201
|
Evolutionary Medicine IV. Evolution and Emergence of Novel Pathogens. ENCYCLOPEDIA OF EVOLUTIONARY BIOLOGY 2016. [PMCID: PMC7149364 DOI: 10.1016/b978-0-12-800049-6.00293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article discusses how evolutionary and ecological factors interact to affect the epidemiology of emerging infectious diseases. It further explains how the nascent field of phylodynamics constructs mathematical models, which link evolution and epidemiology, to study pathogen transmission. To illustrate the importance of considering both evolution and ecology – along with the utility of the phylodynamic approach – when studying novel pathogens, the author considers examples from HIV, influenza, and Ebola.
Collapse
|
202
|
Abstract
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they are the only mammals that fly, thus assisting in virus dispersal; they roost in large numbers, thus aiding transmission cycles; some bats hibernate over winter, thus providing a mechanism for viruses to persist between seasons; and genetic factors may play a role in the ability of bats to host viruses without resulting in clinical disease. Within the broad diversity of viruses found in bats are some important neurological pathogens, including rabies and other lyssaviruses, and Hendra and Nipah viruses, two recently described viruses that have been placed in a new genus, Henipaviruses in the family Paramyxoviridae. In addition, bats can also act as alternative hosts for the flaviviruses Japanese encephalitis and St Louis encephalitis viruses, two important mosquito-borne encephalitogenic viruses, and bats can assist in the dispersal and over-wintering of these viruses. Bats are also the reservoir hosts of progenitors of SARS and MERS coronaviruses, although other animals act as spillover hosts. This chapter presents the physiological and ecological factors affecting the ability of bats to act as reservoirs of neurotropic viruses, and describes the major transmission cycles leading to human infection.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
203
|
Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles. J Virol 2015; 90:2706-9. [PMID: 26676791 DOI: 10.1128/jvi.02825-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and central nervous system (CNS) inflammation. Using primary porcine brain microvascular endothelial cells, we showed that upregulation of E-selectin precedes cytokine induction and is induced not only by infectious NiV but also by NiV-glycoprotein-containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone.
Collapse
|
204
|
Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability. J Virol 2015; 90:2514-22. [PMID: 26676785 DOI: 10.1128/jvi.02920-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles. IMPORTANCE Henipaviruses cause a severe disease with high mortality in human patients. Therefore, these viruses can be studied only in biosafety level 4 (BSL-4) laboratories, making it more challenging to characterize their life cycle. Here we investigated the role of the Nipah virus matrix protein in virus-mediated cell-cell fusion and in the formation and release of newly produced particles. We found that even though low levels of infectious viruses are produced in the absence of the matrix protein, it is required for the release of highly infectious and stable particles. Fusogenicity of matrixless viruses was slightly enhanced, further demonstrating the critical role of this protein in different steps of Nipah virus spread.
Collapse
|
205
|
Abstract
Global climate change can alter the distribution of microbial pathogens and vectors that transmit infectious diseases, exposing humans to newly emerging or reemerging diseases. Early detection of potential pathogens and vectors in the environment can facilitate upstream interventions that limit the spread of infectious disease. Metagenomics is the analysis of DNA sequences from a population of microorganisms in a particular environment, followed by the computational reconstruction of the data to determine what organisms are present and predict their role in the environment. Defining the microbial populations associated with humans, animals, and their environment provides insight into the structure of microbial communities in any particular niche, including the abundance, diversity, and composition of the microbes and viruses present. It can also reveal the distribution of virulence genes within that niche. These data can be used to identify reservoirs of pathogens in an environment and predict environments with a high probability for evolution of new pathogens or outbreaks caused by known pathogens, thereby facilitating approaches to prevent infections of animals or humans before serious outbreaks of infectious disease.
Collapse
|
206
|
Nahar N, Uddin M, Gurley ES, Jahangir Hossain M, Sultana R, Luby SP. Cultural and Economic Motivation of Pig Raising Practices in Bangladesh. ECOHEALTH 2015; 12:611-620. [PMID: 26122206 PMCID: PMC4696915 DOI: 10.1007/s10393-015-1046-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/29/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
The interactions that pig raisers in Bangladesh have with their pigs could increase the risk of zoonotic disease transmission. Since raising pigs is a cultural taboo to Muslims, we aimed at understanding the motivation for raising pigs and resulting practices that could pose the risk of transmitting disease from pigs to humans in Bangladesh, a predominantly Muslim country. These understandings could help identify acceptable strategies to reduce the risk of disease transmission from pigs to people. To achieve this objective, we conducted 34 in-depth interviews among pig herders and backyard pig raisers in eight districts of Bangladesh. Informants explained that pig raising is an old tradition, embedded in cultural and religious beliefs and practices, the primary livelihood of pig herders, and a supplemental income of backyard pig raisers. To secure additional income, pig raisers sell feces, liver, bile, and other pig parts often used as traditional medicine. Pig raisers have limited economic ability to change the current practices that may put them at risk of exposure to diseases from their pigs. An intervention that improves their financial situation and reduces the risk of zoonotic disease may be of interest to pig raisers.
Collapse
Affiliation(s)
- Nazmun Nahar
- icddr,b, GPO Box 128, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Main Uddin
- icddr,b, GPO Box 128, Mohakhali, Dhaka, 1212, Bangladesh
| | - Emily S Gurley
- icddr,b, GPO Box 128, Mohakhali, Dhaka, 1212, Bangladesh
| | | | - Rebeca Sultana
- icddr,b, GPO Box 128, Mohakhali, Dhaka, 1212, Bangladesh
| | - Stephen P Luby
- icddr,b, GPO Box 128, Mohakhali, Dhaka, 1212, Bangladesh
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
207
|
Kamthania M, Sharma DK. Screening and structure-based modeling of T-cell epitopes of Nipah virus proteome: an immunoinformatic approach for designing peptide-based vaccine. 3 Biotech 2015; 5:877-882. [PMID: 28324411 PMCID: PMC4624138 DOI: 10.1007/s13205-015-0303-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 11/26/2022] Open
Abstract
Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.
Collapse
Affiliation(s)
- Mohit Kamthania
- Mangalayatan University, Aligarh-Mathura Highway, Beswan, Aligarh, Uttar Pradesh, India
- Jiwaji University, Gwalior, Madhya Pradesh, India
| | - D K Sharma
- Department of Zoology, Government Post Graduate College, Guna, Madhya Pradesh, India.
| |
Collapse
|
208
|
Serological Evidence of Henipavirus among Horses and Pigs in Zaria and Environs in Kaduna State, Nigeria. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/632158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Henipavirus is an emerging, zoonotic, and lethal RNA virus comprising Hendra virus (HeV) and Nipah virus (NiV), to which fruit bats are reservoir. Husbandry practices in Nigeria allow close contact between bat reservoir and animals susceptible to Henipavirus. This cross-sectional survey investigated antibodies reactive to Henipavirus sG antigen and associated risk factors in horses and pigs in Zaria, Nigeria. Using convenience sampling, 510 sera from horses (n=200) and pigs (n=310) were screened by an indirect Henipavirus enzyme-linked immunosorbent assay (ELISA) (CSIRO, Australia). Structured questionnaires were employed with questions on the demographics and management of the animals. Data were analysed using SPSS-17. 5. Seroprevalence was higher for horses managed intensively (21.1%); used for sports (25.5%); watered with pipe borne water (17.9%); fed commercial feed (22.3%); and fed in the pen (17.6%). Seroprevalence was higher for pigs managed intensively (58.1%); imported (69.5%); watered with pipe-borne water (31.3%); fed commercial feed (57.4%); fed in the pen (23.4%), and fed with feed prestored in a feed house (49.5%). Horses <5 years and pigs <6 months had higher seroprevalences of 18.1% and 21.3%, while the female horses and pigs had seroprevalences of 19.8% and 22.8%, respectively. Exotic horses and pigs revealed 25.5% and 55% and horses in Igabi and pigs in Giwa revealed 24.7% and 70.2% seroprevalence, respectively (P<0.05). There is a suggestive evidence of Henipavirus in horses and pigs in Zaria, Nigeria, with a huge public health implication. Local and exotic pigs and horses, pigs in Zaria and Sabon-Gari, and horses in Zaria, Sabon-Gari, and Kaduna North are associated with the seroprevalence of henipaviruses.
Collapse
|
209
|
Palinski RM, Chen Z, Henningson JN, Lang Y, Rowland RRR, Fang Y, Prickett J, Gauger PC, Hause BM. Widespread detection and characterization of porcine parainfluenza virus 1 in pigs in the USA. J Gen Virol 2015; 97:281-286. [PMID: 26581410 DOI: 10.1099/jgv.0.000343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Porcine parainfluenza virus 1 (PPIV1) was first identified in 2013 in slaughterhouse pigs in Hong Kong, China. Here, two near-complete genomes were assembled from swine exhibiting acute respiratory disease that were 90.0-95.3% identical to Chinese PPIV1. Analysis of the HN gene from ten additional PPIV1-positive samples found 85.0-95.5% identity, suggesting genetic diversity between strains. Molecular analysis identified 17 out of 279 (6.1%) positive samples from pigs with respiratory disease. Eleven nursery pigs from a naturally infected herd were asymptomatic; however, nasal swabs from six pigs and the lungs of a single pig were quantitative reverse transcriptase (qRT)-PCR positive. Histopathology identified PPIV1 RNA in the nasal respiratory epithelium and trachea. Two serological assays demonstrated seroconversion of infected pigs and further analysis of 59 swine serum samples found 52.5% and 66.1% seropositivity, respectively. Taken together, the results confirm the widespread presence of PPIV1 in the US swine herd.
Collapse
Affiliation(s)
- Rachel M Palinski
- Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - Zhenhai Chen
- Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - Jamie N Henningson
- Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA.,Kansas State Veterinary Diagnostic Laboratory, Manhattan, Kansas, USA
| | - Yuekun Lang
- Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - Raymond R R Rowland
- Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - Ying Fang
- Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| | - John Prickett
- Carthage Veterinary Service, Carthage, Illinois, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Ben M Hause
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, Kansas, USA.,Kansas State Department of Diagnostic Medicine and Pathobiology, Manhattan, Kansas, USA
| |
Collapse
|
210
|
Abstract
Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans, and incurred a high fatality rate in humans. We established a system that enabled the rescue of replicating NiVs from a cloned DNA. Using the system, we analyzed the functions of accessory proteins in infected cells and the implications in in vivo pathogenicity. Further, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins, which appeared to be an appropriate to NiV vaccine candidate for use in humans.
Collapse
|
211
|
Rodhain F. [Bats and Viruses: complex relationships]. ACTA ACUST UNITED AC 2015; 108:272-89. [PMID: 26330152 PMCID: PMC7097034 DOI: 10.1007/s13149-015-0448-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to some of their biologic properties which are not fully documented, like their extreme longevity, their diet, the population size and the particular densities observed in species with crowded roosting behavior, the population structure and migrations, the hibernation permitting overwintering of viruses, their particular innate and acquired immune response, probably related at least partially to their ability to fly, allowing persistent virus infections and preventing immunopathological consequences, etc. It is also necessary to get a better knowledge of the interactions between bats and ecologic changes induced by man and to attentively follow bat populations and their viruses through surveillance networks involving human and veterinary physicians, specialists of wild fauna, ecologists, etc. in order to understand the mechanisms of disease emergence, to try to foresee and, perhaps, to prevent viral emergences beforehand. Finally, a more fundamental research about immune mechanisms developed in viral infections is essential to reveal the reasons why Chiroptera are so efficient reservoir hosts. Clearly, a great deal of additional work is needed to document the roles of bats in the natural history of viruses.
Collapse
Affiliation(s)
- F Rodhain
- Professeur honoraire à l'Institut Pasteur, 132, boulevard du Montparnasse, 75014, Paris, France.
| |
Collapse
|
212
|
Voigt CC, Kingston T. Zoonotic Viruses and Conservation of Bats. BATS IN THE ANTHROPOCENE: CONSERVATION OF BATS IN A CHANGING WORLD 2015. [PMCID: PMC7122997 DOI: 10.1007/978-3-319-25220-9_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the recently emerging highly virulent zoonotic diseases have a likely bat origin, for example Hendra, Nipah, Ebola and diseases caused by coronaviruses. Presumably because of their long history of coevolution, most of these viruses remain subclinical in bats, but have the potential to cause severe illnesses in domestic and wildlife animals and also humans. Spillovers from bats to humans either happen directly (via contact with infected bats) or indirectly (via intermediate hosts such as domestic or wildlife animals, by consuming food items contaminated by saliva, faeces or urine of bats, or via other environmental sources). Increasing numbers of breakouts of zoonotic viral diseases among humans and livestock have mainly been accounted to human encroachment into natural habitat, as well as agricultural intensification, deforestation and bushmeat consumption. Persecution of bats, including the destruction of their roosts and culling of whole colonies, has led not only to declines of protected bat species, but also to an increase in virus prevalence in some of these populations. Educational efforts are needed in order to prevent future spillovers of bat-borne viruses to humans and livestock, and to further protect bats from unnecessary and counterproductive culling.
Collapse
|
213
|
Mohd Shukri M, Ling Kho K, Ghane Kisomi M, Lani R, Marlina S, Muhd Radzi SF, Tee Tay S, Ping Wong L, Awang Mahmud AB, Hassan Nizam QN, Abu Bakar S, Zandi K. Seroprevalence report on tick-borne encephalitis virus and Crimean-Congo hemorrhagic fever virus among Malaysian's farm workers. BMC Public Health 2015. [PMID: 26205588 PMCID: PMC4513429 DOI: 10.1186/s12889-015-1901-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV) are important tick-borne viruses. Despite their wide geographical distribution and ease of acquisition, the prevalence of both viruses in Malaysia is still unknown. This study was conducted to determine the seroprevalence for TBEV and CCHFV among Malaysian farm workers as a high-risk group within the population. Methods We gave questionnaires to 209 farm workers and invited them to participate in the study. Eighty-five agreed to do so. We then collected and tested sera for the presence of anti-TBEV IgG (immunoglobulin G) and anti-CCHFV IgG using a commercial enzyme-linked immunosorbent assay (ELISA) kit. We also tested seroreactive samples against three other related flaviviruses: dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) using the ELISA method. Results The preliminary results showed the presence of anti-TBEV IgG in 31 (36.5 %) of 85 sera. However, when testing all the anti-TBEV IgG positive sera against the other three antigenically related flaviviruses to exclude possible cross reactivity, only five (4.2 %) sera did not show any cross reactivity. Interestingly, most (70.97 %) seropositives subjects mentioned tick-bite experience. However, there was no seroreactive sample for CCHFV. Conclusions These viruses migrate to neighbouring countries so they should be considered threats for the future, despite the low seroprevalence for TBEV and no serological evidence for CCHFV in this study. Therefore, further investigation involving a large number of human, animal and tick samples that might reveal the viruses’ true prevalence is highly recommended.
Collapse
Affiliation(s)
- Munirah Mohd Shukri
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Masoumeh Ghane Kisomi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Suria Marlina
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Siti Fatimah Muhd Radzi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Li Ping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Awang Bulgiba Awang Mahmud
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Sazaly Abu Bakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Keivan Zandi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
214
|
Wynne JW, Shiell BJ, Marsh GA, Boyd V, Harper JA, Heesom K, Monaghan P, Zhou P, Payne J, Klein R, Todd S, Mok L, Green D, Bingham J, Tachedjian M, Baker ML, Matthews D, Wang LF. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol 2015; 15:532. [PMID: 25398248 DOI: 10.1186/preaccept-1718798964145132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). RESULTS The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. CONCLUSIONS This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.
Collapse
|
215
|
Wynne JW, Shiell BJ, Marsh GA, Boyd V, Harper JA, Heesom K, Monaghan P, Zhou P, Payne J, Klein R, Todd S, Mok L, Green D, Bingham J, Tachedjian M, Baker ML, Matthews D, Wang LF. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol 2015. [PMID: 25398248 PMCID: PMC4269970 DOI: 10.1186/s13059-014-0532-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). Results The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. Conclusions This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0532-x) contains supplementary material, which is available to authorized users.
Collapse
|
216
|
The immunomodulating V and W proteins of Nipah virus determine disease course. Nat Commun 2015; 6:7483. [PMID: 26105519 PMCID: PMC4482017 DOI: 10.1038/ncomms8483] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023] Open
Abstract
The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course. Nipah virus (NiV) can be transmitted from bats and other animals to humans, causing severe encephalitis and respiratory disease. Here, Satterfield et al. show that the W protein of NiV modulates the host immune response and determines disease course in a ferret model of infection.
Collapse
|
217
|
Weis M, Maisner A. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol 2015; 94:316-22. [PMID: 26059400 PMCID: PMC7114669 DOI: 10.1016/j.ejcb.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed.
Collapse
Affiliation(s)
- Michael Weis
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
218
|
Abstract
ABSTRACT Within the Paramyxoviridae family, Henipaviruses are the deadliest human pathogens. Nipah and Hendra viruses comprise the genus Henipavirus, zoonotic pathogens which cause encephalitis and respiratory disease in humans with mortality rates that can exceed 70%. Henipaviruses are the only Paramyxoviruses classified as biosafety level 4 pathogens due to their extreme pathogenicity, potential for bioterrorism and lack of available licensed vaccines or therapeutic modalities. Both viruses emerged from their natural reservoir, Asian fruit bats, during the last decade of the 20th century. They caused severe disease and mortality in humans, horses and swine. They also infected a number of other mammalian species. With significant progress in understanding the biology of these deadly pathogens, including the discovery of a Hendra virus vaccine and a potential neutralizing antibody, have we really won the war against the Henipavirus?
Collapse
|
219
|
Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus. Proc Natl Acad Sci U S A 2015; 112:E2156-65. [PMID: 25825759 DOI: 10.1073/pnas.1501690112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations.
Collapse
|
220
|
Thanapongtharm W, Linard C, Wiriyarat W, Chinsorn P, Kanchanasaka B, Xiao X, Biradar C, Wallace RG, Gilbert M. Spatial characterization of colonies of the flying fox bat, a carrier of Nipah virus in Thailand. BMC Vet Res 2015; 11:81. [PMID: 25880385 PMCID: PMC4389713 DOI: 10.1186/s12917-015-0390-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Background A major reservoir of Nipah virus is believed to be the flying fox genus Pteropus, a fruit bat distributed across many of the world’s tropical and sub-tropical areas. The emergence of the virus and its zoonotic transmission to livestock and humans have been linked to losses in the bat’s habitat. Nipah has been identified in a number of indigenous flying fox populations in Thailand. While no evidence of infection in domestic pigs or people has been found to date, pig farming is an active agricultural sector in Thailand and therefore could be a potential pathway for zoonotic disease transmission from the bat reservoirs. The disease, then, represents a potential zoonotic risk. To characterize the spatial habitat of flying fox populations along Thailand’s Central Plain, and to map potential contact zones between flying fox habitats, pig farms and human settlements, we conducted field observation, remote sensing, and ecological niche modeling to characterize flying fox colonies and their ecological neighborhoods. A Potential Surface Analysis was applied to map contact zones among local epizootic actors. Results Flying fox colonies are found mainly on Thailand’s Central Plain, particularly in locations surrounded by bodies of water, vegetation, and safe havens such as Buddhist temples. High-risk areas for Nipah zoonosis in pigs include the agricultural ring around the Bangkok metropolitan region where the density of pig farms is high. Conclusions Passive and active surveillance programs should be prioritized around Bangkok, particularly on farms with low biosecurity, close to water, and/or on which orchards are concomitantly grown. Integration of human and animal health surveillance should be pursued in these same areas. Such proactive planning would help conserve flying fox colonies and should help prevent zoonotic transmission of Nipah and other pathogens.
Collapse
Affiliation(s)
- Weerapong Thanapongtharm
- Department of Livestock Development (DLD), Bangkok, Thailand. .,Lutte biologique et Ecologie spatiale (LUBIES), Université Libre de Bruxelles, Brussels, Belgium.
| | - Catherine Linard
- Lutte biologique et Ecologie spatiale (LUBIES), Université Libre de Bruxelles, Brussels, Belgium. .,Fonds National de la Recherche Scientifique (FNRS), Brussels, Belgium.
| | - Witthawat Wiriyarat
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Mahidol University, Nakhonpatom, Thailand.
| | | | | | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK, 73019, USA. .,Institute of Biodiversity Science, Fudan University, Shanghai, 200433, China.
| | | | - Robert G Wallace
- Institute for Global Studies, University of Minnesota, Minneapolis, USA.
| | - Marius Gilbert
- Lutte biologique et Ecologie spatiale (LUBIES), Université Libre de Bruxelles, Brussels, Belgium. .,Fonds National de la Recherche Scientifique (FNRS), Brussels, Belgium.
| |
Collapse
|
221
|
Lipkin WI, Anthony SJ. Virus hunting. Virology 2015; 479-480:194-9. [PMID: 25731958 DOI: 10.1016/j.virol.2015.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
Viral diagnosis and discovery are receiving increasing emphasis with the recognition of their importance in addressing the challenges of emerging infectious and chronic diseases, and the advent of antiviral drugs with which to reduce the morbidity and mortality of viral infections. Here we review the status of the field including the use of molecular, proteomic and immunological assays for viral detection, social media platforms for surveillance, and public health investments that may enable enhanced situational awareness and insights into the origins of zoonotic viral diseases.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, NY, United States.
| | - Simon J Anthony
- Center for Infection and Immunity, Columbia University, New York, NY, United States
| |
Collapse
|
222
|
Detailed analysis of the African green monkey model of Nipah virus disease. PLoS One 2015; 10:e0117817. [PMID: 25706617 PMCID: PMC4338303 DOI: 10.1371/journal.pone.0117817] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/30/2014] [Indexed: 01/15/2023] Open
Abstract
Henipaviruses are implicated in severe and frequently fatal pneumonia and encephalitis in humans. There are no approved vaccines or treatments available for human use, and testing of candidates requires the use of well-characterized animal models that mimic human disease. We performed a comprehensive and statistically-powered evaluation of the African green monkey model to define parameters critical to disease progression and the extent to which they correlate with human disease. African green monkeys were inoculated by the intratracheal route with 2.5 × 10(4) plaque forming units of the Malaysia strain of Nipah virus. Physiological data captured using telemetry implants and assessed in conjunction with clinical pathology were consistent with shock, and histopathology confirmed widespread tissue involvement associated with systemic vasculitis in animals that succumbed to acute disease. In addition, relapse encephalitis was identified in 100% of animals that survived beyond the acute disease phase. Our data suggest that disease progression in the African green monkey is comparable to the variable outcome of Nipah virus infection in humans.
Collapse
|
223
|
Geisbert TW, Mire CE, Geisbert JB, Chan YP, Agans KN, Feldmann F, Fenton KA, Zhu Z, Dimitrov DS, Scott DP, Bossart KN, Feldmann H, Broder CC. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci Transl Med 2015; 6:242ra82. [PMID: 24964990 DOI: 10.1126/scitranslmed.3008929] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe and often fatal disease in pigs and humans. There are currently no vaccines or treatments approved for human use. Studies in small-animal models of NiV infection suggest that antibody therapy may be a promising treatment. However, most studies have assessed treatment at times shortly after virus exposure before animals show signs of disease. We assessed the efficacy of a fully human monoclonal antibody, m102.4, at several time points after virus exposure including at the onset of clinical illness in a uniformly lethal nonhuman primate model of NiV disease. Sixteen African green monkeys (AGMs) were challenged intratracheally with a lethal dose of NiV, and 12 animals were infused twice with m102.4 (15 mg/kg) beginning at either 1, 3, or 5 days after virus challenge and again about 2 days later. The presence of viral RNA, infectious virus, and/or NiV-specific immune responses demonstrated that all subjects were infected after challenge. All 12 AGMs that received m102.4 survived infection, whereas the untreated control subjects succumbed to disease between days 8 and 10 after infection. AGMs in the day 5 treatment group exhibited clinical signs of disease, but all animals recovered by day 16. These results represent the successful therapeutic in vivo efficacy by an investigational drug against NiV in a nonhuman primate and highlight the potential impact that a monoclonal antibody can have on a highly pathogenic zoonotic human disease.
Collapse
Affiliation(s)
- Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Yee-Peng Chan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Zhongyu Zhu
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, National Institutes of Health (NIH), Hamilton, MT 59840, USA
| | - Katharine N Bossart
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
224
|
de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235:196-205. [PMID: 25229234 DOI: 10.1002/path.4444] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | |
Collapse
|
225
|
Abstract
Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | |
Collapse
|
226
|
Lipkin WI. Zoonoses. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7151852 DOI: 10.1016/b978-1-4557-4801-3.00322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
227
|
Tigabu B, Rasmussen L, White EL, Tower N, Saeed M, Bukreyev A, Rockx B, LeDuc JW, Noah JW. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. Assay Drug Dev Technol 2014; 12:155-61. [PMID: 24735442 DOI: 10.1089/adt.2013.567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.
Collapse
Affiliation(s)
- Bersabeh Tigabu
- 1 Department of Microbiology & Immunology, Galveston National Laboratory, The University of Texas Medical Branch , Galveston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Emerging infectious diseases of zoonotic origin are shaping today's infectious disease field more than ever. In this article, we introduce and review three emerging zoonotic viruses. Novel hantaviruses emerged in the Americas in the mid-1990s as the cause of severe respiratory infections, designated hantavirus pulmonary syndrome, with case fatality rates of around 40%. Nipah virus emerged a few years later, causing respiratory infections and encephalitis in Southeast Asia, with case fatality rates ranging from 40% to more than 90%. A new coronavirus emerged in 2012 on the Arabian Peninsula with a clinical syndrome of acute respiratory infections, later designated as Middle East respiratory syndrome (MERS), and an initial case fatality rate of more than 40%. Our current state of knowledge on the pathogenicity of these three severe, emerging viral infections is discussed.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana; , ,
| | | | | |
Collapse
|
229
|
Larsen AE, MacDonald AJ, Plantinga AJ. Lyme disease risk influences human settlement in the wildland-urban interface: evidence from a longitudinal analysis of counties in the northeastern United States. Am J Trop Med Hyg 2014; 91:747-55. [PMID: 25048372 PMCID: PMC4183398 DOI: 10.4269/ajtmh.14-0181] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/13/2014] [Indexed: 11/07/2022] Open
Abstract
The expansion of human settlement into wildland areas, including forests in the eastern United States, has resulted in fragmented forest habitat that has been shown to drive higher entomological risk for Lyme disease. We investigated an alternative pathway between fragmentation and Lyme disease, namely whether increased risk of Lyme disease results in a reduced propensity to settle in high-risk areas at the interface of developed and undeveloped lands. We used longitudinal data analyses at the county level to determine whether Lyme disease incidence (LDI) influences the proportion of the population residing in the wildland-urban interface in 12 high LDI states in the eastern United States. We found robust evidence that a higher LDI reduces the proportion of a county's population residing in the wildland-urban interface in high-LDI states. This study provides some of the first evidence of human behavioral responses to Lyme disease risk via settlement decisions.
Collapse
Affiliation(s)
- Ashley E Larsen
- Department of Ecology, Evolution, and Marine Biology, and Bren School of Environmental Science and Management, University of California, Santa Barbara, California
| | - Andrew J MacDonald
- Department of Ecology, Evolution, and Marine Biology, and Bren School of Environmental Science and Management, University of California, Santa Barbara, California
| | - Andrew J Plantinga
- Department of Ecology, Evolution, and Marine Biology, and Bren School of Environmental Science and Management, University of California, Santa Barbara, California
| |
Collapse
|
230
|
Abstract
Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. An unprecedented number of outbreaks were recorded in 2011 leading to heightened community concern. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people.
Collapse
Affiliation(s)
- Deborah Middleton
- Australian Animal Health Laboratory, CSIRO, PB 24, Geelong, Victoria 3220, Australia.
| |
Collapse
|
231
|
Tan LV, Thai LH, Phu NH, Nghia HDT, Chuong LV, Sinh DX, Phong ND, Mai NTH, Man DNH, Hien VM, Vinh NT, Day J, Chau NVV, Hien TT, Farrar J, de Jong MD, Thwaites G, van Doorn HR, Chau TTH. Viral aetiology of central nervous system infections in adults admitted to a tertiary referral hospital in southern Vietnam over 12 years. PLoS Negl Trop Dis 2014; 8:e3127. [PMID: 25165820 PMCID: PMC4148224 DOI: 10.1371/journal.pntd.0003127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/19/2014] [Indexed: 12/03/2022] Open
Abstract
Background Central nervous system (CNS) infections are important diseases in both children and adults worldwide. The spectrum of infections is broad, encompassing bacterial/aseptic meningitis and encephalitis. Viruses are regarded as the most common causes of encephalitis and aseptic meningitis. Better understanding of the viral causes of the diseases is of public health importance, in order to better inform immunization policy, and may influence clinical management. Methodology/Principal Findings Study was conducted at the Hospital for Tropical Diseases in Ho Chi Minh City, a primary, secondary, and tertiary referral hospital for all southern provinces of Vietnam. Between December 1996 and May 2008, patients with CNS infections of presumed viral origin were enrolled. Laboratory diagnostics consisted of molecular and serological tests targeted at 14 meningitis/encephalitis-associated viruses. Of 291 enrolled patients, fatal outcome and neurological sequelae were recorded in 10% (28/291) and 27% (78/291), respectively. Mortality was especially high (9/19, 47%) amongst those with confirmed herpes simplex encephalitis which is attributed to the limited availability of intravenous acyclovir/valacyclovir. Japanese encephalitis virus, dengue virus, herpes simplex virus, and enteroviruses were the most common viruses detected, responsible for 36 (12%), 19 (6.5%), 19 (6.5%) and 8 (2.7%) respectively, followed by rubella virus (6, 2%), varicella zoster virus (5, 1.7%), mumps virus (2, 0.7%), cytomegalovirus (1, 0.3%), and rabies virus (1, 0.3%). Conclusions/Significance Viral infections of the CNS in adults in Vietnam are associated with high morbidity and mortality. Despite extensive laboratory testing, 68% of the patients remain undiagnosed. Together with our previous reports, the data confirm that Japanese encephalitis virus, dengue virus, herpes simplex virus, and enteroviruses are the leading identified causes of CNS viral infections in Vietnam, suggest that the majority of morbidity/mortality amongst patients with a confirmed/probable diagnosis is preventable by adequate vaccination/treatment, and are therefore of public health significance. Central nervous system (CNS) infections are important diseases worldwide. The spectrum of infections is broad, encompassing bacterial/aseptic meningitis and encephalitis. Viruses are regarded as the most common causes of encephalitis and aseptic meningitis. Better understanding of the causes of the diseases is of public health importance, in order to better inform immunization policy, and influence clinical management. We describe the clinical features and infectious causes of 291 adults with clinically suspected CNS infections of presumed viral origin. We show that CNS viral infections in Vietnam are associated with high morbidity and mortality. Mortality was especially high (47%) amongst those with herpes simplex encephalitis which is attributed to the limited availability specific antiviral drugs in our setting. Japanese encephalitis virus, dengue viruses, herpes simplex virus and enteroviruses were the most common viruses detected, followed by rubella virus, varicella zoster virus, mumps virus, cytomegalovirus, and rabies virus. Our study represents the broadest yet investigation of the possible viral causes of the CNS infections in adults in Vietnam, with a diagnostic yield of 32%. The results show that the majority of morbidity/mortality amongst patients with a confirmed/probable diagnosis could be prevented by adequate vaccination or treatment, and are therefore of public health significance.
Collapse
Affiliation(s)
- Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- * E-mail:
| | - Le Hong Thai
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Ly Van Chuong
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Dinh Xuan Sinh
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | | | - Vo Minh Hien
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | - Jeremy Day
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Menno D. de Jong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Department of Medical Microbiology, Academic Medical, Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
232
|
Sakib MS, Islam MR, Hasan AKMM, Nabi AHMN. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv Bioinformatics 2014; 2014:402492. [PMID: 25147564 PMCID: PMC4131549 DOI: 10.1155/2014/402492] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/05/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023] Open
Abstract
This study aims to design epitope-based peptides for the utility of vaccine development by targeting glycoprotein G and envelope protein F of Nipah virus (NiV) that, respectively, facilitate attachment and fusion of NiV with host cells. Using various databases and tools, immune parameters of conserved sequence(s) from G and F proteins of different isolates of NiV were tested to predict probable epitope(s). Binding analyses of the peptides with MHC class-I and class-II molecules, epitope conservancy, population coverage, and linear B cell epitope prediction were analyzed. Predicted peptides interacted with seven or more MHC alleles and illustrated population coverage of more than 99% and 95%, for G and F proteins, respectively. The predicted class-I nonamers, SLIDTSSTI and EWISIVPNF, superimposed on the putative decameric B cell epitopes, were also identified as core sequences of the most probable class-II 15-mer peptides GPKVSLIDTSSTITI and EWISIVPNFILVRNT. These peptides were further validated for their binding to specific HLA alleles using in silico docking technique. Our in silico analysis suggested that the predicted epitopes, either GPKVSLIDTSSTITI or EWISIVPNFILVRNT, could be a better choice as universal vaccine component against NiV irrespective of different isolates which may elicit both humoral and cell-mediated immunity.
Collapse
Affiliation(s)
- M. Sadman Sakib
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Rezaul Islam
- International Max Planck Research School for Neurosciences, University of Göttingen, 37077 Göttingen, Germany
| | - A. K. M. Mahbub Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
233
|
Brooks F, Wood AR, Thomson J, Deane D, Everest DJ, McInnes CJ. Preliminary characterisation of Pentlands paramyxovirus-1, -2 and -3, three new paramyxoviruses of rodents. Vet Microbiol 2014; 170:391-7. [DOI: 10.1016/j.vetmic.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
234
|
Evidence for retrovirus and paramyxovirus infection of multiple bat species in china. Viruses 2014; 6:2138-54. [PMID: 24841387 PMCID: PMC4036550 DOI: 10.3390/v6052138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/27/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022] Open
Abstract
Bats are recognized reservoirs for many emerging zoonotic viruses of public health importance. Identifying and cataloguing the viruses of bats is a logical approach to evaluate the range of potential zoonoses of bat origin. We characterized the fecal pathogen microbiome of both insectivorous and frugivorous bats, incorporating 281 individual bats comprising 20 common species, which were sampled in three locations of Yunnan province, by combining reverse transcription polymerase chain reaction (RT-PCR) assays and next-generation sequencing. Seven individual bats were paramyxovirus-positive by RT-PCR using degenerate primers, and these paramyxoviruses were mainly classified into three genera (Rubulavirus, Henipavirus and Jeilongvirus). Various additional novel pathogens were detected in the paramyxovirus-positive bats using Illumina sequencing. A total of 7066 assembled contigs (≥200 bp) were constructed, and 105 contigs matched eukaryotic viruses (of them 103 belong to 2 vertebrate virus families, 1 insect virus, and 1 mycovirus), 17 were parasites, and 4913 were homologous to prokaryotic microorganisms. Among the 103 vertebrate viral contigs, 79 displayed low identity (<70%) to known viruses including human viruses at the amino acid level, suggesting that these belong to novel and genetically divergent viruses. Overall, the most frequently identified viruses, particularly in bats from the family Hipposideridae, were retroviruses. The present study expands our understanding of the bat virome in species commonly found in Yunnan, China, and provides insight into the overall diversity of viruses that may be capable of directly or indirectly crossing over into humans.
Collapse
|
235
|
|
236
|
Valbuena G, Halliday H, Borisevich V, Goez Y, Rockx B. A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog 2014; 10:e1004063. [PMID: 24699832 PMCID: PMC3974875 DOI: 10.1371/journal.ppat.1004063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/28/2014] [Indexed: 01/22/2023] Open
Abstract
Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive “air” spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (107 TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses. Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes fatal disease in humans and a variety of other mammalian hosts including pigs. Given the lack of effective therapeutics and vaccines, this virus is considered a public health and agricultural concern, and listed as category C priority pathogen for biodefense research by the National Institute of Allergy and Infectious Diseases. Both animal-to-human and human-to-human transmission has been observed. Studies on the molecular mechanisms of NiV-mediated pathogenesis have been hampered by the lack of biologically relevant in vivo models for studying the initial host responses to NiV infection in the human lung. We show here a new small animal model in which we transplant human lung tissue for studying the pathogenesis of NiV. We showed that NiV can replicate to high levels in the human lung. NiV causes extensive damage to the lung tissue and induces important regulators of the inflammatory response. This study is the first to use a human lung transplant for studying infectious diseases, a powerful model for studying the pathogenesis of NiV infection, and will open up new possibilities for studying virus-host interactions.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hailey Halliday
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Viktoriya Borisevich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yenny Goez
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barry Rockx
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
237
|
Rockx B. Recent developments in experimental animal models of Henipavirus infection. Pathog Dis 2014; 71:199-206. [PMID: 24488776 DOI: 10.1111/2049-632x.12149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/27/2022] Open
Abstract
Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.
Collapse
Affiliation(s)
- Barry Rockx
- Galveston National Laboratory, Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
238
|
Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J Virol 2014; 88:4353-65. [PMID: 24501399 DOI: 10.1128/jvi.03050-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses. IMPORTANCE We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.
Collapse
|
239
|
Zhu Z, Dimitrov AS, Chakraborti S, Dimitrova D, Xiao X, Broder CC, Dimitrov DS. Development of human monoclonal antibodies against diseases caused by emerging and biodefense-related viruses. Expert Rev Anti Infect Ther 2014; 4:57-66. [PMID: 16441209 DOI: 10.1586/14787210.4.1.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polyclonal antibodies have a century-old history of being effective against some viruses; recently, monoclonal antibodies (mAbs) have also shown success. The humanized mAb Synagis (palivizumab), which is still the only mAb against a viral disease approved by the US FDA, has been widely used as a prophylactic measure against respiratory syncytial virus infections in neonates and immunocompromised individuals. The first fully human mAbs against two other paramyxoviruses, Hendra and Nipah virus, which can cause high (up to 75%) mortality, were recently developed; one of them, m101, showed exceptional potency against infectious virus. In an amazing pace of research, several potent human mAbs targeting the severe acute respiratory syndrome coronavirus S glycoprotein that can affect infections in animal models have been developed months after the virus was identified in 2003. A potent humanized mAb with therapeutic potential was recently developed against the West Nile virus. The progress in developing neutralizing human mAbs against Ebola, Crimean-Congo hemorrhagic fever, vaccinia and other emerging and biodefense-related viruses is slow. A major problem in the development of effective therapeutic agents against viruses, including therapeutic antibodies, is the viruses' heterogeneity and mutability. A related problem is the low binding affinity of crossreactive antibodies able to neutralize a variety of primary isolates. Combinations of mAbs or mAbs with other drugs, and/or the identification of potent new mAbs and their derivatives that target highly conserved viral structures, which are critical for virus entry into cells, are some of the possible solutions to these problems, and will continue to be a major focus of antiviral research.
Collapse
Affiliation(s)
- Zhongyu Zhu
- Protein Interactions Group, CCRNP, BRP, SAIC-Frederick, Inc., NCI-Frederick, NIH Bldg 469, Rm 139, PO Box B, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
240
|
Taylor MW. Emerging Viruses. VIRUSES AND MAN: A HISTORY OF INTERACTIONS 2014. [PMCID: PMC7123315 DOI: 10.1007/978-3-319-07758-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emerging viruses are viruses that appear suddenly in the human population. These are viruses to which man has no history of exposure and thus no or limited immunity; they are not new evolutionary creations, but are viruses than man meets due to environmental changes, such as deforestation, entering into new habitats, or viruses that are transmitted from one species of animal to humans. Most of these viruses are terrifying, and cause hemorrhagic fever, a complete destruction of the circulation system; they include Lassa fever, Nipah virus, Ebola, HIV, Severe acute respiratory syndrome (SARS), and, recently, Middle East respiratory syndrome (MERS), which is the latest in a series of “new” respiratory viruses infecting man. It is possible that unknown emerging viruses are the cause of death, often listed as “death due to an unknown cause,” as in the retrospective cases of HIV. Emerging viruses might also include poliovirus and influenza, since their introduction into the human population is (was) often sudden and due to changes in the environment or due to contact with other animal species. For examples, polio was a result of changes in sanitation in the countries of North America and Western Europe, and influenza is constantly jumping from aquatic birds to man and other animal species where genomic reassortment occurs.
Collapse
|
241
|
Rollin PE. Nipah Virus Disease. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
242
|
Abstract
The social and economic impact of neurologic disorders is being increasingly recognized in the developing world. Demographic transition, especially in large Asian populations, has resulted in a significant increase in the elderly population, bringing to the fore neurologic illnesses such as strokes, Alzheimer's disease, and Parkinson's disease. CNS infections such as retroviral diseases, tuberculosis, and malaria still account for high mortality and morbidity. Traumatic brain injury due to traffic accidents takes a high toll of life. Epilepsy continues to be a major health concern with large segments of the developing world's population receiving no treatment. A significant mismatch between the provision of specialized neurologic services and the requirement for them exists, especially in rural areas. Also, health insurance is not available for the majority, with patients having bear the costs themselves, thus limiting the procurement of available healthcare facilities. Neurologic training centers are few and the availability of laboratory facilities and equipment is largely limited to the metropolitan areas. Cultural practices, superstitious beliefs, ignorance, and social stigma may also impede the delivery of neurologic care. Optimizing available human resources, integrating primary, secondary, and tertiary healthcare tiers and making medical treatment more affordable will improve the neurologic care in the developing world.
Collapse
Affiliation(s)
- B S Singhal
- Department of Neurology, Bombay Hospital Institute of Medical Sciences, Mumbai, India.
| | - Satish V Khadilkar
- Department of Neurology, Grant Medical College and Sir J. J. Group of Hospitals and Bombay Hospital Institute of Medical Sciences, Mumbai, India
| |
Collapse
|
243
|
Griffiths MJ, Turtle L, Solomon T. Japanese encephalitis virus infection. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:561-76. [PMID: 25015504 DOI: 10.1016/b978-0-444-53488-0.00026-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Michael J Griffiths
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | - Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; Walton Centre NHS Foundation Trust, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| |
Collapse
|
244
|
Affiliation(s)
- Suhailah Abdullah
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
245
|
Booss J, Tselis AC. A history of viral infections of the central nervous system: foundations, milestones, and patterns. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:3-44. [PMID: 25015479 DOI: 10.1016/b978-0-444-53488-0.00001-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- John Booss
- Departments of Neurology and Laboratory Medicine, Yale University School of Medicine, New Haven, CT and Department of Veterans Affairs Medical Center, VA Connecticut, West Haven, CT, USA
| | - Alex C Tselis
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
246
|
Uddin Khan S, Atanasova KR, Krueger WS, Ramirez A, Gray GC. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: a narrative review. Emerg Microbes Infect 2013; 2:e92. [PMID: 26038451 PMCID: PMC3880873 DOI: 10.1038/emi.2013.87] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023]
Abstract
We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second, we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012. Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation requires an interdisciplinary collaborative “One Health” approach from veterinarians, environmental and public health professionals, and the swine industry.
Collapse
Affiliation(s)
- Salah Uddin Khan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Kalina R Atanasova
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Whitney S Krueger
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| | - Alejandro Ramirez
- Veterinary Diagnosis and Production Animal Medicine, Iowa State University , Iowa, IA 5011, USA
| | - Gregory C Gray
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida , Gainesville, FL 32611, USA ; Emerging Pathogens Institute, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
247
|
Mire CE, Versteeg KM, Cross RW, Agans KN, Fenton KA, Whitt MA, Geisbert TW. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol J 2013; 10:353. [PMID: 24330654 PMCID: PMC3878732 DOI: 10.1186/1743-422x-10-353] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Nipah virus (NiV) is a highly pathogenic zoonotic agent in the family Paramyxoviridae that is maintained in nature by bats. Outbreaks have occurred in Malaysia, Singapore, India, and Bangladesh and have been associated with 40 to 75% case fatality rates. There are currently no vaccines or postexposure treatments licensed for combating human NiV infection. Methods and results Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1. Conclusions These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd,, Galveston, TX, USA.
| |
Collapse
|
248
|
Weis M, Behner L, Hoffmann M, Krüger N, Herrler G, Drosten C, Drexler JF, Dietzel E, Maisner A. Characterization of African bat henipavirus GH-M74a glycoproteins. J Gen Virol 2013; 95:539-548. [PMID: 24296468 DOI: 10.1099/vir.0.060632-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from Hypsignathus monstrosus, HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse-chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.
Collapse
Affiliation(s)
- Michael Weis
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Laura Behner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Hoffmann
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
249
|
Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:398-408. [PMID: 24426305 DOI: 10.1007/s13337-013-0171-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022]
Abstract
The emergence of Nipah virus (NiV) infection into the pig population and subsequently into the human population is believed to be due to changes in ecological conditions. In Malaysia, A major NiV outbreak occurred in pigs and humans from September 1998 to April 1999 that resulted in infection of 265 and death of 105 persons. About 1.1 million pigs had to be destroyed to control the outbreak. The disease was recorded in the form of a major outbreak in India in 2001 and then a small incidence in 2007, both the outbreaks in West Bengal only in humans without any involvement of pigs. There were series of human Nipah incidences in Bangladesh from 2001 till 2013 almost every year with mortality exceeding 70 %. The disease transmission from pigs acting as an intermediate host during Malaysian and Singapore outbreaks has changed in NIV outbreaks in India and Bangladesh, transmitting the disease directly from bats to human followed by human to human. The drinking of raw date palm sap contaminated with fruit bat urine or saliva containing NiV is the only known cause of outbreak of the disease in Bangladesh outbreaks. The virus is now known to exist in various fruit bats of Pteropus as well as bats of other genera in a wider belt from Asia to Africa.
Collapse
Affiliation(s)
- D D Kulkarni
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| | - C Tosh
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| | - G Venkatesh
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| | - D Senthil Kumar
- High Security Animal Disease Laboratory, OIE Reference Laboratory for Avian Influenza, Indian Veterinary Research Institute, Bhopal, India
| |
Collapse
|
250
|
Affiliation(s)
- James W. Wynne
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Australia
- Program in Emerging Infectious Diseases, Duke–National University of Singapore Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|