201
|
Quaglia M, Carazzone C, Sabella S, Colombo R, Giorgetti S, Bellotti V, De Lorenzi E. Search of ligands for the amyloidogenic protein beta2-microglobulin by capillary electrophoresis and other techniques. Electrophoresis 2005; 26:4055-63. [PMID: 16200532 DOI: 10.1002/elps.200500313] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beta2-microglobulin (beta2-m) is a small amyloidogenic protein normally present on the surface of most nucleated cells and responsible for dialysis-related amyloidosis, which represents a severe complication of long-term hemodialysis. A therapeutic approach for this amyloidosis could be based on the stabilization of beta2-m through the binding to a small molecule, and consequent inhibition of protein misfolding and amyloid fibril formation. A few compounds have been described to weakly bind beta2-m, including the drug suramin. The lack of a binding site for nonpolypeptidic ligands on the beta2-m structure makes it difficult for both the identification of functional groups responsible for the binding and the search of hits to be optimized. The characterization of the binding properties of suramin for beta2-m by using three different techniques (surface plasmon resonance, affinity CE (ACE), ultrafiltration) is here described and the results obtained are compared. The common features of the chemical structures of the compounds known to bind the protein led us to select 200 sulfonated/suramin-like molecules from a wider chemical library on the basis of similarity rules, so as to possibly single out some interesting hits and to gain more information on the functional groups involved in the binding. The development of screening methods to test the compounds by using ultrafiltration and ACE is described.
Collapse
Affiliation(s)
- Milena Quaglia
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
202
|
Oli MW, McArthur WP, Brady LJ. A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies. J Microbiol Methods 2005; 65:503-11. [PMID: 16239043 DOI: 10.1016/j.mimet.2005.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 09/01/2005] [Accepted: 09/13/2005] [Indexed: 11/16/2022]
Abstract
Researchers now recognize the utility of surface plasmon resonance technology to evaluate interactions of microbial pathogens with host components. The surface adhesin and candidate vaccine antigen P1 of Streptococcus mutans, the main causative agent of dental caries, interacts with a high molecular weight glycoprotein called salivary agglutinin, or gp340, in the salivary pellicle. We optimized a BIAcore assay to measure P1-mediated Ca(2+) dependent binding of S. mutans whole cells to this physiological ligand immobilized on a Pioneer F1 sensor chip. Regeneration conditions allowed cells to be eluted from the sensor chip permitting multiple reuse of the agglutinin-coated surface. An isogenic P1-deficient S. mutans mutant did not bind to immobilized agglutinin demonstrating specificity of the detected interaction. Glutaraldehyde-fixation of bacterial cells showed the assay measured a whole cell-ligand interaction and was not an artifact of solubilized or leached proteins. Adherence inhibition assays demonstrated varying degrees of disruption of the S. mutans-agglutinin interaction by anti-P1 monoclonal antibodies recognizing different epitopes, whereas a polyclonal reagent demonstrated more complete inhibition. This report describes an improved method to assess salivary agglutinin-mediated adherence of S. mutans in vitro under physiological-like conditions and to evaluate the effectiveness of antibodies of differing specificities to inhibit binding.
Collapse
Affiliation(s)
- Monika W Oli
- Department of Oral Biology, Health Science Center, University of Florida, Gainesville, 32610-0424, USA
| | | | | |
Collapse
|
203
|
Wade JD, Hojo K, Kawasaki K, Johns TG, Catimel B, Rothacker J, Nice EC. An automated peptide and protein thiazolidine coupling chemistry for biosensor immobilization giving a unique N-terminal orientation. Anal Biochem 2005; 348:315-7. [PMID: 16310754 DOI: 10.1016/j.ab.2005.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/02/2005] [Accepted: 09/11/2005] [Indexed: 10/25/2022]
Affiliation(s)
- John D Wade
- Howard Florey Institute for Neuroscience, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
204
|
Tsurushita N, Hinton PR, Kumar S. Design of humanized antibodies: from anti-Tac to Zenapax. Methods 2005; 36:69-83. [PMID: 15848076 DOI: 10.1016/j.ymeth.2005.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 01/17/2005] [Accepted: 01/17/2005] [Indexed: 01/11/2023] Open
Abstract
Since the introduction of hybridoma technology, monoclonal antibodies have become one of the most important tools in the biosciences, finding diverse applications including their use in the therapy of human disease. Initial attempts to use monoclonal antibodies as therapeutics were hampered, however, by the potent immunogenicity of mouse (and other rodent) antibodies in humans. Humanization technology has made it possible to remove the immunogenicity associated with the use of rodent antibodies, or at least to reduce it to an acceptable level for clinical use in humans, thus facilitating the application of monoclonal antibodies to the treatment of human disease. To date, nine humanized monoclonal antibodies have been approved for use as human therapeutics in the United States. In this paper, we describe procedures for antibody humanization with an emphasis on strategies for designing humanized antibodies with the aid of computer-guided modeling of antibody variable domains, using as an example the humanized anti-CD25 monoclonal antibody, Zenapax.
Collapse
Affiliation(s)
- Naoya Tsurushita
- Protein Design Labs, Inc., 34801 Campus Drive, Fremont, CA 94555, USA.
| | | | | |
Collapse
|
205
|
Yu H, Muñoz EM, Edens RE, Linhardt RJ. Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance. Biochim Biophys Acta Gen Subj 2005; 1726:168-76. [PMID: 16125850 PMCID: PMC4138602 DOI: 10.1016/j.bbagen.2005.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Heparin is a naturally occurring polysaccharide known to interact with complement proteins and regulate multiple steps in the complement cascade. Quantitative information, in the form of affinity constants for heparin-complement interactions, is not generally available and there are no reports of a comprehensive analysis using the same interaction method. Such information should improve our understanding of how exogenously administered pharmaceutical heparin and the related endogenous polysaccharide, heparan sulfate, regulate complement activation. The current study provides the first comprehensively analysis of the binding of various complement proteins to heparin using surface plasmon resonance (SPR). Complement proteins C1, C2, C3, C4, C5, C6, C7, C8, C9, C1INH, factor I, factor H, factor B and factor P all bind heparin but exhibit different binding kinetics and dissociation constants (Kd) ranging from 2 to 320 nM. By taking into account these Kd values and the serum concentrations of these complement proteins, the percentage of each binding to exogenously administered heparin was calculated and found to range from 2% to 41%. This study provides essential information required for the rational design of new therapeutic agents capable of regulating the complement activation.
Collapse
Affiliation(s)
- Haining Yu
- Division of Medicinal and Natural Product, College of Pharmacy, University of Iowa, Iowa City, IA 52241, USA
| | - Eva M. Muñoz
- Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - R. Erik Edens
- Division of Medicinal and Natural Product, College of Pharmacy, University of Iowa, Iowa City, IA 52241, USA
- Department of Pediatrics, College of Medicine, University of Arkansas, Little Rock, AR 72202, USA
| | - Robert J. Linhardt
- Division of Medicinal and Natural Product, College of Pharmacy, University of Iowa, Iowa City, IA 52241, USA
- Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Corresponding author. Biotechnology Center 4005, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA. Fax: +1 518 276 3405. (R.J. Linhardt)
| |
Collapse
|
206
|
Affiliation(s)
- Stacy H Shoshan
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
207
|
Yuk JS, Kim HS, Jung JW, Jung SH, Lee SJ, Kim WJ, Han JA, Kim YM, Ha KS. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens Bioelectron 2005; 21:1521-8. [PMID: 16095894 DOI: 10.1016/j.bios.2005.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/28/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
We presented a novel surface plasmon resonance (SPR) imaging method for analysis of protein arrays based on a wavelength interrogation-based SPR biosensor. The spectral imaging was performed by the combination of position control and resonance wavelengths calculated from SPR reflectivity spectra. The imaging method was evaluated by analyzing interactions of glutathione S-transferase-fusion proteins with their antibodies. Antigen-antibody interactions were successfully analyzed on glutathione S-transferase-fusion protein arrays by using the spectral imaging method, and the results were confirmed by a parallel analysis using a previously used spectral SPR biosensor based on wavelength interrogation. Specific binding of anti-Rac1 and anti-RhoA to Rac1 and RhoA on the protein arrays was qualitatively and quantitatively analyzed by the spectral SPR imaging. Thus, it was suggested that the novel spectral SPR imaging was a useful tool for the high-throughput analysis of protein-protein interactions on protein arrays.
Collapse
Affiliation(s)
- Jong Seol Yuk
- Department of Molecular and Cellular Biochemistry and Nano-Bio Sensor Research Center, Kangwon National University College of Medicine, Chunchon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Affiliation(s)
- Raz Jelinek
- Department of Chemistry and Staedler Minerva Center for Mesoscopic Macromolecular Engineering, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | | |
Collapse
|
209
|
Yu XS, Yin X, Lafer EM, Jiang JX. Developmental Regulation of the Direct Interaction between the Intracellular Loop of Connexin 45.6 and the C Terminus of Major Intrinsic Protein (Aquaporin-0). J Biol Chem 2005; 280:22081-90. [PMID: 15802270 DOI: 10.1074/jbc.m414377200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eye lens is dependent upon a network of gap junction-mediated intercellular communication to facilitate its homeostasis and development. Three gap junction-forming proteins are expressed in the lens of which two are in lens fibers, namely connexin (Cx) 45.6 and 56. Major intrinsic protein (MIP), also known as aquaporin-0 (AQP0), is the most abundant membrane protein in lens fibers. However, its role in the lens is not clear. Our previous studies show that MIP(AQP0) associates with gap junction plaques formed by Cx45.6 and Cx56 during the early stages of embryonic chick lens development but not in late embryonic and adult lenses. We report here that MIP(AQP0) directly interacts with Cx45.6 but not with Cx56. We further identified the intracellular loop of Cx45.6 as the interacting domain for the MIP(AQP0) C terminus. Surface plasmon resonance experiments indicated that the C-terminal domain of MIP(AQP0) interacts with two binding sites within the intracellular loop region of Cx45.6 with a K(D(app)) of 7.5 and 10.3 microm, respectively. The K(D(app)) for the full-length loop region is 7.7 microm. The cleavage at the intracellular loop of Cx45.6 was observed during lens development, and the C terminus of MIP(AQP0) did not interact with the loop-cleaved form of Cx45.6. Thus, the dissociation between these two proteins that occurs in the mature fibers of late lens development is likely caused by this cleavage. Finally this interaction had no impact on Cx45.6-mediated intercellular communication, suggesting that the Cx45.6-MIP(AQP0) interaction plays a novel unidentified role in lens fibers.
Collapse
Affiliation(s)
- Xun Sean Yu
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
210
|
Chien FC, Chen SJ. A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes. Biosens Bioelectron 2005; 20:633-42. [PMID: 15494249 DOI: 10.1016/j.bios.2004.03.014] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/05/2004] [Accepted: 03/11/2004] [Indexed: 11/23/2022]
Abstract
Current surface plasmon resonance (SPR) modes based on the attenuated total reflection (ATR) method can broadly be categorized as: conventional SPR, long-range SPR (LRSPR), coupled plasmon-waveguide resonance (CPWR), and waveguide-coupled SPR (WCSPR). Although the features of optical biosensors are dependent upon their particular SPR mode, a common requirement for all biosensors utilized for biomolecular interaction analysis (BIA) is a high degree of sensitivity. The current paper presents a theoretical analysis and comparison of the sensitivity and resolution of these four types of SPR biosensors when employed in three of the most prevalent detection methods, namely angular interrogation, wavelength interrogation, and intensity measurement. This study develops a detailed understanding of the influences of various biosensor design parameters in order to enhance the sensitivity and detection limit capabilities of such devices.
Collapse
Affiliation(s)
- F-C Chien
- Institute of Optical Sciences, National Central University, Chung-Li 320, Taiwan
| | | |
Collapse
|
211
|
Abstract
The use of enzymes for cleavage, synthesis or chemical modification represents one of the most common processes used in biochemical and molecular biology laboratories. The continuing progress in medical research, genomics, proteomics, and related emerging biotechnology fields leads to exponential growth of the applications of enzymes and the development of modified or new enzymes with specific activities. Concurrently, new technologies are being developed to improve reaction rates and specificity or perform the reaction in a specific environment. Besides large-scale industrial applications, where typically a large processing capacity is required, there are other, much lower-scale applications, benefiting form the new developments in enzymology. One such technology is microfluidics with the potential to revolutionize analytical instrumentation for the analyses of very small sample amounts, single cells or even subcellular assemblies. This article aims at reviewing the current status of the development of the immobilized microfluidic enzymatic reactors (IMERs) technology.
Collapse
Affiliation(s)
- Jana Krenková
- Institute of Analytical Chemistry, Brno, Czech Republic
| | | |
Collapse
|
212
|
Darling RJ, Brault PA. Kinetic exclusion assay technology: characterization of molecular interactions. Assay Drug Dev Technol 2005; 2:647-57. [PMID: 15674023 DOI: 10.1089/adt.2004.2.647] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Characterization of intermolecular interactions in terms of affinity, binding kinetics, stoichiometry, specificity, and thermodynamics can facilitate the selection of lead compounds in the discovery and development of protein therapeutics. KinExA (Sapidyne Instruments, Inc., Boise, ID) is a relatively new technology that is gaining use in characterizing molecular interactions, particularly with respect to antibody therapeutics. KinExA offers a platform that allows the measurement of true equilibrium binding affinity and kinetics using unmodified molecules in solution phase. This is accomplished by using a solid-phase immobilized molecule to probe for free concentration of one interaction component after allowing sufficient time to reach equilibrium (affinity measurements), or under pre-equilibrium conditions (kinetics). In this review, the theory behind KinExA technology is discussed, and examples of applying this technology to antibody characterization are provided. Finally, a comparison among KinExA, Biacore (surface plasmon resonance), and isothermal titration calorimetry is presented, and potential future improvements and applications of KinExA are discussed.
Collapse
Affiliation(s)
- Ryan J Darling
- BioTechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| | | |
Collapse
|
213
|
Ulrichts H, Vanhoorelbeke K, Girma JP, Lenting PJ, Vauterin S, Deckmyn H. The von Willebrand factor self-association is modulated by a multiple domain interaction. J Thromb Haemost 2005; 3:552-61. [PMID: 15748246 DOI: 10.1111/j.1538-7836.2005.01209.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Platelet adhesion and aggregation at sites of vascular injury exposed to rapid blood flow require von Willebrand factor (VWF). VWF becomes immobilized by binding to subendothelial components or by a self-association at the interface of soluble and surface-bound VWF. OBJECTIVES As this self-association has been demonstrated only under shear conditions, our first goal was to determine whether the same interaction could be observed under static conditions. Furthermore, we wanted to identify VWF domain(s) important for this self-association. RESULTS Biotinylated VWF (b-VWF) interacted dose-dependently and specifically with immobilized VWF in an enzyme-linked immunosorbent assay (ELISA) assay, showing that shear is not necessary to induce the VWF self-association. Whereas anti-VWF monoclonal antibodies (mAbs) had no effect on the self-association, the proteolytic VWF-fragments SpII(1366-2050) and SpIII(1-1365) inhibited the b-VWF-VWF interaction by 70 and 80%, respectively. Moreover, a specific binding of b-VWF to immobilized Sp-fragments was demonstrated. Finally, both biotinylated SpII and SpIII were able to bind specifically to both immobilized SpII and SpIII. Similar results were observed under flow conditions, which confirmed the functional relevance of our ELISA system. CONCLUSION We have developed an ELISA binding assay in which a specific VWF self-association under static conditions can be demonstrated. Our results suggest a multiple domain interaction between immobilized and soluble VWF.
Collapse
Affiliation(s)
- H Ulrichts
- KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | | | | | | | | | | |
Collapse
|
214
|
Chen L, Zurita AJ, Ardelt PU, Giordano RJ, Arap W, Pasqualini R. Design and validation of a bifunctional ligand display system for receptor targeting. ACTA ACUST UNITED AC 2005; 11:1081-91. [PMID: 15324809 DOI: 10.1016/j.chembiol.2004.05.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/12/2004] [Accepted: 05/18/2004] [Indexed: 02/08/2023]
Abstract
Here we developed a bacteriophage display particle designed to serve as a bifunctional entity that can target tumors while delivering an agent. We engineered a chimera phage vector containing a pIII-displayed alphav integrins-targeting moiety and a pVIII-displayed streptavidin binding adaptor moiety. By using the chimeric phage particle, targeting of alphav integrins on cells in culture and tumor-related blood vessels was shown through different applications, including luminescent quantum dots localization, surface plasmon resonance-based binding detection, and an in vivo tumor model. The strategy validated here will accelerate the discovery and characterization of receptor-ligand binding events in high throughput, and cell-specific delivery of diagnostics or therapeutics to organs of choice without the need for chemical conjugation.
Collapse
Affiliation(s)
- Limor Chen
- The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
215
|
Uchida K, Otsuka H, Kaneko M, Kataoka K, Nagasaki Y. A Reactive Poly(ethylene glycol) Layer To Achieve Specific Surface Plasmon Resonance Sensing with a High S/N Ratio: The Substantial Role of a Short Underbrushed PEG Layer in Minimizing Nonspecific Adsorption. Anal Chem 2005; 77:1075-80. [PMID: 15858988 DOI: 10.1021/ac0486140] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reactive poly(ethylene glycol) (PEG)-brushed layer was constructed on a surface plasmon resonance (SPR) sensor chip using a heterobifunctional PEG possessing an acetal group at one end and a mercapto group at the other end (alpha-acetal-omega-mercapto-PEG). The density of the PEG brushed layer substantially increased with repetitive adsorption/rinse cycles of the PEG on the sensor chip, allowing dramatic reduction of nonspecific protein adsorption. Notably, formation of a short, filler layer of PEG (2 kDa) in the preconstructed longer PEG brushed layer (5 kDa) achieved almost complete prevention of nonspecific protein adsorption. The acetal group located at the distal end of the tethered PEG was converted to an aldehyde group by the acid treatment, followed by the installation of biocytin hydrazide through Schiff base formation. SPR sensing of streptavidin was done with a very high S/N ratio even in a proteinous medium using the biotinylated PEG (5 kDa) tethered chip with an inert filler layer of short PEG (2 kDa). Furthermore, the specific affinity of streptavidin for the biotinylated PEG was highly influenced by the length of the filler PEG and was significantly reduced when the length of the filler PEG was longer than that of the biotinylated PEG. This result clearly revealed the substantial importance of the steric factor on biospecific interaction at the distal end of tethered PEG on the sensor surface.
Collapse
Affiliation(s)
- Katsumi Uchida
- Department of Materials Science, Tokyo University of Science, Noda-shi, Chiba 270-8510, Japan
| | | | | | | | | |
Collapse
|
216
|
Hartmann-Petersen R, Gordon C. Quantifying Protein–Protein Interactions in the Ubiquitin Pathway by Surface Plasmon Resonance. Methods Enzymol 2005; 399:164-77. [PMID: 16338355 DOI: 10.1016/s0076-6879(05)99011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we discuss some of the problems and pitfalls that researchers should be aware of when using SPR analyses for studies of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Rasmus Hartmann-Petersen
- Department of Biochemistry, Institute for Molecular Biology and Physiology, Copenhagen University, Copenhagen, Denmark
| | | |
Collapse
|
217
|
Abstract
With the amount of genetic information available, a lot of attention has focused on systems biology, in particular biomolecular interactions. Considering the huge number of such interactions, and their often weak and transient nature, conventional experimental methods such as X-ray crystallography and NMR spectroscopy are not sufficient to gain structural insight into these. A wealth of biochemical and/or biophysical data can, however, readily be obtained for biomolecular complexes. Combining these data with docking (the process of modeling the 3D structure of a complex from its known constituents) should provide valuable structural information and complement the classical structural methods. In this review we discuss and illustrate the various sources of data that can be used to map interactions and their combination with docking methods to generate structural models of the complexes. Finally a perspective on the future of this kind of approach is given.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH, Utrecht, the Netherlands
| | | | | |
Collapse
|
218
|
Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ. Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem 2004; 279:55744-53. [PMID: 15501822 DOI: 10.1074/jbc.m409785200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-arrestins are multifunctional adaptor proteins, which mediate desensitization, endocytosis, and alternate signaling pathways of seven membrane-spanning receptors (7MSRs). Crystal structures of the basal inactive state of visual arrestin (arrestin 1) and beta-arrestin 1 (arrestin 2) have been resolved. However, little is known about the conformational changes that occur in beta-arrestins upon binding to the activated phosphorylated receptor. Here we characterize the conformational changes in beta-arrestin 2 (arrestin 3) by comparing the limited tryptic proteolysis patterns and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) profiles of beta-arrestin 2 in the presence of a phosphopeptide (V(2)R-pp) derived from the C terminus of the vasopressin type II receptor (V(2)R) or the corresponding nonphosphopeptide (V(2)R-np). V(2)R-pp binds to beta-arrestin 2 specifically, whereas V(2)R-np does not. Activation of beta-arrestin 2 upon V(2)R-pp binding involves the release of its C terminus, as indicated by exposure of a previously inaccessible cleavage site, one of the polar core residues Arg(394), and rearrangement of its N terminus, as indicated by the shielding of a previously accessible cleavage site, residue Arg(8). Interestingly, binding of the polyanion heparin also leads to release of the C terminus of beta-arrestin 2; however, heparin and V(2)R-pp have different binding site(s) and/or induce different conformational changes in beta-arrestin 2. Release of the C terminus from the rest of beta-arrestin 2 has functional consequences in that it increases the accessibility of a clathrin binding site (previously demonstrated to lie between residues 371 and 379) thereby enhancing clathrin binding to beta-arrestin 2 by 10-fold. Thus, the V(2)R-pp can activate beta-arrestin 2 in vitro, most likely mimicking the effects of an activated phosphorylated 7MSR. These results provide the first direct evidence of conformational changes associated with the transition of beta-arrestin 2 from its basal inactive conformation to its biologically active conformation and establish a system in which receptor-beta-arrestin interactions can be modeled in vitro.
Collapse
Affiliation(s)
- Kunhong Xiao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
219
|
Huber W, Perspicace S, Kohler J, Müller F, Schlatter D. SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins. Anal Biochem 2004; 333:280-8. [PMID: 15450803 DOI: 10.1016/j.ab.2004.05.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Indexed: 01/22/2023]
Abstract
An immobilization procedure for protein on surface plasmon resonance sensor (SPR) chips is described. The target protein, cyclophilin D, is thereby genetically linked to a mutant of the human DNA repair protein O(6)-alkylguanine-DNA-alkyltransferase (hAGT). The procedure includes the immobilization of an alkylguanine derivative on the surface by amine coupling and contact of the surface with a solution of the fusion protein (TCypD-hAGT). TCypD-hAGT could be immobilized using buffer solutions of purified protein or cell extracts. High densities of covalently linked proteins were achieved by either procedure. Binding experiments performed with the ligand cyclosporin A indicate relative binding activities close to 100%. The K(D) value (12 nM) and the kinetic rate constants k(on) (3 x 10(5)M(-1)s(-1)) and k(off) (4 x 10(-3)s(-1)) are given and compared to values determined for cyclophilin D linked to the surface by amide coupling chemistry. The K(D) value is in excellent agreement with the K(D) value determined in solution by fluorescence titration.
Collapse
Affiliation(s)
- Walter Huber
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research, Discovery Chemistry, CH-4070- Basel, Switzerland.
| | | | | | | | | |
Collapse
|
220
|
Medina MB. Binding interaction studies of the immobilized Salmonella typhimurium with extracellular matrix and muscle proteins, and polysaccharides. Int J Food Microbiol 2004; 93:63-72. [PMID: 15135583 DOI: 10.1016/j.ijfoodmicro.2003.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 08/07/2003] [Accepted: 10/11/2003] [Indexed: 11/30/2022]
Abstract
Our research attempts to understand the real-time interactions of immobilized Salmonella typhimurium with extracellular membrane proteins (collagen I, fibronectin and laminin) and muscle proteins (actin and myosin). Salmonella cells were immobilized on the sensor chip of a surface plasmon resonance (SPR) biosensor. Typical results showed that collagen I and myosin had higher binding responses to the S. typhimurium surface but laminin, actin and fibronectin had lower binding responses. The binding kinetics of collagen I and Salmonella cell surface showed an apparent dissociation and association rate constants of 3.90 E-4 s(-1) and 1.07 E+4 mol(-1) s(-1). Using the model system developed in our laboratory, the interactions of carrageenans and other polysaccharides with collagen and the Salmonella sensor surface were evaluated. The kappa-carrageenans blocked 92-100% binding of collagen to the Salmonella surface, while sodium alginate and low methoxy pectin blocked 50% and 18% binding, respectively. These biosensor studies allowed the rapid evaluation of compounds that may prevent bacterial attachment to poultry skin and carcasses, thus reducing pathogen contamination of poultry foods.
Collapse
Affiliation(s)
- Marjorie B Medina
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| |
Collapse
|
221
|
Abstract
Secondary screening and lead optimization, where a large number of "hit" compounds are refined to a viable set of "lead" drug candidates, are considered to be bottlenecks to the drug discovery process and are targets for streamlining. Surface plasmon resonance (SPR) is a nonlabel technology that can generate kinetic data on biomolecular interactions. This allows researchers to quantitate the binding characteristics of lead compounds with their targets in terms of affinity, specificity, and association/dissociation rates in parallel. The latest generation of SPR biosensors integrate the hit-to-lead process and generate a greater depth of information, providing answers that cannot be addressed by traditional end-point assays. This allows users to make more informed choices on the selection of candidate molecules prior to preclinical development. A number of studies have used SPR biosensors in secondary screening, lead optimization, quantitative structure-activity relationship analysis, and predictive adsorption, distribution, metabolism, excretion, and/or toxicity evaluations.
Collapse
|
222
|
He L, Smith EA, Natan MJ, Keating CD. The Distance-Dependence of Colloidal Au-Amplified Surface Plasmon Resonance. J Phys Chem B 2004. [DOI: 10.1021/jp048536k] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lin He
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-6300
| | - Emily A. Smith
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-6300
| | - Michael J. Natan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-6300
| | - Christine D. Keating
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802-6300
| |
Collapse
|
223
|
Sarkar D, Somasundaran P. Conformational dynamics of poly(acrylic acid). A study using surface plasmon resonance spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:4657-64. [PMID: 15969178 DOI: 10.1021/la035727q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conformational dynamics of poly(acrylic acid) induced by pH change is reported here. Poly(acrylic acid) immobilized on gold surface was exposed to pH changes, and the conformational changes thus induced were followed in real time using surface plasmon resonance spectroscopy. The temporal profile of the stretching-coiling phenomenon showed a minimum point, which was proposed to be arising due to the contradictory behavior of two different property changes in the polymeric system. Normally surface plasmon resonance (SPR) response would be a convoluted effect of the thickness and refractive index changes, but the behavior observed here, where the SPR response is predominantly governed by either one of the two, is unique and to the author's knowledge is a feature that is observed for the first time. Analysis of the kinetics of the angle change revealed that it takes longer for the polymer to stretch than it takes for it to collapse, with the kinetic rate constants varying by at least an order of magnitude. The SPR angle change as well as the kinetic constants increased linearly with molecular weight. Effect of Ca2+ was studied, and it was found that the polymer was locked in its conformation due to the binding of the multivalent cations.
Collapse
Affiliation(s)
- Diptabhas Sarkar
- NSFIIUCR Center for Studies in Novel Surfactants, Langmuir Center for Colloids and Interfaces, Columbia University, 911 Mudd Building, 500 West 120th Street, New York, New York 10027, USA
| | | |
Collapse
|
224
|
Lioubashevski O, Chegel VI, Patolsky F, Katz E, Willner I. Enzyme-Catalyzed Bio-Pumping of Electrons into Au-Nanoparticles: A Surface Plasmon Resonance and Electrochemical Study. J Am Chem Soc 2004; 126:7133-43. [PMID: 15174885 DOI: 10.1021/ja049275v] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme glucose oxidase (GOx) is reconstituted on a flavin adenin dinucleotide (FAD, 1) cofactor-functionalized Au-nanoparticle (Au-NP), 1.4 nm, and the GOx/Au-NP hybrid is linked to a bulk Au-electrode by a short dithiol, 1,4-benzenedithiol (2), or a long dithiol, 1,9-nonanedithiol (3), monolayer. The reconstituted GOx/Au-NP hybrid system exhibits electrical communication between the enzyme redox cofactor and the Au-NP core. Because the thiol monolayers provide a barrier for electron tunneling, the electron transfer occurring upon the biocatalytic oxidation of glucose results in the Au-NPs charging. The charging of the Au-NPs alters the plasma frequency and the dielectric constant of the Au-NPs, thus leading to the changes of the dielectric constant of the interface. These are reflected in pronounced shifts of the plasmon angle, theta(P), in the surface plasmon resonance (SPR) spectra. As the biocatalytic charging phenomenon is controlled by the concentration of glucose, the changes in the theta(P) values correlate with the concentration of glucose. The biocatalytic charging process is characterized by following the differential capacitance of the GOx/Au-NP interface and by monitoring the potential generated on the bulk Au-electrode. The charging of the GOx/Au-NPs is also accomplished in the absence of glucose by the application of an external potential on the electrode, that resulted in similar plasmon angle shifts. The results allowed us to estimate the number of electrons stored per Au-NP at variable concentrations of glucose in the presence of the two different thiol linkers.
Collapse
Affiliation(s)
- Oleg Lioubashevski
- Institute of Chemistry, The Farkas Center for Light-induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
225
|
Abstract
Electrochemistry-based sensors offer sensitivity, selectivity and low cost for the detection of selected DNA sequences or mutated genes associated with human disease. DNA-based electrochemical sensors exploit a range of different chemistries, but all take advantage of nanoscale interactions between the target in solution, the recognition layer and a solid electrode surface. Numerous approaches to electrochemical detection have been developed, including direct electrochemistry of DNA, electrochemistry at polymer-modified electrodes, electrochemistry of DNA-specific redox reporters, electrochemical amplifications with nanoparticles, and electrochemical devices based on DNA-mediated charge transport chemistry.
Collapse
Affiliation(s)
- T Gregory Drummond
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
226
|
Ratto TV, Langry KC, Rudd RE, Balhorn RL, Allen MJ, McElfresh MW. Force spectroscopy of the double-tethered concanavalin-A mannose bond. Biophys J 2004; 86:2430-7. [PMID: 15041680 PMCID: PMC1304091 DOI: 10.1016/s0006-3495(04)74299-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We present the measurement of the force required to rupture a single protein-sugar bond using a methodology that provides selective discrimination between specific and nonspecific binding events and helps verify the presence of a single functional molecule on the atomic force microscopy tip. In particular, the interaction force between a polymer-tethered concanavalin-A protein (ConA) and a similarly tethered mannose carbohydrate was measured as 47 +/- 9 pN at a bond loading rate of approximately 10 nN/s. Computer simulations of the polymer molecular configurations were used to determine the angles that the polymers could sweep out during binding and, in conjunction with mass spectrometry, used to separate the angular effects from the effects due to a distribution of tether lengths. We find that when using commercially available polymer tethers that vary in length from 19 to 29 nm, the angular effects are relatively small and the rupture distributions are dominated by the 10-nm width of the tether length distribution. In all, we show that tethering both a protein and its ligand allows for the determination of the single-molecule bond rupture force with high sensitivity and includes some validation for the presence of a single-tethered functional molecule on the atomic force microscopy tip.
Collapse
Affiliation(s)
- Timothy V Ratto
- Chemistry and Materials Science, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | | | | | | | | | |
Collapse
|
227
|
Clark SM, Konermann L. Screening for Noncovalent Ligand−Receptor Interactions by Electrospray Ionization Mass Spectrometry-Based Diffusion Measurements. Anal Chem 2004; 76:1257-63. [PMID: 14987079 DOI: 10.1021/ac035230l] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of a novel method for the identification of low-molecular-weight noncovalent ligands to a macromolecular target is reported. This technique is based on the measurement of analyte diffusion coefficients by electrospray mass spectrometry (ESI-MS) (Clark et al., Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462). Potential ligands have large diffusion coefficients as long as they are free in solution. Binding to a macromolecular target, however, drastically reduces the diffusional mobility of any ligand species. Mixtures containing six different saccharides [ribose, rhamnose, glucose, maltose, maltotriose, and N,N',N''-triacetylchitotriose (NAG(3))] were screened for noncovalent binding to lysozyme. Of these six compounds, only NAG(3) is known to bind to the protein. In "direct" binding tests, NAG(3) shows a significantly reduced diffusion coefficient in the presence of the protein. No changes were observed for any of the other saccharides. In a second set of experiments, the use of a "competition" screening method was explored in which mixtures of candidate saccharides were tested for their ability to displace a reference ligand from the target. The addition of NAG(3)-containing mixtures significantly increased the diffusion coefficient of the reference ligand NAG(4) (N,N',N'',N'''-tetraacetylchitotetrose), whereas mixtures that did not contain NAG(3) had no effect. These data clearly indicate the potential of ESI-MS-based diffusion measurements as a novel tool to screen compound libraries for binding to proteins and other macromolecular targets. In contrast to conventional ESI-MS-based ligand-receptor binding studies, this method does not rely on the preservation of noncovalent interactions in the gas phase.
Collapse
Affiliation(s)
- Sonya M Clark
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | |
Collapse
|
228
|
Abstract
High-throughput screening (HTS) is the process of testing a large number of diverse chemical structures against disease targets to identify 'hits'. Compared to traditional drug screening methods, HTS is characterized by its simplicity, rapidness, low cost, and high efficiency, taking the ligand-target interactions as the principle, as well as leading to a higher information harvest. As a multidisciplinary field, HTS involves an automated operation-platform, highly sensitive testing system, specific screening model (in vitro), an abundant components library, and a data acquisition and processing system. Various technologies, especially the novel technologies such as fluorescence, nuclear-magnetic resonance, affinity chromatography, surface plasmon resonance, and DNA microarray, are now available, and the screening of more than 100,000 samples per day is already possible. Fluorescence-based assays include the scintillation proximity assay, time-resolved energy transfer, fluorescence anisotropy, fluorescence correlation spectroscopy, and fluorescence fluctuation spectroscopy. Fluorescence-based techniques are likely to be among the most important detection approaches used for HTS due to their high sensitivity and amenability to automation, giving the industry-wide drive to simplify, miniaturize, and speed up assays. The application of NMR technology to HTS is another recent trend in drug research. One advantage afforded by NMR technology is that it can provide direct information on the affinity of the screening compounds and the binding location of protein. The structure-activity relationship acquired from NMR analysis can sharpen the library design, which will be very important in furnishing HTS with well-defined drug candidates. Affinity chromatography used for library screening will provide the information on the fundamental processes of drug action, such as absorption, distribution, excretion, and receptor activation; also the eluting curve can give directly the possibility of candidate drug. SPR can measure the quantity of a complex formed between two molecules in real-time without the need for fluorescent or radioisotopic labels. SPR is capable of characterizing unmodified biopharmaceuticals, studying the interaction of drug candidates with macromolecular targets, and identifying binding partners during ligand fishing experiments. DNA microarrays can be used in HTS be used to further investigate the expression of biological targets associated with human disease, which then opens new and exciting opportunities for drug discovery. Without doubt, the addition of new technologies will further increase the application of HTS in drug screening and its related fields.
Collapse
Affiliation(s)
- Bailing Liu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Peoples Republic of China.
| | | | | |
Collapse
|
229
|
Abstract
Modular domains that recognize and target intracellular membranes play a critical role in the assembly, localization, and function of signaling and trafficking complexes in eukaryotic cells. Large domain families, including PH, FYVE, PX, PHD, and C2 domains, combine specific, nonspecific, and multivalent interactions to achieve selective membrane targeting. Despite structural and functional diversity, general features of lipid recognition are evident in the various membrane-targeting mechanisms.
Collapse
Affiliation(s)
- Jonathan P DiNitto
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
230
|
Abstract
Fueled by ever-growing DNA sequence information, proteomics-the large scale analysis of proteins-has become one of the most important disciplines for characterizing gene function, for building functional linkages between protein molecules, and for providing insight into the mechanisms of biological processes in a high-throughput mode. It is now possible to examine the expression of more than 1000 proteins using mass spectrometry technology coupled with various separation methods. High-throughput yeast two-hybrid approaches and analysis of protein complexes using affinity tag purification have yielded valuable protein-protein interaction maps. Large-scale protein tagging and subcellular localization projects have provided considerable information about protein function. Finally, recent developments in protein microarray technology provide a versatile tool to study protein-protein, protein-nucleic acid, protein-lipid, enzyme-substrate, and protein-drug interactions. Other types of microarrays, though not fully developed, also show great potential in diagnostics, protein profiling, and drug identification and validation. This review discusses high-throughput technologies for proteome analysis and their applications. Also discussed are the approaches used for the integrated analysis of the voluminous sets of data generated by proteome analysis conducted on a global scale.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
231
|
Danuser G, Waterman-Storer CM. Quantitative fluorescent speckle microscopy: where it came from and where it is going. J Microsc 2003; 211:191-207. [PMID: 12950468 DOI: 10.1046/j.1365-2818.2003.01222.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent speckle microscopy (FSM) is a technology for analysing the dynamics of macromolecular assemblies. Originally, the effect of random speckle formation was discovered with microtubules. Since then, the method has been expanded to other proteins of the cytoskeleton such as f-actin and microtubule binding proteins. Newly developed, specialized software for analysing speckle movement and photometric fluctuation in the context of polymer transport and turnover has turned FSM into a powerful method for the study of cytoskeletal dynamics in cell migration, division, morphogenesis and neuronal path finding. In all these settings, FSM serves as the quantitative readout to link molecular and genetic interventions to complete maps of the cytoskeleton dynamics and thus can be used for the systematic deciphering of molecular regulation of the cytoskeleton. Fully automated FSM assays can also be applied to live-cell screens for toxins, chemicals, drugs and genes that affect cytoskeletal dynamics. We envision that FSM has the potential to become a core tool in automated, cell-based molecular diagnostics in cases where variations in cytoskeletal dynamics are a sensitive signal for the state of a disease, or the activity of a molecular perturbant. In this paper, we review the origins of FSM, discuss these most recent technical developments and give a glimpse to future directions and potentials of FSM. It is written as a complement to the recent review (Waterman-Storer & Danuser, 2002, Curr. Biol., 12, R633-R640), in which we emphasized the use of FSM in cell biological applications. Here, we focus on the technical aspects of making FSM a quantitative method.
Collapse
Affiliation(s)
- G Danuser
- BioMicrometrics Group, Laboratory for Biomechanics, ETH Zürich, 8952 Schlieren, Switzerland.
| | | |
Collapse
|
232
|
Nedelkov D, Nelson RW. Detection of Staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl Environ Microbiol 2003; 69:5212-5. [PMID: 12957904 PMCID: PMC194922 DOI: 10.1128/aem.69.9.5212-5215.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detection of Staphylococcus enterotoxin B (SEB) by biomolecular interaction analysis mass spectrometry (BIA/MS) is presented in this work. The BIA/MS experiments were based on a surface plasmon resonance (SPR) MS immunoassay that detects affinity-captured SEB both via SPR and by means of exact and direct mass measurement by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Experiments were performed with standard samples and food samples to assess the BIA/MS limit of detection for SEB and to set the experimental parameters for proper quantitation. Single and double SPR referencing was performed to accurately estimate the amount of the bound toxin. Reproducible detection of 1 ng of SEB per ml, corresponding to affinity capture and MS analysis of approximately 500 amol of SEB, was readily achieved from both the standard and mushroom samples. A certain amount of SEB degradation was indicated by the signals in the mass spectra. The combination of MS with SPR-based methods of detection creates a unique approach capable of quantifying and qualitatively analyzing protein toxins from pathogenic organisms.
Collapse
|
233
|
Clark SM, Konermann L. Diffusion measurements by electrospray mass spectrometry for studying solution-phase noncovalent interactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:430-441. [PMID: 12745212 DOI: 10.1016/s1044-0305(03)00123-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study describes a novel approach for monitoring noncovalent interactions in solution by electrospray mass spectrometry (ESI-MS). The technique is based on measurements of analyte diffusion in solution. Diffusion coefficients of a target macromolecule and a potential low molecular weight binding partner are determined by measuring the spread of an initially sharp boundary between two solutions of different concentration in a laminar flow tube (Taylor dispersion), as described in Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462. In the absence of noncovalent interactions, the measured ESI-MS dispersion profiles are expected to show a gradual transition for the macromolecule and a steep transition for the low molecular weight compound. However, if the two analytes form a noncovalent complex in solution the dispersion profiles of the two species will be very similar, since the translational diffusion of the small compound is determined by the slow Brownian motion of the macromolecule. In contrast to conventional ESI-MS-based techniques for studying noncovalent complexes, this approach does not rely on the preservation of solution-phase interactions in the gas phase. On the contrary, "harsh" conditions at the ion source are required to disrupt any potential gas- phase interactions between the two species, such that their dispersion profiles can be monitored separately. The viability of this technique is demonstrated in studies on noncovalent heme-protein interactions in myoglobin. Tight noncovalent binding is observed in solutions of pH 10, both in the absence and in the presence of 30% acetonitrile. In contrast, a significant disruption of the noncovalent interactions is seen at an acetonitrile content of 50%. Under these conditions, the diffusion coefficient of heme in the presence of myoglobin is only slightly lower than that of heme in a protein-free solution. A breakdown of the noncovalent interactions is also observed in aqueous solution of pH 2.4, where myoglobin is known to adopt an acid-unfolded conformation.
Collapse
Affiliation(s)
- Sonya M Clark
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
234
|
Neufeld G, Kessler O, Herzog Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 515:81-90. [PMID: 12613545 DOI: 10.1007/978-1-4615-0119-0_7] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2) receptors were initially described as receptors for axon guidance factors belonging to the class-3 Semaphorin sub-family. Subsequently, it was found the Neuropilins also function as receptors for some forms of vascular endothelial growth factor (VEGF). VEGF165 binds to both NRP1 and to NRP2 but VEGF121, does not bind to either of these receptors. VEGF145 on the other hand, binds to NRP2 but not to NRP1. Additional VEGF family members such as the heparin binding form of placenta growth factor (PlGF-2) and VEGF-B bind to NRP1, and it was also shown that both PlGF-2 and VEGF-C bind to NRP2. The intracellular domains of the Neuropilins are short, and do not suffice for independent transduction of biological signals subsequent to Semaphorin or VEGF binding. It was shown that both Neuropilins can form complexes with receptors belonging to the Plexin family, and that such Plexin/Neuropilin complexes are able to transduce signals following the binding of class-3 Semaphorins to Neuropilins. The VEGF165 induced proliferation and migration of cells that express the VEGF tyrosine-kinase receptor VEGFR2 is enhanced in the presence of NRP1, suggesting that Neuropilins may also form complexes with VEGF tyrosine-kinase receptors such as VEGFR2. However, it is not yet clear whether VEGFR2 and NRPI form complexes and contrasting results have been reported with regard to this issue. In contrast, it was recently reported by two laboratories that Neuropilins can form complexes with the second tyrosine-kinase receptor of VEGF, VEGFR1. However, the biological function of these complexes is still unclear.
Collapse
Affiliation(s)
- Gera Neufeld
- Department of Biology, Technion, Israel Institute of Technology, Haifa, 32000, Israel.
| | | | | |
Collapse
|
235
|
Grinberg AV, Kerppola T. Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J Biol Chem 2003; 278:11227-36. [PMID: 12551947 DOI: 10.1074/jbc.m211734200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor (TGF)-beta regulates gene expression in large part through combinatorial interactions between members of the Smad family and other transcription factors. The basic helix-loop-helix leucine zipper (bHLHZIP) protein TFE3 and Smad3 synergistically activate transcription of the plasminogen activator inhibitor-1 (PAI-1) as well as other genes. We investigated interactions among different bHLHZIP and Smad family proteins. TFE3, TFEB, and Max associated with Smad3 and Smad4 in the absence of DNA and at the PE2.1 element of the PAI-1 promoter. These interactions were mediated by the leucine zipper and MH1 regions of the respective proteins. No interactions were observed with the E47 bHLH family protein. Chimeric proteins, in which leucine zippers from bHLHZIP or bZIP proteins were fused to heterologous bHLH domains, associated with Smad proteins both in the absence of DNA and at the PE2.1 element. The kinetics of bHLHZIP and Smad protein binding at the PE2.1 element were examined using surface plasmon resonance analysis. TFE3 exhibited cooperative DNA binding with Smad proteins, whereas no cooperativity was observed between E47 and Smads. Max inhibited transcription activation by Smad3 and TGF-beta at the PAI-1 promoter, whereas TFE3 and TFEB stimulated transcription activation. These results suggest that Smad family proteins can interact with several bHLHZIP proteins, resulting in different transcriptional outcomes.
Collapse
Affiliation(s)
- Asya V Grinberg
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
236
|
Abstract
Microarray technology has become a crucial tool for large-scale and high-throughput biology. It allows fast, easy and parallel detection of thousands of addressable elements in a single experiment. In the past few years, protein microarray technology has shown its great potential in basic research, diagnostics and drug discovery. It has been applied to analyse antibody-antigen, protein-protein, protein-nucleic-acid, protein-lipid and protein-small-molecule interactions, as well as enzyme-substrate interactions. Recent progress in the field of protein chips includes surface chemistry, capture molecule attachment, protein labeling and detection methods, high-throughput protein/antibody production, and applications to analyse entire proteomes.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
237
|
Abstract
Many different signaling pathways are involved in deregulation of cell proliferation leading to cancer. Although genomic approaches successfully identified a great variety of molecules associated with cancerogenesis, other strategies must be applied to elucidate complex interactions between these molecules. One promising approach is fluorescence resonance energy transfer, a proximity-dependent fluorescence phenomenon. With the development of spectrally different fluorescent proteins and improved technologies for fluorescence measurements, this approach gains an enormous potential for future research. The fluorescence resonance energy transfer principle can be applied for studying all kinds of interactions or conformational changes, and it can also be used for microscopic visualization and subcellular localization of biochemical reactions, thereby promoting the progress of cancer research. Moreover, it can be exploited to develop sensitive and efficient drug screening systems and to design valuable diagnostic tools.
Collapse
Affiliation(s)
- Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Austria.
| | | |
Collapse
|
238
|
Nedelkov D, Nelson RW. Delineating protein-protein interactions via biomolecular interaction analysis-mass spectrometry. J Mol Recognit 2003; 16:9-14. [PMID: 12557233 DOI: 10.1002/jmr.600] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The utility of biomolecular interaction analysis-mass spectrometry (BIA/MS) in screening for protein-protein interactions was explored in this work. Experiments were performed in which proteins served as ligands for screening of possible interactions with other proteins from human plasma and urine. The proteins utilized were beta-2-microglobulin, cystatin C (cysC), retinol binding protein (RBP), transthyretin (TTR), alpha-1-microglobulin, C-reactive protein, transferrin and papain. The immobilization of functionally active proteins was confirmed via interactions with antibodies to the corresponding proteins. Various dilutions of human urine and plasma were injected over the protein-derivatized surfaces. It was observed that the urine injections generally yielded smaller SPR responses than those observed after the plasma injections. The BIA/MS experiments did not reveal novel protein-protein interactions, although several established interactions (such as those between RBP and TTR, and cysC and papain) were validated. Few protein ligand deficiencies (such as truncations) leading to false negative and false positive BIA/MS results were also discovered.
Collapse
Affiliation(s)
- Dobrin Nedelkov
- Intrinsic Bioprobes Inc, 625 S Smith Rd, Suite 22, Tempe, AZ 85281, USA.
| | | |
Collapse
|
239
|
Harada A, Yamaguchi H, Tsubouchi K, Horita E. Dendritic Antibody Supramolecules: Combination of IgM and IgG. CHEM LETT 2003. [DOI: 10.1246/cl.2003.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
240
|
Arranz-Plaza E, Tracy AS, Siriwardena A, Pierce JM, Boons GJ. High-avidity, low-affinity multivalent interactions and the block to polyspermy in Xenopus laevis. J Am Chem Soc 2002; 124:13035-46. [PMID: 12405830 DOI: 10.1021/ja020536f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of the lectin XL35 with the jelly coat protein (JCP) surrounding oocytes in Xenopus laevis is essential for the block to polyspermy. The molecular details of this event are poorly understood, and the present study has been undertaken with a view to delineating the mechanism of formation of the fertilization envelope. A range of JCP-derived oligosaccharides were synthesized, and all were installed with an artificial aminopropyl arm. This arm allowed the preparation of monovalent derivatives by acetylation of the amino group or the synthesis of polyvalent compounds by attachment to an activated polyacrylamide polymer. A number of analytical techniques, including enzyme-linked lectin assays and surface plasmon resonance, have been developed and utilized to study the interactions of the mono- and polyvalent compounds with XL35. The results reveal that the lectin XL35 has remarkably broad specificity for galactose-containing saccharides and the affinities are only slightly modulated by secondary features, such as anomeric configuration of the terminal sugar or the identity and linkage pattern of branching sugars. Broad specificity was also observed when the saccharides were presented in a polyvalent fashion. The glycopolymers displayed 10-20-fold increases in valency-corrected affinities compared to the corresponding monovalent counterparts. Although the synthetic polymers are not as potent as the JCP, the kinetics of their interactions mirror closely those of the native ligand, and in each case extremely long-lived interactions were observed. The results of this study indicate that, in X. laevis, the true biological function of multivalency is not to create an extremely tightly binding complex between XL35 and its natural ligand but, instead, to create a very stable protective layer that will not dissociate and is yet flexible enough to encapsulate the developing embryo. It is postulated that, even if these partners are unable to attain true equilibrium on the time scale of the biological event, their mode of interaction would, nevertheless, be expected to guarantee an insurmountable physical block to polyspermy. This study has also highlighted that multivalent interactions require a very long time to achieve equilibrium, and this feature may well be the origin of several of the ambiguities reported in the literature when multivalent ligands have been evaluated.
Collapse
Affiliation(s)
- Esther Arranz-Plaza
- Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
241
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
242
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
243
|
Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat 2002; 1:405-16. [PMID: 12625767 DOI: 10.1177/153303460200100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthetic oligonucleotides have recently been the object of many investigations aimed to develop sequence-selective compounds able to modulate, either positively or negatively, transcription of eukaryotic and viral genes. Alteration of transcription could be obtained by using synthetic oligonucleotides mimicking target sites of transcription factors (the transcription factor decoy -TFD- approach). This could lead to either inhibition or activation of gene expression, depending on the biological functions of the target transcription factors. Since several transcription factors are involved in tumor onset and progression, this issue is of great interest in order to design anti-tumor compounds. In addition to oligonucleotides, peptide nucleic acids (PNA) can be proposed for the modulation of gene expression. In this respect, double-stranded PNA-DNA chimeras have been shown to be capable to exhibit strong decoy activity. In the case of treatment of breast cancer cells, decoy oligonucleotides mimicking CRE binding sites, promoter region of estrogen receptor alpha gene, NF-kB binding sites have been used with promising results. Therefore, the transcription factor decoy approach could be object of further studies to develop protocols for the treatment of breast cancer. In the future, transcription factors regulating cell cycle, hormone-dependent differentiation, tumor invasion and metastasis are expected to be suitable targets for transcription factor decoy.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biochemistry and Molecular Biology, Ferrara University, Via Luigi Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
244
|
Abstract
Fluorescent Speckle Microscopy (FSM) is a technology for analyzing cytoskeleton dynamics, giving novel insight into their roles in living cells. New applications of FSM, together with the development of computer-based FSM image analysis, will make FSM the first microscopy-based method to deliver quantitative kinetic readouts at high spatial and temporal resolution for a wide variety of macromolecular systems. Here, we review the most recent applications and developments and give a glimpse of future directions and potentials of FSM.
Collapse
Affiliation(s)
- Clare M Waterman-Storer
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
245
|
Abstract
Optical biosensors that exploit surface plasmon resonance, waveguides and resonant mirrors have been used widely over the past decade to analyse biomolecular interactions. These sensors allow the determination of the affinity and kinetics of a wide variety of molecular interactions in real time, without the need for a molecular tag or label. Advances in instrumentation and experimental design have led to the increasing application of optical biosensors in many areas of drug discovery, including target identification, ligand fishing, assay development, lead selection, early ADME and manufacturing quality control. This article reviews important advances in optical-biosensor instrumentation and applications, and also highlights some exciting developments, such as highly multiplexed optical-biosensor arrays.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
246
|
Raitman OA, Katz E, Bückmann AF, Willner I. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 2002; 124:6487-96. [PMID: 12033880 DOI: 10.1021/ja012680r] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electropolymerization of aniline in the presence of poly(acrylic acid) on Au electrodes yields a polyaniline/poly(acrylic acid) composite film, exhibiting reversible redox functions in aqueous solutions at pH = 7.0. In situ electrochemical-SPR measurements are used to identify the dynamics of swelling and shrinking of the polymer film upon the oxidation of the polyaniline (PAn) to its oxidized state (PAn(2+)) and the reduction of the oxidized polymer (PAn(2+)) back to its reduced state (PAn), respectively. Covalent attachment of N(6)-(2-aminoethyl)-flavin adenin dinucleotide (amino-FAD, 1) to the carboxylic groups of the composite polyaniline/poly(acrylic acid) film followed by the reconstitution of apoglucose oxidase on the functional polymer yields an electrically contacted glucose oxidase of unprecedented electrical communication efficiency with the electrode: electron-transfer turnover rate approximately 1000 s(-1) at 30 degrees C. In situ electrochemical-SPR analyses are used to characterize the bioelectrocatalytic functions of the biomaterial-polymer interface. The current responses of the bioelectrocatalytic system increase as the glucose concentrations are elevated. Similarly, the SPR spectra of the system are controlled by the concentration of glucose. The glucose concentration controls the steady-state concentration ratio of PAn/PAn(2+) in the film composition. Therefore, the SPR spectrum of the film measured upon its electrochemical oxidation is shifted from the spectrum typical for the oxidized PAn(2+) at low glucose concentration to the spectrum characteristic of the reduced PAn at high glucose concentration. Similarly, the polyaniline/poly(acrylic acid) film acts as an electrocatalyst for the oxidation of NADH. Accordingly, an integrated bioelectrocatalytic assembly was constructed on the electrode by the covalent attachment of N(6)-(2-aminoethyl)-beta-nicotinamide adenine dinucleotide (amino-NAD(+), 2) to the polymer film, and the two-dimensional cross-linking of an affinity complex formed between lactate dehydrogenase and the NAD(+)-cofactor units associated with the polymer using glutaric dialdehyde as a cross-linker. In situ electrochemical-SPR measurements are used to characterize the bioelectrocatalytic functions of the system. The amperometric responses of the system increase as the concentrations of lactate are elevated, and an electron-transfer turnover rate of 350 s(-1) between the biocatalyst and the electrode is estimated. As the PAn(2+) oxidizes the NADH units generated by the biocatalyzed oxidation of lactate, the PAn/PAn(2+) steady-state ratio in the film is controlled by the concentration of lactate. Accordingly, the SPR spectrum measured upon electrochemical oxidation of the film is similar to the spectrum of PAn(2+) at low lactate concentration, whereas the SPR spectrum resembles that of PAn at high concentrations of lactate.
Collapse
Affiliation(s)
- Oleg A Raitman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|