201
|
Hauck CR, Meyer TF, Lang F, Gulbins E. CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase- and Rac1-dependent signalling pathway. EMBO J 1998; 17:443-54. [PMID: 9430636 PMCID: PMC1170395 DOI: 10.1093/emboj/17.2.443] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interaction of Neisseria gonorrhoeae with human phagocytes is a hallmark of gonococcal infections. Recently, CD66 molecules have been characterized as receptors for Opa52-expressing gonococci on human neutrophils. Here we show that Opa52-expressing gonococci or Escherichia coli or F(ab) fragments directed against CD66, respectively, activate a signalling cascade from CD66 via Src-like protein tyrosine kinases, Rac1 and PAK to Jun-N-terminal kinase. The induced signal is distinct from Fcgamma-receptor-mediated signalling and is specific for Opa52, since piliated Opa- gonococci, commensal Neisseria cinerea or E.coli do not stimulate this signalling pathway. Inhibition of Src-like kinases or Rac1 prevents the uptake of Opa52 bacteria, demonstrating the crucial role of this signalling cascade for the opsonin-independent, Opa52/CD66-mediated phagocytosis of pathogenic Neisseria.
Collapse
Affiliation(s)
- C R Hauck
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
202
|
Chan AY, Raft S, Bailly M, Wyckoff JB, Segall JE, Condeelis JS. EGF stimulates an increase in actin nucleation and filament number at the leading edge of the lamellipod in mammary adenocarcinoma cells. J Cell Sci 1998; 111 ( Pt 2):199-211. [PMID: 9405304 DOI: 10.1242/jcs.111.2.199] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of metastatic MTLn3 cells with EGF causes the rapid extension of lamellipods, which contain a zone of F-actin at the leading edge. In order to establish the mechanism for accumulation of F-actin at the leading edge and its relationship to lamellipod extension in response to EGF, we have studied the kinetics and location of EGF-induced actin nucleation activity in MTLn3 cells and characterized the actin dynamics at the leading edge by measuring the changes at the pointed and barbed ends of actin filaments upon EGF stimulation of MTLn3 cells. The major result of this study is that stimulation of MTLn3 cells with EGF causes a transient increase in actin nucleation activity resulting from the appearance of free barbed ends very close to the leading edge of extending lamellipods. In addition, cytochalasin D causes a significant decrease in the total F-actin content in EGF-stimulated cells, indicating that both actin polymerization and depolymerization are stimulated by EGF. Pointed end incorporation of rhodamine-labeled actin by the EGF stimulated cells is 2.12+/−0.47 times higher than that of control cells. Since EGF stimulation causes an increase in both barbed and pointed end incorporation of rhodamine-labeled actin in the same location, the EGF-stimulated nucleation sites are more likely due either to severing of pre-existing filaments or de novo nucleation of filaments at the leading edge thereby creating new barbed and pointed ends. The timing and location of EGF-induced actin nucleation activity in MTLn3 cells can account for the observed accumulation of F-actin at the leading edge and demonstrate that this F-actin rich zone is the primary actin polymerization zone after stimulation.
Collapse
Affiliation(s)
- A Y Chan
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
203
|
Decreased Expression of the Actin-Binding Protein Gelsolin in Endometrial and Ovarian Adenocarcinomas. ACTA ACUST UNITED AC 1998. [DOI: 10.1097/00022744-199803000-00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
204
|
Nusgens BV. Mechano-sensing and mechano-reaction of soft connective tissue cells. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1998; 21:1081-1091. [PMID: 11541355 DOI: 10.1016/s0273-1177(98)00031-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
One main function of the connective tissues is to provide cells with a mechanically resistant attachment support required for survival, division and differentiation. All cells contain membrane-anchored attachment proteins able to recognize specific chemical motifs in the extracellular macromolecules forming the supporting scaffold, made of various types of collagen, adhesive glycoproteins, elastin, proteoglycans, etc... These cell-matrix interactions are mainly mediated by receptors of the integrins family, heterodimeric molecules made of an extracellular domain connected through a transmembrane sequence to an intracytoplasmic tail. Upon recognition of the extracellular ligand, the clustering and activation of the integrins result in the recruitment of a complex of proteins and formation of the focal adhesion plaque, containing both cytoskeletal and catalytic signaling molecules. Activation results in polymerization of actin and formation of stress fibers. These structures establish a physical link between the extracellular matrix components and the cytoskeleton through the integrins providing a continuous path acting as a mechanotransducer. This connection is used by the cells to perform their mechanical functions as adhesion, migration and traction. In vitro experimental models using fibroblasts in a collagen gel demonstrate that cells are in mechanical equilibrium with their support which regulates their replicative and biosynthetic phenotype. The present review discusses the molecular structures operating in the transmission of the mechanical messages from the support to the connective tissue cells, and their effect on the cellular machinery. We present arguments for investigating these mechanisms in understanding the perception of reduced gravity and the resulting reaction leading to microgravity induced pathologies.
Collapse
|
205
|
Taylor JM, Richardson A, Parsons JT. Modular domains of focal adhesion-associated proteins. Curr Top Microbiol Immunol 1997; 228:135-63. [PMID: 9401205 DOI: 10.1007/978-3-642-80481-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J M Taylor
- Department of Microbiology, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
206
|
Ramesh N, Antón IM, Hartwig JH, Geha RS. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A 1997; 94:14671-6. [PMID: 9405671 PMCID: PMC25088 DOI: 10.1073/pnas.94.26.14671] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1997] [Accepted: 10/28/1997] [Indexed: 02/05/2023] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency caused by mutations that affect the WAS protein (WASP) and characterized by cytoskeletal abnormalities in hematopoietic cells. By using the yeast two-hybrid system we have identified a proline-rich WASP-interacting protein (WIP), which coimmunoprecipitated with WASP from lymphocytes. WIP binds to WASP at a site distinct from the Cdc42 binding site and has actin as well as profilin binding motifs. Expression of WIP in human B cells, but not of a WIP truncation mutant that lacks the actin binding motif, increased polymerized actin content and induced the appearance of actin-containing cerebriform projections on the cell surface. These results suggest that WIP plays a role in cortical actin assembly that may be important for lymphocyte function.
Collapse
Affiliation(s)
- N Ramesh
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
207
|
Abstract
This article discusses briefly the molecular consequences of the BCR-ABL fusion gene. It then reviews the current evidence supporting the notion that chronic myelogenous leukemia in its chronic phase is a clonal, hematopoietic, stem cell disease in which malignant hematopoietic stem and progenitor cells respond to "normal" external proliferation and differentiation stimuli, but in which such responses are altered owing to defects in the stem and progenitor cells as a result of the BCR-ABL oncogene.
Collapse
MESH Headings
- Cell Adhesion
- Cell Division
- Cytokines/pharmacology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Immunophenotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
208
|
Meijerman I, Blom WM, de Bont HJ, Mulder GJ, Nagelkerke JF. Nuclear accumulation of G-actin in isolated rat hepatocytes by adenine nucleotides. Biochem Biophys Res Commun 1997; 240:697-700. [PMID: 9398629 DOI: 10.1006/bbrc.1997.7724] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular ATP induces bleb formation in isolated rat hepatocytes. We examined the effect of extracellular ATP on the actin cytoskeleton of these hepatocytes. Exposure to 100 microM ATP caused pronounced nuclear accumulation of G-actin. ADP, AMP, adenosine, and dibutyryl-cAMP induced the same effect. Adenosine deaminase could inhibit both ATP- and adenosine-induced nuclear accumulation. The P2-receptor agonists, UTP and 2' & 3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate, did not induce this redistribution of G-actin. Phalloidin, which prevents depolymerisation of F-actin filaments to G-actin monomers, inhibited adenosine-induced nuclear accumulation of G-actin. These observations suggest that nuclear accumulation of G-actin is mediated by adenosine receptors.
Collapse
Affiliation(s)
- I Meijerman
- Division of Toxicology, Leiden-Amsterdam Center for Drug Research, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|
209
|
Tang S, Morgan KG, Parker C, Ware JA. Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells. J Biol Chem 1997; 272:28704-11. [PMID: 9353339 DOI: 10.1074/jbc.272.45.28704] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of the protein kinase C (PKC) family with phorbol esters induces endothelial proliferation and angiogenesis, but which of the events that constitute angiogenesis are affected by individual members of the PKC family is unknown. In rat capillary endothelial (RCE) cells, serum stimulation increased expression of a single PKC isoenzyme, PKCtheta, and its translocation to the periphery. Conditional overexpression of a dominant-negative mutant of PKCtheta markedly inhibited RCE proliferation, as well as closure of a "wound" by RCE migration and formation of capillary rings and tubules in vitro. PKCtheta inhibition delayed the endothelial cell cycle at the G2/M phase and prevented formation of actin stress fibers and filopodia but not lamellipodia. The defect in cell morphology and wound closure in PKCtheta-kn cells was reversed by overexpressing kinase-active PKCtheta, indicating that these RCE functions depend upon PKCtheta substrates. Thus, PKCtheta is required for multiple processes essential for angiogenesis and wound repair, including endothelial mitosis, maintenance of a normal actin cytoskeleton, and formation of an enclosed tube.
Collapse
Affiliation(s)
- S Tang
- Vascular Biology Unit and Cardiovascular Division, Department of Medicine, Beth Israel Hospital and the Harvard-Thorndike Laboratories, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
210
|
Yin X, Peterson J, Gravel M, Braun PE, Trapp BD. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res 1997; 50:238-47. [PMID: 9373033 DOI: 10.1002/(sici)1097-4547(19971015)50:2<238::aid-jnr12>3.0.co;2-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is highly enriched in myelin-forming cells where it is concentrated at the cytoplasmic side of all surface membranes except those of compact myelin. Previous studies have provided evidence that CNP is functionally involved in migration or expansion of membranes during myelination. This hypothesis is supported, in part, by the production of aberrant myelin membranes in transgenic mice that have a 6-fold increase in CNP expression. In addition, many myelin lamellae in these CNP-overexpressing mice lacked major dense lines (MDLs). The purpose of the present study was to determine if CNP overexpression altered: (1) oligodendrocyte and myelin membrane production during early stages of myelination, and (2) the ultrastructural distribution of CNP and myelin basic protein (MBP) in myelin membranes. We identified aberrant membrane expanses that extended from premyelinating oligodendrocyte processes, the periaxonal membrane, and the contact point between oligodendrocyte processes and myelin internodes. Myelin membranes without MDLs were deficient in MBP and enriched in CNP. These data support a functional role for CNP during oligodendrocyte membrane expansion and indicate, for the first time, that CNP may help target MBP to compact myelin.
Collapse
Affiliation(s)
- X Yin
- Department of Neurosciences, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
211
|
Burcelin R, Rodriguez-Gabin AG, Charron MJ, Almazan G, Larocca JN. Molecular analysis of the monomeric GTP-binding proteins of oligodendrocytes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:9-15. [PMID: 9406912 DOI: 10.1016/s0169-328x(97)00151-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vesicle transport plays an important role in the formation of myelin. Transport of proteins, including proteolipid protein and myelin associated glycoprotein, from their site of synthesis in the endoplasmic reticulum in the perikaryon of the oligodendrocytes, to myelin, takes place via carrier vesicles. The mechanisms that regulate vesicle transport in oligodendrocytes are largely unknown. The presence of monomeric GTP-binding proteins in myelin and oligodendrocytes suggested the hypothesis that these proteins participate in the regulation of vesicle transport. In an attempt to identify the Rab and Rho GTP-binding proteins present in oligodendrocytes, a cDNA library specific for these proteins was generated using a reverse transcriptase-polymerase chain reaction (RT-PCR) approach. Twelve different clones containing sequences that coded for members of the Rab and Rho families of GTP-binding proteins were isolated. This group includes Rab1, -1b, -2, -5b, -5c, -7, -8, -12, -14, -23 and Rho A. One additional clone revealed a novel cDNA sequence. Analysis of the effector loop motif indicated that this sequence encodes for a member of the Rab family. We refer to this new sequence as Rab0. Comparison of Rab0 with the most similar rat Rab sequences, Rab 14 and Rab 22, and with a recently cloned human Rab22b, showed a 71%, 72% and 94% identity, respectively. By RT-PCR analysis the Rab0 mRNA was found to be mainly expressed in oligodendrocytes and to a lesser extent in oligodendrocyte precursors, astrocytes and microglia. Moreover, the highest levels of Rab0 mRNA were observed in areas of the brain that are heavily myelinated. Rab0 mRNA was also detected in other tissues such as kidney, liver, skeletal muscle. These data provide initial evidence regarding signal transduction pathways that regulate intracellular transport in oligodendrocytes.
Collapse
Affiliation(s)
- R Burcelin
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
212
|
Saras J, Franzén P, Aspenström P, Hellman U, Gonez LJ, Heldin CH. A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1. J Biol Chem 1997; 272:24333-8. [PMID: 9305890 DOI: 10.1074/jbc.272.39.24333] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PTPL1 is an intracellular protein-tyrosine phosphatase that contains five PDZ domains. Here, we present the cloning of a novel 150-kDa protein, the four most C-terminal amino acid residues of which specifically interact with the fourth PDZ domain of PTPL1. The molecule contains a GTPase-activating protein (GAP) domain, a cysteine-rich, putative Zn2+- and diacylglycerol-binding domain, and a region of sequence homology to the product of the Caenorhabditis elegans gene ZK669.1a. The GAP domain is active on Rho, Rac, and Cdc42 in vitro but with a clear preference for Rho; we refer to the molecule as PTPL1-associated RhoGAP 1, PARG1. Rho is inactivated by GAPs, and protein-tyrosine phosphorylation has been implicated in Rho signaling. Therefore, a complex between PTPL1 and PARG1 may function as a powerful negative regulator of Rho signaling, acting both on Rho itself and on tyrosine phosphorylated components in the Rho signal transduction pathway.
Collapse
Affiliation(s)
- J Saras
- Ludwig Institute for Cancer Research, Box 595, Biomedical Centre, S-751 24 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
213
|
Terzi F, Henrion D, Colucci-Guyon E, Federici P, Babinet C, Levy BI, Briand P, Friedlander G. Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance. J Clin Invest 1997; 100:1520-8. [PMID: 9294120 PMCID: PMC508333 DOI: 10.1172/jci119675] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modulation of vascular tone by chemical and mechanical stimuli is a crucial adaptive phenomenon which involves cytoskeleton elements. Disruption, by homologous recombination, of the gene encoding vimentin, a class III intermediate filament protein mainly expressed in vascular cells, was reported to result in apparently normal phenotype under physiological conditions. In this study, we evaluated whether the lack of vimentin affects vascular adaptation to pathological situations, such as reduction of renal mass, a pathological condition which usually results in immediate and sustained vasodilation of the renal vascular bed. Ablation of 3/4 of renal mass was constantly lethal within 72 h in mice lacking vimentin (Vim-/-), whereas no lethality was observed in wild-type littermates. Death in Vim-/- mice resulted from end-stage renal failure. Kidneys from Vim-/- mice synthesized more endothelin, but less nitric oxide (NO), than kidneys from normal animals. In vitro, renal resistance arteries from Vim-/- mice were selectively more sensitive to endothelin, less responsive to NO-dependent vasodilators, and exhibited an impaired flow (shear stress)- induced vasodilation, which is NO dependent, as compared with those from normal littermates. Finally, in vivo administration of bosentan, an endothelin receptor antagonist, totally prevented lethality in Vim-/- mice. These results suggest that vimentin plays a key role in the modulation of vascular tone, possibly via the tuning of endothelin-nitric oxide balance.
Collapse
Affiliation(s)
- F Terzi
- INSERM U 380, Institut Cochin de Génétique Moléculaire, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Affiliation(s)
- L Van Aelst
- Cold Spring Harbor Laboratory, New York 11724, USA. vanaelst@.cshl.org
| | | |
Collapse
|
215
|
PERONDINI AL, RIBEIRO AF. Chromosome elimination in germ cells ofSciaraembryos: involvement of the nuclear envelope. INVERTEBR REPROD DEV 1997. [DOI: 10.1080/07924259.1997.9672614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
216
|
Machesky LM, Hall A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 1997; 138:913-26. [PMID: 9265656 PMCID: PMC2138040 DOI: 10.1083/jcb.138.4.913] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Most animal cells use a combination of actin-myosin-based contraction and actin polymerization- based protrusion to control their shape and motility. The small GTPase Rho triggers the formation of contractile stress fibers and focal adhesion complexes (Ridley, A.J., and A. Hall. 1992. Cell. 70:389-399) while a close relative, Rac, induces lamellipodial protrusions and focal complexes in the lamellipodium (Nobes, C.D., and A. Hall. 1995. Cell. 81:53-62; Ridley, A.J., H.F. Paterson, C.L. Johnston, D. Diekmann, and A. Hall. 1992. Cell. 70:401-410); the Rho family of small GTPases may thus play an important role in regulating cell movement. Here we explore the roles of actin polymerization and extracellular matrix in Rho- and Rac-stimulated cytoskeletal changes. To examine the underlying mechanisms through which these GTPases control F-actin assembly, fluorescently labeled monomeric actin, Cy3-actin, was introduced into serum-starved Swiss 3T3 fibroblasts. Incorporation of Cy3- actin into lamellipodial protrusions is concomitant with F-actin assembly after activation of Rac, but Cy3-actin is not incorporated into stress fibers formed immediately after Rho activation. We conclude that Rac induces rapid actin polymerization in ruffles near the plasma membrane, whereas Rho induces stress fiber assembly primarily by the bundling of actin filaments. Activation of Rho or Rac also leads to the formation of integrin adhesion complexes. Integrin clustering is not required for the Rho-induced assembly of actin-myosin filament bundles, or for vinculin association with actin bundles, but is required for stress fiber formation. Integrin-dependent focal complex assembly is not required for the Rac-induced formation of lamellipodia or membrane ruffles. It appears, therefore, that the assembly of large integrin complexes is not required for most of the actin reorganization or cell morphology changes induced by Rac or Rho activation in Swiss 3T3 fibroblasts.
Collapse
Affiliation(s)
- L M Machesky
- Department of Molecular Medicine, Medical Research Council Laboratory for Molecular Cell Biology, University College London, United Kingdom.
| | | |
Collapse
|
217
|
Wang B, Golemis EA, Kruh GD. ArgBP2, a multiple Src homology 3 domain-containing, Arg/Abl-interacting protein, is phosphorylated in v-Abl-transformed cells and localized in stress fibers and cardiocyte Z-disks. J Biol Chem 1997; 272:17542-50. [PMID: 9211900 DOI: 10.1074/jbc.272.28.17542] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Arg and c-Abl represent the mammalian members of the Abelson family of protein-tyrosine kinases. A novel Arg/Abl-binding protein, ArgBP2, was isolated using a segment of the Arg COOH-terminal domain as bait in the yeast two-hybrid system. ArgBP2 contains three COOH-terminal Src homology 3 domains, a serine/threonine-rich domain, and several potential Abl phosphorylation sites. ArgBP2 associates with and is a substrate of Arg and v-Abl, and is phosphorylated on tyrosine in v-Abl-transformed cells. ArgBP2 is widely expressed in human tissues and extremely abundant in heart. In epithelial cells ArgBP2 is located in stress fibers and the nucleus, similar to the reported localization of c-Abl. In cardiac muscle cells ArgBP2 is located in the Z-disks of sarcomeres. These observations suggest that ArgBP2 functions as an adapter protein to assemble signaling complexes in stress fibers, and that ArgBP2 is a potential link between Abl family kinases and the actin cytoskeleton. In addition, the localization of ArgBP2 to Z-disks suggests that ArgBP2 may influence the contractile or elastic properties of cardiac sarcomeres and that the Z-disk is a target of signal transduction cascades.
Collapse
Affiliation(s)
- B Wang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
218
|
Abstract
GTP-binding proteins of the Rho family are regulators of the actin cytoskeleton and molecular switches in various signal transduction pathways. The Rho proteins are targets for bacterial protein toxins that either inactivate GTPases by ADP-ribosylation or glucosylation, or activate them by deamidation. Rho proteins play essential roles in host cell invasion by bacteria.
Collapse
Affiliation(s)
- K Aktories
- Institut für Pharmakologie and Toxikologie, Albert-Ludwigs-Universität Freiburg, Germany.
| |
Collapse
|
219
|
Braga VM, Machesky LM, Hall A, Hotchin NA. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Biophys Biochem Cytol 1997; 137:1421-31. [PMID: 9182672 PMCID: PMC2132529 DOI: 10.1083/jcb.137.6.1421] [Citation(s) in RCA: 604] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cadherins are calcium-dependent cell-cell adhesion molecules that require the interaction of the cytoplasmic tail with the actin cytoskeleton for adhesive activity. Because of the functional relationship between cadherin receptors and actin filament organization, we investigated whether members of the Rho family of small GTPases are necessary for cadherin adhesion. In fibroblasts, the Rho family members Rho and Rac regulate actin polymerization to produce stress fibers and lamellipodia, respectively. In epithelial cells, we demonstrate that Rho and Rac are required for the establishment of cadherin-mediated cell-cell adhesion and the actin reorganization necessary to stabilize the receptors at sites of intercellular junctions. Blocking endogenous Rho or Rac selectively removed cadherin complexes from junctions induced for up to 3 h, while desmosomes were not perturbed. In addition, withdrawal of cadherins from intercellular junctions temporally precedes the removal of CD44 and integrins, other microfilament-associated receptors. Our data showed that the concerted action of Rho and Rac modulate the establishment of cadherin adhesion: a constitutively active form of Rac was not sufficient to stabilize cadherindependent cell-cell contacts when endogenous Rho was inhibited. Upon induction of calcium-dependent intercellular adhesion, there was a rapid accumulation of actin at sites of cell-cell contacts, which was prevented by blocking cadherin function, Rho or Rac activity. However, if cadherin complexes are clustered by specific antibodies attached to beads, actin recruitment to the receptors was perturbed by inhibiting Rac but not Rho. Our results provide new insights into the role of the small GTPases in the cadherin-dependent cell- cell contact formation and the remodelling of actin filaments in epithelial cells.
Collapse
Affiliation(s)
- V M Braga
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, United Kingdom.
| | | | | | | |
Collapse
|
220
|
Verfaillie CM, Hurley R, Zhao RC, Prosper F, Delforge M, Bhatia R. Pathophysiology of CML: do defects in integrin function contribute to the premature circulation and massive expansion of the BCR/ABL positive clone? THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1997; 129:584-91. [PMID: 9178724 DOI: 10.1016/s0022-2143(97)90192-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hematopoiesis takes place in close contact with the marrow microenvironment. Normal progenitors adhere through a variety of receptors to stroma and extracellular matrix components, including fibronectin. Adhesion through beta1-integrin receptors to fibronectin not only anchor progenitors to the stroma but also result in direct adhesion-mediated signaling that inhibits progenitor proliferation. In contrast to normal hematopoiesis, chronic myelogenous leukemia (CML) is characterized not only by abnormal, premature circulation of primitive progenitors in the blood but also by continuous progenitor proliferation. Although CML progenitors express the same integrin receptors as normal progenitors, they fail to adhere to stroma and fibronectin, suggesting structural or functional abnormalities of these receptors. Furthermore, CML cells present in contact with stroma or fibronectin continue to proliferate, suggesting that failure to adhere through integrin receptors may also underlie the abnormal proliferation of CML progenitors. The observation that integrin-mediated adhesion and proliferation-inhibitory signaling can be restored through treatment with interferon-alpha or an activating anti-beta1-integrin antibody suggests a functional rather than structural defect that may be related to the presence of the BCR/ABL gene rearrangement in these cells. Insights into the role of integrins as adhesion molecules but also receptors that instruct hematopoietic progenitors to survive, proliferate, and possibly differentiate will not only further our understanding of the normal hematopoietic process but also provide insights into diseases characterized by deranged adhesion and proliferation that may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
221
|
Larochelle DA, Vithalani KK, De Lozanne A. Role of Dictyostelium racE in cytokinesis: mutational analysis and localization studies by use of green fluorescent protein. Mol Biol Cell 1997; 8:935-44. [PMID: 9168476 PMCID: PMC276139 DOI: 10.1091/mbc.8.5.935] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The small GTPase racE is essential for cytokinesis in Dictyostelium but its precise role in cell division is not known. To determine the molecular mechanism of racE function, we undertook a mutational analysis of racE. The exogenous expression of either wild-type racE or a constitutively active V20racE mutant effectively rescues the cytokinesis deficiency of racE null cells. In contrast, a constitutively inactive N25racE mutant fails to rescue the cytokinesis deficiency. Thus, cytokinesis requires only the activation of racE by GTP and not the inactivation of racE by hydrolysis of GTP. To determine the spatial distribution of racE, we created a fusion protein with GFP at the amino terminus of racE. Remarkably, GFP-racE fusion protein was fully competent to rescue the phenotype of racE null cells and, therefore, must reside in the same location as native racE. We found that GFP-racE localized to the plasma membrane of the cell throughout the entire cell cycle. Furthermore, constitutively active and inactive GFP-racE fusion proteins also localized to the plasma membrane. We mapped the domain required for plasma membrane localization to the carboxyl-terminal 40 amino acids of racE. This domain, however, is not sufficient to confer racE function onto a closely related GTPase. Taken together, these results suggest that racE functions at the cell cortex but it is not involved in determining the timing or placement of the contractile ring.
Collapse
Affiliation(s)
- D A Larochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
222
|
Abstract
A wide variety of messages, in the form of diffusible growth factors, hormones and cytokines, are carried throughout multicellular organisms to coordinate important physiological properties of target cells, such as proliferation, differentiation, migration, apoptosis and metabolism. Most messengers bind to cognate receptors on target cells, which initiate a characteristic cascade of reactions within the cell, ultimately leading to the desired response. The cellular response is defined by the combination of signalling components whose individual activity depends upon the number and type of surface receptors. Consequently the responses of different cell types to one or more stimuli can be quite disparate. A molecular understanding of the signalling pathways employed by each type of receptor therefore underlies the ability to rationalize many cellular functions and to correct disfunctions. As a well studied example of the primary signalling events that take place on the cytoplasmic leaflet of the plasma membrane following receptor activation, we will discuss how the widely expressed receptor for epidermal growth factor (EGF) causes the phosphorylation and hydrolysis of a signalling precursor, the membrane lipid phosphatidylinositol. This paradigm will be used to illustrate certain general principles of signalling, including formation of multienzyme complexes, compartmentation of second messengers and intermediates, and cross-talk between different signalling pathways.
Collapse
Affiliation(s)
- J J Hsuan
- Ludwig Institute for Cancer Research, University college London Medical School, U.K
| | | |
Collapse
|
223
|
Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110 ( Pt 3):357-68. [PMID: 9057088 DOI: 10.1242/jcs.110.3.357] [Citation(s) in RCA: 530] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the contribution of the individual kinases of the MAP (mitogen-activated protein) kinase family, including ERK (extracellular-signal regulated kinase), JNK/SAPK (c-JUN NH2-terminal kinase/stress-activated protein kinase) and p38, to activation of the HSP27 (heat shock protein 27) kinase MAPKAP kinase-2/3 and to HSP27 phosphorylation in Chinese hamster CCL39 cells stimulated by either growth factors, cytokines or stressing agents. In vitro assays using fractionated cell extracts or immunoprecipitates indicated that only fractions containing ERK or p38, and not those containing JNK/SAPK, had the capacity to activate MAPKAP kinase-2/3. In vivo, however, it appeared that only p38 is an upstream activator of HSP27 phosphorylation after both stress or growth factor stimulation: expression of an interfering mutant of ras, which blocked the activation of ERK by both types of inducers, had no effect on HSP27 phosphorylation and p38 activation; and the cell-permeant specific inhibitor of 038, SB203580, blocked MAPKAP-kinase2/3 activation and HSP27 phosphorylation. HSP27 has been suggested to have a phosphorylation-activated homeostatic function at the actin cytoskeleton level. This raises the possibility that p38 might be directly involved in mediating actin responses to external stimuli. Accordingly, we observed that a prior activation of p38 increased the stability of the actin microfilaments in cells exposed to cytochalasin D. The effect was dependent on the expression of HSP27 and was totally annihilated by blocking the p38 activity with SB203580. The results provide strong support to the idea that activation of p38 during adverse environmental conditions serves a homeostatic function aimed at regulating actin dynamics that would otherwise be destabilized during stress. Its activation during normal agonist stimulation may constitute an additional actin signaling pathway, the importance of which depends on the level of expression of HSP27.
Collapse
Affiliation(s)
- J Guay
- Centre de recherche en cancérologie de l'Université Laval. L'Hôtel-Dieu de Québec, Canada
| | | | | | | | | | | |
Collapse
|
224
|
Abstract
Yeast cells respond to mating pheromones by activating a signal transduction pathway involving a seven transmembrane receptor/G protein complex linked to a mitogen-activated protein kinase module. Regulation of the G protein signal is controlled by the receptor and Sst2p; Sst2p may function as a GTPase-activating protein for the G protein alpha subunit. The Ste20 kinase acts in the linkage between the G protein and the MAP kinase module. Experiments suggest that binding of the Rho-like GTPase Cdc42p to Ste20p is not required for the mating response, yet is needed for the pseudohyphal growth response which involves many of the same kinases.
Collapse
Affiliation(s)
- E Leberer
- NRC Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal Quebec, Canada H4P 2R2
| | | | | |
Collapse
|
225
|
Offermanns S, Mancino V, Revel JP, Simon MI. Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 1997; 275:533-6. [PMID: 8999798 DOI: 10.1126/science.275.5299.533] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heterotrimeric GTP-binding proteins (G proteins) participate in cellular signaling and regulate a variety of physiological processes. Disruption of the gene encoding the G protein subunit alpha13 (Galpha13) in mice impaired the ability of endothelial cells to develop into an organized vascular system, resulting in intrauterine death. In addition, Galpha13 (-/-) embryonic fibroblasts showed greatly impaired migratory responses to thrombin. These results demonstrate that Galpha13 participates in the regulation of cell movement in response to specific ligands, as well as in developmental angiogenesis.
Collapse
Affiliation(s)
- S Offermanns
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
226
|
Abstract
The progression of a tumor cell from one of benign delimited proliferation to invasive and metastatic growth is the major cause of poor clinical outcome of cancer patients. Recent research has revealed that this complex process requires many components for successful dissemination and growth of the tumor cell at secondary sites. These include angiogenesis, enhanced extracellular matrix degradation via tumor and host-secreted proteases, tumor cell migration, and modulation of tumor cell adhesion. Each individual component is multifaceted and is discussed within this review with respect to historical and recent findings. The identification of components and their interrelationship have yielded new therapeutic targets leading to the development of agents that may prove effective in the treatment of cancer and its metastatic progression.
Collapse
Affiliation(s)
- J T Price
- Molecular Signaling Section, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|
227
|
Abstract
The bacterial pathogen Salmonella typhimurium triggers host cell signaling pathways that lead to cytoskeletal and nuclear responses required for pathogenesis. Here, the role of the small guanosine triphosphate (GTP)-binding protein CDC42Hs in these responses was examined. Expression of a dominant interfering mutant of CDC42 (CDC42HsN17) prevented S. typhimurium-induced cytoskeletal reorganization and subsequent macropinocytosis and bacterial internalization into host cells. Cells expressing constitutively active CDC42 (CDC42HsV12) internalized an S. typhimurium mutant unable to trigger host cell responses. Furthermore, expression of CDC42HsN17 prevented S. typhimurium-induced JNK kinase activation. These results indicate that CDC42 is required for bacterial invasion and induction of nuclear responses in host cells.
Collapse
Affiliation(s)
- L M Chen
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY, 11794-5222, USA
| | | | | |
Collapse
|
228
|
Macalma T, Otte J, Hensler ME, Bockholt SM, Louis HA, Kalff-Suske M, Grzeschik KH, von der Ahe D, Beckerle MC. Molecular characterization of human zyxin. J Biol Chem 1996; 271:31470-8. [PMID: 8940160 DOI: 10.1074/jbc.271.49.31470] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Zyxin is a component of adhesion plaques that has been suggested to perform regulatory functions at these specialized regions of the plasma membrane. Here we describe the isolation and characterization of cDNAs encoding human and mouse zyxin. Both the human and mouse zyxin proteins display a collection of proline-rich sequences as well as three copies of the LIM domain, a zinc finger domain found in many signaling molecules. The human zyxin protein is closely related in sequence to proteins implicated in benign tumorigenesis and steroid receptor binding. Antibodies raised against human zyxin recognize an 84-kDa protein by Western immunoblot analysis. The protein is localized at focal contacts in adherent erythroleukemia cells. By Northern analysis, we show that zyxin is widely expressed in human tissues. The zyxin gene maps to human chromosome 7q32-q36.
Collapse
Affiliation(s)
- T Macalma
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 1996; 87:227-39. [PMID: 8861907 DOI: 10.1016/s0092-8674(00)81341-0] [Citation(s) in RCA: 542] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drosophila Enabled is required for proper formation of axonal structures and is genetically implicated in signaling pathways mediated by Drosophila AbI. We have identified two murine proteins, Mena and Evl, that are highly related to Enabled as well as VASP (Vasodilator-Stimulated Phosphoprotein). A conserved domain targets Mena to localized proteins containing a specific proline-rich motif. The association of Mena with the surface of the intracellular pathogen Listeria monocytogenes and the G-actin binding protein profilin suggests that this molecule may participate in bacterial movement by facilitating actin polymerization. Expression of neural-enriched isoforms of Mena in fibroblasts induces the formation of abnormal F-actin-rich outgrowths, supporting a role for this protein in microfilament assembly and cell motility.
Collapse
Affiliation(s)
- F B Gertler
- Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | | | |
Collapse
|
230
|
Abstract
In addition to their roles in organizing the actin cytoskeleton, members of the Rho family of GTP-binding proteins have recently been implicated in a plethora of other functions, including the activation of kinase cascades and transcription factors, and the control of endocytosis and secretion. Alongside this expansion is proposed functions has been the identification of multiple target proteins that interact directly with Rho, Rac or Cdc42. Molecular connections are now being made along the signalling pathways activated by members of the Rho family.
Collapse
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research London, UK
| |
Collapse
|
231
|
Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 1996; 135:37-51. [PMID: 8858161 PMCID: PMC2121020 DOI: 10.1083/jcb.135.1.37] [Citation(s) in RCA: 470] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ERM proteins, ezrin, radixin, and moesin, are involved in the actin filament/plasma membrane interaction as cross-linkers. CD44 has been identified as one of the major membrane binding partners for ERM proteins. To examine the CD44/ERM protein interaction in vitro, we produced mouse ezrin, radixin, moesin, and the glutathione-S-transferase (GST)/CD44 cytoplasmic domain fusion protein (GST-CD44cyt) by means of recombinant baculovirus infection, and constructed an in vitro assay for the binding between ERM proteins and the cytoplasmic domain of CD44. In this system, ERM proteins bound to GST-CD44cyt with high affinity (Kd of moesin was 9.3 +/- 1.6nM) at a low ionic strength, but with low affinity at a physiological ionic strength. However, in the presence of phosphoinositides (phosphatidylinositol [PI], phosphatidylinositol 4-monophosphate [4-PIP], and phosphatidylinositol 4.5-bisphosphate [4,5-PIP2]), ERM proteins bound with a relatively high affinity to GST-CD44cyt even at a physiological ionic strength: 4,5-PIP2 showed a marked effect (Kd of moesin in the presence of 4,5-PIP2 was 9.3 +/- 4.8 nM). Next, to examine the regulation mechanism of CD44/ERM interaction in vivo, we reexamined the immunoprecipitated CD44/ERM complex from BHK cells and found that it contains Rho-GDP dissociation inhibitor (GDI), a regulator of Rho GTPase. We then evaluated the involvement of Rho in the regulation of the CD44/ERM complex formation. When recombinant ERM proteins were added and incubated with lysates of cultured BHK cells followed by centrifugation, a portion of the recombinant ERM proteins was recovered in the insoluble fraction. This binding was enhanced by GTP gamma S and markedly suppressed by C3 toxin, a specific inhibitor of Rho, indicating that the GTP form of Rho in the lysate is required for this binding. A mAb specific for the cytoplasmic domain of CD44 also markedly suppressed this binding, identifying most of the binding partners for exogenous ERM proteins in the insoluble fraction as CD44. Consistent with this binding analysis, in living BHK cells treated with C3 toxin, most insoluble ERM proteins moved to soluble compartments in the cytoplasm, leaving CD44 free from ERM. These findings indicate that Rho regulates the CD44/ERM complex formation in vivo and that the phosphatidylinositol turnover may be involved in this regulation mechanism.
Collapse
Affiliation(s)
- M Hirao
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Berton G, Yan SR, Fumagalli L, Lowell CA. Neutrophil activation by adhesion: mechanisms and pathophysiological implications. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1996; 26:160-77. [PMID: 8905448 DOI: 10.1007/bf02592978] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neutrophil adhesion plays an essential role in the formation of an inflammatory exudate. Moreover, adhesion activates selective neutrophil functions and regulates the cell response to additional stimuli. In this review we summarize the information available on adhesion molecules involved in neutrophil adhesion to endothelial cells and extracellular matrix proteins and the experimental approaches which have been developed to block neutrophil adhesion and neutrophil mediated tissue damage. We also address the mechanisms of activation of selective neutrophil functions by adhesion molecules and, in particular the mechanisms of signal transduction by neutrophil integrins. On the basis of recent results obtained in our and other laboratories we propose a model hypothesizing mechanisms of signaling by neutrophil integrins involved in regulation of selective functions.
Collapse
Affiliation(s)
- G Berton
- Institute of General Pathology, University of Verona, Italy
| | | | | | | |
Collapse
|
233
|
|