabriela Chiosis
- Programme in Molecular Pharmacology and Chemistry, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Box 482, New York, NY 10021, USA.
| |
Collapse
|
211
|
Li Q, Woods KW, Thomas S, Zhu GD, Packard G, Fisher J, Li T, Gong J, Dinges J, Song X, Abrams J, Luo Y, Johnson EF, Shi Y, Liu X, Klinghofer V, Des Jong R, Oltersdorf T, Stoll VS, Jakob CG, Rosenberg SH, Giranda VL. Synthesis and structure-activity relationship of 3,4'-bispyridinylethylenes: discovery of a potent 3-isoquinolinylpyridine inhibitor of protein kinase B (PKB/Akt) for the treatment of cancer. Bioorg Med Chem Lett 2006; 16:2000-7. [PMID: 16413780 DOI: 10.1016/j.bmcl.2005.12.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/15/2005] [Accepted: 12/19/2005] [Indexed: 01/06/2023]
Abstract
Structure-based design and synthesis of the 3,4'-bispyridinylethylene series led to the discovery of 3-isoquinolinylpyridine 13a as a potent PKB/Akt inhibitor with an IC(50) of 1.3nM against Akt1. Compound 13a shows excellent selectivity against distinct families of kinases such as tyrosine kinases and CAMK, and displays poor to marginal selectivity against closely related kinases in the AGC and CMGC families. Moreover, 13a demonstrates potent cellular activity comparable to staurosporine, with IC(50) values of 0.42 and 0.59microM against MiaPaCa-2 and the Akt1 overexpressing FL5.12-Akt1, respectively. Inhibition of phosphorylation of the Akt downstream target GSK3 was also observed in FL5.12-Akt1 cells with an EC(50) of 1.5microM. The X-ray structures of 12 and 13a in complex with PKA in the ATP-binding site were determined.
Collapse
Affiliation(s)
- Qun Li
- Cancer Research, GPRD, Abbott Laboratories, Abbott Park, IL 60064-6101, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Calvo KR, Liotta LA, Petricoin EF. Clinical proteomics: from biomarker discovery and cell signaling profiles to individualized personal therapy. Biosci Rep 2006; 25:107-25. [PMID: 16222423 DOI: 10.1007/s10540-005-2851-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The discovery of new highly sensitive and specific biomarkers for early disease detection and risk stratification coupled with the development of personalized "designer" therapies holds the key to future treatment of complex diseases such as cancer. Mounting evidence confirms that the low molecular weight (LMW) range of the circulatory proteome contains a rich source of information that may be able to detect early stage disease and stratify risk. Current mass spectrometry (MS) platforms can generate a rapid and high resolution portrait of the LMW proteome. Emerging novel nanotechnology strategies to amplify and harvest these LMW biomarkers in vivo or ex vivo will greatly enhance our ability to discover and characterize molecules for early disease detection, subclassification and prognostic capability of current proteomics modalities. Ultimately genetic mutations giving rise to disease are played out and manifested on a protein level, involving derangements in protein function and information flow within diseased cells and the interconnected tissue microenvironment. Newly developed highly sensitive, specific and linearly dynamic reverse phase protein microarray systems are now able to generate circuit maps of information flow through phosphoprotein networks of pure populations of microdissected tumor cells obtained from patient biopsies. We postulate that this type of enabling technology will provide the foundation for the development of individualized combinatorial therapies of molecular inhibitors to target tumor-specific deranged pathways regulating key biologic processes including proliferation, differentiation, apoptosis, immunity and metastasis. Hence future therapies will be tailored to the specific deranged molecular circuitry of an individual patient's disease. The successful transition of these groundbreaking proteomic technologies from research tools to integrated clinical diagnostic platforms will require ongoing continued development, and optimization with rigorous standardization development and quality control procedures.
Collapse
Affiliation(s)
- Katherine R Calvo
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
213
|
Nakamura R, Chakrabarti S, Akin C, Robyn J, Bahceci E, Greene A, Childs R, Dunbar CE, Metcalfe DD, Barrett AJ. A pilot study of nonmyeloablative allogeneic hematopoietic stem cell transplant for advanced systemic mastocytosis. Bone Marrow Transplant 2006; 37:353-8. [PMID: 16400343 DOI: 10.1038/sj.bmt.1705245] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Systemic mastocytosis (SM) is a disease characterized by tissue infiltration of neoplastic mast cells originating from hematopoietic stem cells. Patients with advanced SM have a poor prognosis, and there is no mast cell ablative therapy available for most patients who carry an activating point mutation in the c-kit gene. We report results of a prospective study evaluating the safety, engraftment, and possibility of inducing a graft-versus-mast cell (GvMC) effect after allogeneic nonmyeloablative hematopoietic cell transplantation (HCT) from an HLA-identical sibling. Three patients with advanced SM were transplanted. All achieved complete donor T cell chimerism followed by clinical evidence for GvMC effect. However, all patients experienced disease progression with the longest response duration of 39 months. The GvMC effect can be observed after nonmyeloablative HCT with limited efficacy. Effective cytoreductive therapy prior to HCT may be required for long-term disease control and cure.
Collapse
Affiliation(s)
- R Nakamura
- Stem Cell Allogeneic Transplant Unit, Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
Mental disorders cause more disability than any other class of medical illness in Americans between ages 15 and 44 years. The suicide rate is higher than the annual mortality from homicide, AIDS, and most forms of cancer. In contrast to nearly all communicable and most non-communicable diseases, there is little evidence that the morbidity and mortality from mental disorders have changed in the past several decades. Mental health advocates, including psychiatric researchers, have pointed to stigma as one of the reasons for the lack of progress with mental illnesses relative to other medical illnesses. This review considers how the expectations and goals of the research community have contributed to this relative lack of progress. In contrast to researchers in cancer and heart disease who have sought cures and preventions, biological psychiatrists in both academia and industry have set their sights on incremental and marketable advances, such as drugs with fewer adverse effects. This essay argues for approaches that can lead to cures and strategies for prevention of schizophrenia and mood disorders.
Collapse
Affiliation(s)
- T R Insel
- National Institute of Mental Health/NIH, Rm. 8235, 6001 Executive Boulevard, Bethesda, MD 20892, USA.
| | | |
Collapse
|
215
|
Abstract
Systemic mastocytosis is a fascinating disease with diverse clinical features. There have been numerous advances in understanding the basis of clinical manifestations of this disease and of its molecular pathogenesis in the last several decades. The development of methods to study mast cell biology using cell culture and murine models has proven invaluable in this regard. Clarification of the roles of mast cells in various biological processes has expanded our understanding of their importance in innate immunity, as well as allergy. New diagnostic methods have allowed the design of detailed criteria to assist in distinguishing reactive mast cell hyperplasia from systemic mastocytosis. Variants and subvariants of systemic mastocytosis have been defined to assist in determining prognosis and in management of the disease. Elucidation of the roles of the Kit receptor tyrosine kinase and signal transduction pathway activation has contributed to development of potential targeted therapeutic approaches that may prove useful in the future.
Collapse
Affiliation(s)
- Jamie Robyn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
216
|
Abstract
Growth factor signals are propagated from the cell surface to intracellular processes that control critical functions such as growth, differentiation, angiogenesis, and inhibition of apoptosis via sequential kinase signaling. These kinases are receptor kinases, which are transmembrane proteins such as epidermal growth factor receptor or cytoplasmic kinases such as Src kinase. In malignancies, these signaling pathways are often exploited to optimize tumor growth and metastasis. Thus, they represent attractive targets for cancer therapy. This review will summarize current knowledge of the small-molecule multiple-kinase inhibitors in lung cancer therapy. These inhibitors generally hinder the phosphorylation of several protein kinases of membrane receptors, such as vascular endothelial growth factor receptors, platelet-derived growth factor receptors, the human epidermal growth factor receptor family, and cytoplasmic receptors such as c-Kit, Raf kinase, and FLT3. These inhibitors include ZD6474, SU11248, AEE 788, sorafenib, vatalanib, and AG-013736.
Collapse
Affiliation(s)
- Alex A Adjei
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
217
|
Jørgensen HG, Allan EK, Mountford JC, Richmond L, Harrison S, Elliott MA, Holyoake TL. Enhanced CML stem cell elimination in vitro by bryostatin priming with imatinib mesylate. Exp Hematol 2005; 33:1140-6. [PMID: 16219536 DOI: 10.1016/j.exphem.2005.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/24/2005] [Accepted: 05/27/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In chronic myeloid leukemia (CML), imatinib mesylate (IM; Gleevec, Glivec) induces a G0/G1 cell-cycle block in total CD34(+) cells without causing significant apoptosis. Bryostatin-1 (bryo), a protein kinase C (PKC) modulator, was investigated for its ability to increase IM-mediated apoptosis either through induction of cycling of G0/G1 Ph(+) cells or antagonism of the IM-induced cell-cycle block. METHODS The Ph(+) K562 cell line and primary CD34(+) CML cells were studied for cell-cycle progression (PI staining), proliferation ((3)H thymidine uptake), and survival (dye exclusion). RESULTS Following 48 hours exposure to IM, on average more than 80% of surviving K562 cells were in G0/G1 as compared to approximately 50% for untreated control cultures (p < 0.001). After accounting for IM-induced cell kill, the absolute number of viable G0/G1 cells was significantly increased, confirming its anti-proliferative effect. However, pretreatment for 24 hours with bryo both increased K562 total cell kill and normalized the percentage of cells recovered in G0/G1, thus reducing their absolute number. For primary CML CD34(+) cells, pretreatment with bryo prior to IM significantly enhanced cell death of both total and, critically, G0/G1 populations. CONCLUSION These results suggest that carefully scheduled drug combinations that include an agent to antagonize the anti-proliferative effect of IM may prove more efficacious within the Ph(+) stem cell compartment than IM monotherapy.
Collapse
MESH Headings
- Antigens, CD34/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzamides
- Bryostatins
- Drug Antagonism
- G1 Phase/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Macrolides/antagonists & inhibitors
- Macrolides/pharmacology
- Piperazines/antagonists & inhibitors
- Piperazines/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Pyrimidines/antagonists & inhibitors
- Pyrimidines/pharmacology
- Resting Phase, Cell Cycle/drug effects
Collapse
|
218
|
Abstract
Cancer chemotherapy has been one of the major medical advances in the last few decades. However, the drugs used for this therapy have a narrow therapeutic index, and often the responses produced are only just palliative as well as unpredictable. In contrast, targeted therapy that has been introduced in recent years is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review focuses on small molecule inhibitors of tyrosine kinase. They compete with the ATP binding site of the catalytic domain of several oncogenic tyrosine kinases. They are orally active, small molecules that have a favorable safety profile and can be easily combined with other forms of chemotherapy or radiation therapy. Several tyrosine kinase inhibitors (TKIs) have been found to have effective antitumor activity and have been approved or are in clinical trials. The inhibitors discussed in this manuscript are imatinib mesylate (STI571; Gleevec), gefitinib (Iressa), erlotinib (OSI-1774; Tarceva), lapatinib (GW-572016), canertinib (CI-1033), semaxinib (SU5416), vatalanib (PTK787/ZK222584), sorafenib (BAY 43-9006), sutent (SU11248), and leflunomide (SU101). TKIs are thus an important new class of targeted therapy that interfere with specific cell signaling pathways and thus allow target-specific therapy for selected malignancies. The pharmacological properties and anticancer activities of these inhibitors are discussed in this review. Use of these targeted therapies is not without limitations such as the development of resistance and the lack of tumor response in the general population. The availability of newer inhibitors and improved patient selection will help overcome these problems in the future.
Collapse
Affiliation(s)
- Amit Arora
- University of Nebraska College of Medicine, Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | |
Collapse
|
219
|
Abstract
It has become increasingly apparent in recent years that a therapeutic plateau has been reached for patients with advanced stage non-small cell lung cancer (NSCLC) treated with conventional cytotoxic agents. As a result, investigators have directed their efforts toward the development of treatments encompassing novel targeted agents. Apoptosis is one of many cellular pathways currently under investigation as a therapeutic target for the treatment of NSCLC. Anti-inflammatory agents, including cyclooxygenase inhibitors, have been shown to inhibit apoptosis and appear promising based on preclinical studies. However, several phase II studies indicate that this therapeutic strategy is unlikely to be successful. In contrast, the proteosome inhibitor bortezomib has shown promise in preliminary studies, and further efforts to elucidate the role this agent may play in the treatment of NSCLC are ongoing. Agonists of the tumor necrosis factor-related, apoptosis-inducing ligand have also entered into early clinical studies in patients with NSCLC. Further studies will be needed to fully clarify how agents targeting the apoptotic pathway can be used in the treatment of NSCLC, but the results of current clinical trials suggest that certain agents may be active.
Collapse
Affiliation(s)
- Victoria Villaflor
- Division of Hematology & Medical Oncology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
220
|
Abstract
Ewing tumors, which comprise Ewing's sarcoma and peripheral primitive neuroectodermal tumors, are highly aggressive and mostly affect children and adolescents. Their molecular signature is a chromosomal translocation leading to the generation of EWS-ETS (or very rarely FUS-ETS) fusion proteins that are capable of transforming cells. These oncoproteins act as aberrant transcription factors due to the fusion of an ETS DNA binding domain to a highly potent EWS (or FUS) transactivation domain. Accordingly, many EWS-ETS target genes have been identified whose dysregulation could contribute to the development of tumor formation. Furthermore, EWS-ETS oncoproteins may impact on RNA splicing or affect other proteins through disturbing their ability to form functional complexes. The molecular knowledge gained so far from studying EWS-ETS oncoproteins has not only broadened our understanding of Ewing tumors but also improved the diagnosis of these highly undifferentiated tumors. In addition, several potential prognostic markers have been uncovered and novel therapies are suggested that may improve the still dismal survival rate of Ewing tumor patients.
Collapse
Affiliation(s)
- Ralf Janknecht
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
221
|
Marzec M, Kasprzycka M, Ptasznik A, Wlodarski P, Zhang Q, Odum N, Wasik MA. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. J Transl Med 2005; 85:1544-54. [PMID: 16170336 DOI: 10.1038/labinvest.3700348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aberrant expression of the ALK tyrosine kinase as a chimeric protein with nucleophosmin (NPM) and other partners plays a key role in malignant cell transformation of T-lymphocytes and other cells. Here we report that two small-molecule, structurally related, quinazoline-type compounds, WHI-131 and WHI-154, directly inhibit enzymatic activity of NPM/ALK as demonstrated by in vitro kinase assays using a synthetic tyrosine-rich oligopeptide and the kinase itself as the substrates. The inhibition of NPM/ALK activity resulted in malignant T cells in suppression of their growth, induction of apoptosis and inhibition of tyrosine phosphorylation of STAT3, the key effector of the NPM/ALK-induced oncogenesis. We also show that the STAT3 tyrosine phosphorylation is mediated in the malignant T cells by NPM/ALK independently of Jak3 kinase as evidenced by the presence of STAT3 phosphorylation in the NPM/ALK-transfected BaF3 cells that do not express detectable Jak3 and in the NPM/ALK-positive malignant T cells with either Jak3 activity impaired by a pan-Jak or Jak3-selective inhibitor or Jak3 expression abrogated by Jak3 siRNA. The above results represent the 'proof-of-principle' experiments with regard to the ALK enzymatic activity as an attractive therapeutic target in T-cell lymphomas and other malignancies that express the kinase in an active form.
Collapse
Affiliation(s)
- Michal Marzec
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A, Eder M. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 2005; 107:3279-87. [PMID: 16278304 DOI: 10.1182/blood-2005-08-3087] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although targeting the BCR-ABL tyrosine kinase activity by imatinib mesylate has rapidly become first-line therapy in chronic myeloid leukemia (CML), drug resistance suggests that combination therapy directed to a complementing target may significantly improve treatment results. To identify such potential targets, we used lentivirus-mediated RNA interference (RNAi) as a tool for functional genomics in cell lines as well as primary normal and CML CD34+ cells. In a conditional cell culture model, we demonstrate that RNAi-mediated reduction of SHP2, STAT5, and Gab2 protein expression inhibits BCR-ABL-dependent but not cytokine-dependent proliferation in a dose-dependent manner. Similarly, colony formation of purified primary CML but not of normal CD34+ colony-forming cells is specifically reduced by inhibition of SHP2, STAT5, and Gab2 expression, respectively. In addition, coexpression of both anti-BCR-ABL and anti-SHP2 shRNAs from a single lentiviral vector induces stronger inhibition of colony formation as compared to either shRNA alone. The data indicate that BCR-ABL expression may affect the function of normal signaling molecules. Targeting these molecules may harbor significant therapeutic potential for the treatment of patients with CML.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Antigens, CD34/metabolism
- Benzamides
- Combined Modality Therapy/methods
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Genetic Vectors/therapeutic use
- Humans
- Imatinib Mesylate
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- K562 Cells
- Lentivirus
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Pyrimidines/therapeutic use
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Michaela Scherr
- Medizinische Hochschule Hannover, Zentrum Innere Medizin, Abteilung Hämatologie, Hämostaseologie und Onkologie, Carl-Neuberg Strasse 1, D-30623 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
From its beginnings two decades ago with the analysis of chromosomal translocation breakpoints, research into the molecular pathogenesis of acute lymphoblastic leukemia (ALL) has now progressed to the large-scale resequencing of candidate oncogenes and tumor suppressor genes in the genomes of ALL cases blocked at various developmental stages within the B- and T-cell lineages. In this review, we summarize the findings of these investigations and highlight how this information is being integrated into multistep mutagenesis cascades that impact specific signal transduction pathways and synergistically lead to leukemic transformation. Because of these advances, fueled by improved technology for mutational analysis and the development of small-molecule drugs and monoclonal antibodies, the future is bright for a new generation of targeted therapies. Best illustrated by the successful introduction of imatinib mesylate, these new treatments will interfere with disordered molecular pathways specific for the leukemic cells, and thus should exhibit much less toxicity and fewer long-term adverse effects than currently available therapeutic modalities.
Collapse
Affiliation(s)
- Scott A Armstrong
- Children's Hospital, Karp Research Labs, Rm 08211, 1 Blackfan Circle, Boston, MA 02115, USA.
| | | |
Collapse
|
224
|
Abstract
Innovative hypothesis-driven clinical trials have achieved major successes over the past several decades in treating children and adolescents with cancer. DNA-damaging cytotoxic agents have cured children with cancer. While the mission is not yet accomplished, chemotherapy has been validated. None of these drugs were designed specifically for a pediatric disease. Continued progress will require new strategies. Now being tested for adult cancers, these strategies include gene therapy, immunotherapy, cancer prevention, and signal transduction inhibitor (STI) therapy. Of these, the most promising is STI therapy, also known as molecular therapeutics or targeted therapy. For this therapy to succeed, components of signal transduction (i.e., candidate drug targets) must be identified, the targets relevant to cancers, and the drugs available for trial. Because STI therapy is biologically driven and because therapy will be tailored depending on the molecular profile of a specific patient's tumor, clinical pediatric oncologists will need to acquire greater understanding of signaling pathways and their therapeutic relevance. With examples drawn from pediatric oncology, the critical steps in the pre-clinical development of targeted therapy are reviewed here.
Collapse
Affiliation(s)
- Seth J Corey
- Division of Pediatrics, UT-MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
225
|
Hantschel O, Wiesner S, Güttler T, Mackereth CD, Rix LLR, Mikes Z, Dehne J, Görlich D, Sattler M, Superti-Furga G. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol Cell 2005; 19:461-73. [PMID: 16109371 DOI: 10.1016/j.molcel.2005.06.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/02/2005] [Accepted: 06/22/2005] [Indexed: 01/21/2023]
Abstract
The Bcr-Abl tyrosine kinase causes different forms of leukemia in humans. Depending on its position within the cell, Bcr-Abl differentially affects cellular growth. However, no structural and molecular details for the anticipated localization determinants are available. We present the NMR structure of the F-actin binding domain (FABD) of Bcr-Abl and its cellular counterpart c-Abl. The FABD forms a compact left-handed four-helix bundle in solution. We show that the nuclear export signal (NES) previously reported in this region is part of the hydrophobic core and nonfunctional in the intact protein. In contrast, we could identify the critical residues of helix alphaIII that are responsible for F-actin binding and cytoskeletal association. We propose that these interactions represent a major determinant for both Bcr-Abl and c-Abl localization.
Collapse
Affiliation(s)
- Oliver Hantschel
- Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 19/3, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S, Busam D, Li K, Edwards JB, Eberhart C, Murphy KM, Tsiamouri A, Beeson K, Simpson AJG, Venter JC, Riggins GJ, Strausberg RL. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci U S A 2005; 102:14344-9. [PMID: 16186508 PMCID: PMC1242336 DOI: 10.1073/pnas.0507200102] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is now clear that tyrosine kinases represent attractive targets for therapeutic intervention in cancer. Recent advances in DNA sequencing technology now provide the opportunity to survey mutational changes in cancer in a high-throughput and comprehensive manner. Here we report on the sequence analysis of members of the receptor tyrosine kinase (RTK) gene family in the genomes of glioblastoma brain tumors. Previous studies have identified a number of molecular alterations in glioblastoma, including amplification of the RTK epidermal growth factor receptor. We have identified mutations in two other RTKs: (i) fibroblast growth receptor 1, including the first mutations in the kinase domain in this gene observed in any cancer, and (ii) a frameshift mutation in the platelet-derived growth factor receptor-alpha gene. Fibroblast growth receptor 1, platelet-derived growth factor receptor-alpha, and epidermal growth factor receptor are all potential entry points to the phosphatidylinositol 3-kinase and mitogen-activated protein kinase intracellular signaling pathways already known to be important for neoplasia. Our results demonstrate the utility of applying DNA sequencing technology to systematically assess the coding sequence of genes within cancer genomes.
Collapse
Affiliation(s)
- Vikki Rand
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
O'Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MWN, Druker BJ. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005; 65:4500-5. [PMID: 15930265 DOI: 10.1158/0008-5472.can-05-0259] [Citation(s) in RCA: 818] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imatinib, a Bcr-Abl tyrosine kinase inhibitor, is a highly effective therapy for patients with chronic myelogenous leukemia (CML). Despite durable responses in most chronic phase patients, relapses have been observed and are much more prevalent in patients with advanced disease. The most common mechanism of acquired imatinib resistance has been traced to Bcr-Abl kinase domain mutations with decreased imatinib sensitivity. Thus, alternate Bcr-Abl kinase inhibitors that have activity against imatinib-resistant mutants would be useful for patients who relapse on imatinib therapy. Two such Bcr-Abl inhibitors are currently being evaluated in clinical trials: the improved potency, selective Abl inhibitor AMN107 and the highly potent dual Src/Abl inhibitor BMS-354825. In the current article, we compared imatinib, AMN107, and BMS-354825 in cellular and biochemical assays against a panel of 16 kinase domain mutants representing >90% of clinical isolates. We report that AMN107 and BMS-354825 are 20-fold and 325-fold more potent than imatinib against cells expressing wild-type Bcr-Abl and that similar improvements are maintained for all imatinib-resistant mutants tested, with the exception of T315I. Thus, both inhibitors hold promise for treating imatinib-refractory CML.
Collapse
Affiliation(s)
- Thomas O'Hare
- Howard Hughes Medical Institute, Oregon Health and Science University Cancer Institute, Portland 97239, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J, Cullen D, Coburn A, Moore SA, Okabe R, Fabbro D, Manley PW, Griffin JD, Gilliland DG. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 2005; 106:3206-13. [PMID: 16030188 PMCID: PMC1895333 DOI: 10.1182/blood-2005-05-1932] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AMN107 is a small molecule tyrosine kinase inhibitor developed, in the first instance, as a potent inhibitor of breakpoint cluster region-abelson (BCR-ABL). We tested its effectiveness against fusion tyrosine kinases TEL-platelet-derived growth factor receptorbeta (TEL-PDGFRbeta) and FIP1-like-1 (FIP1L1)-PDGFRalpha, which cause chronic myelomonocytic leukemia and hypereosinophilic syndrome, respectively. In vitro, AMN107 inhibited proliferation of Ba/F3 cells transformed by both TEL-PDGFRbeta and FIP1L1-PDGFRalpha with IC50 (inhibitory concentration 50%) values less than 25 nM and inhibited phosphorylation of the fusion kinases and their downstream signaling targets. The imatinib mesylate-resistant mutant TEL-PDGFRbeta T681I was sensitive to AMN107, whereas the analogous mutation in FIP1L1-PDGFRalpha, T674I, was resistant. In an in vivo bone marrow transplantation assay, AMN107 effectively treated myeloproliferative disease induced by TEL-PDGFRbeta and FIP1L1-PDGFRalpha, significantly increasing survival and disease latency and reducing disease severity as assessed by histopathology and flow cytometry. In summary, AMN107 can inhibit myeloid proliferation driven by TEL-PDGFRbeta and FIP1L1-PDGFRalpha and may be a useful drug for treatment of patients with myeloproliferative disease who harbor these kinase fusions.
Collapse
Affiliation(s)
- Elizabeth H Stover
- Division of Hematology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Daniel PT, Dörken B. [Basics of molecular diagnostics and therapy of malignant tumors]. Internist (Berl) 2005; 46:835-6, 838-42, 844-6. [PMID: 16010519 DOI: 10.1007/s00108-005-1470-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent insights in disease pathogenesis and mechanisms of resistance to therapy of malignant tumors provide a rational basis for the development of novel therapeutic strategies that target genetic defects and deregulated signaling events in malignant tumors. In contrast to conventional therapeutics, small molecule inhibitors or monoclonal antibodies allow for a far more selective, targeted therapy of tumors that carry a corresponding target structure or gene expression profile. Molecular therapeutics therefore necessitate clinical deployment of genetic diagnostics for the identification of those patients who have a chance to benefit from these novel targeted therapies.
Collapse
Affiliation(s)
- P T Daniel
- Medizinische Klinik mit Schwerpunkt Hämatologie und Onkologie, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Humboldt Universität, Berlin, Germany.
| | | |
Collapse
|
230
|
Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol 2005; 23:5386-403. [PMID: 15983388 DOI: 10.1200/jco.2005.23.648] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating cytokines, hormones, and growth factors control all aspects of cell proliferation, differentiation, angiogenesis, apoptosis, and senescence. These chemical signals are propagated from the cell surface to intracellular processes via sequential kinase signaling, arranged in modules that exhibit redundancy and cross talk. This signal transduction system comprising growth factors, transmembrane receptor proteins, and cytoplasmic secondary messengers is often exploited to optimize tumor growth and metastasis in malignancies. Thus, it represents an attractive target for cancer therapy. This review will summarize current knowledge of selected intracellular signaling networks and their role in cancer therapy. The focus will be on pathways for which inhibitory agents are currently undergoing clinical testing. Original data for inclusion in this review were identified through a MEDLINE search of the literature. All papers from 1966 through March 2005 were identified by the following search terms: "signal transduction," "intracellular signaling," "kinases," "proliferation," "growth factors," and "cancer therapy." All original research and review papers related to the role of intracellular signaling in oncogenesis and therapeutic interventions relating to abnormal cell signaling were identified. This search was supplemented by a manual search of the Proceedings of the Annual Meetings of the American Association for Cancer Research, American Society of Clinical Oncology, and the American Association for Cancer Research (AARC)--European Organisation for Research and Treatment of Cancer (EORTC)--National Cancer Institute (NCI) Symposium on New Anticancer Drugs.
Collapse
Affiliation(s)
- Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
231
|
Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci U S A 2005; 102:9714-9. [PMID: 15980154 PMCID: PMC1172248 DOI: 10.1073/pnas.0501870102] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although targeted therapy is yielding promising results in the treatment of specific cancers, drug resistance poses a problem. We develop a mathematical framework that can be used to study the principles underlying the emergence and prevention of resistance in cancers treated with targeted small-molecule drugs. We consider a stochastic dynamical system based on measurable parameters, such as the turnover rate of tumor cells and the rate at which resistant mutants are generated. We find that resistance arises mainly before the start of treatment and, for cancers with high turnover rates, combination therapy is less likely to yield an advantage over single-drug therapy. We apply the mathematical framework to chronic myeloid leukemia. Early-stage chronic myeloid leukemia was the first case to be treated successfully with a targeted drug, imatinib (Novartis, Basel). This drug specifically inhibits the BCR-ABL oncogene, which is required for progression. Although drug resistance prevents successful treatment at later stages of the disease, our calculations suggest that, within the model assumptions, a combination of three targeted drugs with different specificities might overcome the problem of resistance.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, 103 MSTB, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
232
|
Barnes K, McIntosh E, Whetton AD, Daley GQ, Bentley J, Baldwin SA. Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene 2005; 24:3257-67. [PMID: 15735728 DOI: 10.1038/sj.onc.1208461] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In chronic myeloid leukaemia (CML) expression of the chimeric tyrosine kinase, Bcr-Abl, promotes the inappropriate survival of haemopoietic stem cells by a nonautocrine mechanism in the absence of IL-3. Stimulation of glucose uptake appears to play an important role in the suppression of apoptosis by this cytokine in normal haemopoietic cells. To investigate whether the cell survival mechanisms mediated by the oncoprotein and cytokine showed any similarities, we employed a haemopoietic cell line, TonB210, engineered for inducible expression of Bcr-Abl. Tyrosine kinase expression in cytokine-deprived cells was found to mimic the effect of IL-3 in maintaining a higher V(max) for hexose uptake. In both IL-3- treated cells and those expressing Bcr-Abl, high rates of hexose uptake were associated with the retention at the cell surface of approximately 80% of the total cellular content of the GLUT1 glucose transporter. In contrast, treatment of Bcr-Abl-expressing cells for 6 h with the Bcr-Abl kinase inhibitor Glivec (10 muM), in the absence of IL-3, led to internalization of approximately 90% of the cell-surface transporters and drastically decreased (4.4+/-0.9 (mean+/-s.e.m., 4)-fold) the V(max) for hexose uptake, without significant effect on the K(m) for this process or on the total cellular transporter content. These effects were not the result of any significant loss in cell viability, and preceded the onset of apoptosis caused by inhibition of Bcr-Abl. Both IL-3 treatment and expression of Bcr-Abl led to enhanced phosphorylation of Akt (protein kinase B). The stimulation of transport by IL-3 and Bcr-Abl in TonB210 cells was inhibitable by phosphatidylinositol 3-kinase inhibitors, indicating the involvement of this kinase in the signal transduction pathway. These findings suggest that inhibition of glucose transport plays an important role in the therapeutic action of Glivec, and that the signal transduction pathways involved in transport stimulation by Bcr-Abl may offer novel therapeutic targets for CML.
Collapse
Affiliation(s)
- Kay Barnes
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | |
Collapse
|
233
|
Benvenuti S, Arena S, Bardelli A. Identification of cancer genes by mutational profiling of tumor genomes. FEBS Lett 2005; 579:1884-90. [PMID: 15763568 DOI: 10.1016/j.febslet.2005.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 02/01/2005] [Accepted: 02/03/2005] [Indexed: 10/25/2022]
Abstract
It is now widely accepted that cancer is a genetic disease and that alterations in the DNA sequence underlie the development of every neoplasm. The identification of mutated genes that are causally implicated in oncogenesis ('cancer genes') has been a major goal in medical sciences for the last two decades. The availability of the human genome sequence coupled to the introduction of high throughput sequencing technologies has created an unprecedented opportunity in this field. It is now possible to perform mutational studies of entire cancer genomes thus providing a complete description of mutations underlying human oncogenesis. The recent identification of high frequency mutations in the BRAF and PI3K genes suggests that many more cancer genes remain to be discovered. In this review, we consider how the systematic mutational analysis of gene families in individual neoplasms has led to the identification of a number of cancer genes and how this information is influencing the treatment of cancer.
Collapse
Affiliation(s)
- Silvia Benvenuti
- The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Candiolo (To), Italy
| | | | | |
Collapse
|
234
|
|
235
|
Abstract
Oncology, as a therapeutic area, is characterized by a desperate medical need for new drugs; the use of drugs that kill cells and which are consequently often toxic; and rates of failure in expensive Phase III trials that eclipse many other disease areas. The poor performance of most investigational cancer drugs implies that the standard preclinical disease models are faulty or, at least, improperly used. Some studies, however, support the view that cancer models can be highly effective, but only when selected and interpreted with care.
Collapse
Affiliation(s)
- Alexander Kamb
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
236
|
Kung C, Kenski DM, Dickerson SH, Howson RW, Kuyper LF, Madhani HD, Shokat KM. Chemical genomic profiling to identify intracellular targets of a multiplex kinase inhibitor. Proc Natl Acad Sci U S A 2005; 102:3587-92. [PMID: 15738404 PMCID: PMC552777 DOI: 10.1073/pnas.0407170102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of the kinase or kinases targeted by protein kinase inhibitors is a critical challenge in validating their use as therapeutic agents or molecular probes. Here, to address this problem, we describe a chemical genomics strategy that uses a direct comparison between microarray transcriptional signatures elicited by an inhibitor of unknown specificity and those elicited by highly specific pharmacological inhibition of engineered candidate kinase targets. By using this approach, we have identified two cyclin-dependent kinases, Cdk1 and Pho85, as the targets of the inhibitor GW400426 in Saccharomyces cerevisiae. We demonstrate that simultaneous inhibition of Cdk1 and Pho85, and not inhibition of either kinase alone, by GW400426 controls the expression of specific transcripts involved in polarized cell growth, thus revealing a cellular process that is uniquely sensitive to the multiplex inhibition of these two kinases. Our results suggest that the cellular responses induced by multiplex protein kinase inhibitors may be an emergent property that cannot be understood fully by considering only the sum of individual inhibitor-kinase interactions.
Collapse
Affiliation(s)
- Charles Kung
- Computational, Analytical, and Structural Sciences, GlaxoSmithKline, 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
Daub H, Specht K, Ullrich A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat Rev Drug Discov 2005; 3:1001-10. [PMID: 15573099 DOI: 10.1038/nrd1579] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Selective inhibition of protein tyrosine kinases is gaining importance as an effective therapeutic approach for the treatment of a wide range of human cancers. However, as extensively documented for the BCR-ABL oncogene in imatinib-treated leukaemia patients, clinical resistance caused by mutations in the targeted oncogene has been observed. Here, we look at how structural and mechanistic insights from imatinib-insensitive Bcr-Abl have been exploited to identify second-generation drugs that override acquired target resistance. These insights have created a rationale for the development of either multi-targeted protein kinase inhibitors or cocktails of selective antagonists as antitumour drugs that combine increased therapeutic potency with a reduced risk of the emergence of molecular resistance.
Collapse
Affiliation(s)
- Henrik Daub
- Axxima Pharmaceuticals AG, Max-Lebsche-Platz 32, 81377 München, Germany.
| | | | | |
Collapse
|
238
|
Abstract
The completion of the human genome project has marked a new beginning in biomedical sciences. Human cancer is a genetic disease and, accordingly, the field of oncology has been one of the first to be impacted by this historic revolution. Knowledge of the sequence and organization of the human genome facilitates the systematic analysis of the genetic alterations underlying the origin and evolution of tumors. Recent mutational analyses in colorectal and other cancers have focused on examination of gene families involved in signal transduction, such as kinases and phosphatases. This approach has been successful in identifying mutations in a variety of different genes, including the identification of PI3KCA as one of the most commonly mutated oncogenes in human cancer. Such genomic analyses have already demonstrated their utility in basic and clinical cancer research, and are expected to have an important impact on future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Bardelli
- The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, 10060 Candiolo (To), Italy.
| | | |
Collapse
|