201
|
Abstract
Changes in intracellular Ca2+ correlate with specific events in the cell cycle. Here we investigated the role of Ca2+ in the G1 phase. HEK 293 cells were arrested in mitosis and subjected to short-term treatments that alter Ca2+ homeostasis prior to their release into G1. Treatment with thapsigargin (TG), an irreversible inhibitor of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) lengthened the G1 phase. Moreover, TG treatment also resulted in a dramatic alteration in cellular morphology and attachment and in the reduction of MAPK activity and lower levels of cyclin D1 and cyclin E proteins. Treatments with reagents that transiently increase or decrease cytosolic Ca2+ or that temporarily inactivate SERCA did not alter any of the above parameters. Cells expressing a TG-resistant form of SERCA progressed normally through the G1/S transition after TG treatment. These results suggest that long-term SERCA inactivation affects cell cycle-dependent events and compromises progression through G1/S.
Collapse
Affiliation(s)
- V R Simon
- Banting and Best Department of Medical Research, University of Toronto, ON, Canada.
| | | |
Collapse
|
202
|
Noguchi T, Arai R, Motegi F, Nakano K, Mabuchi I. Contractile ring formation in Xenopus egg and fission yeast. Cell Struct Funct 2001; 26:545-54. [PMID: 11942608 DOI: 10.1247/csf.26.545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How actin filaments (F-actin) and myosin II (myosin) assemble to form the contractile ring was investigated with fission yeast and Xenopus egg. In fission yeast cells, an aster-like structure composed of F-actin cables is formed at the medial cortex of the cell during prophase to metaphase, and a single F-actin cable(s) extends from this structure, which seems to be a structural basis of the contractile ring. In early mitosis, myosin localizes as dots in the medial cortex independently of F-actin. Then they fuse with each other and are packed into a thin contractile ring. At the growing ends of the cleavage furrow of Xenopus eggs, F-actin at first assembles to form patches. Next they fuse with each other to form short F-actin bundles. The short bundles then form long bundles. Myosin seems to be transported by the cortical movement to the growing end and assembles there as spots earlier than F-actin. Actin polymerization into the patches is likely to occur after accumulation of myosin. The myosin spots and the F-actin patches are simultaneously reorganized to form the contractile ring bundles. The idea that a Ca signal triggers cleavage furrow formation was tested with Xenopus eggs during the first cleavage. We could not detect any Ca signals such as a Ca wave, Ca puffs or even Ca blips at the growing end of the cleavage furrow. Furthermore, cleavages are not affected by Ca-chelators injected into the eggs at concentrations sufficient to suppress the Ca waves. Thus we conclude that formation of the contractile ring is not induced by a Ca signal at the growing end of the cleavage furrow.
Collapse
Affiliation(s)
- T Noguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
203
|
Thomas D, Mason MJ, Mahaut-Smith MP. Depolarisation-evoked Ca2+ waves in the non-excitable rat megakaryocyte. J Physiol 2001; 537:371-8. [PMID: 11731571 PMCID: PMC2278975 DOI: 10.1111/j.1469-7793.2001.00371.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. A combination of patch clamp, confocal microscopy and immunohistochemistry was used to examine the spatial properties of Ca2+ signalling in the rat megakaryocyte, a non-excitable cell type in which membrane potential can markedly modulate agonist-evoked Ca2+ release. 2. Intracellular calcium ion concentration ([Ca2+]i) increases, stimulated by both ADP and depolarisation, frequently originated from a peripheral locus and spread as a wave throughout the cell. Spatially restricted [Ca2+]i increases, consistent with elementary Ca2+ release events, were occasionally observed prior to ADP-evoked waves. 3. ADP- and depolarisation-evoked Ca2+ waves travelled approximately twice as fast around the periphery of the cell compared to across its radius, leading to a curvilinear wavefront. There was no significant difference between wave velocities generated by the two stimuli. 4. Immunohistochemical staining of type III IP3 receptors, the endoplasmic reticulum-specific protein GRP78/BiP and calreticulin indicated a major peripheral location of the cellular Ca2+ stores which probably accounts for the accelerated wave velocity at the cell periphery. 5. These data demonstrate that [Ca2+]i increases, stimulated by depolarisation or the agonist ADP, have indistinguishable spatial properties, providing evidence that similar underlying mechanisms are responsible for their generation.
Collapse
Affiliation(s)
- D Thomas
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | |
Collapse
|
204
|
Tovey SC, de Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys JB, Berridge MJ, Thuring J, Holmes A, Bootman MD. Calcium puffs are generic InsP3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 2001; 114:3979-89. [PMID: 11739630 DOI: 10.1242/jcs.114.22.3979] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elementary Ca2+ signals, such as ‘Ca2+ puffs’, which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca2+ signalling. We characterized Ca2+ puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca2+ puffs in these cell types suggests that they are a generic elementary Ca2+ signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca2+ signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca2+ puffs. The amplitude and duration of Ca2+ puffs were substantially reduced. In addition, the number of Ca2+ puff sites active during the onset of a Ca2+ wave declined. The consequence of the changes in Ca2+ puff properties was that cells displayed a lower propensity to trigger regenerative Ca2+ waves. Therefore, Ca2+ puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses.
Collapse
Affiliation(s)
- S C Tovey
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Lo YK, Tang KY, Chang WN, Lu CH, Cheng JS, Lee KC, Chou KJ, Liu CP, Chen WC, Su W, Law YP, Jan CR. Effect of oleamide on Ca(2+) signaling in human bladder cancer cells. Biochem Pharmacol 2001; 62:1363-9. [PMID: 11709196 DOI: 10.1016/s0006-2952(01)00772-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of oleamide, a sleep-inducing endogenous lipid in animal models, on intracellular free levels of Ca(2+) ([Ca(2+)](i)) in non-excitable and excitable cells was examined by using fura-2 as a fluorescent dye. [Ca(2+)](i) in pheochromocytoma cells, renal tubular cells, osteoblast-like cells, and bladder cancer cells were increased on stimulation of 50 microM oleamide. The response in human bladder cancer cells (T24) was the greatest and was further explored. Oleamide (10-100 microM) increased [Ca(2+)](i) in a concentration-dependent fashion with an EC(50) of 50 microM. The [Ca(2+)](i) signal comprised an initial rise and a sustained plateau and was reduced by removing extracellular Ca(2+) by 85 +/- 5%. After pre-treatment with 10-100 microM oleamide in Ca(2+)-free medium, addition of 3 mM Ca(2+) increased [Ca(2+)](i) in a manner dependent on the concentration of oleamide. The [Ca(2+)](i) increase induced by 50 microM oleamide was reduced by 100 microM La(3+) by 40%, but was not altered by 10 microM nifedipine, 10 microM verapamil, and 50 microM Ni(2+). In Ca(2+)-free medium, pre-treatment with thapsigargin (1 microM), an endoplasmic reticulum Ca(2+) pump inhibitor, abolished 50 microM oleamide-induced [Ca(2+)](i) increases; conversely, pretreatment with 50 microM oleamide reduced 1 microM thapsigargin-induced [Ca(2+)](i) increases by 50 +/- 3%. Suppression of the activity of phospholipase C with 2 microM U73122 failed to alter 50 microM oleamide-induced Ca(2+) release. Linoleamide (10-100 microM), another sleep-inducing lipid with a structure similar to that of oleamide, also induced an increase in [Ca(2+)](i). Together, it was shown that oleamide induced significant [Ca(2+)](i) increases in cells by a phospholipase C-independent release of Ca(2+) from thapsigargin-sensitive stores and by inducing Ca(2+) entry.
Collapse
Affiliation(s)
- Y K Lo
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Heemskerk JW, Willems GM, Rook MB, Sage SO. Ragged spiking of free calcium in ADP-stimulated human platelets: regulation of puff-like calcium signals in vitro and ex vivo. J Physiol 2001; 535:625-35. [PMID: 11559762 PMCID: PMC2278821 DOI: 10.1111/j.1469-7793.2001.00625.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Human platelets respond to agonists of G protein (G(q))-coupled receptors by generating an irregular pattern of spiking changes in cytosolic Ca2+ ([Ca2+]i). We have investigated the ADP-induced Ca2+ responses of single, Fluo-3-loaded platelets in the presence or absence of autologous plasma or whole blood under flow conditions. 2. In plasma-free platelets, incubated in buffer medium, baseline separated [Ca2+]i peaks always consisted of a rapid rising phase (median time 0.8 s) which was abruptly followed by a slower, mono-exponential decay phase. The decay constant differed from platelet to platelet, ranging from 0.23 +/- 0.02 to 0.63 +/- 0.03 s(-1) (mean +/- S.E.M., n = 3-5), and was used to identify individual Ca2+ release events and to determine the Ca2+ fluxes of the events. 3. Confocal, high-frequency measurements of adherent, spread platelets (diameter 3-5 microm) indicated that different optical regions had simultaneous patterns of both low- and high-amplitude Ca2+ release events. 4. With or without plasma or flowing blood, the ADP-induced Ca2+ signals in platelets had the characteristics of irregular Ca2+ puffs as well as more regular Ca2+ oscillations. Individual [Ca2+]i peaks varied in amplitude and peak-to-peak interval, as observed for separated Ca2+ puffs within larger cells. On the other hand, the peaks appeared to group into periods of ragged, shorter-interval Ca2+ release events with little integration, which were alternated with longer-interval events. 5. We conclude that the spiking Ca2+ signal generated in these small cells has the characteristics of a 'poor' oscillator with an irregular frequency being reactivated from period to period. This platelet signal appears to be similar in an environment of non-physiological buffer medium and in flowing, whole blood.
Collapse
Affiliation(s)
- J W Heemskerk
- Department of Biochemistry, Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
207
|
Sorrentino V, Rizzuto R. Molecular genetics of Ca(2+) stores and intracellular Ca(2+) signalling. Trends Pharmacol Sci 2001; 22:459-64. [PMID: 11543873 DOI: 10.1016/s0165-6147(00)01760-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing number of studies based on recombinant cells and on mouse models that express an altered repertoire of some of the key components of the intracellular Ca(2+) release stores are becoming available as a result of molecular genetics techniques. Information from these studies, together with results from studies of human diseases caused by mutations in genes that encode proteins of the intracellular Ca(2+) stores, are providing a significant advancement in understanding the interactive nature of the molecular machinery that underlies intracellular Ca(2+) signalling and how the different components of the Ca(2+) stores contribute to the regulation of cellular functions.
Collapse
Affiliation(s)
- V Sorrentino
- Molecular Medicine Section, Dept. of Neuroscience, University of Siena, via Aldo Moro 5, Siena 53100, Italy
| | | |
Collapse
|
208
|
John LM, Mosquera-Caro M, Camacho P, Lechleiter JD. Control of IP(3)-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin. J Physiol 2001; 535:3-16. [PMID: 11507154 PMCID: PMC2278773 DOI: 10.1111/j.1469-7793.2001.t01-2-00003.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Elementary events of Ca2+ release (Ca2+ puffs) can be elicited from discrete clusters of inositol 1,4,5 trisphosphate receptors (IP(3)Rs) at low concentrations of IP(3). Ca(2+) puffs have rarely been observed unless elicited by either hormone treatment or introduction of IP(3) into the cell. However, cells appear to have sufficient concentrations of IP(3) (0.1-3.0 microM) to induce Ca2+ release under resting conditions. 2. Here, we investigated Ca2+ puff activity in non-stimulated Xenopus oocytes using confocal microscopy. The fluorescent Ca2+ dye indicators Calcium Green 1 and Oregon Green 488 BAPTA-2 were injected into oocytes to monitor basal Ca2+ activity. 3. In this preparation, injection or overexpression of parvalbumin, an EF-hand Ca(2+)-binding protein (CaBP), induced Ca2+ puffs in resting Xenopus oocytes. This activity was inhibited by heparin, an IP(3)R channel blocker, and by mutation of the Ca(2+)-binding sites in parvalbumin. 4. Ca2+ puff activity was also evoked by injection of low concentrations of the Ca2+ chelator EGTA, but not by calbindin D(28k), another member of the EF-hand CaBP superfamily. 5. BAPTA and the Ca2+ indicator dye Oregon Green 488 BAPTA-1 evoked Ca2+ puff activity, while the dextran conjugate of Oregon Green 488 BAPTA-1 did not. These data indicate that a Ca(2+) buffer must be mobile in order to increase Ca2+ puff activity. 6. Together, the data indicate that some IP(3)Rs spontaneously release Ca2+ under resting concentrations of IP(3). These elementary Ca2+ events appear to be below the level of detection of current imaging techniques. We suggest that parvalbumin evokes Ca2+ puffs by coordinating the activity of elementary IP(3)R channel openings. 7. We conclude that Ca2+ release can be evoked not only by hormone-induced increases in IP(3), but also by expression of mobile cytosolic CaBPs under resting concentrations of IP(3).
Collapse
Affiliation(s)
- L M John
- Department of Biomedical Engineering, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
209
|
Codazzi F, Teruel MN, Meyer T. Control of astrocyte Ca(2+) oscillations and waves by oscillating translocation and activation of protein kinase C. Curr Biol 2001; 11:1089-97. [PMID: 11509231 DOI: 10.1016/s0960-9822(01)00326-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glutamate-induced Ca2+ oscillations and waves coordinate astrocyte signaling responses, which in turn regulate neuronal excitability. Recent studies have suggested that the generation of these Ca2+ oscillations requires a negative feedback that involves the activation of conventional protein kinase C (cPKC). Here, we use total internal reflection fluorescence (TIRF) microscopy to investigate if and how periodic plasma membrane translocation of cPKC is used to generate Ca2+ oscillations and waves. RESULTS Glutamate stimulation of astrocytes triggered highly localized GFP-PKCgamma plasma membrane translocation events, induced rapid oscillations in GFP-PKCgamma translocation, and generated GFP-PKCgamma translocation waves that propagated across and between cells. These translocation responses were primarily mediated by the Ca2+-sensitive C2 domains of PKCgamma and were driven by localized Ca2+ spikes, by oscillations in Ca2+ concentration, and by propagating Ca(2+) waves, respectively. Interestingly, GFP-conjugated C1 domains from PKCgamma or PKCdelta that have been shown to bind diacylglycerol (DAG) also oscillated between the cytosol and the plasma membrane after glutamate stimulation, suggesting that PKC is repetitively activated by combined oscillating increases in Ca(2+) and DAG concentrations. The expression of C1 domains, which increases the DAG buffering capacity and thereby delays changes in DAG concentrations, led to a marked prolongation of Ca(2+) spikes, suggesting that PKC activation is involved in terminating individual Ca(2+) spikes and waves and in defining the time period between Ca(2+) spikes. CONCLUSIONS Our study suggests that cPKCs have a negative feedback role on Ca(2+) oscillations and waves that is mediated by their repetitive activation by oscillating DAG and Ca(2+) concentrations. Periodic translocation and activation of cPKC can be a rapid and markedly localized signaling event that can limit the duration of individual Ca(2+) spikes and waves and can define the Ca(2+) spike and wave frequencies.
Collapse
Affiliation(s)
- F Codazzi
- Dibit, Department of Neurosciences, S. Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | |
Collapse
|
210
|
Chen YC, Chen SJ, Chang HT, Huang JK, Wang JL, Tseng LL, Chang HJ, Su W, Law YP, Chen WC, Jan CR. Mechanisms of diethylstilbestrol-induced calcium movement in MG63 human osteosarcoma cells. Toxicol Lett 2001; 122:245-53. [PMID: 11489359 DOI: 10.1016/s0378-4274(01)00370-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of the estrogen diethylstilbestrol (DES) on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteoblasts was explored by using fura-2 as a Ca(2+) indicator. DES at concentrations between 5--20 microM induced an immediate increase in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) of 10 microM. Removing extracellular Ca(2+) reduced the Ca(2+) signal by 70%. Pretreatment with 50 microM La(3+) or 10 microM of nifedipine, verapamil and diltiazem did not change 20 microM DES-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 20 microM DES in Ca(2+)-free medium. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store partly inhibited 20 microM DES-induced Ca(2+) release, but addition of carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and thapsigargin together abolished DES-induced Ca(2+) release. Conversely, pretreatment with 20 microM DES abrogated CCCP- and thapsigargin-induced Ca(2+) release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 20 microM DES-induced Ca2+ release. Another estrogen 17beta-estradiol also increased [Ca(2+)](i) in a concentration-dependent manner with an EC50 of 7 microM. Together, the data indicate that in human osteoblasts, DES increased [Ca(2+)](i) via causing Ca(2+) release from both mitochondria and the endoplasmic reticulum in a phospholipase C-independent manner, and by causing Ca(2+) influx.
Collapse
Affiliation(s)
- Y C Chen
- Department of Orthopaedic Surgery, Chang-Gung Memorial General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Koopman WJ, Scheenen WJ, Errington RJ, Willems PH, Bindels RJ, Roubos EW, Jenks BG. Membrane-initiated Ca(2+) signals are reshaped during propagation to subcellular regions. Biophys J 2001; 81:57-65. [PMID: 11423394 PMCID: PMC1301491 DOI: 10.1016/s0006-3495(01)75679-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An important aspect of Ca(2+) signaling is the ability of cells to generate intracellular Ca(2+) waves. In this study we have analyzed the cellular and subcellular kinetics of Ca(2+) waves in a neuroendocrine transducer cell, the melanotrope of Xenopus laevis, using the ratiometric Ca(2+) probe indo-1 and video-rate UV confocal laser-scanning microscopy. The purpose of the present study was to investigate how local Ca(2+) changes contribute to a global Ca(2+) signal; subsequently we quantified how a Ca(2+) wave is kinetically reshaped as it is propagated through the cell. The combined kinetics of all subcellular Ca(2+) signals determined the shape of the total cellular Ca(2+) signal, but each subcellular contribution to the cellular signal was not constant in time. Near the plasma membrane, [Ca(2+)](i) increased and decreased rapidly, processes that can be described by a linear and exponential function, respectively. In more central parts of the cell slower kinetics were observed that were best described by a Hill equation. This reshaping of the Ca(2+) wave was modeled with an equation derived from a low-pass RC filter. We propose that the differences in spatial kinetics of the Ca(2+) signal serves as a mechanism by which the same cellular Ca(2+) signal carries different regulatory information to different subcellular regions of the cell, thus evoking differential cellular responses.
Collapse
Affiliation(s)
- W J Koopman
- Department of Cellular Animal Physiology, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
212
|
Rudd JJ, Franklin-Tong VE. Unravelling response-specificity in Ca 2+ signalling pathways in plant cells. THE NEW PHYTOLOGIST 2001; 151:7-33. [PMID: 33873376 DOI: 10.1046/j.1469-8137.2001.00173.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Considerable advances have been made, both in the technologies available to study changes in intracellular cytosolic free Ca2+ ([Ca2+ ]i ), and in our understanding of Ca2+ signalling cascades in plant cells, but how specificity can be generated from such a ubiquitous component as Ca2+ is questionable. Recently the concept of 'Ca2+ signatures' has been formulated; tight control of the temporal and spatial characteristics of alterations in [Ca2+ ]i signals is thought to be responsible, at least in part, for the specificity of the response. However, the way in which Ca2+ signatures are decoded, which depends on the nature and location of the targets of the Ca2+ signals, has received little attention. In a few key systems, progress is being made on how diverse Ca2+ signatures might be transduced within cells in response to specific signals. Valuable pieces of the signal-specificity puzzle are being put together and this is illustrated here using some key examples; these emphasize the global importance of Ca2+ -mediated signal-transduction cascades in the responses of plants to a wide diversity of extracellular signals. However, the way in which signal specificity is encoded and transduced is still far from clear. Contents Summary 7 I. Introduction: Ca2+ as a signal transducer 8 II. Alterations in intracellular [Ca2+ ] 8 1. Measuring alterations in [Ca2+ ] 8 Imaging [Ca2+ ]i using Ca2+ -sensitive dyes 8 Measuring [Ca2+ ]i using aequorin 9 Imaging [Ca2+ ]i using cameleon 10 2. The concept of the 'Ca2+ signature 10 3. How might specific Ca2+ signatures be generated? 11 Control of intracellular Ca2+ release 11 Control of influx of extracellular Ca2+ 12 4. Examples of Ca2+ signatures and cellular responses to increases in [Ca2+ ] 13 Ca2+ signatures in stomatal guard cells in response to abscisic acid signals 14 Ca2+ signals in response to abiotic stimuli1 8 Ca2+ signatures involved in plant-pathogen responses 19 Ca2+ signatures in control of plant reproduction 20 Ca2+ signatures in root hairs in response to nodulation signals 23 III. Decoding the [Ca2+ ]i signatures 24 1. Coupling Ca2+ signals to responses through CaM 26 2. Coupling Ca2+ signals to responses through CDPK 27 3. Novel Ca2+ binding proteins as primary Ca2+ sensors 28 Conclusions and Perspective 28 References 29.
Collapse
Affiliation(s)
- Jason J Rudd
- Institut fur Pflanzenbiochemie, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Vernonica E Franklin-Tong
- Wolfson Laboratory for Plant Molecular Biology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
213
|
Abstract
Calcium (Ca2+) is a ubiquitous intracellular messenger, controlling a diverse range of cellular processes, such as gene transcription, muscle contraction and cell proliferation. The ability of a simple ion such as Ca2+ to play a pivotal role in cell biology results from the facility that cells have to shape Ca2+ signals in space, time and amplitude. To generate and interpret the variety of observed Ca2+ signals, different cell types employ components selected from a Ca2+ signalling ‘toolkit’, which comprises an array of homeostatic and sensory mechanisms. By mixing and matching components from the toolkit, cells can obtain Ca2+ signals that suit their physiology. Recent studies have demonstrated the importance of local Ca2+ signals in defining the specificity of the interaction of Ca2+ with its targets. Furthermore, local Ca2+ signals are the triggers and building blocks for larger global signals that propagate throughout cells.
Collapse
Affiliation(s)
- M D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK.
| | | | | |
Collapse
|
214
|
Jan CR, Cheng JS, Roan CJ, Lee KC, Chen WC, Chou KJ, Tang KY, Wang JL. Effect of diethylstilbestrol (DES) on intracellular Ca(2+) levels in renal tubular cells. Steroids 2001; 66:505-10. [PMID: 11182139 DOI: 10.1016/s0039-128x(00)00216-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of the estrogen diethylstilbestrol (DES) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was investigated, using the fluorescent dye fura-2 as a Ca(2+) indicator. DES (10-50 microM) evoked [Ca(2+)](i) increases in a concentration-dependent manner. Extracellular Ca(2+) removal inhibited 45 +/- 5% of the Ca(2+) response. In Ca(2+)-free medium, pretreatment with 50 microM DES abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor); and pretreatment with CCCP and thapsigargin partly inhibited DES-induced [Ca(2+)](i) signals. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 50 microM DES in Ca(2+)-free medium, suggesting that DES may induce capacitative Ca(2+) entry. 17beta-Estradiol (2-20 microM) increased [Ca(2+)](i), but 100 microM diethylstilbestrol dipropionate had no effect. Pretreatment with the phospholipase C inhibitor U73122 (1 microM) to abolish inositol 1,4,5-trisphosphate formation inhibited 30% of DES-induced Ca(2+) release. DES (20 microM) also increased [Ca(2+)](i) in human normal hepatocytes and osteosarcoma cells. Cumulatively, this study shows that DES induced rapid and sustained [Ca(2+)](i) increases by releasing intracellular Ca(2+) and triggering extracellular Ca(2+) entry in renal tubular cells.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Lee KC, Tseng LL, Chen YC, Wang JW, Lu CH, Cheng JS, Wang JL, Lo YK, Jan CR. Mechanisms of histamine-induced intracellular Ca 2+ release and extracellular Ca 2+ entry in MG63 human osteosarcoma cells 1 1Abbreviations: [Ca2+]i; Cytosolic free Ca2+ concentration; and IP3, inositol 1,4,5-trisphosphate. Biochem Pharmacol 2001; 61:1537-41. [PMID: 11377383 DOI: 10.1016/s0006-2952(01)00622-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of histamine on intracellular free Ca2+ levels ([Ca2+](i)) in MG63 human osteosarcoma cells was explored using fura-2 as a Ca2+ dye. Histamine increased ([Ca2+](i)) in a concentration-dependent fashion with an EC(50) value of 0.5 microM. Extracellular Ca2+ removal inhibited the ([Ca2+](i)) signals. Histamine failed to increase ([Ca2+](i)) in Ca2+-free medium after cells were pretreated with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Addition of Ca2+ induced concentration-dependent ([Ca2+](i)) increases after preincubation with histamine in Ca2+-free medium. Histamine-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). The ([Ca2+](i)) increase induced by histamine in Ca2+ medium was abolished by cimetidine, but was not altered by pyrilamine, nifedipine, verapamil, and La(3+). Together, this study shows that histamine increased in ([Ca2+](i)) in osteosarcoma cells by stimulating H2 histamine receptors. The Ca2+ signal was caused by Ca2+ release from the endoplasmic reticulum in a phospholipase C-dependent manner. The Ca2+ release was accompanied by Ca(2+) influx.
Collapse
Affiliation(s)
- K C Lee
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, 386 Ta Chung 1st Road, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Breitwieser GE, Gama L. Calcium-sensing receptor activation induces intracellular calcium oscillations. Am J Physiol Cell Physiol 2001; 280:C1412-21. [PMID: 11350736 DOI: 10.1152/ajpcell.2001.280.6.c1412] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone secretion is exquisitely sensitive to small changes in serum Ca2+concentration, and these responses are transduced via the Ca2+-sensing receptor (CaR). We utilized heterologous expression in HEK-293 cells to determine the effects of small, physiologically relevant perturbations in extracellular Ca2+ on CaR signaling via phosphatidylinositol-phospholipase C, using changes in fura 2 fluorescence to quantify intracellular Ca2+. Chronic exposure of CaR-transfected cells to Ca2+ in the range from 0.5 to 3 mM modulated the resting intracellular Ca2+concentration and the subsequent cellular responses to acute extracellular Ca2+ perturbations but had no effect on thapsigargin-sensitive Ca2+ stores. Modest, physiologically relevant increases in extracellular Ca2+concentration (0.5 mM increments) caused sustained (30–40 min) low-frequency oscillations of intracellular Ca2+ (∼45 s peak to peak interval). Oscillations were eliminated by 1 μM thapsigargin but were insensitive to protein kinase inhibitors (staurosporine, KN-93, or bisindolylmaleimide I). Staurosporine did increase the fraction of cells oscillating at a given extracellular Ca2+ concentration. Serum Ca2+ concentrations thus chronically regulate cells expressing CaR, and small perturbations in extracellular Ca2+ alter both resting intracellular Ca2+ as well as Ca2+ dynamics.
Collapse
Affiliation(s)
- G E Breitwieser
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| | | |
Collapse
|
217
|
Huang JK, Jan CR. Mechanism of estrogens-induced increases in intracellular Ca(2+) in PC3 human prostate cancer cells. Prostate 2001; 47:141-8. [PMID: 11351343 DOI: 10.1002/pros.1057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The effect of estrogens (diethylstilbestrol [DES], 17 beta-estradiol) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in hormone-insensitive PC3 human prostate cancer cells was examined. METHODS [Ca(2+)](i) changes in suspended cells were measured by using the Ca(2+)-sensitive fluorescent dye fura-2. RESULTS Estrogens (1--20 microM) increased [Ca(2+)](i) concentration-dependently with DES being more potent. Ca(2+) removal inhibited 50 +/- 10% of the signal. In Ca(2+)-free medium, pretreatment with 20 microM estrogens abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP, a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), but pretreatment with CCCP and thapsigargin did not alter DES-induced Ca(2+) release and partly inhibited 17 beta-estradiol-induced Ca(2+) release. Addition of 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 1- 20 microM estrogens in Ca(2+)-free medium. Pretreatment with 1 microM U73122 to block phospholipase C-coupled inositol 1,4,5-trisphosphate formation did not alter estrogens-induced Ca(2+) release. The effect of 20 microM estrogen on [Ca(2+)](i) was not affected by pretreatment with 0.1 microM estrogens. CONCLUSIONS Estrogen induced significant Ca(2+) release and Ca(2+) influx in an inositol 1,4,5-trisphosphate-independent manner in PC3 cells. These effects of estrogens on Ca(2+) signaling appear to be nongenomic. Prostate 47:141-148, 2001.
Collapse
Affiliation(s)
- J K Huang
- Department of Urology, Kaohsiung Veterans General Hospital, Taiwan.
| | | |
Collapse
|
218
|
Tang KY, Lu T, Chang CH, Lo YK, Cheng JS, Wang JL, Chang HT, Jan CR. Effect of fluoxetine on intracellular Ca2+ levels in bladder female transitional carcinoma (BFTC) cells. Pharmacol Res 2001; 43:503-8. [PMID: 11394944 DOI: 10.1006/phrs.2001.0810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of the antidepressant fluoxetine on Ca2+ signaling in cultured cells was largely unknown. The effect of various concentrations of fluoxetine on [Ca 2+] i in populations of bladder female transitional cancer (BFTC) cells was evaluated by using fura-2 as a Ca2+ probe. Fluoxetine increased [Ca 2+] i concentration dependently (20-100 microM) with an EC50 value of 30 microM. The response was inhibited by 50-60% on extracellular Ca2+ removal. In Ca2+ -free medium, pretreatment with 1 microM thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+ pump) abolished 50 microM fluoxetine-induced Ca2+ release; whereas pretreatment with fluoxetine did not alter the thapsigargin-induced Ca2+ response. Addition of 3 mM Ca2+ increased [Ca 2+] i after pretreatment with 50 microM fluoxetine in Ca2+ -free medium, suggestive of fluoxetine-induced capacitative Ca2+ entry. Suppression of inositol 1,4,5-trisphosphate formation by 2 microM U73122 (a phospholipase C inhibitor) did not affect 50 microM fluoxetine-induced Ca2+ release. Collectively, this study shows that fluoxetine increased [Ca 2+] i in bladder cancer cells in a concentration-dependent fashion, by releasing Ca2+ from thapsigargin-sensitive Ca2+ stores in an IP3-independent manner, and by inducing Ca2+ influx from extracellular medium.
Collapse
|
219
|
Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, Kurosaki T, Iino M. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling. EMBO J 2001; 20:1674-80. [PMID: 11285231 PMCID: PMC145472 DOI: 10.1093/emboj/20.7.1674] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many important cell functions are controlled by Ca(2+) release from intracellular stores via the inositol 1,4,5-trisphosphate receptor (IP(3)R), which requires both IP(3) and Ca(2+) for its activity. Due to the Ca(2+) requirement, the IP(3)R and the cytoplasmic Ca(2+) concentration form a positive feedback loop, which has been assumed to confer regenerativity on the IP(3)-induced Ca(2+) release and to play an important role in the generation of spatiotemporal patterns of Ca(2+) signals such as Ca(2+) waves and oscillations. Here we show that glutamate 2100 of rat type 1 IP(3)R (IP(3)R1) is a key residue for the Ca(2+) requirement. Substitution of this residue by aspartate (E2100D) results in a 10-fold decrease in the Ca(2+) sensitivity without other effects on the properties of the IP(3)R1. Agonist-induced Ca(2+) responses are greatly diminished in cells expressing the E2100D mutant IP(3)R1, particularly the rate of rise of initial Ca(2+) spike is markedly reduced and the subsequent Ca(2+) oscillations are abolished. These results demonstrate that the Ca(2+) sensitivity of the IP(3)R is functionally indispensable for the determination of Ca(2+) signaling patterns.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Animals
- Binding Sites
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Calcium Signaling/physiology
- Cell Membrane/metabolism
- Chickens
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Fluid/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Rats
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
| | | | | | | | - Ilya Bezprozvanny
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033,
Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-0074, Japan and Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA Corresponding author e-mail:
| | - Tomohiro Kurosaki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033,
Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-0074, Japan and Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA Corresponding author e-mail:
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, CREST, Japan Science and Technology Corporation, Bunkyo-ku, Tokyo 113-0033,
Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi 570-0074, Japan and Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA Corresponding author e-mail:
| |
Collapse
|
220
|
Roberts SR, Knight MM, Lee DA, Bader DL. Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol (1985) 2001; 90:1385-91. [PMID: 11247938 DOI: 10.1152/jappl.2001.90.4.1385] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca2+ signaling forms part of a possible mechanotransduction pathway by which chondrocytes may alter their metabolism in response to mechanical loading. In this study, a well-characterized model system utilizing bovine articular chondrocytes embedded in 4% agarose constructs was used to investigate the effect of physiological mechanical compressive strain applied after 1 and 3 days in culture. The intracellular Ca2+ concentration was measured by use of the ratiometric Ca2+ indicator indo 1-AM and confocal microscopy. A positive Ca2+ response was defined as a percent increase in Ca2+ ratio above a preset threshold. A significantly greater percentage of cells exhibited a positive Ca2+ response in strained constructs compared with unstrained controls at both time points. In strained constructs, treatment with either Ga3+ or EGTA significantly reduced the number of positive Ca2+ responders compared with untreated controls. These results represent an important step in understanding the physiological role of intracellular Ca2+ in chondrocytes under mechanical compression.
Collapse
Affiliation(s)
- S R Roberts
- IRC in Biomedical Materials, Institute of Orthopaedics, University College London Medical School, Brockley Hill, Stanmore, Middlesex HA7 4LP, London E1 4NS, United Kingdom.
| | | | | | | |
Collapse
|
221
|
Abstract
The kinetics of calcium entry through regulated calcium channels in cultured renal proximal tubule cells was studied with Fura-2 fluorescence ratio imaging in single cells. The calcium entry was activated by 1-oleoyl-2-acetyl-sn-glycerol (OAG) and phorbol-12-myristat-13-acetate (PMA), similar to that observed for activation by osmo-mechanical stress. OAG (2.5 microM) or PMA (0.5 microM) activated calcium entry is characterized by a significant latency between agonist application and the response, whereas the effect of osmo-mechanical stress was immediate. This pre-response latency was 260 +/- 70s with OAG stimulation and 79.2 +/- 17.3s with PMA stimulation. Once a cell responds, the intracellular calcium level reaches a peak value within seconds. The cell response to agonist is independent of the response of neighboring cells. The response kinetics resembles those of the calcium sparks in excitable cells, except the response is much slower. In all cases, the response appears to be an all-or-none event, that is characteristics of an elementary binary switch. It is suggested that the binary response and the lack of coordinated response of calcium entry in single cells results from limited availability of the calcium channels and/or PKC that activates the channel. The experimental data could be fit to a single binary response mathematical model assuming each response reflected an elementary event of a single channel opening or a co-ordinated opening of a cluster of several channels.
Collapse
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology & Physiology, The University of Texas, Houston Health Science Center, Houston 77030, USA.
| | | |
Collapse
|
222
|
Abstract
Stomatal guard cells are unique as a plant cell model and, because of the depth of present knowledge on ion transport and its regulation, offer a first look at signal integration in higher plants. A large body of data indicates that Ca(2+) and H(+) act independently, integrating with protein kinases and phosphatases, to control the gating of the K(+) and Cl(-) channels that mediate solute flux for stomatal movements. Oscillations in the cytosolic-free concentration of Ca(2+) contribute to a signaling cassette, integrated within these events through an unusual coupling with membrane voltage for solute homeostasis. Similar cassettes are anticipated to include control pathways linked to cytosolic pH. Additional developments during the last two years point to events in membrane traffic that play equally important roles in stomatal control. Research in these areas is now adding entirely new dimensions to our understanding of guard cell signaling.
Collapse
Affiliation(s)
- M R Blatt
- Laboratory of Plant Physiology and Biophysics, Imperial College of Science, Technology, and Medicine at Wye, Wye, Kent TN25 5AH, England.
| |
Collapse
|
223
|
Wang J, Cheng J, Chan R, Tseng L, Chou K, Tang K, Chung Lee K, Lo Y, Wang J, Jan C. The anti-anginal drug fendiline increases intracellular Ca(2+) levels in MG63 human osteosarcoma cells. Toxicol Lett 2001; 119:227-33. [PMID: 11246176 DOI: 10.1016/s0378-4274(01)00262-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in MG63 human osteosarcoma cells was explored by using fura-2 as a Ca(2+) indicator. Fendiline at concentrations between 1 and 200 microM increased [Ca(2+)](i) in a concentration-dependent manner and the signal saturated at 100 microM. The Ca(2+) signal was inhibited by 65+/-5% by Ca(2+) removal and by 38+/-5% by 10 microM nifedipine, but was unchanged by 10 microM La(3+) or verapamil. In Ca(2+)-free medium, pre-treatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+) store inhibited fendiline-induced intracellular Ca(2+) release. The Ca(2+) release induced by 50 microM fendiline appeared to be independent of IP(3) because the [Ca(2+)](i) increase was unaltered by inhibiting phospholipase C with 2 microM U73122. Collectively, the results suggest that in MG63 cells fendiline caused an increase in [Ca(2+)](i) by inducing Ca(2+) influx and Ca(2+) release in an IP(3)-independent manner.
Collapse
Affiliation(s)
- J Wang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, 386 Ta Chung 1st Rd., 813, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Bayguinov O, Hagen B, Sanders KM. Muscarinic stimulation increases basal Ca(2+) and inhibits spontaneous Ca(2+) transients in murine colonic myocytes. Am J Physiol Cell Physiol 2001; 280:C689-700. [PMID: 11171588 DOI: 10.1152/ajpcell.2001.280.3.c689] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localized Ca(2+) transients in isolated murine colonic myocytes depend on Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3)) receptors. Localized Ca(2+) transients couple to spontaneous transient outward currents (STOCs) and mediate hyperpolarization responses in these cells. We used confocal microscopy and whole cell patch-clamp recording to investigate how muscarinic stimulation, which causes formation of IP(3), can suppress Ca(2+) transients and STOCs that might override the excitatory nature of cholinergic responses. ACh (10 microM) reduced localized Ca(2+) transients and STOCs, and these effects were associated with a rise in basal cytosolic Ca(2+). These effects of ACh were mimicked by generalized rises in basal Ca(2+) caused by ionomycin (250-500 nM) or elevated external Ca(2+) (6 mM). Atropine (10 microM) abolished the effects of ACh. Pretreatment of cells with nicardipine (1 microM), or Cd(2+) (200 microM) had no effect on responses to ACh. An inhibitor of phospholipase C, U-73122, blocked Ca(2+) transients and STOCs but did not affect the increase in basal Ca(2+) after ACh stimulation. Xestospongin C (Xe-C; 5 microM), a membrane-permeable antagonist of IP(3) receptors, blocked spontaneous Ca(2+) transients but did not prevent the increase of basal Ca(2+) in response to ACh. Gd(3+) (10 microM), a nonselective cation channel inhibitor, prevented the increase in basal Ca(2+) after ACh and increased the frequency and amplitude of Ca(2+) transients and waves. Another inhibitor of receptor-mediated Ca(2+) influx channels, SKF-96365, also prevented the rise in basal Ca(2+) after ACh and increased Ca(2+) transients and development of Ca(2+) waves. FK-506, an inhibitor of FKBP12/IP(3) receptor interactions, had no effect on the rise in basal Ca(2+) but blocked the inhibitory effects of increased basal Ca(2+) and ACh on Ca(2+) transients. These results suggest that the rise in basal Ca(2+) that accompanies muscarinic stimulation of colonic muscles inhibits localized Ca(2+) transients that could couple to activation of Ca(2+)-activated K(+) channels and reduce the excitatory effects of ACh.
Collapse
Affiliation(s)
- O Bayguinov
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | |
Collapse
|
225
|
Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J 2001; 20:1051-63. [PMID: 11230129 PMCID: PMC145464 DOI: 10.1093/emboj/20.5.1051] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Arabidopsis calcineurin B-like calcium sensor proteins (AtCBLs) interact with a group of serine-threonine protein kinases (AtCIPKs) in a calcium-dependent manner. Here we identify a 24 amino acid domain (NAF domain) unique to these kinases as being required and sufficient for interaction with all known AtCBLs. Mutation of conserved residues either abolished or significantly diminished the affinity of AtCIPK1 for AtCBL2. Comprehensive two-hybrid screens with various AtCBLs identified 15 CIPKs as potential targets of CBL proteins. Database analyses revealed additional kinases from Arabidopsis and other plant species harbouring the NAF interaction module. Several of these kinases have been implicated in various signalling pathways mediating responses to stress, hormones and environmental cues. Full-length CIPKs show preferential interaction with distinct CBLs in yeast and in vitro assays. Our findings suggest differential interaction affinity as one of the mechanisms generating the temporal and spatial specificity of calcium signals within plant cells and that different combinations of CBL-CIPK proteins contribute to the complex network that connects various extracellular signals to defined cellular responses.
Collapse
Affiliation(s)
| | | | | | - Klaus Harter
- Universität Ulm, Molekulare Botanik, Albert-Einstein-Allee 11, D-89069 Ulm and
Universität Freiburg, Institut für Biologie II, Schänzlestraße 1, D-79104 Freiburg, Germany Corresponding author e-mail:
| | - Jörg Kudla
- Universität Ulm, Molekulare Botanik, Albert-Einstein-Allee 11, D-89069 Ulm and
Universität Freiburg, Institut für Biologie II, Schänzlestraße 1, D-79104 Freiburg, Germany Corresponding author e-mail:
| |
Collapse
|
226
|
Hamilton DW, Hills A, Blatt MR. Extracellular Ba2+ and voltage interact to gate Ca2+ channels at the plasma membrane of stomatal guard cells. FEBS Lett 2001; 491:99-103. [PMID: 11226428 DOI: 10.1016/s0014-5793(01)02176-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ca2+ channels at the plasma membrane of stomatal guard cells contribute to increases in cytosolic free [Ca2+] ([Ca2+](i)) that regulate K+ and Cl- channels for stomatal closure in higher-plant leaves. Under voltage clamp, the initial rate of increase in [Ca2+](i) in guard cells is sensitive to the extracellular divalent concentration, suggesting a close interaction between the permeant ion and channel gating. To test this idea, we recorded single-channel currents across the Vicia guard cell plasma membrane using Ba2+ as a charge carrying ion. Unlike other Ca2+ channels characterised to date, these channels activate at hyperpolarising voltages. We found that the open probability (P(o)) increased strongly with external Ba2+ concentration, consistent with a 4-fold cooperative action of Ba2+ in which its binding promoted channel opening in the steady state. Dwell time analyses indicated the presence of a single open state and at least three closed states of the channel, and showed that both hyperpolarising voltage and external Ba2+ concentration prolonged channel residence in the open state. Remarkably, increasing Ba2+ concentration also enhanced the sensitivity of the open channel to membrane voltage. We propose that Ba2+ binds at external sites distinct from the permeation pathway and that divalent binding directly influences the voltage gate.
Collapse
Affiliation(s)
- D W Hamilton
- Laboratory of Plant Physiology and Biophysics, Imperial College at Wye, Kent TN25 5AH, Wye, UK
| | | | | |
Collapse
|
227
|
Willars GB, Royall JE, Nahorski SR, El-Gehani F, Everest H, McArdle CA. Rapid down-regulation of the type I inositol 1,4,5-trisphosphate receptor and desensitization of gonadotropin-releasing hormone-mediated Ca2+ responses in alpha T3-1 gonadotropes. J Biol Chem 2001; 276:3123-9. [PMID: 11069921 DOI: 10.1074/jbc.m008916200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite no evidence for desensitization of phospholipase C-coupled gonadotropin-releasing hormone (GnRH) receptors, we previously reported marked suppression of GnRH-mediated Ca(2+) responses in alphaT3-1 cells by pre-exposure to GnRH. This suppression could not be accounted for solely by reduced inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) responses, thereby implicating uncoupling of Ins(1,4,5)P(3) production and Ca(2+) mobilization (McArdle, C. A., Willars, G. B., Fowkes, R. C., Nahorski, S. R., Davidson, J. S., and Forrest-Owen, W. (1996) J. Biol. Chem. 271, 23711-23717). In the current study we demonstrate that GnRH causes a homologous and heterologous desensitization of Ca(2+) signaling in alphaT3-1 cells that is coincident with a rapid (t((12)) < 20 min), marked, and functionally relevant loss of type I Ins(1,4,5)P(3) receptor immunoreactivity and binding. Furthermore, using an alphaT3-1 cell line expressing recombinant muscarinic M(3) receptors we show that the unique resistance of the GnRH receptor to rapid desensitization contributes to a fast, profound, and sustained loss of Ins(1,4,5)P(3) receptor immunoreactivity. These data highlight a potential role for rapid Ins(1,4,5)P(3) receptor down-regulation in homologous and heterologous desensitization and in particular suggest that this mechanism may contribute to the suppression of the reproductive system that is exploited in the major clinical applications of GnRH analogues.
Collapse
Affiliation(s)
- G B Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, P. O. Box 138, University Road, Leicester LE1 9HN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
228
|
Abstract
Inositol (1,4,5)-trisphosphate (IP(3)) liberates intracellular Ca(2+) both as localized 'puffs' and as repetitive waves that encode information in a frequency-dependent manner. Using video-rate confocal imaging, together with photorelease of IP(3) in Xenopus oocytes, we investigated the roles of puffs in determining the periodicity of global Ca(2+) waves. Wave frequency is not delimited solely by cyclical recovery of the cell's ability to support wave propagation, but further involves sensitization of Ca(2+)-induced Ca(2+) release by progressive increases in puff frequency and amplitude at numerous sites during the interwave period, and accumulation of pacemaker Ca(2+), allowing a puff at a 'focal' site to trigger a subsequent wave. These specific 'focal' sites, distinguished by their higher sensitivity to IP(3) and close apposition to neighboring puff sites, preferentially entrain both the temporal frequency and spatial directionality of Ca(2+) waves. Although summation of activity from many stochastic puff sites promotes the generation of regularly periodic global Ca(2+) signals, the properties of individual Ca(2+) puffs control the kinetics of Ca(2+) spiking and the (higher) frequency of subcellular spikes in their local microdomain.
Collapse
Affiliation(s)
| | - Ian Parker
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California Irvine, CA 92697, USA
Corresponding author e-mail:
| |
Collapse
|
229
|
Chen WC, Lin MC, Chou KJ, Fang HC, Liu CP, Cheng JS, Lo YK, Lee KC, Wang JL, Su W, Law YP, Jan CR. Novel effects of a sleep-inducing lipid, oleamide, on Ca2+ signaling in renal tubular cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
230
|
Pettit EJ, Hallett MB. Nonuniform distribution of Ca(2+) uptake sites within human neutrophils. Biochem Biophys Res Commun 2000; 279:337-40. [PMID: 11118288 DOI: 10.1006/bbrc.2000.3954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate at which Ca(2+) returns towards the basal concentration is controlled by the action of Ca(2+) pumps, both on the plasma membrane and on organelles within the cytosol. The distribution of Ca(2+) uptake sites within the cytosol was investigated using rapid confocal imaging (55 ms/frame) of fluo3-loaded human neutrophils. In some zones within the cell, the uptake of Ca(2+) from the cytosol followed a single exponential time course, whereas in others, there was accelerated kinetics after about 3 s. Using the full array of data, to produce a cell-map of Ca(2+) uptake rates a clear nonuniformity of Ca(2+) uptake sites throughout the neutrophil cytosol was observed. The location of the Ca(2+) uptake sites did not correlate with the granules or the main body of the nucleus, but Ca(2+) uptake was highest near the vestigial Golgi/ER, the edges of the nuclear lobes and at the leading cell edge. The possibility exists that the nonuniform distribution of Ca(2+) uptake sites plays a role in restricting Ca(2+) signals with the neutrophil cytosol.
Collapse
Affiliation(s)
- E J Pettit
- Advanced Light Microscopy Facility, EMBL, Heildeberg, Germany
| | | |
Collapse
|
231
|
Dupont G, Swillens S, Clair C, Tordjmann T, Combettes L. Hierarchical organization of calcium signals in hepatocytes: from experiments to models. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:134-52. [PMID: 11108957 DOI: 10.1016/s0167-4889(00)00090-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proper working of the liver largely depends on the fine tuning of the level of cytosolic Ca(2+) in hepatocytes. Thanks to the development of imaging techniques, our understanding of the spatio-temporal organization of intracellular Ca(2+) in this - and other - cell types has much improved. Many of these signals are mediated by a rise in the level of inositol 1,4,5-trisphosphate (InsP(3)), a second messenger which can activate the release of Ca(2+) from the endoplasmic reticulum. Besides the now well-known hepatic Ca(2+) oscillations induced by hormonal stimulation, intra- and intercellular Ca(2+) waves have also been observed. More recently, subcellular Ca(2+) increases associated with the coordinated opening of a few Ca(2+) channels have been reported. Given the complexity of the regulations involved in the generation of such processes and the variety of time and length scales necessary to describe those phenomena, theoretical models have been largely used to gain a precise and quantitative understanding of the dynamics of intracellular Ca(2+). Here, we review the various aspects of the spatio-temporal organization of cytosolic Ca(2+) in hepatocytes from the dual point of view provided by experiments and modeling. We first focus on the description and the mechanism of intracellular Ca(2+) oscillations and waves. Second, we investigate in which manner these repetitive Ca(2+) increases are coordinated among a set of hepatocytes coupled by gap junctions, a phenomenon known as 'intercellular Ca(2+) waves'. Finally, we focus on the so-called elementary Ca(2+) signals induced by low InsP(3) concentrations, leading to Ca(2+) rises having a spatial extent of a few microns. Although these small-scale events have been mainly studied in other cell types, we theoretically infer general properties of these localized intracellular Ca(2+) rises that could also apply to hepatocytes.
Collapse
Affiliation(s)
- G Dupont
- Université Libre de Bruxelles, Faculté des Sciences, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
232
|
Chou KJ, Fang HC, Chung HM, Cheng JS, Lee KC, Tseng LL, Tang KY, Jan CR. Effect of betulinic acid on intracellular-free Ca(2+) levels in Madin Darby canine kidney cells. Eur J Pharmacol 2000; 408:99-106. [PMID: 11080515 DOI: 10.1016/s0014-2999(00)00750-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of betulinic acid, an anti-tumor and apoptosis-inducing natural product, on intracellular-free levels of Ca(2+) ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was examined by using fura-2 as a Ca(2+) dye. Betulinic acid caused significant increases in [Ca(2+)](i) concentration dependently between 25 and 500 nM with an EC(50) of 100 nM. The [Ca(2+)](i) signal was composed of an initial gradual rise and a plateau. The response was decreased by removal of extracellular Ca(2+) by 45+/-10%. In Ca(2+)-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) abolished 250 microM betulinic acid-induced [Ca(2+)](i) increases. Conversely, pretreatment with betulinic acid only partly inhibited thapsigargin-induced [Ca(2+)](i) increases. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 250 nM betulinic acid in Ca(2+)-free medium for 5 min. This [Ca(2+)](i) increase was not altered by the addition of 20 microM SKF96365 and 10 microM econazole. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) abolished 250 nM betulinic acid-induced Ca(2+) release. Pretreatment with 10 microM La(3+) inhibited 250 nM betulinic acid-induced [Ca(2+)](i) increases by 85+/-3%; whereas 10 microM of verapamil, nifedipine and diltiazem had no effect. In Ca(2+) medium, pretreatment with 2.5 nM betulinic aid for 260 s potentiated 10 microM ATP and 1 microM thapsigargin-induced [Ca(2+)](i) increases by 33+/-3% and 45+/-3%, respectively. Trypan blue exclusion revealed that acute exposure of 250 nM betulinic acid for 2-30 min decreased cell viability by 6+/-2%, which could be prevented by pretreatment with 2 microM U731222. Together, the results suggest that betulinic acid induced significant [Ca(2+)](i) increases in MDCK cells in a concentration-dependent manner, and also induced mild cell death. The [Ca(2+)](i) signal was contributed by an inositol 1,4, 5-trisphosphate-dependent release of intracellular Ca(2+) from thapsigargin-sensitive stores, and by inducing Ca(2+) entry from extracellular medium in a La(3+)-sensitive manner.
Collapse
Affiliation(s)
- K J Chou
- Department of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Jan CR, Wang JL, Chou KJ, Cheng JS, Lee KC, Tseng LL, Wang SP, Tang KY, Huang JK. NPC-14686, a novel anti-inflammatory agent, increased intracellular Ca(2+) concentrations in MDCK renal tubular cells. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 2000; 22:915-21. [PMID: 11090700 DOI: 10.1016/s0192-0561(00)00054-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effect of NPC-14686 (Fmoc-L-homophenylalanine), a novel anti-inflammatory agent on intracellular free Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) renal tubular cells, was investigated, using fura-2 as a Ca(2+) dye. At concentrations between 10 and 200 microM NPC-14686 increased [Ca(2+)](i) concentration dependently. The [Ca(2+)](i) signal comprised an initial rise and a sustained phase. Ca(2+) removal inhibited the Ca(2+) signals by 90%. In Ca(2+)-free medium, pretreatment with 100 microM NPC-14686 nearly abolished the [Ca(2+)](i) increase induced by 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) and abolished the [Ca(2+)](i) increase induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP) (a mitochondrial uncoupler). NPC-14686 (100 microM) induced a slight [Ca(2+)](i) increase after pretreatment with 2 microM CCCP and 1 microM thapsigargin. Addition of 3 mM Ca(2+) elicited a [Ca(2+)](i) increase in cells pretreated with 100 microM NPC-14686 in Ca(2+)-free medium. Inhibition of inositol-1,4,5-trisphosphate (IP(3)) production by suppressing phospholipase C with 2 microM U73122 did not alter NPC-14686-induced Ca(2+) release. Trypan blue exclusion revealed that incubation with 10 or 200 microM NPC-14686 for 1-30 min decreased cell viability by 10-20% concentration dependently. Collectively, the results demonstrate that, in MDCK tubular cells, NPC-14686 induced Ca(2+) release followed by Ca(2+) entry, with the latter playing a major role. NPC-14686 appears to release intracellular Ca(2+) in an IP(3)-uncoupled manner. NPC-14686 may be of mild cytotoxicity.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, 386 Ta Chung 1st Road, 813, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 2000; 28:213-23. [PMID: 11032777 DOI: 10.1054/ceca.2000.0152] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Quantifying the magnitude of Ca2+ signals from changes in the emission of fluorescent indicators relies on assumptions about the indicator behaviour in situ. Factors such as osmolarity, pH, ionic strength and protein environment can affect indicator properties making it advantageous to calibrate indicators within the required cellular or subcellular environment. Selecting Ca2+ indicators appropriate for a particular application depends upon several considerations including Ca2+ binding affinity, dynamic range and ease of loading. These factors are usually best determined empirically. This study describes the in-situ calibration of a number of frequently used fluorescent Ca2+ indicators (Fluo-3, Fluo-4, Calcium Green-1, Calcium Orange, Oregon Green 488 BAPTA-1 and Fura-Red) and their use in reporting low- and high-amplitude Ca2+ signals in HeLa cells. All Ca2+ indicators exhibited lower in-situ Ca2+ binding affinities than suggested by previously published in-vitro determinations. Furthermore, for some of the indicators, there were significant differences in the apparent Ca2+ binding affinities between nuclear and cytoplasmic compartments. Variation between indicators was also found in their dynamic ranges, compartmentalization, leakage and photostability. Overall, Fluo-3 proved to be the generally most applicable Ca2+ indicator, since it displayed a large dynamic range, low compartmentalization and an appropriate apparent Ca2+ binding affinity. However, it was more susceptible to photobleaching than many of the other Ca2+ indicators.
Collapse
Affiliation(s)
- D Thomas
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
235
|
Jan CR, Cheng JS, Chou KJ, Wang SP, Lee KC, Tang KY, Tseng LL, Chiang HT. Dual effect of tamoxifen, an anti-breast-cancer drug, on intracellular Ca(2+) and cytotoxicity in intact cells. Toxicol Appl Pharmacol 2000; 168:58-63. [PMID: 11000100 DOI: 10.1006/taap.2000.9011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of tamoxifen on Ca(2+) signaling and viability in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Tamoxifen evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 1 and 50 microM with an EC50 of 10 microM. The response was decreased by extracellular Ca(2+) removal. In Ca(2+)-free medium, pretreatment with 5 microM tamoxifen abolished the [Ca(2+)](i) increase induced by the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM), but pretreatment with brefeldin A (50 microM; a Ca(2+) mobilizer of the Golgi complex), thapsigargin (an inhibitor of the endoplasmic reticulum Ca(2+) pump), and carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler), only partly inhibited tamoxifen-induced [Ca(2+)](i) increases. This suggests that tamoxifen released Ca(2+) from multiple pools. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 5 microM tamoxifen in Ca(2+)-free medium. Inhibiting inositol 1,4,5-trisphosphate formation with the phospholipase C inhibitor U73122 (2 microM) did not alter 5 microM tamoxifen-induced Ca(2+) release. The [Ca(2+)](i) increase induced by 5 microM tamoxifen was not altered by La(3+), nifedipine, verapamil, or diltiazem. Tamoxifen (1-10 microM) decreased cell viability in a concentration- and time-dependent manner. Tamoxifen (5 microM) also increased [Ca(2+)](i) in neutrophils, bladder cancer cells, and prostate cancer cells from humans and glioma cells from rats. Collectively, it was found that tamoxifen increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol 1,4, 5-trisphosphate and also by triggering Ca(2+) influx from extracellular space. The [Ca(2+)](i) increase was accompanied by cytotoxicity.
Collapse
Affiliation(s)
- C R Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Tovey SC, Bootman MD, Lipp P, Berridge MJ, Bram RJ. Calcium-modulating cyclophilin ligand desensitizes hormone-evoked calcium release. Biochem Biophys Res Commun 2000; 276:97-100. [PMID: 11006089 DOI: 10.1006/bbrc.2000.3442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca(2+)-modulating cyclophilin ligand (CAML) protein causes stimulation of transcription factors via activation of a store-operated Ca(2+) entry pathway. Since CAML is widely expressed in mammalian tissues, it may be an important regulator of Ca(2+) store function. In the present study, we investigated the consequence of CAML overexpression on Ca(2+) signaling using rapid confocal imaging of Fluo3-loaded NIH3T3 fibroblasts. Control and CAML-expressing cells gave concentration-dependent responses to the Ca(2+) mobilizing agonist ATP. CAML expression reduced the sensitivity of the cells so that higher concentrations of ATP were needed to achieve global Ca(2+) waves. The amplitudes of Ca(2+) waves were significantly reduced in CAML expressing cells, consistent with earlier suggestions that CAML causes depletion of internal Ca(2+) stores. With low ATP concentrations, only local Ca(2+) release events were observed. CAML did not affect the characteristics of these local Ca(2+) signals, suggesting that it does not directly affect Ca(2+) release channels.
Collapse
Affiliation(s)
- S C Tovey
- Laboratory of Molecular Signalling, Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
237
|
Petrou S, Bowser DN, Nicholls RA, Panchal RG, Smart ML, Reilly AM, Williams DA. Genetically targeted calcium sensors enhance the study of organelle function in living cells. Clin Exp Pharmacol Physiol 2000; 27:738-44. [PMID: 10972543 DOI: 10.1046/j.1440-1681.2000.03327.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Understanding the regulation of calcium (Ca2+), the most common of the mineral ions within the human body, has always been of extreme interest to physiologists. While the importance of Ca2+ in contributing to physiological events through regulation of levels has been significantly established, seldom is consideration given to the intricacies of this ion and its mechanics in producing such diverse physiological responses in different regions of the cell. 2. The present review will summarize new methodologies used in our laboratories for the study of two major intracellular organelles, mitochondria and the nucleus. These techniques are based predominantly on the use of molecular biological approaches to both create and then target protein-based sensor molecules to specific intracellular locations. 3. The regulation of Ca2+ in the mitochondria and nucleus is of particular interest to us because of the central involvement of these organelles in: (i) cardiac cell responses during ischaemia/reperfusion; and (ii) the control of gene expression, respectively.
Collapse
Affiliation(s)
- S Petrou
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
238
|
Krummel MF, Sjaastad MD, Wülfing C, Davis MM. Differential clustering of CD4 and CD3zeta during T cell recognition. Science 2000; 289:1349-52. [PMID: 10958781 DOI: 10.1126/science.289.5483.1349] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Whereas T helper cells recognize peptide-major histocompatibility complex (MHC) class II complexes through their T cell receptors (TCRs), CD4 binds to an antigen-independent region of the MHC. Using green fluorescent protein-tagged chimeras and three-dimensional video microscopy, we show that CD4 and TCR-associated CD3zeta cluster in the interface coincident with increases in intracellular calcium. Signaling-, costimulation-, and cytoskeleton-dependent processes then stabilize CD3zeta in a single cluster at the center of the interface, while CD4 moves to the periphery. Thus, the CD4 coreceptor may serve primarily to "boost" recognition of ligand by the TCR and may not be required once activation has been initiated.
Collapse
Affiliation(s)
- M F Krummel
- Department of Microbiology and Immunology, Stanford University School of Medicine, and the Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
239
|
Runft LL, Jaffe LA. Sperm extract injection into ascidian eggs signals Ca(2+) release by the same pathway as fertilization. Development 2000; 127:3227-36. [PMID: 10887079 DOI: 10.1242/dev.127.15.3227] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Injection of eggs of various species with an extract of sperm cytoplasm stimulates intracellular Ca(2+) release that is spatially and temporally like that occurring at fertilization, suggesting that Ca(2+) release at fertilization may be initiated by a soluble factor from the sperm. Here we investigate whether the signalling pathway that leads to Ca(2+) release in response to sperm extract injection requires the same signal transduction molecules as are required at fertilization. Eggs of the ascidian Ciona intestinalis were injected with the Src-homology 2 domains of phospholipase C gamma or of the Src family kinase Fyn (which act as specific dominant negative inhibitors of the activation of these enzymes), and the effects on Ca(2+) release at fertilization or in response to injection of a sperm extract were compared. Our findings indicate that both fertilization and sperm extract injection initiate Ca(2+) release by a pathway requiring phospholipase C gamma and a Src family kinase. These results support the hypothesis that, in ascidians, a soluble factor from the sperm cytoplasm initiates Ca(2+) release at fertilization, and indicate that the activating factor from the sperm may be a regulator, directly or indirectly, of a Src family kinase in the egg.
Collapse
Affiliation(s)
- L L Runft
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | |
Collapse
|
240
|
Callamaras N, Parker I. Phasic characteristic of elementary Ca(2+) release sites underlies quantal responses to IP(3). EMBO J 2000; 19:3608-17. [PMID: 10899115 PMCID: PMC313983 DOI: 10.1093/emboj/19.14.3608] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ca(2+) liberation by inositol 1,4,5-trisphosphate (IP(3)) is 'quantal', in that low [IP(3)] causes only partial Ca(2+) release, but further increasing [IP(3)] evokes more release. This characteristic allows cells to generate graded Ca(2+) signals, but is unexpected, given the regenerative nature of Ca(2+)-induced Ca(2+) release through IP(3) receptors. Two models have been proposed to resolve this paradox: (i) all-or-none Ca(2+) release from heterogeneous stores that empty at varying [IP(3)]; and (ii) phasic liberation from homogeneously sensitive stores. To discriminate between these hypotheses, we imaged subcellular Ca(2+) puffs evoked by IP(3) in Xenopus oocytes where release sites were functionally uncoupled using EGTA. Puffs were little changed by 300 microM intracellular EGTA, but sites operated autonomously and did not propagate waves. Photoreleased IP(3) generated flurries of puffs-different to the prolonged Ca(2+) elevation following waves in control cells-and individual sites responded repeatedly to successive increments of [IP(3)]. These data support the second hypothesis while refuting the first, and suggest that local Ca(2+) signals exhibit rapid adaptation, different to the slower inhibition following global Ca(2+) waves.
Collapse
Affiliation(s)
- N Callamaras
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California Irvine, CA 92697-4550, USA
| | | |
Collapse
|
241
|
Bayguinov O, Hagen B, Bonev AD, Nelson MT, Sanders KM. Intracellular calcium events activated by ATP in murine colonic myocytes. Am J Physiol Cell Physiol 2000; 279:C126-35. [PMID: 10898724 DOI: 10.1152/ajpcell.2000.279.1.c126] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP is a candidate enteric inhibitory neurotransmitter in visceral smooth muscles. ATP hyperpolarizes visceral muscles via activation of small-conductance, Ca(2+)-activated K(+) (SK) channels. Coupling between ATP stimulation and SK channels may be mediated by localized Ca(2+) release. Isolated myocytes of the murine colon produced spontaneous, localized Ca(2+) release events. These events corresponded to spontaneous transient outward currents (STOCs) consisting of charybdotoxin (ChTX)-sensitive and -insensitive events. ChTX-insensitive STOCs were inhibited by apamin. Localized Ca(2+) transients were not blocked by ryanodine, but these events were reduced in magnitude and frequency by xestospongin C (Xe-C), a blocker of inositol 1,4,5-trisphosphate receptors. Thus we have termed the localized Ca(2+) events in colonic myocytes "Ca(2+) puffs. " The P(2Y) receptor agonist 2-methylthio-ATP (2-MeS-ATP) increased the intensity and frequency of Ca(2+) puffs. 2-MeS-ATP also increased STOCs in association with the increase in Ca(2+) puffs. Pyridoxal-phospate-6-azophenyl-2',4'-disculfonic acid tetrasodium, a P(2) receptor inhibitor, blocked responses to 2-MeS-ATP. Spontaneous Ca(2+) transients and the effects of 2-MeS-ATP on Ca(2+) puffs and STOCs were blocked by U-73122, an inhibitor of phospholipase C. Xe-C and ryanodine also blocked responses to 2-MeS-ATP, suggesting that, in addition to release from IP(3) receptor-operated stores, ryanodine receptors may be recruited during agonist stimulation to amplify release of Ca(2+). These data suggest that localized Ca(2+) release modulates Ca(2+)-dependent ionic conductances in the plasma membrane. Localized Ca(2+) release may contribute to the electrical responses resulting from purinergic stimulation.
Collapse
Affiliation(s)
- O Bayguinov
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | |
Collapse
|
242
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Boittin FX, Coussin F, Morel JL, Halet G, Macrez N, Mironneau J. Ca(2+) signals mediated by Ins(1,4,5)P(3)-gated channels in rat ureteric myocytes. Biochem J 2000; 349:323-32. [PMID: 10861244 PMCID: PMC1221153 DOI: 10.1042/0264-6021:3490323] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Localized Ca(2+)-release signals (puffs) and propagated Ca(2+) waves were characterized in rat ureteric myocytes by confocal microscopy. Ca(2+) puffs were evoked by photorelease of low concentrations of Ins(1,4,5)P(3) from a caged precursor and by low concentrations of acetylcholine; they were also observed spontaneously in Ca(2+)-overloaded myocytes. Ca(2+) puffs showed some variability in amplitude, time course and spatial spread, suggesting that Ins(1,4,5)P(3)-gated channels exist in clusters containing variable numbers of channels and that within these clusters a variable number of channels can be recruited. Immunodetection of Ins(1,4,5)P(3) receptors revealed the existence of several spots of fluorescence in the confocal cell sections, supporting the existence of clusters of Ins(1,4,5)P(3) receptors. Strong Ins(1,4,5)P(3) photorelease and high concentrations of acetylcholine induced Ca(2+) waves that originated from an initiation site and propagated in the whole cell by spatial recruitment of neighbouring Ca(2+)-release sites. Both Ca(2+) puffs and Ca(2+) waves were blocked selectively by intracellular applications of heparin and an anti-Ins(1,4,5)P(3)-receptor antibody, but were unaffected by ryanodine and intracellular application of an anti-ryanodine receptor antibody. mRNAs encoding for the three subtypes of Ins(1,4,5)P(3) receptor and subtype 3 of ryanodine receptor were detected in these myocytes, and the maximal binding capacity of [(3)H]Ins(1,4,5)P(3) was 10- to 12-fold higher than that of [(3)H]ryanodine. These results suggest that Ins(1,4,5)P(3)-gated channels mediate a continuum of Ca(2+) signalling in smooth-muscle cells expressing a high level of Ins(1,4,5)P(3) receptors and no subtypes 1 and 2 of ryanodine receptors.
Collapse
Affiliation(s)
- F X Boittin
- Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, CNRS UMR 5017, Université de Bordeaux II, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
244
|
Røttingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:203-19. [PMID: 10886035 DOI: 10.1046/j.1365-201x.2000.00732.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The field of calcium signalling has evolved rapidly the last 20 years. Physiologists had worked with cytosolic Ca2+ as the coupler of excitation and contraction of muscles and as a secretory signal in exocrine glands and in the synapses of the brain for several decades before the discovery of cellular calcium as a second messenger. Development of powerful techniques for measuring the concentration of cytosolic free calcium ions in cell suspensions and later in single cells and even in different cellular compartments, has resulted in an upsurge in the knowledge of the cellular machinery involved in intracellular calcium signalling. However, the focus on intracellular mechanisms might have led this field of study away from physiology. During the last few years there is an increasing evidence for an important role of calcium also as an intercellular signal. Via gap junctions calcium is able to co-ordinate cell populations and even organs like the liver. Here we will give an overview of the general mechanisms of intracellular calcium signalling, and then review the recent data on intercellular calcium signals. A functional coupling of cells in different tissues and organs by the way of calcium might be an important mechanism for controlling and synchronizing physiological responses
Collapse
Affiliation(s)
- J Røttingen
- Laboratory of Intracellular Signalling, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
245
|
Fogarty KE, Kidd JF, Tuft RA, Thorn P. A bimodal pattern of InsP(3)-evoked elementary Ca(2+) signals in pancreatic acinar cells. Biophys J 2000; 78:2298-306. [PMID: 10777728 PMCID: PMC1300821 DOI: 10.1016/s0006-3495(00)76776-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
InsP(3)-evoked elementary Ca(2+) release events have been postulated to play a role in providing the building blocks of larger Ca(2+) signals. In pancreatic acinar cells, low concentrations of acetylcholine or the injection of low concentrations of InsP(3) elicit a train of spatially localized Ca(2+) spikes. In this study we have quantified these responses and compared the Ca(2+) signals to the elementary events shown in Xenopus oocytes. The results demonstrate, at the same concentrations of InsP(3), Ca(2+) signals consisting of one population of small transient Ca(2+) release events and a second distinct population of larger Ca(2+) spikes. The signal mass amplitudes of both types of events are within the range of amplitudes for the elementary events in Xenopus oocytes. However, the bimodal Ca(2+) distribution of Ca(2+) responses we observe is not consistent with the continuum of event sizes seen in Xenopus. We conclude that the two types of InsP(3)-dependent events in acinar cells are both elementary Ca(2+) signals, which are independent of one another. Our data indicate a complexity to the organization of the Ca(2+) release apparatus in acinar cells, which might result from the presence of multiple InsP(3) receptor isoforms, and is likely to be important in the physiology of these cells.
Collapse
Affiliation(s)
- K E Fogarty
- Biomedical Imaging Group, Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01650 USA
| | | | | | | |
Collapse
|
246
|
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222-9. [PMID: 10782128 DOI: 10.1016/s0166-2236(00)01548-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) is a multifaceted organelle that regulates protein synthesis and trafficking, cellular responses to stress, and intracellular Ca2+ levels. In neurons, it is distributed between the cellular compartments that regulate plasticity and survival, which include axons, dendrites, growth cones and synaptic terminals. Intriguing communication networks between ER, mitochondria and plasma membrane are being revealed that provide mechanisms for the precise regulation of temporal and spatial aspects of Ca2+ signaling. Alterations in Ca2+ homeostasis in ER contribute to neuronal apoptosis and excitotoxicity, and are being linked to the pathogenesis of several different neurodegenerative disorders, including Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
247
|
Yunker WK, Lee EK, Wong AO, Chang JP. Norepinephrine regulation of growth hormone release from goldfish pituitary cells. II. Intracellular sites of action. J Neuroendocrinol 2000; 12:323-33. [PMID: 10718929 DOI: 10.1046/j.1365-2826.2000.00456.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous results suggest that norepinephrine decreases growth hormone (GH) release in goldfish by means of alpha-2 adrenoceptor activation. The intracellular mechanisms by which norepinephrine inhibits GH release were examined in the present study using dispersed goldfish pituitary cells. In 2-h static incubation experiments, norepinephrine and the alpha-2 agonist clonidine decreased basal GH release and the GH responses to stimulation by the dopamine D1 agonist SKF38393 and two native gonadotropin-releasing hormones (GnRH). Norepinephrine also reduced GH responses to the adenylate cyclase activator forskolin, two protein kinase C (PKC) activators (phorbol ester and synthetic diacylglycerol), and two Ca2+ ionophores (ionomycin and A23187). Similarly, norepinephrine applied as a 1-h pulse in cell column perifusion experiments reduced basal GH release and abolished the GH response to a 5-min pulse of arachidonic acid. In goldfish, D1-stimulated GH release is mediated by AC-, arachidonic acid-and Ca2+-dependent pathways, whereas GnRH action is coupled to PKC-and Ca2+-dependent mechanisms. These results suggest that norepinephrine activation of alpha-2 receptors inhibits ligand-induced GH secretion by actions subsequent to activation of these second messenger cascades. To further characterize norepinephrine mechanisms of action on unstimulated hormone release, the ability of norepinephrine and an alpha-2 agonist to affect activation of two second messenger cascades under basal conditions was also investigated. Static incubation with clonidine reduced cAMP production in a time-and dose-dependent manner, suggesting that norepinephrine inhibitory action can also be expressed at the level of cAMP production. Resting intracellular free calcium levels in single, identified goldfish somatotropes was unaffected by norepinephrine. However, the inhibitory effects of norepinephrine on basal GH secretion was not observed in the presence of a voltage-sensitive Ca2+ channel agonist. Whether these channels are targets for norepinephrine action on unstimulated GH release requires further investigation.
Collapse
Affiliation(s)
- W K Yunker
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.; Department of Zoology, University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
248
|
van Helden DF, Imtiaz MS, Nurgaliyeva K, von der Weid P, Dosen PJ. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol 2000; 524 Pt 1:245-65. [PMID: 10747196 PMCID: PMC2269852 DOI: 10.1111/j.1469-7793.2000.00245.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Intracellular recordings made in single bundle strips of a visceral smooth muscle revealed rhythmic spontaneous membrane depolarizations termed slow waves (SWs). These exhibited 'pacemaker' and 'regenerative' components composed of summations of more elementary events termed spontaneous transient depolarizations (STDs). 2. STDs and SWs persisted in the presence of tetrodotoxin, nifedipine and ryanodine, and upon brief exposure to Ca2+-free Cd2+-containing solutions; they were enhanced by ACh and blocked by BAPTA AM, cyclopiazonic acid and caffeine. 3. SWs were also inhibited in heparin-loaded strips. SWs were observed over a wide range of membrane potentials (e.g. -80 to -45 mV) with increased frequencies at more depolarized potentials. 4. Regular spontaneous SW activity in this preparation began after 1-3 h superfusion of the tissue with physiological saline following the dissection procedure. Membrane depolarization applied before the onset of this activity induced bursts of STD-like events (termed the 'initial' response) which, when larger than threshold levels initiated regenerative responses. The combined initial-regenerative waveform was termed the SW-like action potential. 5. Voltage-induced responses exhibited large variable latencies (typical range 0.3-4 s), refractory periods of approximately 11 s and a pharmacology that was indistinguishable from those of STDs and spontaneous SWs. 6. The data indicate that SWs arise through more elementary inositol 1,4,5-trisphosphate (IP3) receptor-induced Ca2+ release events which rhythmically synchronize to trigger regenerative Ca2+ release and induce inward current across the plasmalemma. The finding that action potentials, which were indistinguishable from SWs, could be evoked by depolarization suggests that membrane potential modulates IP3 production. Voltage feedback on intracellular IP3-sensitive Ca2+ release is likely to have a major influence on the generation and propagation of SWs.
Collapse
Affiliation(s)
- D F van Helden
- Neuroscience Group, Discipline of Human Physiology, Faculty of Medicine and Health Sciences, University of Newcastle, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
249
|
Bhattacharya S, Ying X, Fu C, Patel R, Kuebler W, Greenberg S, Bhattacharya J. alpha(v)beta(3) integrin induces tyrosine phosphorylation-dependent Ca(2+) influx in pulmonary endothelial cells. Circ Res 2000; 86:456-62. [PMID: 10700451 DOI: 10.1161/01.res.86.4.456] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endothelial alpha(v)beta(3) integrin occurs luminally, where its ligation by soluble agents may induce inflammatory signaling. We tested this hypothesis in bovine pulmonary artery endothelial cell monolayers with the use of vitronectin and cross-linking antibodies to ligate and aggregate the integrin. We quantified the endothelial cytosolic Ca(2+) concentration ([Ca(2+)](i)) according to the Fura 2 ratio imaging method in single cells of confluent monolayers. At baseline, endothelial [Ca(2+)](i) levels remained steady at 86 nmol/L for >20 minutes. Cross-linking of the alpha(v)beta(3) integrin through the sequential exposure of monolayers to anti-alpha(v)beta(3) monoclonal antibody LM609 and secondary IgG resulted in a [Ca(2+)](i) increase of 100% above baseline. This increase commenced in <0.5 minute, peaked in <2 minutes, and decayed to baseline in approximately 5 minutes. Similar responses occurred after the addition of vitronectin (400 microg/mL). In contrast, external Ca(2+) depletion blunted the cross-linking-induced [Ca(2+)](i) increase by 60%, a response that was completely inhibited when the monolayers were also pretreated with thapsigargin. Thus, the [Ca(2+)](i) increase was attributable in part to the release of Ca(2+) from endosomal stores but mostly to Ca(2+) influx across the plasma membrane. Induced aggregation of the alpha(v)beta(3) integrin enhanced tyrosine phosphorylation of phospholipase C-gamma1 and increased the accumulation of inositol-1, 4,5-trisphosphate. Genistein, a broad-spectrum tyrosine kinase inhibitor, abrogated both of these effects, as well as the alpha(v)beta(3)-induced [Ca(2+)](i) increases. We conclude that aggregation of the endothelial alpha(v)beta(3) integrin induces a rapid tyrosine phosphorylation-dependent increase in [Ca(2+)](i). This response may subserve the inflammatory role of alpha(v)beta(3) integrin in blood vessels.
Collapse
Affiliation(s)
- S Bhattacharya
- Departments of Pediatrics and Medicine, St Luke's-Roosevelt Hospital Center, New York, NY 10019, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Calcium signals appear throughout the first 24 hours of zebrafish development. These begin at egg activation, then continue to be generated throughout the subsequent zygote, cleavage, blastula, gastrula, and segmentation periods. They are thus associated with the major phases of pattern formation: cell proliferation, cell differentiation, axis determination, the generation of primary germ layers, the emergence of rudimentary organ systems, and therefore the establishment of the basic vertebrate body plan. When signals need to be transmitted across significant distances they take the form of waves, either intracellular waves when the cell size is large, or later in development when the cell size is reduced, intercellular waves. We will consider both types of calcium signals and their integration into signalling networks, and discuss their possible functions and developmental significance with regard to pattern formation. BioEssays 22:113-123, 2000.
Collapse
Affiliation(s)
- S E Webb
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PRC
| | | |
Collapse
|