201
|
Pernas L, Scorrano L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol 2015; 78:505-31. [PMID: 26667075 DOI: 10.1146/annurev-physiol-021115-105011] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Permanent residency in the eukaryotic cell pressured the prokaryotic mitochondrial ancestor to strategize for intracellular living. Mitochondria are able to autonomously integrate and respond to cellular cues and demands by remodeling their morphology. These processes define mitochondrial dynamics and inextricably link the fate of the mitochondrion and that of the host eukaryote, as exemplified by the human diseases that result from mutations in mitochondrial dynamics proteins. In this review, we delineate the architecture of mitochondria and define the mechanisms by which they modify their shape. Key players in these mechanisms are discussed, along with their role in manipulating mitochondrial morphology during cellular action and development. Throughout, we highlight the evolutionary context in which mitochondrial dynamics emerged and consider unanswered questions whose dissection might lead to mitochondrial morphology-based therapies.
Collapse
Affiliation(s)
- Lena Pernas
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; ,
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy; ,
| |
Collapse
|
202
|
Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 2015; 90:3-19. [PMID: 26494254 DOI: 10.1016/j.nbd.2015.10.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.
Collapse
Affiliation(s)
- A M Bertholet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - T Delerue
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - A M Millet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M F Moulis
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - C David
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France
| | - M Daloyau
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - L Arnauné-Pelloquin
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - N Davezac
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - V Mils
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M C Miquel
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M Rojo
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France.
| | - P Belenguer
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
203
|
Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL, Gangl MR, Mair WB, Lee CH. Hepatic Bmal1 Regulates Rhythmic Mitochondrial Dynamics and Promotes Metabolic Fitness. Cell Metab 2015; 22:709-20. [PMID: 26365180 PMCID: PMC4598294 DOI: 10.1016/j.cmet.2015.08.006] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/14/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023]
Abstract
Mitochondria undergo architectural/functional changes in response to metabolic inputs. How this process is regulated in physiological feeding/fasting states remains unclear. Here we show that mitochondrial dynamics (notably fission and mitophagy) and biogenesis are transcriptional targets of the circadian regulator Bmal1 in mouse liver and exhibit a metabolic rhythm in sync with diurnal bioenergetic demands. Bmal1 loss-of-function causes swollen mitochondria incapable of adapting to different nutrient conditions accompanied by diminished respiration and elevated oxidative stress. Consequently, liver-specific Bmal1 knockout (LBmal1KO) mice accumulate oxidative damage and develop hepatic insulin resistance. Restoration of hepatic Bmal1 activities in high-fat-fed mice improves metabolic outcomes, whereas expression of Fis1, a fission protein that promotes quality control, rescues morphological/metabolic defects of LBmal1KO mitochondria. Interestingly, Bmal1 homolog AHA-1 in C. elegans retains the ability to modulate oxidative metabolism and lifespan despite lacking circadian regulation. These results suggest clock genes are evolutionarily conserved energetics regulators.
Collapse
Affiliation(s)
- David Jacobi
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sihao Liu
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nora Kory
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nelson H Knudsen
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ryan K Alexander
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ugur Unluturk
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaobo Li
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaohui Kong
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alexander L Hyde
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew R Gangl
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
204
|
Lowry J, Yochem J, Chuang CH, Sugioka K, Connolly AA, Bowerman B. High-Throughput Cloning of Temperature-Sensitive Caenorhabditis elegans Mutants with Adult Syncytial Germline Membrane Architecture Defects. G3 (BETHESDA, MD.) 2015; 5:2241-55. [PMID: 26311651 PMCID: PMC4632044 DOI: 10.1534/g3.115.021451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
The adult Caenorhabditis elegans hermaphrodite gonad consists of two mirror-symmetric U-shaped arms, with germline nuclei located peripherally in the distal regions of each arm. The nuclei are housed within membrane cubicles that are open to the center, forming a syncytium with a shared cytoplasmic core called the rachis. As the distal germline nuclei progress through meiotic prophase, they move proximally and eventually cellularize as their compartments grow in size. The development and maintenance of this complex and dynamic germline membrane architecture are relatively unexplored, and we have used a forward genetic screen to identify 20 temperature-sensitive mutations in 19 essential genes that cause defects in the germline membrane architecture. Using a combined genome-wide SNP mapping and whole genome sequencing strategy, we have identified the causal mutations in 10 of these mutants. Four of the genes we have identified are conserved, with orthologs known to be involved in membrane biology, and are required for proper development or maintenance of the adult germline membrane architecture. This work provides a starting point for further investigation of the mechanisms that control the dynamics of syncytial membrane architecture during adult oogenesis.
Collapse
Affiliation(s)
- Josh Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - John Yochem
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kenji Sugioka
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
205
|
Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgs H, Spudich J, Lippincott-Schwartz J. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 2015; 4:e08828. [PMID: 26305500 PMCID: PMC4574297 DOI: 10.7554/elife.08828] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.
Collapse
Affiliation(s)
- Uri Manor
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Sadie Bartholomew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Gonen Golani
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Eric Christenson
- Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Michael Kozlov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Henry Higgs
- Department of Biochemistry, Geisel School of Medicine, Hanover, United States
| | - James Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
206
|
Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation. Neuroscience 2015; 301:542-52. [DOI: 10.1016/j.neuroscience.2015.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022]
|
207
|
Cherubini M, Puigdellívol M, Alberch J, Ginés S. Cdk5-mediated mitochondrial fission: A key player in dopaminergic toxicity in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2145-60. [PMID: 26143143 DOI: 10.1016/j.bbadis.2015.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Collapse
Affiliation(s)
- Marta Cherubini
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mar Puigdellívol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
208
|
Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons. Proc Natl Acad Sci U S A 2015; 112:8768-73. [PMID: 26124107 DOI: 10.1073/pnas.1501831112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Decline in mitochondrial morphology and function is a hallmark of neuronal aging. Here we report that progressive mitochondrial fragmentation is a common manifestation of aging Caenorhabditis elegans neurons and body wall muscles. We show that sensory-evoked activity was essential for maintaining neuronal mitochondrial morphology, and this activity-dependent mechanism required the Degenerin/ENaC sodium channel MEC-4, the L-type voltage-gated calcium channel EGL-19, and the Ca/calmodulin-dependent kinase II (CaMKII) UNC-43. Importantly, UNC-43 phosphorylated and inhibited the dynamin-related protein (DRP)-1, which was responsible for excessive mitochondrial fragmentation in neurons that lacked sensory-evoked activity. Moreover, enhanced activity in the aged neurons ameliorated mitochondrial fragmentation. These findings provide a detailed description of mitochondrial behavior in aging neurons and identify activity-dependent DRP-1 phosphorylation by CaMKII as a key mechanism in neuronal mitochondrial maintenance.
Collapse
|
209
|
de Boer R, Smith RL, De Vos WH, Manders EMM, Brul S, van der Spek H. Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity. PLoS One 2015; 10:e0126220. [PMID: 25970180 PMCID: PMC4430419 DOI: 10.1371/journal.pone.0126220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023] Open
Abstract
Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.
Collapse
Affiliation(s)
- Richard de Boer
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Ruben L. Smith
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Winnok H. De Vos
- Cell Biology and Histology Group, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Coupure Links, 653, 9000, Ghent, Belgium
| | - Erik M. M. Manders
- van Leeuwenhoek Center for Advanced Microscopy, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Hans van der Spek
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), Faculty of Science (FNWI), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
210
|
Arrázola MS, Silva-Alvarez C, Inestrosa NC. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci 2015; 9:166. [PMID: 25999816 PMCID: PMC4419851 DOI: 10.3389/fncel.2015.00166] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile
| | - Carmen Silva-Alvarez
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile ; Center for Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes Punta Arenas, Chile ; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
211
|
Curthoys NM, Parent M, Mlodzianoski M, Nelson AJ, Lilieholm J, Butler MB, Valles M, Hess ST. Dances with Membranes: Breakthroughs from Super-resolution Imaging. CURRENT TOPICS IN MEMBRANES 2015; 75:59-123. [PMID: 26015281 PMCID: PMC5584789 DOI: 10.1016/bs.ctm.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological membrane organization mediates numerous cellular functions and has also been connected with an immense number of human diseases. However, until recently, experimental methodologies have been unable to directly visualize the nanoscale details of biological membranes, particularly in intact living cells. Numerous models explaining membrane organization have been proposed, but testing those models has required indirect methods; the desire to directly image proteins and lipids in living cell membranes is a strong motivation for the advancement of technology. The development of super-resolution microscopy has provided powerful tools for quantification of membrane organization at the level of individual proteins and lipids, and many of these tools are compatible with living cells. Previously inaccessible questions are now being addressed, and the field of membrane biology is developing rapidly. This chapter discusses how the development of super-resolution microscopy has led to fundamental advances in the field of biological membrane organization. We summarize the history and some models explaining how proteins are organized in cell membranes, and give an overview of various super-resolution techniques and methods of quantifying super-resolution data. We discuss the application of super-resolution techniques to membrane biology in general, and also with specific reference to the fields of actin and actin-binding proteins, virus infection, mitochondria, immune cell biology, and phosphoinositide signaling. Finally, we present our hopes and expectations for the future of super-resolution microscopy in the field of membrane biology.
Collapse
Affiliation(s)
- Nikki M. Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | | | - Andrew J. Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Jennifer Lilieholm
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Michael B. Butler
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Valles
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| |
Collapse
|
212
|
Zhang L, Ji L, Tang X, Chen X, Li Z, Mi X, Yang L. Inhibition to DRP1 translocation can mitigate p38 MAPK-signaling pathway activation in GMC induced by hyperglycemia. Ren Fail 2015; 37:903-10. [PMID: 25857570 DOI: 10.3109/0886022x.2015.1034607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes with a poorly defined etiology and limited treatment options. Early intervention is a key to preventing the progression of DN. Dynamin-related protein 1 (DRP1) regulates mitochondrial morphology by promoting its fission and is involved in the pathogenesis of numerous diseases. Furthermore, DRP1 is also closely associated with the development of diabetes, but its functional role in DN remains unknown. This study investigated the effect of DRP1 on early stage of DN. DRP1 expression has increased significantly in glomerular mesangial cell (GMC), which is cultivated in high glucose (HG). Ultra-microstructural changes of nephrons, expression of collagen IV and phosph-p38, ROS production, and mitochondrial function were evaluated and, at the same time, were compared with glomerular mesangial cell (GMC) cultured in normal-glucose (NG), mannitol, and a medium with mitochondrial division inhibitor 1 (Midivi-1). Endogenous DRP1 expression increased in DN. Compared to the control groups ofNG and mannitol, overexpression of DRP1 destroyed pathological changes typical of the GMC, like accumulation of extracellular matrix, and an increase in mitochondria division. In addition, Overexpression of DRP1 promoted the activation of p38, the accumulation of ROS, mitochondrial dysfunction, and the synthesis of collagen IV, and all these changes are suppressed by Midivi-1. This study demonstrates that DRP1 overexpression can accelerate pathological changes in the GMC cultured in HG. Further studies are needed to clarify the underlying mechanism of this destructive function.
Collapse
Affiliation(s)
- LieMei Zhang
- a Division of Nephrology , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | | | | | | | | | | | | |
Collapse
|
213
|
Roy M, Reddy PH, Iijima M, Sesaki H. Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 2015; 33:111-8. [PMID: 25703628 PMCID: PMC4380865 DOI: 10.1016/j.ceb.2015.02.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria govern many metabolic processes. In addition, mitochondria sense the status of metabolism and change their functions to regulate energy production, cell death, and thermogenesis. Recent studies have revealed that mitochondrial structural remodeling through division and fusion is critical to the organelle's function. It has also become clear that abnormalities in mitochondrial division and fusion are linked to the pathophysiology of metabolic diseases such as diabetes and obesity. Here, we discuss the current understanding of the mechanisms of mitochondrial dynamics and their role in cellular and organismal metabolism.
Collapse
Affiliation(s)
- Madhuparna Roy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
214
|
An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 2015; 112:10239-46. [PMID: 25831547 DOI: 10.1073/pnas.1421392112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
Collapse
|
215
|
Li XX, Tsoi B, Li YF, Kurihara H, He RR. Cardiolipin and its different properties in mitophagy and apoptosis. J Histochem Cytochem 2015; 63:301-11. [PMID: 25673287 DOI: 10.1369/0022155415574818] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiolipin (CL) is a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane (IMM) in eukaryotic cells. Two chiral carbons and four fatty acyl chains in CL result in a flexible body allowing interactions with respiratory chain complexes and mitochondrial substrate carriers. Due to its high content of unsaturated fatty acids, CL is particularly prone to reactive oxygen species (ROS)-induced oxidative attacks. Under mild mitochondrial damage, CL is redistributed to the outer mitochondrial membrane (OMM) and serves as a recognition signal for dysfunctional mitochondria, which are rapidly sequestered by autophagosomes. However, peroxidation of CL is far greater in response to severe stress than under normal or mild-damage conditions. The accumulation of oxidized CL on the OMM results in recruitment of Bax and formation of the mitochondrial permeability transition pore (MPTP), which releases Cytochrome c (Cyt c) from mitochondria. Over the past decade, the significance of CL in the function of mitochondrial bioenergy has been explored. Moreover, approaches to analyzing CL have become more effective and accurate. In this review, we discuss the unique structural features of CL as well as the current understanding of CL-based molecular mechanisms of mitophagy and apoptosis.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Bun Tsoi
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Yi-Fang Li
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Hiroshi Kurihara
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| | - Rong-Rong He
- Anti-stress and Health Research Center, Pharmacy College, Jinan University, Guangzhou, China (XXL, BT, YFL, HK, RRH)
| |
Collapse
|
216
|
Ikeda Y, Shirakabe A, Brady C, Zablocki D, Ohishi M, Sadoshima J. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J Mol Cell Cardiol 2015; 78:116-22. [PMID: 25305175 PMCID: PMC4268018 DOI: 10.1016/j.yjmcc.2014.09.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023]
Abstract
Mitochondria are essential organelles that produce the cellular energy source, ATP. Dysfunctional mitochondria are involved in the pathophysiology of heart disease, which is associated with reduced levels of ATP and excessive production of reactive oxygen species. Mitochondria are dynamic organelles that change their morphology through fission and fusion in order to maintain their function. Fusion connects neighboring depolarized mitochondria and mixes their contents to maintain membrane potential. In contrast, fission segregates damaged mitochondria from intact ones, where the damaged part of mitochondria is subjected to mitophagy whereas the intact part to fusion. It is generally believed that mitochondrial fusion is beneficial for the heart, especially under stress conditions, because it consolidates the mitochondria's ability to supply energy. However, both excessive fusion and insufficient fission disrupt the mitochondrial quality control mechanism and potentiate cell death. In this review, we discuss the role of mitochondrial dynamics and mitophagy in the heart and the cardiomyocytes therein, with a focus on their roles in cardiovascular disease. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Yoshiyuki Ikeda
- Department of Cell Biology & Molecular Medicine, NJ Medical School, Rutgers University, USA; Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan
| | - Akihiro Shirakabe
- Department of Cell Biology & Molecular Medicine, NJ Medical School, Rutgers University, USA
| | - Christopher Brady
- Department of Cell Biology & Molecular Medicine, NJ Medical School, Rutgers University, USA
| | - Daniela Zablocki
- Department of Cell Biology & Molecular Medicine, NJ Medical School, Rutgers University, USA
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan
| | - Junichi Sadoshima
- Department of Cell Biology & Molecular Medicine, NJ Medical School, Rutgers University, USA.
| |
Collapse
|
217
|
Abstract
Caenorhabditis elegans is a highly malleable model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity. Here, we describe a robust and efficient method to visualize and quantify mitochondrial morphology in vivo. This method has many practical and technical advantages above traditional (manual) methods and provides a comprehensive analysis of mitochondrial morphology.
Collapse
|
218
|
Abstract
Mitochondria are highly dynamic organelles that are continuously shaped by the antagonistic fission and fusion processes. The major machineries of mitochondrial fission and fusion, as well as mechanisms that regulate the function of key players in these processes have been analyzed in different experimental systems. In plants however, the mitochondrial fusion machinery is still largely unknown, and the regulatory mechanisms of the fission machinery are just beginning to be elucidated. This review focuses on the molecular mechanisms underlying plant mitochondrial dynamics and regulation of some of the key factors, especially the roles of membrane lipids such as cardiolipin.
Collapse
Affiliation(s)
- Ronghui Pan
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
- Correspondence to: Jianping Hu;
| |
Collapse
|
219
|
Chiang H, Ohno N, Hsieh YL, Mahad DJ, Kikuchi S, Komuro H, Hsieh ST, Trapp BD. Mitochondrial fission augments capsaicin-induced axonal degeneration. Acta Neuropathol 2015; 129:81-96. [PMID: 25322817 PMCID: PMC4282704 DOI: 10.1007/s00401-014-1354-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022]
Abstract
Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels.
Collapse
Affiliation(s)
- Hao Chiang
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10051 Taiwan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Present Address: Department of Anatomy and Molecular Histology, University of Yamanashi, Chuo, Yamanashi 409-3898 Japan
| | - Yu-Lin Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10051 Taiwan
- Present Address: Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Don J. Mahad
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Present Address: Centre for Neuroregeneration, University of Edinburgh, Chancellor’s Building, Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Shin Kikuchi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Present Address: Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, 060-8556 Japan
| | - Hitoshi Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10051 Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
220
|
|
221
|
Valenci I, Yonai L, Bar-Yaacov D, Mishmar D, Ben-Zvi A. Parkin modulates heteroplasmy of truncated mtDNA in Caenorhabditis elegans. Mitochondrion 2014; 20:64-70. [PMID: 25462019 DOI: 10.1016/j.mito.2014.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
Parkin, which is mutated in most recessive Parkinsonism, is a key player in the selective removal of damaged mitochondria via mitophagy. Damaged mitochondria may carry mitochondrial DNA (mtDNA) mutations, thus creating a mixed mtDNA population within cells (heteroplasmy). It was previously shown that Parkin over-expression reduced the level of heteroplasmic mutations that alter mitochondrial membrane potential in human cytoplasmic hybrids. However, it remained unclear whether Parkin serves a similar role at the entire living organism, and whether this role is evolutionarily conserved. Here, we show that mutation in the Caenorhabditis elegans orthologue of Parkin (pdr-1) modulates the level of a large heteroplasmic mtDNA truncation. Massive parallel sequencing revealed that the mtDNAs of C. elegans wild type and pdr-1(gk448) mutant strains were virtually deprived of heteroplasmy, thus reflecting strong negative selection against dysfunctional mitochondria. Therefore, our findings show that the role of Parkin in the modulation of heteroplasmy is conserved between human and worm and raise the interesting possibility that mitophagy modulates the striking lack of heteroplasmy in C. elegans.
Collapse
Affiliation(s)
- Itay Valenci
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Lital Yonai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dan Bar-Yaacov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
222
|
Regmi SG, Rolland SG, Conradt B. Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging (Albany NY) 2014; 6:118-30. [PMID: 24642473 PMCID: PMC3969280 DOI: 10.18632/aging.100639] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of skeletal muscle degeneration during aging. One mechanism through which mitochondrial dysfunction can be caused is through changes in mitochondrial morphology. To determine the role of mitochondrial morphology changes in age-dependent mitochondrial dysfunction, we studied mitochondrial morphology in body wall muscles of the nematode C. elegans. We found that in this tissue, animals display a tubular mitochondrial network, which fragments with increasing age. This fragmentation is accompanied by a decrease in mitochondrial volume. Mitochondrial fragmentation and volume loss occur faster under conditions that shorten lifespan and occur slower under conditions that increase lifespan. However, neither mitochondrial morphology nor mitochondrial volume of five- and seven-day old wild-type animals can be used to predict individual lifespan. Our results indicate that while mitochondria in body wall muscles undergo age-dependent fragmentation and a loss in volume, these changes are not the cause of aging but rather a consequence of the aging process.
Collapse
Affiliation(s)
- Saroj G Regmi
- Center for Integrated Protein Science Munich - CIPSM, Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
223
|
|
224
|
Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z. Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 2014; 9:1780-800. [DOI: 10.4161/auto.25665] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
225
|
Affiliation(s)
- Katherine Labbé
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Andrew Murley
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| |
Collapse
|
226
|
Ugarte-Uribe B, Müller HM, Otsuki M, Nickel W, García-Sáez AJ. Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. J Biol Chem 2014; 289:30645-30656. [PMID: 25237193 DOI: 10.1074/jbc.m114.575779] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drp1 is a dynamin-like GTPase that mediates mitochondrial and peroxisomal division in a process dependent on self-assembly and coupled to GTP hydrolysis. Despite the link between Drp1 malfunction and human disease, the molecular details of its membrane activity remain poorly understood. Here we reconstituted and directly visualized Drp1 activity in giant unilamellar vesicles. We quantified the effect of lipid composition and GTP on membrane binding and remodeling activity by fluorescence confocal microscopy and flow cytometry. In contrast to other dynamin relatives, Drp1 bound to both curved and flat membranes even in the absence of nucleotides. We also found that Drp1 induced membrane tubulation that was stimulated by cardiolipin. Moreover, Drp1 promoted membrane tethering dependent on the intrinsic curvature of the membrane lipids and on GTP. Interestingly, Drp1 concentrated at membrane contact surfaces and, in the presence of GTP, formed discrete clusters on the vesicles. Our findings support a role of Drp1 not only in the formation of lipid tubes but also on the stabilization of tightly apposed membranes, which are intermediate states in the process of mitochondrial fission.
Collapse
Affiliation(s)
- Begoña Ugarte-Uribe
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany,; Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and
| | | | - Miki Otsuki
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Ana J García-Sáez
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany,; Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and.
| |
Collapse
|
227
|
Hatch AL, Gurel PS, Higgs HN. Novel roles for actin in mitochondrial fission. J Cell Sci 2014; 127:4549-60. [PMID: 25217628 DOI: 10.1242/jcs.153791] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals.
Collapse
Affiliation(s)
- Anna L Hatch
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Pinar S Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
228
|
Ackema KB, Hench J, Böckler S, Wang SC, Sauder U, Mergentaler H, Westermann B, Bard F, Frank S, Spang A. The small GTPase Arf1 modulates mitochondrial morphology and function. EMBO J 2014; 33:2659-75. [PMID: 25190516 DOI: 10.15252/embj.201489039] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.
Collapse
Affiliation(s)
- Karin B Ackema
- Growth and Development, Biozentrum University of Basel, Basel, Switzerland
| | - Jürgen Hench
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Shyi Chyi Wang
- Institute for Molecular and Cell Biology, Singapore City, Singapore
| | - Ursula Sauder
- Microscopy Center, Biozentrum University of Basel, Basel, Switzerland
| | - Heidi Mergentaler
- Growth and Development, Biozentrum University of Basel, Basel, Switzerland
| | | | - Frédéric Bard
- Institute for Molecular and Cell Biology, Singapore City, Singapore
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum University of Basel, Basel, Switzerland
| |
Collapse
|
229
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
230
|
Optimized two-color super resolution imaging of Drp1 during mitochondrial fission with a slow-switching Dronpa variant. Proc Natl Acad Sci U S A 2014; 111:13093-8. [PMID: 25149858 DOI: 10.1073/pnas.1320044111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We studied the single-molecule photo-switching properties of Dronpa, a green photo-switchable fluorescent protein and a popular marker for photoactivated localization microscopy. We found the excitation light photoactivates as well as deactivates Dronpa single molecules, hindering temporal separation and limiting super resolution. To resolve this limitation, we have developed a slow-switching Dronpa variant, rsKame, featuring a V157L amino acid substitution proximal to the chromophore. The increased steric hindrance generated by the substitution reduced the excitation light-induced photoactivation from the dark to fluorescent state. To demonstrate applicability, we paired rsKame with PAmCherry1 in a two-color photoactivated localization microscopy imaging method to observe the inner and outer mitochondrial membrane structures and selectively labeled dynamin related protein 1 (Drp1), responsible for membrane scission during mitochondrial fission. We determined the diameter and length of Drp1 helical rings encircling mitochondria during fission and showed that, whereas their lengths along mitochondria were not significantly changed, their diameters decreased significantly. These results suggest support for the twistase model of Drp1 constriction, with potential loss of subunits at the helical ends.
Collapse
|
231
|
The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death Dis 2014; 5:e1368. [PMID: 25118928 PMCID: PMC4454299 DOI: 10.1038/cddis.2014.320] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 01/16/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been associated with Parkinson's disease, and its inhibition opens potential new therapeutic options. Among the drug inhibitors of both wild-type and mutant LRRK2 forms is the 2-arylmethyloxy-5-subtitutent-N-arylbenzamide GSK257815A. Using the well-established dopaminergic cell culture model SH-SY5Y, we have investigated the effects of GSK2578215A on crucial neurodegenerative features such as mitochondrial dynamics and autophagy. GSK2578215A induces mitochondrial fragmentation of an early step preceding autophagy. This increase in autophagosome results from inhibition of fusion rather than increases in synthesis. The observed effects were shared with LRRK2-IN-1, a well-described, structurally distinct kinase inhibitor compound or when knocking down LRRK2 expression using siRNA. Studies using the drug mitochondrial division inhibitor 1 indicated that translocation of the dynamin-related protein-1 has a relevant role in this process. In addition, autophagic inhibitors revealed the participation of autophagy as a cytoprotective response by removing damaged mitochondria. GSK2578215A induced oxidative stress as evidenced by the accumulation of 4-hydroxy-2-nonenal in SH-SY5Y cells. The mitochondrial-targeted reactive oxygen species scavenger MitoQ positioned these species as second messengers between mitochondrial morphologic alterations and autophagy. Altogether, our results demonstrated the relevance of LRRK2 in mitochondrial-activated pathways mediating in autophagy and cell fate, crucial features in neurodegenerative diseases.
Collapse
|
232
|
Yan J, Liu XH, Han MZ, Wang YM, Sun XL, Yu N, Li T, Su B, Chen ZY. Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer's disease. Neurobiol Aging 2014; 36:211-27. [PMID: 25192600 DOI: 10.1016/j.neurobiolaging.2014.08.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
It is well established that mitochondrial fragmentation plays a key role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial fission is mediated by dynamin-related protein 1 (Drp1), which is highly expressed in nervous system and regulated by various posttranslational modifications including phosphorylation. We identified glycogen synthase kinase (GSK)3β-dependent Drp1 phosphorylation at Ser(40) and Ser(44), which increases Drp1 GTPase activity and its mitochondrial distribution and could induce mitochondrial fragmentation. Moreover, neurons transfected with Ser(40)Ser(44) phosphomimic Drp1 showed increased mitochondria fragmentation and were more vulnerable to amyloid-β (Aβ)-induced apoptosis. Therefore, blocking GSK3β-induced Drp1 phosphorylation may be an effective way to protect neurons from Aβ toxicity. To address this, we designed and synthesized an artificial polypeptide named TAT-Drp1-SpS, which could specifically block GSK3β-induced Drp1 phosphorylation. Our results demonstrated that TAT-Drp1-SpS treatment could significantly reduce Aβ-induced neuronal apoptosis in cultured neurons. Notably, TAT-Drp1-SpS administration in hippocampus Cornu Ammonis 1 (CA1) region significantly reduced Aβ burden and rescued the memory deficits in AD transgenic mice. Although Aβ has multiple targets to exert its neurotoxicity, our findings suggested that GSK3β-induced mitochondrial fragmentation was, at least partially, mediated by Aβ toxicity and contribute to the pathogenesis of AD. Taken together, GSK3β-induced Drp1 phosphorylation provides a novel mechanism for mitochondrial fragmentation in AD, and our findings suggested a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiang-Hua Liu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ming-Zhi Han
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu-Meng Wang
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xu-Lu Sun
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Nuo Yu
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Ting Li
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bo Su
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhe-Yu Chen
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
233
|
Abstract
Acute kidney injury (AKI) is a serious clinical condition with no effective treatment. Tubular cells are key targets in AKI. Tubular cells and, specifically, proximal tubular cells are extremely rich in mitochondria and mitochondrial changes had long been known to be a feature of AKI. However, only recent advances in understanding the molecules involved in mitochondria biogenesis and dynamics and the availability of mitochondria-targeted drugs has allowed the exploration of the specific role of mitochondria in AKI. We now review the morphological and functional mitochondrial changes during AKI, as well as changes in the expression of mitochondrial genes and proteins. Finally, we summarise the current status of novel therapeutic strategies specifically targeting mitochondria such as mitochondrial permeability transition pore (MPTP) opening inhibitors (cyclosporine A (CsA)), quinone analogues (MitoQ, SkQ1 and SkQR1), superoxide dismutase (SOD) mimetics (Mito-CP), Szeto-Schiller (SS) peptides (Bendavia) and mitochondrial division inhibitors (mdivi-1). MitoQ, SkQ1, SkQR1, Mito-CP, Bendavia and mdivi-1 have improved the course of diverse experimental models of AKI. Evidence for a beneficial effect of CsA on human cardiac ischaemia-reperfusion injury derives from a clinical trial; however, CsA is nephrotoxic. MitoQ and Bendavia have been shown to be safe for humans. Ongoing clinical trials are testing the efficacy of Bendavia in AKI prevention following renal artery percutaneous transluminal angioplasty.
Collapse
|
234
|
Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J Appl Physiol (1985) 2014; 117:239-45. [PMID: 24947026 PMCID: PMC4122691 DOI: 10.1152/japplphysiol.01064.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 06/12/2014] [Indexed: 02/03/2023] Open
Abstract
Defects in mitochondrial dynamics, the processes of fission, fusion, and mitochondrial autophagy, may contribute to metabolic disease including type 2 diabetes. Dynamin-related protein-1 (Drp1) is a GTPase protein that plays a central role in mitochondrial fission. We hypothesized that aerobic exercise training would decrease Drp1 Ser(616) phosphorylation and increase fat oxidation and insulin sensitivity in obese (body mass index: 34.6 ± 0.8 kg/m(2)) insulin-resistant adults. Seventeen subjects performed supervised exercise for 60 min/day, 5 days/wk at 80-85% of maximal heart rate for 12 wk. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and fat oxidation was determined by indirect calorimetry. Skeletal muscle biopsies were obtained from the vastus lateralis muscle before and after the 12-wk program. The exercise intervention increased insulin sensitivity 2.1 ± 0.2-fold (P < 0.01) and fat oxidation 1.3 ± 0.3-fold (P < 0.01). Phosphorylation of Drp1 at Ser(616) was decreased (pre vs. post: 0.81 ± 0.15 vs. 0.58 ± 0.14 arbitrary units; P < 0.05) following the intervention. Furthermore, reductions in Drp1 Ser(616) phosphorylation were negatively correlated with increases in fat oxidation (r = -0.58; P < 0.05) and insulin sensitivity (rho = -0.52; P < 0.05). We also examined expression of genes related to mitochondrial dynamics. Dynamin1-like protein (DNM1L; P < 0.01), the gene that codes for Drp1, and Optic atrophy 1 (OPA1; P = 0.05) were significantly upregulated following the intervention, while there was a trend towards an increase in expression of both mitofusin protein MFN1 (P = 0.08) and MFN2 (P = 0.07). These are the first data to suggest that lifestyle-mediated improvements in substrate metabolism and insulin sensitivity in obese insulin-resistant adults may be regulated through decreased activation of the mitochondrial fission protein Drp1.
Collapse
Affiliation(s)
- Ciaran E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Metabolic Translational Research Center, Cleveland Clinic, Cleveland, Ohio; and
| | - Nicola Lai
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Metabolic Translational Research Center, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
235
|
Cho B, Cho HM, Kim HJ, Jeong J, Park SK, Hwang EM, Park JY, Kim WR, Kim H, Sun W. CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp Mol Med 2014; 46:e105. [PMID: 25012575 PMCID: PMC4119210 DOI: 10.1038/emm.2014.36] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/01/2014] [Accepted: 03/26/2014] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial functions are essential for the survival and function of neurons. Recently, it has been demonstrated that mitochondrial functions are highly associated with mitochondrial morphology, which is dynamically changed by the balance between fusion and fission. Mitochondrial morphology is primarily controlled by the activation of dynamin-related proteins including dynamin-related protein 1 (Drp1), which promotes mitochondrial fission. Drp1 activity is regulated by several post-translational modifications, thereby modifying mitochondrial morphology. Here, we found that phosphorylation of Drp1 at serine 616 (S616) is mediated by cyclin-dependent kinase 5 (CDK5) in post-mitotic rat neurons. Perturbation of CDK5 activity modified the level of Drp1S616 phosphorylation and mitochondrial morphology in neurons. In addition, phosphorylated Drp1S616 preferentially localized as a cytosolic monomer compared with total Drp1. Furthermore, roscovitine, a chemical inhibitor of CDKs, increased oligomerization and mitochondrial translocation of Drp1, suggesting that CDK5-dependent phosphorylation of Drp1 serves to reduce Drp1's fission-promoting activity. Taken together, we propose that CDK5 has a significant role in the regulation of mitochondrial morphology via inhibitory phosphorylation of Drp1S616 in post-mitotic neurons.
Collapse
Affiliation(s)
- Bongki Cho
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyo Min Cho
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jaehoon Jeong
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyungbuk, Republic of Korea
| | - Sang Ki Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyungbuk, Republic of Korea
| | - Eun Mi Hwang
- Center for Neural Science and WCI Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae-Yong Park
- 1] Center for Neural Science and WCI Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea [2] Department of Physiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woon Ryoung Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
236
|
Pradeep H, Rajanikant GK. Computational prediction of a putative binding site on drp1: implications for antiparkinsonian therapy. J Chem Inf Model 2014; 54:2042-50. [PMID: 24977305 DOI: 10.1021/ci500243h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder, for which no cure or disease-modifying therapies exist. It is evident that mechanisms impairing mitochondrial dynamics will damage cell signaling pathways, leading to neuronal death that manifests as Parkinson's disease. Dynamin related protein1, a highly conserved profission protein that catalyzes the process of mitochondrial fission, is also associated with the excessive fragmentation of mitochondria, impaired mitochondrial dynamics and cell death. Hence, Dynamin related protein1 has emerged as a key therapeutic target for diseases involving mitochondrial dysfunction. In this work, we employed a relatively novel and integrated computational strategy to identify a cryptic binding site of Dynamin related protein1 and exploited the predicted site in the rational drug designing process. This novel approach yielded three potential inhibitors, and all of them were evaluated for their neuroprotective efficacy in C. elegans model of Parkinson's disease.
Collapse
Affiliation(s)
- Hanumanthappa Pradeep
- School of Biotechnology, National Institute of Technology Calicut , Calicut 673601, Kerala, India
| | | |
Collapse
|
237
|
Anti-parkinsonian efficacy of target-specific GSK3β inhibitors demonstrated in Caenorhabditis elegans. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
238
|
Abstract
In a majority of cell types, mitochondria form highly dynamic, tubular networks. Maintaining the shape of this complex network is critical for both mitochondrial and cellular function and involves the activities of mitochondrial division, fusion, motility, and tethering. Recent studies have advanced our understanding of the molecular mechanisms underlying these conserved activities and their integration with cellular needs.
Collapse
Affiliation(s)
- Laura L Lackner
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive Hogan 2-100, Evanston, IL 60208, USA.
| |
Collapse
|
239
|
Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. PLoS One 2014; 9:e98479. [PMID: 24858344 PMCID: PMC4032324 DOI: 10.1371/journal.pone.0098479] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that altered mitochondrial fission dynamics represents a phenotype of a subpopulation of EOCs.
Collapse
|
240
|
Abstract
Mitochondrial fission is mediated by a dynamin-related GTPase that assembles at constricted sites on the organelle. The mechanism of action of this GTPase in fission is related to that of classical dynamin, which severs the necks of clathrin-coated pits at the plasma membrane. The scale of these membrane remodeling events differs by an order of magnitude, however, and structural studies have revealed variations in the assembly properties of classical and mitochondrial dynamins that accommodate these differences. Despite this progress, structural and mechanistic models have not yet incorporated a growing number of adaptor proteins that are required for the membrane recruitment and function of mitochondrial dynamins. Here, we review the structure and assembly properties of the yeast and mammalian mitochondrial dynamins and discuss what is known about the activities of their adaptor proteins.
Collapse
Affiliation(s)
- Huyen T Bui
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
241
|
Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol 2014; 92:583-91. [PMID: 24905188 DOI: 10.1139/cjpp-2014-0060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic approaches for cardiac regenerative mechanisms have been explored over the past decade to target various cardiovascular diseases (CVD). Structural and functional aberrations of mitochondria have been observed in CVD. The significance of mitochondrial maturation and function in cardiomyocytes is distinguished by their attribution to embryonic stem cell differentiation into adult cardiomyocytes. An abnormal fission process has been implicated in heart failure, and treatment with mitochondrial division inhibitor 1 (Mdivi-1), a specific inhibitor of dynamin related protein-1 (Drp-1), has been shown to improve cardiac function. We recently observed that the ratio of mitofusin 2 (Mfn2; a fusion protein) and Drp-1 (a fission protein) was decreased during heart failure, suggesting increased mitophagy. Treatment with Mdivi-1 improved cardiac function by normalizing this ratio. Aberrant mitophagy and enhanced oxidative stress in the mitochondria contribute to abnormal activation of MMP-9, leading to degradation of the important gap junction protein connexin-43 (Cx-43) in the ventricular myocardium. Reduced Cx-43 levels were associated with increased fibrosis and ventricular dysfunction in heart failure. Treatment with Mdivi-1 restored MMP-9 and Cx-43 expression towards normal. In this review, we discuss mitochondrial dynamics, its relation to MMP-9 and Cx-43, and the therapeutic role of fission inhibition in heart failure.
Collapse
Affiliation(s)
- Srikanth Givvimani
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
242
|
Segref A, Kevei É, Pokrzywa W, Schmeisser K, Mansfeld J, Livnat-Levanon N, Ensenauer R, Glickman MH, Ristow M, Hoppe T. Pathogenesis of human mitochondrial diseases is modulated by reduced activity of the ubiquitin/proteasome system. Cell Metab 2014; 19:642-52. [PMID: 24703696 DOI: 10.1016/j.cmet.2014.01.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/29/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
Mitochondria maintain cellular homeostasis by coordinating ATP synthesis with metabolic activity, redox signaling, and apoptosis. Excessive levels of mitochondria-derived reactive oxygen species (ROS) promote mitochondrial dysfunction, triggering numerous metabolic disorders. However, the molecular basis for the harmful effects of excessive ROS formation is largely unknown. Here, we identify a link between mitochondrial stress and ubiquitin-dependent proteolysis, which supports cellular surveillance both in Caenorhabditis elegans and humans. Worms defective in respiration with elevated ROS levels are limited in turnover of a GFP-based substrate protein, demonstrating that mitochondrial stress affects the ubiquitin/proteasome system (UPS). Intriguingly, we observed similar proteolytic defects for disease-causing IVD and COX1 mutations associated with mitochondrial failure in humans. Together, these results identify a conserved link between mitochondrial metabolism and ubiquitin-dependent proteostasis. Reduced UPS activity during pathological conditions might potentiate disease progression and thus provides a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Alexandra Segref
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Éva Kevei
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Kathrin Schmeisser
- Department of Human Nutrition, Institute of Nutrition, University of Jena, 07743 Jena, Germany
| | - Johannes Mansfeld
- Department of Human Nutrition, Institute of Nutrition, University of Jena, 07743 Jena, Germany; Energy Metabolism Laboratory, ETH Zürich, Schwerzenbach/Zürich, CH 8603, Switzerland
| | - Nurit Livnat-Levanon
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Regina Ensenauer
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Michael Ristow
- Department of Human Nutrition, Institute of Nutrition, University of Jena, 07743 Jena, Germany; Energy Metabolism Laboratory, ETH Zürich, Schwerzenbach/Zürich, CH 8603, Switzerland
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany.
| |
Collapse
|
243
|
Tar K, Dange T, Yang C, Yao Y, Bulteau AL, Salcedo EF, Braigen S, Bouillaud F, Finley D, Schmidt M. Proteasomes associated with the Blm10 activator protein antagonize mitochondrial fission through degradation of the fission protein Dnm1. J Biol Chem 2014; 289:12145-12156. [PMID: 24604417 DOI: 10.1074/jbc.m114.554105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved Blm10/PA200 activators bind to the proteasome core particle gate and facilitate turnover of peptides and unfolded proteins in vitro. We report here that Blm10 is required for the maintenance of functional mitochondria. BLM10 expression is induced 25-fold upon a switch from fermentation to oxidative metabolism. In the absence of BLM10, Saccharomyces cerevisiae cells exhibit a temperature-sensitive growth defect under oxidative growth conditions and produce colonies with dysfunctional mitochondria at high frequency. Loss of BLM10 leads to reduced respiratory capacity, increased mitochondrial oxidative damage, and reduced viability in the presence of oxidative stress or death stimuli. In the absence of BLM10, increased fragmentation of the mitochondrial network under oxidative stress is observed indicative of elevated activity of the mitochondrial fission machinery. The degradation of Dnm1, the main factor mediating mitochondrial fission, is impaired in the absence of BLM10 in vitro and in vivo. These data suggest that the mitochondrial functional and morphological changes observed are related to elevated Dnm1 levels. This hypothesis is supported by the finding that cells that constitutively overexpress DNM1 display the same mitochondrial defects as blm10Δ cells. The data are consistent with a model in which Blm10 proteasome-mediated turnover of Dnm1 is required for the maintenance of mitochondrial function and provides cytoprotection under conditions that induce increased mitochondrial damage and programmed cell death.
Collapse
Affiliation(s)
- Krisztina Tar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Thomas Dange
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Yanhua Yao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Anne-Laure Bulteau
- INSERM, Institute Cochin, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | - Stephen Braigen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Frederic Bouillaud
- INSERM, Institute Cochin, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 10115
| | - Marion Schmidt
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
244
|
Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505:335-43. [PMID: 24429632 DOI: 10.1038/nature12985] [Citation(s) in RCA: 1288] [Impact Index Per Article: 117.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/22/2013] [Indexed: 02/08/2023]
Abstract
Mitochondria are one of the major ancient endomembrane systems in eukaryotic cells. Owing to their ability to produce ATP through respiration, they became a driving force in evolution. As an essential step in the process of eukaryotic evolution, the size of the mitochondrial chromosome was drastically reduced, and the behaviour of mitochondria within eukaryotic cells radically changed. Recent advances have revealed how the organelle's behaviour has evolved to allow the accurate transmission of its genome and to become responsive to the needs of the cell and its own dysfunction.
Collapse
Affiliation(s)
- Jonathan R Friedman
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
245
|
Losón OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan SO, Chan DC. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 2014; 22:367-77. [PMID: 24508339 DOI: 10.1016/j.str.2014.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 11/17/2022]
Abstract
Mitochondrial fission requires recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface and activation of its GTP-dependent scission function. The Drp1 receptors MiD49 and MiD51 recruit Drp1 to facilitate mitochondrial fission, but their mechanism of action is poorly understood. Using X-ray crystallography, we demonstrate that MiD51 contains a nucleotidyl transferase domain that binds ADP with high affinity. MiD51 recruits Drp1 via a surface loop that functions independently of ADP binding. However, in the absence of nucleotide binding, the recruited Drp1 cannot be activated for fission. Purified MiD51 strongly inhibits Drp1 assembly and GTP hydrolysis in the absence of ADP. Addition of ADP relieves this inhibition and promotes Drp1 assembly into spirals with enhanced GTP hydrolysis. Our results reveal ADP as an essential cofactor for MiD51 during mitochondrial fission.
Collapse
Affiliation(s)
- Oliver C Losón
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Raymond Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael E Rome
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shuxia Meng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens T Kaiser
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
246
|
Korobova F, Gauvin TJ, Higgs HN. A role for myosin II in mammalian mitochondrial fission. Curr Biol 2014; 24:409-14. [PMID: 24485837 DOI: 10.1016/j.cub.2013.12.032] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/11/2013] [Accepted: 12/16/2013] [Indexed: 01/26/2023]
Abstract
Mitochondria are dynamic organelles, undergoing both fission and fusion regularly in interphase cells. Mitochondrial fission is thought to be part of a quality-control mechanism whereby damaged mitochondrial components are segregated from healthy components in an individual mitochondrion, followed by mitochondrial fission and degradation of the damaged daughter mitochondrion. Fission also plays a role in apoptosis. Defects in mitochondrial dynamics can lead to neurodegenerative diseases such as Alzheimer's disease. Mitochondrial fission requires the dynamin GTPase Drp1, which assembles in a ring around the mitochondrion and appears to constrict both outer and inner mitochondrial membranes. However, mechanisms controlling Drp1 assembly on mammalian mitochondria are unclear. Recent results show that actin polymerization, driven by the endoplasmic reticulum-bound formin protein INF2, stimulates Drp1 assembly at fission sites. Here, we show that myosin II also plays a role in fission. Chemical inhibition by blebbistatin or small interfering RNA (siRNA)-mediated suppression of myosin IIA or myosin IIB causes an increase in mitochondrial length in both control cells and cells expressing constitutively active INF2. Active myosin II accumulates in puncta on mitochondria in an actin- and INF2-dependent manner. In addition, myosin II inhibition decreases Drp1 association with mitochondria. Based on these results, we propose a mechanistic model in which INF2-mediated actin polymerization leads to myosin II recruitment and constriction at the fission site, enhancing subsequent Drp1 accumulation and fission.
Collapse
Affiliation(s)
- Farida Korobova
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Timothy J Gauvin
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
247
|
Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response pathway protects against oxidative stress. PLoS Genet 2014; 10:e1004100. [PMID: 24453991 PMCID: PMC3894169 DOI: 10.1371/journal.pgen.1004100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
The Nrf family of transcription factors mediates adaptive responses to stress and longevity, but the identities of the crucial Nrf targets, and the tissues in which they function in multicellular organisms to promote survival, are not known. Here, we use whole transcriptome RNA sequencing to identify 810 genes whose expression is controlled by the SKN-1/Nrf2 negative regulator WDR-23 in the nervous system of Caenorhabditis elegans. Among the genes identified is the synaptic cell adhesion molecule nlg-1/neuroligin. We find that the synaptic abundance of NLG-1 protein increases following pharmacological treatments that generate oxidative stress or by the genetic activation of skn-1. Increasing nlg-1 dosage correlates with increased survival in response to oxidative stress, whereas genetic inactivation of nlg-1 reduces survival and impairs skn-1-mediated stress resistance. We identify a canonical SKN-1 binding site in the nlg-1 promoter that binds to SKN-1 in vitro and is necessary for SKN-1 and toxin-mediated increases in nlg-1 expression in vivo. Together, our results suggest that SKN-1 activation in the nervous system can confer protection to organisms in response to stress by directly regulating nlg-1/neuroligin expression.
Collapse
|
248
|
Muñoz-Lobato F, Rodríguez-Palero MJ, Naranjo-Galindo FJ, Shephard F, Gaffney CJ, Szewczyk NJ, Hamamichi S, Caldwell KA, Caldwell GA, Link CD, Miranda-Vizuete A. Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases. Antioxid Redox Signal 2014; 20:217-35. [PMID: 23641861 PMCID: PMC3887457 DOI: 10.1089/ars.2012.5051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. RESULTS We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human β-amyloid peptide (Aβ), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aβ and α-syn peptides in these worm models. INNOVATION We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aβ, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. CONCLUSION Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND.
Collapse
Affiliation(s)
- Fernando Muñoz-Lobato
- 1 Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Depto. de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide , Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Rolland SG. How to analyze mitochondrial morphology in healthy cells and apoptotic cells in Caenorhabditis elegans. Methods Enzymol 2014; 544:75-98. [PMID: 24974287 DOI: 10.1016/b978-0-12-417158-9.00004-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria constantly undergo fusion and fission events. A proper balance of fusion and fission is essential in healthy cells, as disrupting this balance is associated with several neurodegenerative diseases. Mitochondrial fission has also been shown to play an important role during apoptosis. Hence, the machineries that control mitochondrial morphology have both nonapoptotic and apoptotic functions. Seminal work in yeast has identified some of the key components of these machineries. However, the list is certainly not complete and new factors that are specific to metazoans are being identified every year. In this review, we describe methodologies to test whether a particular candidate gene plays a role in the control of mitochondrial morphology in healthy cells and apoptotic cells using Caenorhabditis elegans.
Collapse
Affiliation(s)
- Stéphane G Rolland
- LMU Biocenter, Department Biology II, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
250
|
Wexler-Cohen Y, Stevens GC, Barnoy E, van der Bliek AM, Johnson PJ. A dynamin-related protein contributes to Trichomonas vaginalis hydrogenosomal fission. FASEB J 2013; 28:1113-21. [PMID: 24297697 DOI: 10.1096/fj.13-235473] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Trichomonas vaginalis is a highly divergent, unicellular eukaryote of the phylum Metamonada, class Parabasalia, and the source of a common sexually transmitted infection. This parasite lacks mitochondria, but harbors an evolutionarily related organelle, the hydrogenosome. We explored the role of dynamin-related proteins (DRPs) in the division of the hydrogenosome. Eight DRP homologues [T. vaginalis DRPs (TvDRPs)], which can be grouped into 3 subclasses, are present in T. vaginalis. We examined 5 TvDRPs that are representative of each subclass, by introducing dominant negative mutations analogous to those known to interfere with mitochondrial division in yeast, worms, and mammals. Microscopic and cell fractionation analyses of parasites expressing one of the mutated TvDRPs (TVAG_350040) demonstrated that this protein localizes to hydrogenosomes. Moreover, these organelles were found to be increased in size and reduced in number in cells expressing this dominant negative protein, relative to parasites expressing the corresponding wild-type TvDRP, the other 4 mutant TvDRPs, or an empty vector control. Our data indicate a role for a TvDRP in the fission of T. vaginalis hydrogenosomes, similar to that described for peroxisomes and mitochondria. These findings reveal a conservation of core components involved in the division of diverse eukaryotic organelles across broad phylogenetic distances.
Collapse
Affiliation(s)
- Yael Wexler-Cohen
- 1University of California, 609 Charles E. Young Dr. East, 1602 Molecular Sciences Bldg. Los Angeles, CA 90024, USA.
| | | | | | | | | |
Collapse
|