201
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
202
|
Boardman DA, Levings MK. Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. J Allergy Clin Immunol 2022; 149:1-11. [PMID: 34998473 DOI: 10.1016/j.jaci.2021.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
Gene editing of living cells is a cornerstone of present-day medical research that has enabled scientists to address fundamental biologic questions and identify novel strategies to treat diseases. The ability to manipulate adoptive cell therapy products has revolutionized cancer immunotherapy and promises similar results for the treatment of autoimmune diseases, inflammatory disorders, and transplant rejection. Clinical trials have recently deemed polyclonal regulatory T (Treg) cell therapy to be a safe therapeutic option, but questions remain regarding the efficacy of this approach. In this review, we discuss how gene editing technologies are being applied to transform the future of Treg cell therapy, focusing on the preclinical strategies that are currently being investigated to enhance the efficacy, function, and survival of human Treg cells. We explore approaches that may be used to generate immunoregulatory cells ex vivo, detail emerging strategies that are being used to modify these cells (such as using chimeric antigen receptors to confer antigen specificity), and outline concepts that have been explored to repurpose conventional T cells to target and destroy autoreactive and alloreactive lymphocytes. We also describe the key hurdles that currently hinder the clinical adoption of Treg cell therapy and propose potential future avenues of research for this field.
Collapse
Affiliation(s)
- Dominic A Boardman
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
203
|
Louis K, Fadakar P, Macedo C, Yamada M, Lucas M, Gu X, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation. Kidney Int 2022; 101:1003-1016. [PMID: 35090879 PMCID: PMC9038633 DOI: 10.1016/j.kint.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Although considerable advances have been made in understanding the cellular effector mechanisms responsible for donor-specific antibody generation leading to antibody-mediated rejection (ABMR), the identification of cellular regulators of such immune responses is lacking. To clarify this, we used high dimensional flow cytometry to concomitantly profile and track the two major subsets of regulatory lymphocytes in blood: T regulatory (TREG) and transitional B cells in a cohort of 96 kidney transplant recipients. Additionally, we established co-culture assays to address their respective capacity to suppress antibody responses in vitro. TREG and transitional B cells were found to be potent suppressors of T follicular helper-mediated B-cell differentiation into plasmablast and antibody generation. TREG and transitional B cells were both durably expanded in patients who did not develop donor-specific antibody post-transplant. However, patients who manifested donor-specific antibody and progressed to ABMR displayed a marked and persistent numerical reduction in TREG and transitional B cells. Strikingly, specific cell clusters expressing the transcription factor T-bet were selectively depleted in both TREG and transitional B-cell compartments in patients with ABMR. Importantly, the coordinated loss of these T-bet+CXCR5+TREG and T-bet+CD21- transitional B-cell clusters was correlated with increased and inflammatory donor specific antibody responses, more extensive microvascular inflammation and a higher rate of kidney allograft loss. Thus, our study identified coordinated and persistent defects in regulatory T- and B-cell responses in patients undergoing ABMR, which may contribute to their loss of humoral immune regulation, and warrant timely therapeutic interventions to replenish and sustain TREG and transitional B cells in these patients.
Collapse
|
204
|
Bernaldo-de-Quirós E, Pion M, Martínez-Bonet M, Correa-Rocha R. A New Generation of Cell Therapies Employing Regulatory T Cells (Treg) to Induce Immune Tolerance in Pediatric Transplantation. Front Pediatr 2022; 10:862807. [PMID: 35633970 PMCID: PMC9130702 DOI: 10.3389/fped.2022.862807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the preferred treatment for pediatric patients with end-stage renal disease, but it is still not a definitive solution due to immune graft rejection. Regulatory T cells (Treg) and their control over effector T cells is a crucial and intrinsic tolerance mechanism in limiting excessive immune responses. In the case of transplants, Treg are important for the survival of the transplanted organ, and their dysregulation could increase the risk of rejection in transplanted children. Chronic immunosuppression to prevent rejection, for which Treg are especially sensitive, have a detrimental effect on Treg counts, decreasing the Treg/T-effector balance. Cell therapy with Treg cells is a promising approach to restore this imbalance, promoting tolerance and thus increasing graft survival. However, the strategies used to date that employ peripheral blood as a Treg source have shown limited efficacy. Moreover, it is not possible to use this approach in pediatric patients due to the limited volume of blood that can be extracted from children. Here, we outline our innovative strategy that employs the thymus removed during pediatric cardiac surgeries as a source of therapeutic Treg that could make this therapy accessible to transplanted children. The advantageous properties and the massive amount of Treg cells obtained from pediatric thymic tissue (thyTreg) opens a new possibility for Treg therapies to prevent rejection in pediatric kidney transplants. We are recruiting patients in a clinical trial to prevent rejection in heart-transplanted children through the infusion of autologous thyTreg cells (NCT04924491). If its efficacy is confirmed, thyTreg therapy may establish a new paradigm in preventing organ rejection in pediatric transplants, and their allogeneic use would extend its application to other solid organ transplantation.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
205
|
Bottomley MJ, Brook MO, Shankar S, Hester J, Issa F. Towards regulatory cellular therapies in solid organ transplantation. Trends Immunol 2022; 43:8-21. [PMID: 34844848 DOI: 10.1016/j.it.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023]
Abstract
Organ transplantation is a modern medical success story. However, since its inception it has been limited by the need for pharmacological immunosuppression. Regulatory cellular therapies offer an attractive solution to these challenges by controlling transplant alloresponses through multiple parallel suppressive mechanisms. A number of cell types have seen an accelerated development into human trials and are now on the threshold of a long-awaited breakthrough in personalized transplant therapeutics. Here we assess recent developments with a focus on the most likely candidates, some of which have already facilitated successful immunosuppression withdrawal in early clinical trials. We propose that this may constitute a promising approach in clinical transplantation but also evaluate outstanding issues in the field, providing cause for cautious optimism.
Collapse
Affiliation(s)
- Matthew J Bottomley
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Matthew O Brook
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Sushma Shankar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Oxford Transplant Centre, Churchill Hospital, Oxford, UK
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
206
|
Rickert CG, Markmann JF. Transplantation in the Age of Precision Medicine: The Emerging Field of Treg Therapy. Semin Nephrol 2022; 42:76-85. [DOI: 10.1016/j.semnephrol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
207
|
Ou K, Hamo D, Schulze A, Roemhild A, Kaiser D, Gasparoni G, Salhab A, Zarrinrad G, Amini L, Schlickeiser S, Streitz M, Walter J, Volk HD, Schmueck-Henneresse M, Reinke P, Polansky JK. Strong Expansion of Human Regulatory T Cells for Adoptive Cell Therapy Results in Epigenetic Changes Which May Impact Their Survival and Function. Front Cell Dev Biol 2021; 9:751590. [PMID: 34869339 PMCID: PMC8639223 DOI: 10.3389/fcell.2021.751590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 12/27/2022] Open
Abstract
Adoptive transfer of regulatory T cells (Treg) is a promising new therapeutic option to treat detrimental inflammatory conditions after transplantation and during autoimmune disease. To reach sufficient cell yield for treatment, ex vivo isolated autologous or allogenic Tregs need to be expanded extensively in vitro during manufacturing of the Treg product. However, repetitive cycles of restimulation and prolonged culture have been shown to impact T cell phenotypes, functionality and fitness. It is therefore critical to scrutinize the molecular changes which occur during T cell product generation, and reexamine current manufacturing practices. We performed genome-wide DNA methylation profiling of cells throughout the manufacturing process of a polyclonal Treg product that has proven safety and hints of therapeutic efficacy in kidney transplant patients. We found progressive DNA methylation changes over the duration of culture, which were donor-independent and reproducible between manufacturing runs. Differentially methylated regions (DMRs) in the final products were significantly enriched at promoters and enhancers of genes implicated in T cell activation. Additionally, significant hypomethylation did also occur in promoters of genes implicated in functional exhaustion in conventional T cells, some of which, however, have been reported to strengthen immunosuppressive effector function in Tregs. At the same time, a set of reported Treg-specific demethylated regions increased methylation levels with culture, indicating a possible destabilization of Treg identity during manufacturing, which was independent of the purity of the starting material. Together, our results indicate that the repetitive TCR-mediated stimulation lead to epigenetic changes that might impact functionality of Treg products in multiple ways, by possibly shifting to an effector Treg phenotype with enhanced functional activity or by risking destabilization of Treg identity and impaired TCR activation. Our analyses also illustrate the value of epigenetic profiling for the evaluation of T cell product manufacturing pipelines, which might open new avenues for the improvement of current adoptive Treg therapies with relevance for conventional effector T cell products.
Collapse
Affiliation(s)
- Kristy Ou
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dania Hamo
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Schulze
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Kaiser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gilles Gasparoni
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Ghazaleh Zarrinrad
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia K Polansky
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Centre (DRFZ) Berlin, Berlin, Germany
| |
Collapse
|
208
|
Kaiser D, Otto NM, McCallion O, Hoffmann H, Zarrinrad G, Stein M, Beier C, Matz I, Herschel M, Hester J, Moll G, Issa F, Reinke P, Roemhild A. Freezing Medium Containing 5% DMSO Enhances the Cell Viability and Recovery Rate After Cryopreservation of Regulatory T Cell Products ex vivo and in vivo. Front Cell Dev Biol 2021; 9:750286. [PMID: 34926446 PMCID: PMC8677839 DOI: 10.3389/fcell.2021.750286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
Cell therapies have significant therapeutic potential in diverse fields including regenerative medicine, transplantation tolerance, and autoimmunity. Within these fields, regulatory T cells (Treg) have been deployed to ameliorate aberrant immune responses with great success. However, translation of the cryopreservation strategies employed for other cell therapy products, such as effector T cell therapies, to Treg therapies has been challenging. The lack of an optimized cryopreservation strategy for Treg products presents a substantial obstacle to their broader application, particularly as administration of fresh cells limits the window available for sterility and functional assessment. In this study, we aimed to develop an optimized cryopreservation strategy for our CD4+CD25+Foxp3+ Treg clinical product. We investigate the effect of synthetic or organic cryoprotectants including different concentrations of DMSO on Treg recovery, viability, phenotype, cytokine production, suppressive capacity, and in vivo survival following GMP-compliant manufacture. We additionally assess the effect of adding the extracellular cryoprotectant polyethylene glycol (PEG), or priming cellular expression of heat shock proteins as strategies to improve viability. We find that cryopreservation in serum-free freezing medium supplemented with 10% human serum albumin and 5% DMSO facilitates improved Treg recovery and functionality and supports a reduced DMSO concentration in Treg cryopreservation protocols. This strategy may be easily incorporated into clinical manufacture protocols for future studies.
Collapse
Affiliation(s)
- Daniel Kaiser
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Maureen Otto
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver McCallion
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Henrike Hoffmann
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carola Beier
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Isabell Matz
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marleen Herschel
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Guido Moll
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
209
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
210
|
Bergström M, Yao M, Müller M, Korsgren O, von Zur-Mühlen B, Lundgren T. Autologous regulatory T cells in clinical intraportal allogenic pancreatic islet transplantation. Transpl Int 2021; 34:2816-2823. [PMID: 34787936 DOI: 10.1111/tri.14163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 01/19/2023]
Abstract
Allogeneic islet transplantation in type 1 diabetes requires lifelong immunosuppression to prevent graft rejection. This medication can cause adverse effects and increases the susceptibility for infections and malignancies. Adoptive therapies with regulatory T cells (Tregs) have shown promise in reducing the need for immunosuppression in human transplantation settings but have previously not been evaluated in islet transplantation. In this study, five patients with type 1 diabetes undergoing intraportal allogeneic islet transplantation were co-infused with polyclonal autologous Tregs under a standard immunosuppressive regimen. Patients underwent leaukapheresis from which Tregs were purified by magnetic-activated cell sorting (MACS) and cryopreserved until transplantation. Dose ranges of 0.14-1.27 × 106 T cells per kilo bodyweight were transplanted. No negative effects were seen related to the Treg infusion, regardless of cell dose. Only minor complications related to the immunosuppressive drugs were reported. This first-in-man study of autologous Treg infusion in allogenic pancreatic islet transplantation shows that the treatment is safe and feasible. Based on these results, future efficacy studies will be developed under the label of advanced therapeutic medical products (ATMP), using modified or expanded Tregs with the aim of minimizing the need for chronic immunosuppressive medication in islet transplantation.
Collapse
Affiliation(s)
- Marcus Bergström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Ming Yao
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Müller
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Bengt von Zur-Mühlen
- Department of Surgical Sciences, Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
211
|
Cortés-Hernández A, Alvarez-Salazar EK, Arteaga-Cruz S, Rosas-Cortina K, Linares N, Alberú Gómez JM, Soldevila G. Highly Purified Alloantigen-Specific Tregs From Healthy and Chronic Kidney Disease Patients Can Be Long-Term Expanded, Maintaining a Suppressive Phenotype and Function in the Presence of Inflammatory Cytokines. Front Immunol 2021; 12:686530. [PMID: 34777330 PMCID: PMC8581357 DOI: 10.3389/fimmu.2021.686530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
The adoptive transfer of alloantigen-specific regulatory T cells (alloTregs) has been proposed as a therapeutic alternative in kidney transplant recipients to the use of lifelong immunosuppressive drugs that cause serious side effects. However, the clinical application of alloTregs has been limited due to their low frequency in peripheral blood and the scarce development of efficient protocols to ensure their purity, expansion, and stability. Here, we describe a new experimental protocol that allows the long-term expansion of highly purified allospecific natural Tregs (nTregs) from both healthy controls and chronic kidney disease (CKD) patients, which maintain their phenotype and suppressive function under inflammatory conditions. Firstly, we co-cultured CellTrace Violet (CTV)-labeled Tregs from CKD patients or healthy individuals with allogeneic monocyte-derived dendritic cells in the presence of interleukin 2 (IL-2) and retinoic acid. Then, proliferating CD4+CD25hiCTV− Tregs (allospecific) were sorted by fluorescence-activated cell sorting (FACS) and polyclonally expanded with anti-CD3/CD28-coated beads in the presence of transforming growth factor beta (TGF-β), IL-2, and rapamycin. After 4 weeks, alloTregs were expanded up to 2,300 times the initial numbers with a purity of >95% (CD4+CD25hiFOXP3+). The resulting allospecific Tregs showed high expressions of CTLA-4, LAG-3, and CD39, indicative of a highly suppressive phenotype. Accordingly, expanded alloTregs efficiently suppressed T-cell proliferation in an antigen-specific manner, even in the presence of inflammatory cytokines (IFN-γ, IL-4, IL-6, or TNF-α). Unexpectedly, the long-term expansion resulted in an increased methylation of the specific demethylated region of Foxp3. Interestingly, alloTregs from both normal individuals and CKD patients maintained their immunosuppressive phenotype and function after being expanded for two additional weeks under an inflammatory microenvironment. Finally, phenotypic and functional evaluation of cryopreserved alloTregs demonstrated the feasibility of long-term storage and supports the potential use of this cellular product for personalized Treg therapy in transplanted patients.
Collapse
Affiliation(s)
- Arimelek Cortés-Hernández
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evelyn Katy Alvarez-Salazar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Katya Rosas-Cortina
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nadyeli Linares
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josefina M Alberú Gómez
- National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
212
|
Sampani E, Vagiotas L, Daikidou DV, Nikolaidou V, Xochelli A, Kasimatis E, Lioulios G, Dimitriadis C, Fylaktou A, Papagianni A, Stangou M. End stage renal disease has an early and continuous detrimental effect on regulatory T cells. Nephrology (Carlton) 2021; 27:281-287. [PMID: 34781412 DOI: 10.1111/nep.13996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
End stage renal disease (ESRD) is followed by disturbed adaptive immunity, together with alterations in T cell subsets, including CD4+CD25+FoxP3+ cells (Tregs). In the present study, we assessed the effect of haemodialysis (HD) on the Treg population. CD3+CD4+, CD3+CD8+ and CD4+CD25+FoxP3+ cells were estimated by flow cytometry in 142 ESRD patients (45 ESRD-preHD, 97 on HD) and 30 healthy controls (HC). Patients on HD were classified into three groups according to time on dialysis (HD vintage - HDV): A < 2 years, B: 2-5 years and C: >5 years on HD. The mean age of patients on HD (M/F 53/44) was 54.8 ± 14 years and the median HDV 58 (78) months. We observed a significant progressive reduction in the percentage and count of lymphocytes (p < .001, p < .001, respectively), CD3+CD4+ (p = .003 and, p < .001, respectively) and Tregs (p = .001 and, p < .001, respectively), between HC, ESRD-preHD and HD patients. HDV had a significant inverse correlation with total lymphocyte, CD3+CD4+ and Treg cell counts (p = .001, p < .001, p < .001, respectively) and, the percentage of lymphocytes and CD3+CD4+ cells (p = .005, p = .01, respectively). Furthermore, we stratified patients on HD into three groups according to HDV: A < 2 years, B: 2-5 years and C: >5 years on HD. Total lymphocytes and Tregs were significantly different among the three vintage groups (Kruskal-Wallis H test, p < .001, p < .001 respectively). CD3+CD4+ and CD3+CD8+ cells were also significantly affected (p < .001 and p = .001, respectively), after at least 2 years of HD. Tregs show prompt and significant reduction at the pre-dialysis stage, and continue to decrease gradually even after long-term HD, in a context of total lymphocyte reduction.
Collapse
Affiliation(s)
- Erasmia Sampani
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lampis Vagiotas
- Department of Transplant Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra-Vasilia Daikidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Efstratios Kasimatis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Lioulios
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos Dimitriadis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
213
|
Krämer B, Knoll R, Bonaguro L, ToVinh M, Raabe J, Astaburuaga-García R, Schulte-Schrepping J, Kaiser KM, Rieke GJ, Bischoff J, Monin MB, Hoffmeister C, Schlabe S, De Domenico E, Reusch N, Händler K, Reynolds G, Blüthgen N, Hack G, Finnemann C, Nischalke HD, Strassburg CP, Stephenson E, Su Y, Gardner L, Yuan D, Chen D, Goldman J, Rosenstiel P, Schmidt SV, Latz E, Hrusovsky K, Ball AJ, Johnson JM, Koenig PA, Schmidt FI, Haniffa M, Heath JR, Kümmerer BM, Keitel V, Jensen B, Stubbemann P, Kurth F, Sander LE, Sawitzki B, Aschenbrenner AC, Schultze JL, Nattermann J. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 2021; 54:2650-2669.e14. [PMID: 34592166 PMCID: PMC8416549 DOI: 10.1016/j.immuni.2021.09.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/04/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.
Collapse
Affiliation(s)
- Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Michael ToVinh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Rosario Astaburuaga-García
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Institute of Pathology, Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kim Melanie Kaiser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Gereon J Rieke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Jenny Bischoff
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Malte B Monin
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Stefan Schlabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Nico Reusch
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Institute of Pathology, Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gudrun Hack
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Claudia Finnemann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Hans D Nischalke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jason Goldman
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98109, USA; Providence St. Joseph Health, Renton, WA 98057, USA; Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Philipp Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Susanne V Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | | | - Paul-Albert Koenig
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK; NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Department of Dermatology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James R Heath
- Institute for Systems Biology, Seattle, WA 98109, USA; Board of Directors of Isoplexis, Branford, CT 06405, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Board of Directors of PACT Pharma, South San Francisco, CA 94080, USA
| | - Beate M Kümmerer
- German Center for Infection Research (DZIF), Germany; Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paula Stubbemann
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany; Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
214
|
Lamarthée B, Marchal A, Charbonnier S, Blein T, Leon J, Martin E, Rabaux L, Vogt K, Titeux M, Delville M, Vinçon H, Six E, Pallet N, Michonneau D, Anglicheau D, Legendre C, Taupin JL, Nemazanyy I, Sawitzki B, Latour S, Cavazzana M, André I, Zuber J. Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nat Commun 2021; 12:6446. [PMID: 34750385 PMCID: PMC8575891 DOI: 10.1038/s41467-021-26844-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
The use of chimeric antigen receptor (CAR)-engineered regulatory T cells (Tregs) has emerged as a promising strategy to promote immune tolerance. However, in conventional T cells (Tconvs), CAR expression is often associated with tonic signaling, which can induce CAR-T cell dysfunction. The extent and effects of CAR tonic signaling vary greatly according to the expression intensity and intrinsic properties of the CAR. Here, we show that the 4-1BB CSD-associated tonic signal yields a more dramatic effect in CAR-Tregs than in CAR-Tconvs with respect to activation and proliferation. Compared to CD28 CAR-Tregs, 4-1BB CAR-Tregs exhibit decreased lineage stability and reduced in vivo suppressive capacities. Transient exposure of 4-1BB CAR-Tregs to a Treg stabilizing cocktail, including an mTOR inhibitor and vitamin C, during ex vivo expansion sharply improves their in vivo function and expansion after adoptive transfer. This study demonstrates that the negative effects of 4-1BB tonic signaling in Tregs can be mitigated by transient mTOR inhibition.
Collapse
MESH Headings
- Animals
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Graft vs Host Disease/immunology
- Graft vs Host Disease/therapy
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Immunotherapy, Adoptive/methods
- Jurkat Cells
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Sirolimus/pharmacology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/immunology
- TOR Serine-Threonine Kinases/metabolism
- Transplantation, Heterologous
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Mice
Collapse
Affiliation(s)
- Baptiste Lamarthée
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Armance Marchal
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Soëli Charbonnier
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Tifanie Blein
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Juliette Leon
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Emmanuel Martin
- Lymphocyte activation and susceptibility to EBV, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Lucas Rabaux
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Katrin Vogt
- Department of Immunology, Charité University Hospital, Berlin, Germany
| | - Matthias Titeux
- Maladie génétique cutanée, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Marianne Delville
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
- Université de Paris, Paris, France
- Service de Biothérapie et Thérapie Génique Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Hélène Vinçon
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Emmanuelle Six
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Nicolas Pallet
- Université de Paris, INSERM U1138, Centre de Recherche des Cordeliers, 75006, Paris, France
| | | | - Dany Anglicheau
- Université de Paris, Paris, France
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Christophe Legendre
- Université de Paris, Paris, France
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Jean-Luc Taupin
- Université de Paris, Paris, France
- Laboratoire d'immunologie et histocompatibilité, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Ivan Nemazanyy
- Plateforme de Métabolique, Structure Fédérative de Recherche, Necker, INSERM US24/CNRS UMS, 3633, Paris, France
| | - Birgit Sawitzki
- Department of Immunology, Charité University Hospital, Berlin, Germany
| | - Sylvain Latour
- Lymphocyte activation and susceptibility to EBV, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Marina Cavazzana
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
- Université de Paris, Paris, France
- Service de Biothérapie et Thérapie Génique Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Isabelle André
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France
| | - Julien Zuber
- Laboratoire de lymphohématopoïèse humaine, INSERM UMR 1163, IHU IMAGINE, Paris, France.
- Université de Paris, Paris, France.
- Service de Transplantation rénale adulte, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France.
| |
Collapse
|
215
|
Abstract
PURPOSE OF REVIEW Current immunosuppressive regimens used in kidney transplantation are sometimes ineffective and carry significant risks of morbidity and mortality. Cellular therapies are a promising alternative to prolong graft survival while minimizing treatment toxicity. We review the recently published breakthrough studies using cell therapies in kidney transplantation. RECENT FINDINGS The reviewed phase I and II trials showed that cell therapies are feasible and safe in kidney transplantation, sometimes associated with less infectious complications than traditional regimens. Regulatory T cells and macrophages were added to the induction regimen, allowing for lower immunosuppressive drug doses without higher rejection risk. Regulatory T cells are also a treatment for subclinical rejection on the 6 months biopsy. Other strategies, like bone marrow-derived mesenchymal cells, genetically modified regulatory T cells, and chimerism-based tolerance are also really promising. In addition, to improve graft tolerance, cell therapy could be used to prevent or treat viral infection after transplantation. SUMMARY Emerging data underline that cell therapy is a feasible and safe treatment in kidney transplantation. Although the evidence points to a benefit for transplant recipients, studies with standardized protocols, representative control groups, and longer follow-up are needed to answer the question definitively and guide future research.
Collapse
Affiliation(s)
- Simon Leclerc
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
216
|
Jarvis LB, Rainbow DB, Coppard V, Howlett SK, Georgieva Z, Davies JL, Mullay HK, Hester J, Ashmore T, Van Den Bosch A, Grist JT, Coles AJ, Mousa HS, Pluchino S, Mahbubani KT, Griffin JL, Saeb-Parsy K, Issa F, Peruzzotti-Jametti L, Wicker LS, Jones JL. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun Biol 2021; 4:1186. [PMID: 34650224 PMCID: PMC8516976 DOI: 10.1038/s42003-021-02721-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.
Collapse
Affiliation(s)
- Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel B Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Valerie Coppard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sarah K Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jessica L Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Joanna Hester
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hani S Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Imperial College London Dementia Research Institute & Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Fadi Issa
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
217
|
Hann A, Oo YH, Perera MTPR. Regulatory T-Cell Therapy in Liver Transplantation and Chronic Liver Disease. Front Immunol 2021; 12:719954. [PMID: 34721383 PMCID: PMC8552037 DOI: 10.3389/fimmu.2021.719954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
The constant exposure of the liver to gut derived foreign antigens has resulted in this organ attaining unique immunological characteristics, however it remains susceptible to immune mediated injury. Our understanding of this type of injury, in both the native and transplanted liver, has improved significantly in recent decades. This includes a greater awareness of the tolerance inducing CD4+ CD25+ CD127low T-cell lineage with the transcription factor FoxP3, known as regulatory T-Cells (Tregs). These cells comprise 5-10% of CD4+ T cells and are known to function as an immunological "braking" mechanism, thereby preventing immune mediated tissue damage. Therapies that aim to increase Treg frequency and function have proved beneficial in the setting of both autoimmune diseases and solid organ transplantations. The safety and efficacy of Treg therapy in liver disease is an area of intense research at present and has huge potential. Due to these cells possessing significant plasticity, and the potential for conversion towards a T-helper 1 (Th1) and 17 (Th17) subsets in the hepatic microenvironment, it is pre-requisite to modify the microenvironment to a Treg favourable atmosphere to maintain these cells' function. In addition, implementation of therapies that effectively increase Treg functional activity in the liver may result in the suppression of immune responses and will hinder those that destroy tumour cells. Thus, fine adjustment is crucial to achieve this immunological balance. This review will describe the hepatic microenvironment with relevance to Treg function, and the role these cells have in both native diseased and transplanted livers.
Collapse
Affiliation(s)
- Angus Hann
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye H Oo
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Disease (ERN-Rare Liver Centre), University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M Thamara P R Perera
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
218
|
Muller YD, Ferreira LMR, Ronin E, Ho P, Nguyen V, Faleo G, Zhou Y, Lee K, Leung KK, Skartsis N, Kaul AM, Mulder A, Claas FHJ, Wells JA, Bluestone JA, Tang Q. Precision Engineering of an Anti-HLA-A2 Chimeric Antigen Receptor in Regulatory T Cells for Transplant Immune Tolerance. Front Immunol 2021; 12:686439. [PMID: 34616392 PMCID: PMC8488356 DOI: 10.3389/fimmu.2021.686439] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-ζ signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.
Collapse
Affiliation(s)
- Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Patrick Ho
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gaetano Faleo
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
| | - Karim Lee
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Nikolaos Skartsis
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Anupurna M Kaul
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States.,Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
219
|
Huffaker MF, Sanda S, Chandran S, Chung SA, St Clair EW, Nepom GT, Smilek DE. Approaches to Establishing Tolerance in Immune Mediated Diseases. Front Immunol 2021; 12:744804. [PMID: 34616405 PMCID: PMC8488342 DOI: 10.3389/fimmu.2021.744804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
The development of rational approaches to restore immune tolerance requires an iterative approach that builds on past success and utilizes new mechanistic insights into immune-mediated pathologies. This article will review concepts that have evolved from the clinical trial experience of the Immune Tolerance Network, with an emphasis on lessons learned from the innovative mechanistic studies conducted for these trials and new strategies under development for induction of tolerance.
Collapse
Affiliation(s)
- Michelle F Huffaker
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Srinath Sanda
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Sindhu Chandran
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | - Sharon A Chung
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| | | | - Gerald T Nepom
- Immune Tolerance Network, Benaroya Research Institute, Seattle, WA, United States
| | - Dawn E Smilek
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
220
|
Mohseni YR, Saleem A, Tung SL, Dudreuilh C, Lang C, Peng Q, Volpe A, Adigbli G, Cross A, Hester J, Farzaneh F, Scotta C, Lechler RI, Issa F, Fruhwirth GO, Lombardi G. Chimeric antigen receptor-modified human regulatory T cells that constitutively express IL-10 maintain their phenotype and are potently suppressive. Eur J Immunol 2021; 51:2522-2530. [PMID: 34320225 PMCID: PMC8581768 DOI: 10.1002/eji.202048934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/30/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Clinical trials of Treg therapy in transplantation are currently entering phases IIa and IIb, with the majority of these employing polyclonal Treg populations that harbor a broad specificity. Enhancing Treg specificity is possible with the use of chimeric antigen receptors (CARs), which can be customized to respond to a specific human leukocyte antigen (HLA). In this study, we build on our previous work in the development of HLA-A2 CAR-Tregs by further equipping cells with the constitutive expression of interleukin 10 (IL-10) and an imaging reporter as additional payloads. Cells were engineered to express combinations of these domains and assessed for phenotype and function. Cells expressing the full construct maintained a stable phenotype after transduction, were specifically activated by HLA-A2, and suppressed alloresponses potently. The addition of IL-10 provided an additional advantage to suppressive capacity. This study therefore provides an important proof-of-principle for this cell engineering approach for next-generation Treg therapy in transplantation.
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Adeel Saleem
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
- Department of Haematology and Precision MedicineKings College HospitalLondonUK
| | - Sim L. Tung
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Caroline Dudreuilh
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Cameron Lang
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - Qi Peng
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Alessia Volpe
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - George Adigbli
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Amy Cross
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Joanna Hester
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Farzin Farzaneh
- Department of Haematological MedicineSchool of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - Cristiano Scotta
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Robert I. Lechler
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| | - Fadi Issa
- Transplantation Research & Immunology Group, Nuffield Department of Surgical SciencesUniversity of Oxford, Oxford, UK
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer GroupComprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College LondonLondonUK
| | - Giovanna Lombardi
- MRC Centre for Transplantation ImmunologySchool of Immunology and Microbial Sciences, King's College LondonLondonUK
| |
Collapse
|
221
|
Siren EMJ, Luo HD, Tam F, Montgomery A, Enns W, Moon H, Sim L, Rey K, Guan Q, Wang JJ, Wardell CM, Monajemi M, Mojibian M, Levings MK, Zhang ZJ, Du C, Withers SG, Choy JC, Kizhakkedathu JN. Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers. Nat Biomed Eng 2021; 5:1202-1216. [PMID: 34373602 DOI: 10.1038/s41551-021-00777-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.
Collapse
Affiliation(s)
- Erika M J Siren
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franklin Tam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ashani Montgomery
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Haisle Moon
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lyann Sim
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mahdis Monajemi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada. .,School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
222
|
Krentz NAJ, Shea LD, Huising MO, Shaw JAM. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol 2021; 9:708-724. [PMID: 34480875 PMCID: PMC10881068 DOI: 10.1016/s2213-8587(21)00170-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic β-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost β-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use. In this Review, we highlight incremental advances over the past 20 years and remaining challenges in regenerative medicine approaches to restoring β-cell mass and function in type 1 diabetes. We begin by summarising the role of endocrine islets in glucose homoeostasis and how this is altered in disease. We then discuss the potential regenerative capacity of the remaining islet cells and the utility of stem cell-derived β-like cells to restore β-cell function. We conclude with tissue engineering approaches that might improve the engraftment, function, and survival of β-cell replacement therapies.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lonnie D Shea
- Departments of Biomedical Engineering, Chemical Engineering, and Surgery, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
223
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
224
|
Safinia N, Vaikunthanathan T, Lechler RI, Sanchez‐Fueyo A, Lombardi G. Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance? Eur J Immunol 2021; 51:2373-2386. [PMID: 34375446 PMCID: PMC10015994 DOI: 10.1002/eji.202048875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver disease. Breakthroughs in surgical practice and immunosuppression have seen considerable advancements in survival after transplantation. However, the intricate management of immunosuppressive regimens, balancing desired immunological quiescence while minimizing toxicity has proven challenging. Diminishing improvements in long-term morbidity and mortality have been inextricably linked with the protracted use of these medications. As such, there is now enormous interest to devise protocols that will allow us to minimize or completely withdraw immunosuppressants after transplantation. Immunosuppression withdrawal trials have proved the reality of tolerance following liver transplantation, however, without intervention will only occur after several years at the risk of potential cumulative immunosuppression-related morbidity. Focus has now been directed at accelerating this phenomenon through tolerance-inducing strategies. In this regard, efforts have seen the use of regulatory cell immunotherapy. Here we focus particularly on regulatory T cells, discussing preclinical data that propagated several clinical trials of adoptive cell therapy in liver transplantation. Furthermore, we describe efforts to further optimize the specificity and survival of regulatory cell therapy guided by concurrent immunomonitoring studies and the development of novel technologies including chimeric antigen receptors and co-administration of low-dose IL-2.
Collapse
Affiliation(s)
- Niloufar Safinia
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Robert Ian Lechler
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| | | | - Giovanna Lombardi
- Division of Transplantation Immunology & Mucosal BiologyKing's College LondonLondonUK
| |
Collapse
|
225
|
He X, Li S, Zhang J, Cao L, Yang C, Rong P, Yi S, Ghimire K, Ma X, Wang W. Benefit of Belatacept in Cord Blood-Derived Regulatory T Cell-Mediated Suppression of Alloimmune Response. Cell Transplant 2021; 30:9636897211046556. [PMID: 34570631 PMCID: PMC8718163 DOI: 10.1177/09636897211046556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.
Collapse
Affiliation(s)
- Xing He
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Sang Li
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shounan Yi
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
226
|
Trevelin SC, Zampetaki A, Sawyer G, Ivetic A, Brewer AC, Smyth LA, Marelli-Berg F, Köchl R, Lechler RI, Shah AM, Lombardi G. Nox2-deficient Tregs improve heart transplant outcomes via their increased graft recruitment and enhanced potency. JCI Insight 2021; 6:e149301. [PMID: 34375309 PMCID: PMC8492330 DOI: 10.1172/jci.insight.149301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Nox2 is a ROS-generating enzyme, deficiency of which increases suppression by Tregs in vitro and in an in vivo model of cardiac remodeling. As Tregs have emerged as a candidate therapy in autoimmunity and transplantation, we hypothesized that Nox2 deficiency in Tregs in recipient mice may improve outcomes in a heart transplant model. We generated a potentially novel B6129 mouse model with Treg-targeted Nox2 deletion (Nox2fl/flFoxP3Cre+ mice) and transplanted with hearts from CB6F1 donors. As compared with those of littermate controls, Nox2fl/flFoxP3Cre+ mice had lower plasma levels of alloantibodies and troponin-I, reduced levels of IFN-γ in heart allograft homogenates, and diminished cardiomyocyte necrosis and allograft fibrosis. Single-cell analyses of allografts revealed higher absolute numbers of Tregs and lower CD8+ T cell infiltration in Nox2-deficient recipients compared with Nox2-replete mice. Mechanistically, in addition to a greater suppression of CD8+CD25- T effector cell proliferation and IFN-γ production, Nox2-deficient Tregs expressed higher levels of CCR4 and CCR8, driving cell migration to allografts; this was associated with increased expression of miR-214-3p. These data indicate that Nox2 deletion in Tregs enhances their suppressive ability and migration to heart allografts. Therefore, Nox2 inhibition in Tregs may be a useful approach to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Silvia C. Trevelin
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom.,King’s College London, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Anna Zampetaki
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Greta Sawyer
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Aleksandar Ivetic
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Alison C. Brewer
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Lesley Ann Smyth
- University of East London, Health Sports Bioscience, London, United Kingdom
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom
| | - Robert Köchl
- King’s College London, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Robert I. Lechler
- King’s College London, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Ajay M. Shah
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Giovanna Lombardi
- King’s College London, School of Immunology and Microbial Sciences, London, United Kingdom
| |
Collapse
|
227
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
228
|
Maanaoui M, Kerr-Conte J. Pushing the boundaries of organs before it's too late: pre-emptive regeneration. Transpl Int 2021; 34:1761-1769. [PMID: 34532871 DOI: 10.1111/tri.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Solid organ transplantation is marked by accelerated aging and inexorable fibrosis. It is crucial to promote strategies to attenuate, or to reverse, damage before organ failure. Hence, the objective of this article is to provide insight into strategies, which aim to regenerate or rejuvenate the transplanted organs. Cell therapy with mesenchymal stromal cells is currently under investigation because of their antifibrotic properties. Their ability to promote mitochondrial biogenesis, and to transfer mitochondria to wounded cells, is another approach to boost the organ regeneration. Other teams have investigated bioengineered organs, which consists of decellularization of the damaged organ followed by recellularization. Lastly, the development of CAR-T cell-based technologies may revolutionize the field of transplantation, as recent preclinical studies showed that CAR-T cells could efficiently clear senescent cells from an organ and reverse fibrosis. Ultimately, these cutting-edge strategies may bring the holy grail of a pre-emptive regenerated organ closer to reality.
Collapse
Affiliation(s)
- Mehdi Maanaoui
- Department of Nephrology, CHU Lille, Lille, France.,Inserm, CHU Lille, Institut Pasteur Lille, U1190 - EGID, Univ. Lille, Lille, France
| | - Julie Kerr-Conte
- Inserm, CHU Lille, Institut Pasteur Lille, U1190 - EGID, Univ. Lille, Lille, France
| |
Collapse
|
229
|
Hu M, Rogers NM, Li J, Zhang GY, Wang YM, Shaw K, O'Connell PJ, Alexander SI. Antigen Specific Regulatory T Cells in Kidney Transplantation and Other Tolerance Settings. Front Immunol 2021; 12:717594. [PMID: 34512640 PMCID: PMC8428972 DOI: 10.3389/fimmu.2021.717594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Kidney transplantation is the most common solid organ transplant and the best current therapy for end-stage kidney failure. However, with standard immunosuppression, most transplants develop chronic dysfunction or fail, much of which is due to chronic immune injury. Tregs are a subset of T cells involved in limiting immune activation and preventing autoimmune disease. These cells offer the potential to provide tolerance or to allow reduction in immunosuppression in kidney transplants. The importance of Tregs in kidney transplantation has been shown in a number of seminal mouse and animal studies, including those with T cell receptors (TCRs) transgenic Tregs (TCR-Tregs) or Chimeric Antigen Receptor (CAR) Tregs (CAR-Tregs) showing that specificity increases the potency of Treg function. Here we outline the animal and human studies and clinical trials directed at using Tregs in kidney transplantation and other tolerance settings and the various modifications to enhance allo-specific Treg function in vivo and in vitro.
Collapse
Affiliation(s)
- Min Hu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Geoff Y Zhang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Karli Shaw
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
230
|
Nielsen MB, Ravlo K, Eijken M, Krogstrup NV, Bue Svendsen M, Abdel-Halim C, Steen Petersen M, Birn H, Oltean M, Jespersen B, Møller BK. Dynamics of circulating dendritic cells and cytokines after kidney transplantation-No effect of remote ischaemic conditioning. Clin Exp Immunol 2021; 206:226-236. [PMID: 34473350 DOI: 10.1111/cei.13658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammation resulting from ischaemia/reperfusion injury can cause kidney graft dysfunction, increase the risk of delayed graft function and possibly reduce long-term graft survival. Remote ischaemic conditioning may protect against ischaemia/reperfusion injury and mitigate the immunological response to the graft. We investigated the immunological effects of remote ischaemic conditioning on kidney transplantation from deceased donors in the randomized CONTEXT study. Three circulating dendritic cell (DC) subtypes identified in peripheral blood from kidney transplant recipients [myeloid DCs, plasmacytoid DCs and immunoglobulin-like transcript (ILT)3+ DCs] were measured at baseline, days 1, 3 and 5 and 1 and 3 months after transplantation. We also quantified 21 cytokines at baseline, days 1 and 5 and 3 months after transplantation. Neither DC counts nor cytokine levels differed between patients receiving remote ischaemic conditioning and controls; however, several parameters exhibited dynamic and parallel alterations in the two groups over time, reflecting the immunological response to the kidney transplantation and immunosuppression.
Collapse
Affiliation(s)
- Marie B Nielsen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristian Ravlo
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Nicoline V Krogstrup
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Nephrology, Rigshospitalet, Copenhagen, Denmark
| | | | - Chadi Abdel-Halim
- Department of Otorhinolaryngology, Head and Neck Surgery, and Audiology, Odense University Hospital, Odense, Denmark
| | | | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
231
|
Miyamoto E, Takahagi A, Ohsumi A, Martinu T, Hwang D, Boonstra KM, Joe B, Umana JM, Bei KF, Vosoughi D, Liu M, Cypel M, Keshavjee S, Juvet SC. Ex vivo delivery of regulatory T cells for control of alloimmune priming in the donor lung. Eur Respir J 2021; 59:13993003.00798-2021. [PMID: 34475226 DOI: 10.1183/13993003.00798-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 11/05/2022]
Abstract
Survival after lung transplantation (LTx) is hampered by uncontrolled inflammation and alloimmunity. Regulatory T cells (Tregs) are being studied as a cellular therapy in solid organ transplantation. Whether these systemically administered Tregs can function at the appropriate location and time is an important concern. We hypothesized that in vitro expanded, recipient-derived Tregs can be delivered to donor lungs prior to LTx via ex vivo lung perfusion (EVLP), maintaining their immunomodulatory ability.In a rat model, Wistar Kyoto (WKy) CD4+CD25high Tregs were expanded in vitro prior to EVLP. Expanded Tregs were administered to Fisher 344 (F344) donor lungs during EVLP; left lungs were transplanted into WKy recipients. Treg localisation and function post-transplant were assessed. In a proof-of-concept experiment, cryopreserved expanded human CD4+CD25+CD127low Tregs were thawed and injected into discarded human lungs during EVLP.Rat Tregs entered the lung parenchyma and retained suppressive function. Expanded Tregs had no adverse effect on donor lung physiology during EVLP; lung water as measured by wet-to-dry weight ratio was reduced by Treg therapy. The administered cells remained in the graft at 3 days post-transplant where they reduced activation of intragraft effector CD4+ T cells; these effects were diminished by day 7. Human Tregs entered the lung parenchyma during EVLP where they expressed key immunoregulatory molecules (CTLA4+, 4-1BB+, CD39+, and CD15s+).Pre-transplant Treg administration can inhibit alloimmunity within the lung allograft at early time points post- transplant. Our organ-directed approach has potential for clinical translation.
Collapse
Affiliation(s)
- Ei Miyamoto
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Takahagi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kristen M Boonstra
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Juan Mauricio Umana
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ke F Bei
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vosoughi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
232
|
Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans-a model to evaluate regulatory T cells in gene therapy? Gene Ther 2021; 28:549-559. [PMID: 33574580 PMCID: PMC8455332 DOI: 10.1038/s41434-021-00232-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The dichotomic nature of the adaptive immune response governs the outcome of clinical gene therapy. On the one hand, neutralizing antibodies and cytotoxic T cells can have a dramatic impact on the efficacy and safety of human gene therapies. On the other hand, regulatory T cells (Treg) can promote tolerance toward transgenes thereby enabling long-term benefits of in vivo gene therapy after a single administration. Pre-existing antibodies and T cell immunity has been a major obstacle for in vivo gene therapies with viral vectors. As CRISPR-Cas9 gene editing advances toward the clinics, the technology's inherent immunogenicity must be addressed in order to guide clinical treatment decisions. This review summarizes the recent evidence on Cas9-specific immunity in humans-including early results from clinical trials-and discusses the risks for in vivo gene therapies. Finally, we focus on solutions and highlight the potential role of Cas9-specific Treg cells to promote immune tolerance. As a "beneficial alliance" beyond Cas9-immunity, antigen-specific Treg cells may serve as a living and targeted immunosuppressant to increase safety and efficacy of gene therapy.
Collapse
Affiliation(s)
- Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH)-Center for Regenerative Therapies (B-CRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
233
|
Ezzelarab MB, Zhang H, Sasaki K, Lu L, Zahorchak AF, van der Windt DJ, Dai H, Perez-Gutierrez A, Bhama JK, Thomson AW. Ex Vivo Expanded Donor Alloreactive Regulatory T Cells Lose Immunoregulatory, Proliferation, and Antiapoptotic Markers After Infusion Into ATG-lymphodepleted, Nonhuman Primate Heart Allograft Recipients. Transplantation 2021; 105:1965-1979. [PMID: 33587433 PMCID: PMC8239063 DOI: 10.1097/tp.0000000000003617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is a promising approach to amelioration of allograft rejection and promotion of organ transplant tolerance. However, the fate of infused Treg, and how this relates to their therapeutic efficacy using different immunosuppressive regimens is poorly understood. Our aim was to analyze the tissue distribution, persistence, replicative activity and phenotypic stability of autologous, donor antigen alloreactive Treg (darTreg) in anti-thymocyte globulin (ATG)-lymphodepleted, heart-allografted cynomolgus monkeys. METHODS darTreg were expanded ex vivo from flow-sorted, circulating Treg using activated donor B cells and infused posttransplant into recipients of major histocompatibility complex-mismatched heart allografts. Fluorochrome-labeled darTreg were identified and characterized in peripheral blood, lymphoid, and nonlymphoid tissues and the graft by flow cytometric analysis. RESULTS darTreg selectively suppressed autologous T cell responses to donor antigens in vitro. However, following their adoptive transfer after transplantation, graft survival was not prolonged. Early (within 2 wk posttransplant; under ATG, tacrolimus, and anti-IL-6R) or delayed (6-8 wk posttransplant; under rapamycin) darTreg infusion resulted in a rapid decline in transferred darTreg in peripheral blood. Following their early or delayed infusion, labeled cells were evident in lymphoid and nonlymphoid organs and the graft at low percentages (<4% CD4+ T cells). Notably, infused darTreg showed reduced expression of immunoregulatory molecules (Foxp3 and CTLA4), Helios, the proliferative marker Ki67 and antiapoptotic Bcl2, compared with preinfusion darTreg and endogenous CD4+CD25hi Treg. CONCLUSIONS Lack of therapeutic efficacy of infused darTreg in lymphodepleted heart graft recipients appears to reflect loss of a regulatory signature and proliferative and survival capacity shortly after infusion.
Collapse
Affiliation(s)
- Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dirk J. van der Windt
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angelica Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
234
|
Shaw BI, Ord JR, Nobuhara C, Luo X. Cellular Therapies in Solid Organ Allotransplantation: Promise and Pitfalls. Front Immunol 2021; 12:714723. [PMID: 34526991 PMCID: PMC8435835 DOI: 10.3389/fimmu.2021.714723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Donor specific transfusions have been the basis of tolerance inducing protocols since Peter Medawar showed that it was experimentally feasible in the 1950s. Though trials of cellular therapies have become increasingly common in solid organ transplantation, they have not become standard practice. Additionally, whereas some protocols have focused on cellular therapies as a method for donor antigen delivery-thought to promote tolerance in and of itself in the correct immunologic context-other approaches have alternatively focused on the intrinsic immunosuppressive properties of the certain cell types with less emphasis on their origin, including mesenchymal stem cells, regulatory T cells, and regulatory dendritic cells. Regardless of intent, all cellular therapies must contend with the potential that introducing donor antigen in a new context will lead to sensitization. In this review, we focus on the variety of cellular therapies that have been applied in human trials and non-human primate models, describe their efficacy, highlight data regarding their potential for sensitization, and discuss opportunities for cellular therapies within our current understanding of the immune landscape.
Collapse
Affiliation(s)
- Brian I. Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jeffrey R. Ord
- School of Medicine, Duke University, Durham, NC, United States
| | - Chloe Nobuhara
- School of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Division of Nephrology, Duke University, Durham, NC, United States
| |
Collapse
|
235
|
Pilat N, Lefsihane K, Brouard S, Kotsch K, Falk C, Steiner R, Thaunat O, Fusil F, Montserrat N, Amarelli C, Casiraghi F. T- and B-cell therapy in solid organ transplantation: current evidence and future expectations. Transpl Int 2021; 34:1594-1606. [PMID: 34448274 DOI: 10.1111/tri.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Cell therapy has emerged as an attractive therapeutic option in organ transplantation. During the last decade, the therapeutic potency of Treg immunotherapy has been shown in various preclinical animal models and safety was demonstrated in first clinical trials. However, there are still critical open questions regarding specificity, survival, and migration to the target tissue so the best Treg population for infusion into patients is still under debate. Recent advances in CAR technology hold the promise for Treg-functional superiority. Another exciting strategy is the generation of B-cell antibody receptor (BAR) Treg/cytotoxic T cells to specifically regulate or deplete alloreactive memory B cells. Finally, B cells are also capable of immune regulation, making them promising candidates for immunomodulatory therapeutic strategies. This article summarizes available literature on cell-based innovative therapeutic approaches aiming at modulating alloimmune response for transplantation. Crucial areas of investigation that need a joined effort of the transplant community for moving the field toward successful achievement of tolerance are highlighted.
Collapse
Affiliation(s)
- Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Katia Lefsihane
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sophie Brouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Katja Kotsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department for General and Visceral Surgery, Berlin Institute of Health, Berlin, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Olivier Thaunat
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Floriane Fusil
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristiano Amarelli
- Department of Cardiac Surgery and Transplants Monaldi, A.O. dei Colli, Naples, Italy
| | | |
Collapse
|
236
|
Habal MV. Current Desensitization Strategies in Heart Transplantation. Front Immunol 2021; 12:702186. [PMID: 34504489 PMCID: PMC8423343 DOI: 10.3389/fimmu.2021.702186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Heart transplant candidates sensitized to HLA antigens wait longer for transplant, are at increased risk of dying while waiting, and may not be listed at all. The increasing prevalence of HLA sensitization and limitations of current desensitization strategies underscore the urgent need for a more effective approach. In addition to pregnancy, prior transplant, and transfusions, patients with end-stage heart failure are burdened with unique factors placing them at risk for HLA sensitization. These include homograft material used for congenital heart disease repair and left ventricular assist devices (LVADs). Moreover, these risks are often stacked, forming a seemingly insurmountable barrier in some cases. While desensitization protocols are typically implemented uniformly, irrespective of the mode of sensitization, the heterogeneity in success and post-transplant outcomes argues for a more tailored approach. Achieving this will require progress in our understanding of the immunobiology underlying the innate and adaptive immune response to these varied allosensitizing exposures. Further attention to B cell activation, memory, and plasma cell differentiation is required to establish methods that durably abrogate the anti-HLA antibody response before and after transplant. The contribution of non-HLA antibodies to the net state of sensitization and the potential implications for graft longevity also remain to be comprehensively defined. The aim of this review is to first bring forth select issues unique to the sensitized heart transplant candidate. The current literature on desensitization in heart transplantation will then be summarized providing context within the immune response. Building on this, newer approaches with therapeutic potential will be discussed emphasizing the importance of not only addressing the short-term pathogenic consequences of circulating HLA antibodies, but also the need to modulate alloimmune memory.
Collapse
Affiliation(s)
- Marlena V. Habal
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| |
Collapse
|
237
|
Affiliation(s)
- Sundaram Hariharan
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Ajay K Israni
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| | - Gabriel Danovitch
- From the University of Pittsburgh Medical Center, Pittsburgh (S.H.); Hennepin Healthcare, the University of Minnesota, and the Scientific Registry of Transplant Recipients - all in Minneapolis (A.K.I.); and the University of California, Los Angeles, Los Angeles (G.D.)
| |
Collapse
|
238
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
239
|
Abstract
PURPOSE OF REVIEW Chronic diabetes-related complications continue to exert a rapidly growing and unsustainable pressure on healthcare systems worldwide. In type 1 diabetes, glycemic control is particularly challenging, as intensive management substantially increase the risk of severe hypoglycemic episodes. Alternative approaches to address this issue are required. Islet cell transplantation offers the best approach to reduce hypoglycemic risks and glycemic lability, while providing optimal glycemic control. Although ongoing efforts have improved clinical outcomes, the constraints in tissue sources and the need for chronic immunosuppression limit the application of islet cell transplantation as a curative therapy for diabetes. This review provides an update on islet cell transplantation, focusing on recent clinical experience, ongoing research, and future challenges. RECENT FINDINGS Current evidence demonstrates advances in terms of long-term glycemic control, improved insulin independence rates, and novel approaches to eliminate chronic immunosuppression requirements after islet cell transplantation. Advances in stem cell-based therapies provide a promising path towards truly personalized regenerative therapies, solving both tissue supply shortage and the need for lifelong immunosuppression, enabling widespread use of this potentially curative treatment. However, as these therapies enter the clinical realm, regional access variability and ethical questions regarding commercialization are becoming increasingly important and require a collaborative solution. SUMMARY In this state-of-the-art review, we discuss current clinical evidence and discuss key aspects on the present and future of islet cell transplantation.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio A Marfil-Garza
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City
- CHRISTUS-LatAm Hub - Excellence and Innovation Center, Monterrey, Mexico
| | - A M James Shapiro
- Department of Surgery and Clinical Islet Transplant Programme, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
240
|
Suuring M, Moreau A. Regulatory Macrophages and Tolerogenic Dendritic Cells in Myeloid Regulatory Cell-Based Therapies. Int J Mol Sci 2021; 22:7970. [PMID: 34360736 PMCID: PMC8348814 DOI: 10.3390/ijms22157970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn's disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.
Collapse
Affiliation(s)
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie—UMR1064, INSERM—ITUN, Nantes Université, CHU Nantes, 44000 Nantes, France;
| |
Collapse
|
241
|
Macedo C, Tran LM, Zahorchak AF, Dai H, Gu X, Ravichandran R, Mohanakumar T, Elinoff B, Zeevi A, Styn MA, Humar A, Lakkis FG, Metes DM, Thomson AW. Donor-derived regulatory dendritic cell infusion results in host cell cross-dressing and T cell subset changes in prospective living donor liver transplant recipients. Am J Transplant 2021; 21:2372-2386. [PMID: 33171019 PMCID: PMC8215622 DOI: 10.1111/ajt.16393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 01/25/2023]
Abstract
Regulatory dendritic cells (DCreg) promote transplant tolerance following their adoptive transfer in experimental animals. We investigated the feasibility, safety, fate, and impact on host T cells of donor monocyte-derived DCreg infused into prospective, living donor liver transplant patients, 7 days before transplantation. The DCreg expressed a tolerogenic gene transcriptional profile, high cell surface programed death ligand-1 (PD-L1):CD86 ratios, high IL-10/no IL-12 productivity and poor ability to stimulate allogeneic T cell proliferation. Target DCreg doses (range 2.5-10 × 106 cells/kg) were achieved in all but 1 of 15 recipients, with no infusion reactions. Following DCreg infusion, transiently elevated levels of donor HLA and immunoregulatory PD-L1, CD39, and CD73 were detected in circulating small extracellular vesicles. At the same time, flow and advanced image stream analysis revealed intact DCreg and "cross-dressing" of host DCs in blood and lymph nodes. PD-L1 co-localization with donor HLA was observed at higher levels than with recipient HLA. Between DCreg infusion and transplantation, T-bethi Eomeshi memory CD8+ T cells decreased, whereas regulatory (CD25hi CD127- Foxp3+ ): T-bethi Eomeshi CD8+ T cell ratios increased. Thus, donor-derived DCreg infusion may induce systemic changes in host antigen-presenting cells and T cells potentially conducive to modulated anti-donor immune reactivity at the time of transplant.
Collapse
Affiliation(s)
- Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lillian M. Tran
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Beth Elinoff
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Mindi A. Styn
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Abhinav Humar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fadi G. Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Diana M. Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
242
|
Petrus-Reurer S, Romano M, Howlett S, Jones JL, Lombardi G, Saeb-Parsy K. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol 2021; 4:798. [PMID: 34172826 PMCID: PMC8233383 DOI: 10.1038/s42003-021-02237-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The central goal of regenerative medicine is to replace damaged or diseased tissue with cells that integrate and function optimally. The capacity of pluripotent stem cells to produce unlimited numbers of differentiated cells is of considerable therapeutic interest, with several clinical trials underway. However, the host immune response represents an important barrier to clinical translation. Here we describe the role of the host innate and adaptive immune responses as triggers of allogeneic graft rejection. We discuss how the immune response is determined by the cellular therapy. Additionally, we describe the range of available in vitro and in vivo experimental approaches to examine the immunogenicity of cellular therapies, and finally we review potential strategies to ameliorate immune rejection. In conclusion, we advocate establishment of platforms that bring together the multidisciplinary expertise and infrastructure necessary to comprehensively investigate the immunogenicity of cellular therapies to ensure their clinical safety and efficacy.
Collapse
Affiliation(s)
- Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Louise Jones
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
243
|
Thomson AW, Sasaki K, Ezzelarab MB. Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models. Front Cell Dev Biol 2021; 9:666959. [PMID: 34211972 PMCID: PMC8239398 DOI: 10.3389/fcell.2021.666959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primates (NHP) are an important resource for addressing key issues regarding the immunobiology of regulatory T cells (Treg), their in vivo manipulation and the translation of adoptive Treg therapy to clinical application. In addition to their phenotypic and functional characterization, particularly in cynomolgus and rhesus macaques, NHP Treg have been isolated and expanded successfully ex vivo. Their numbers can be enhanced in vivo by administration of IL-2 and other cytokines. Both polyclonal and donor antigen (Ag) alloreactive NHP Treg have been expanded ex vivo and their potential to improve long-term outcomes in organ transplantation assessed following their adoptive transfer in combination with various cytoreductive, immunosuppressive and "Treg permissive" agents. In addition, important insights have been gained into the in vivo fate/biodistribution, functional stability, replicative capacity and longevity of adoptively-transferred Treg in monkeys. We discuss current knowledge of NHP Treg immunobiology, methods for their in vivo expansion and functional validation, and results obtained testing their safety and efficacy in organ and pancreatic islet transplantation models. We compare and contrast results obtained in NHP and mice and also consider prospects for future, clinically relevant studies in NHP aimed at improved understanding of Treg biology, and innovative approaches to promote and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kazuki Sasaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohamed B. Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
244
|
Willekens B, Wens I, Wouters K, Cras P, Cools N. Safety and immunological proof-of-concept following treatment with tolerance-inducing cell products in patients with autoimmune diseases or receiving organ transplantation: A systematic review and meta-analysis of clinical trials. Autoimmun Rev 2021; 20:102873. [PMID: 34119672 DOI: 10.1016/j.autrev.2021.102873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
In the past years, translational approaches have led to early-stage clinical trials assessing safety and efficacy of tolerance-inducing cell-based treatments in patients. This review aims to determine if tolerance-inducing cell-based therapies, including dendritic cells, regulatory T cells and mesenchymal stem cells, are safe in adult patients who underwent organ transplantation or in those with autoimmune diseases, including multiple sclerosis, diabetes mellitus type 1, Crohn's disease and rheumatoid arthritis. Immunological and clinical outcomes were reviewed, to provide evidence for proof-of-concept and efficacy. To summarize the current knowledge, a systematic review and meta-analysis were conducted. A total of 8906 records were reviewed by 2 independent assessors and 48 records were included in the final quantitative analysis. The overall frequency of serious adverse events was low: 0.018 (95% CI: 0.006-0.051). Immunological outcomes could not be assessed quantitatively because of heterogeneity in outcome assessments and description as well as lack of individual data. Most randomized controlled studies were at a medium risk of bias due to open-label treatment without masking of assessors and/or patients to the intervention. In conclusion, tolerance-inducing cell-based therapies are safe. We advocate for harmonization of study protocols of trials investigating cell-based therapies, adverse event reporting and systematic inclusion of immunological outcome measures in clinical trials evaluating tolerance-inducingcell-basedtreatment. Registration: PROSPERO, registration number CRD42020170557.
Collapse
Affiliation(s)
- Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Inez Wens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Kristien Wouters
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Belgium
| | - Patrick Cras
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
245
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
246
|
Ibrahim EH, Aly M, Morath C, Sayed DM, Ekpoom N, Opelz G, Süsal C, Daniel V. Relationship of transitional regulatory B and regulatory T cells and immunosuppressive drug doses in stable renal transplant recipients. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1252-1271. [PMID: 34102006 PMCID: PMC8589411 DOI: 10.1002/iid3.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Regulatory B cells (Bregs) and T cells (Tregs) are thought to be involved in the regulation of graft acceptance in renal transplant recipients. However, mechanisms that affect Breg differentiation and interaction with Tregs are rather unclear. METHODS Using eight-color-fluorescence flow cytometry, Tregs and CD19+ CD24hiCD38hi Bregs were analyzed in whole blood samples of 80 stable kidney transplant recipients, 20 end-stage renal disease (ESRD) patients and 32 healthy controls (HC). In addition, differentiation of Bregs and Tregs was studied in different micromilieus using cocultures with strongly enriched B-lymphocytes and autologous peripheral blood mononuclear cells stimulated with CpG and phytohemagglutinin. RESULTS Bregs were higher in HC than in ESRD patients and lowest in transplant recipients. Bregs were higher early as compared to late posttransplant. Posttransplant, high Bregs were associated with higher glomerular filtration rate (GFR) and lower C-reactive protein (CRP). Higher doses and blood levels of ciclosporine, tacrolimus, and mycophenolate mofetil as well as higher doses of steroids were not associated with low Bregs. In contrast, most Treg subsets were lower when blood levels of ciclosporine, tacrolimus, and mycophenolate mofetil were higher. Tregs were not associated with Bregs, GFR, CRP plasma levels, and occurrence of rejection or infection. In vitro, differentiation of Bregs was strongly dependent on T cell support and was blocked by excessive or lacking T-cell help. Tregs were not associated with Breg numbers in vitro. CONCLUSION Bregs appear to be insensitive to high doses of posttransplant immunosuppressive drugs. The protracted Breg decrease posttransplant might be caused by impaired T cell support attributable to immunosuppressive drugs.
Collapse
Affiliation(s)
- Eman H Ibrahim
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mostafa Aly
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany.,Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Christian Morath
- Department of Nephrology, University Hospital Heidelberg, Heidelberg, Germany
| | - Douaa M Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Naruemol Ekpoom
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Opelz
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caner Süsal
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Transplantation Immunology, Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
247
|
Waldmann H. Regulatory T cells and transplantation tolerance: Emerging from the darkness? Eur J Immunol 2021; 51:1580-1591. [PMID: 33961297 DOI: 10.1002/eji.202048795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
The field of tissue transplantation has revolutionized the treatment of patients with failing organs. Its success, thus far, has depended on combinations of immunosuppressive drugs that damp host immunity, while also imposing numerous unwanted side-effects. There is a longstanding recognition that better treatment outcomes, will come from replacing these drugs, fully or in part, by taking advantage of tractable physiological mechanisms of self-tolerance. The past 50 years have seen many advances in the field of self-tolerance, but perhaps, the most tractable of these has been the more recent discovery of a subset T-cells (Treg) whose role is to regulate or damp immunity. This article is intended to first provide the reader with some historical background to explain why we have been slow to identify these cells, despite numerous clues to their existence, and also to indicate how little we know about how they achieve their regulatory function in averting transplant rejection. However, as is often the case in immunology, the therapeutic needs often dictate that our advances move to translation even before detailed explanations of the science are available. The final part of the article will briefly summarize how Treg are being harnessed as agents to interface with or perhaps, replace current drug combinations.
Collapse
Affiliation(s)
- Herman Waldmann
- Sir William Dunn School, University of Oxford, Oxford, OX13RE, UK
| |
Collapse
|
248
|
Selck C, Dominguez-Villar M. Antigen-Specific Regulatory T Cell Therapy in Autoimmune Diseases and Transplantation. Front Immunol 2021; 12:661875. [PMID: 34054826 PMCID: PMC8160309 DOI: 10.3389/fimmu.2021.661875] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells are a heterogenous population of immunosuppressive T cells whose therapeutic potential for the treatment of autoimmune diseases and graft rejection is currently being explored. While clinical trial results thus far support the safety and efficacy of adoptive therapies using polyclonal Treg cells, some studies suggest that antigen-specific Treg cells are more potent in regulating and improving immune tolerance in a disease-specific manner. Hence, several approaches to generate and/or expand antigen-specific Treg cells in vitro or in vivo are currently under investigation. However, antigen-specific Treg cell therapies face additional challenges that require further consideration, including the identification of disease-relevant antigens as well as the in vivo stability and migratory behavior of Treg cells following transfer. In this review, we discuss these approaches and the potential limitations and describe prospective strategies to enhance the efficacy of antigen-specific Treg cell treatments in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Claudia Selck
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | |
Collapse
|
249
|
Rana J, Perry DJ, Kumar SRP, Muñoz-Melero M, Saboungi R, Brusko TM, Biswas M. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol Ther 2021; 29:2660-2676. [PMID: 33940160 PMCID: PMC8417451 DOI: 10.1016/j.ymthe.2021.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) control immune responses in autoimmune disease, transplantation, and enable antigen-specific tolerance induction in protein-replacement therapies. Tregs can exert a broad array of suppressive functions through their T cell receptor (TCR) in a tissue-directed and antigen-specific manner. This capacity can now be harnessed for tolerance induction by "redirecting" polyclonal Tregs to overcome low inherent precursor frequencies and simultaneously augment suppressive functions. With the use of hemophilia A as a model, we sought to engineer antigen-specific Tregs to suppress antibody formation against the soluble therapeutic protein factor (F)VIII in a major histocompatibility complex (MHC)-independent fashion. Surprisingly, high-affinity chimeric antigen receptor (CAR)-Treg engagement induced a robust effector phenotype that was distinct from the activation signature observed for endogenous thymic Tregs, which resulted in the loss of suppressive activity. Targeted mutations in the CD3ζ or CD28 signaling motifs or interleukin (IL)-10 overexpression were not sufficient to restore tolerance. In contrast, complexing TCR-based signaling with single-chain variable fragment (scFv) recognition to generate TCR fusion construct (TRuC)-Tregs delivered controlled antigen-specific signaling via engagement of the entire TCR complex, thereby directing functional suppression of the FVIII-specific antibody response. These data suggest that cellular therapies employing engineered receptor Tregs will require regulation of activation thresholds to maintain optimal suppressive function.
Collapse
Affiliation(s)
- Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Rania Saboungi
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
250
|
The Presence of a Marked Imbalance Between Regulatory T Cells and Effector T Cells Reveals That Tolerance Mechanisms Could Be Compromised in Heart Transplant Children. Transplant Direct 2021; 7:e693. [PMID: 33928185 PMCID: PMC8078462 DOI: 10.1097/txd.0000000000001152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Treg) are crucial for the induction and maintenance of graft tolerance. In pediatric heart transplant procedures, the thymus is routinely excised, removing the primary source of T-cell replenishment. Consequently, thymectomy joined to the effects of immunosuppression on the T-cell compartment may have a detrimental impact on Treg values, compromising the intrinsic tolerance mechanisms and the protective role of Treg preventing graft rejection in heart transplant children.
Collapse
|