201
|
Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, Pinto J, Lambrechts L, McCall PJ. Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020220. [PMID: 29382107 PMCID: PMC5858289 DOI: 10.3390/ijerph15020220] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The Zika crisis drew attention to the long-overlooked problem of arboviruses transmitted by Aedes mosquitoes in Africa. Yellow fever, dengue, chikungunya and Zika are poorly controlled in Africa and often go unrecognized. However, to combat these diseases, both in Africa and worldwide, it is crucial that this situation changes. Here, we review available data on the distribution of each disease in Africa, their Aedes vectors, transmission potential, and challenges and opportunities for Aedes control. Data on disease and vector ranges are sparse, and consequently maps of risk are uncertain. Issues such as genetic and ecological diversity, and opportunities for integration with malaria control, are primarily African; others such as ever-increasing urbanization, insecticide resistance and lack of evidence for most control-interventions reflect problems throughout the tropics. We identify key knowledge gaps and future research areas, and in particular, highlight the need to improve knowledge of the distributions of disease and major vectors, insecticide resistance, and to develop specific plans and capacity for arboviral disease surveillance, prevention and outbreak responses.
Collapse
Affiliation(s)
- David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, Yaoundé PO Box 13501, Cameroon.
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), Université Ouaga 1 Pr Joseph Ki-Zerbo, Ouagadougou 03 BP 7021, Burkina Faso.
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Freya M Shearer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK.
| | - Mamadou Coulibaly
- University of Sciences, Techniques and Technologies of Bamako, Bamako BP 1805, Mali.
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| | - Louis Lambrechts
- Insect-Virus Interactions, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, 75015 Paris, France.
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
202
|
Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit Vectors 2018; 11:29. [PMID: 29316963 PMCID: PMC5759361 DOI: 10.1186/s13071-017-2559-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Key aspects of 36 mosquito-borne arboviruses indigenous to Africa are summarized, including lesser or poorly-known viruses which, like Zika, may have the potential to escape current sylvatic cycling to achieve greater geographical distribution and medical importance. Major vectors are indicated as well as reservoir hosts, where known. A series of current and future risk factors is addressed. It is apparent that Africa has been the source of most of the major mosquito-borne viruses of medical importance that currently constitute serious global public health threats, but that there are several other viruses with potential for international challenge. The conclusion reached is that increased human population growth in decades ahead coupled with increased international travel and trade is likely to sustain and increase the threat of further geographical spread of current and new arboviral disease.
Collapse
Affiliation(s)
- Leo Braack
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.
| | - A Paulo Gouveia de Almeida
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Anthony J Cornel
- School of Health Systems & Public Health, University of Pretoria, Pretoria, South Africa.,Department of Entomology and Nematology, Mosquito Control Research Laboratory, Kearney Agricultural Center, UC Davis, Parlier, CA, USA
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
203
|
Ramasamy V, Arora U, Shukla R, Poddar A, Shanmugam RK, White LJ, Mattocks MM, Raut R, Perween A, Tyagi P, de Silva AM, Bhaumik SK, Kaja MK, Villinger F, Ahmed R, Johnston RE, Swaminathan S, Khanna N. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Negl Trop Dis 2018; 12:e0006191. [PMID: 29309412 PMCID: PMC5774828 DOI: 10.1371/journal.pntd.0006191] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/19/2018] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Background Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. Methodology/principal findings We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. Conclusions/significance Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate. Dengue is mosquito-borne viral disease which is currently a global public health problem. It is caused by four different types of dengue viruses. Nearly a 100 million people a year suffer from overt sickness, which may range from mild fever to potentially fatal disease. A virus-based dengue vaccine was launched for the first time in late 2015. Unexpectedly, this vaccine mimics the dengue viruses in that it appears to elicit disease-enhancing antibodies. To reduce such risk, safer vaccines that eliminate viral proteins responsible for undesirable antibodies are needed. We focused our attention on a small domain of the dengue virus surface protein known as envelope domain III (EDIII). Humans make only a small amount of antibodies against EDIII, but these antibodies are effective in blocking dengue virus from entering cells. We used a yeast expression system to display EDIIIs of all four types of dengue viruses on the surface of non-infectious virus-like particles (VLPs). These VLPs elicited antibodies, in mice and monkeys, which blocked all four dengue virus types and their variants from entering cells in culture. Importantly, these antibodies did not enhance dengue infection in a mouse model.
Collapse
Affiliation(s)
- Viswanathan Ramasamy
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Upasana Arora
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Shukla
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ankur Poddar
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rajgokul K. Shanmugam
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Laura J. White
- Global Vaccines Inc., 801 Capitola Dr., Ste. 11, Durham, NC, United States of America
| | - Melissa M. Mattocks
- Global Vaccines Inc., 801 Capitola Dr., Ste. 11, Durham, NC, United States of America
| | - Rajendra Raut
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Ashiya Perween
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Poornima Tyagi
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Siddhartha K. Bhaumik
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Murali Krishna Kaja
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, United States of America
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - François Villinger
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Robert E. Johnston
- Global Vaccines Inc., 801 Capitola Dr., Ste. 11, Durham, NC, United States of America
| | - Sathyamangalam Swaminathan
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (SS); , (NK)
| | - Navin Khanna
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, United States of America
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, INDIA
- * E-mail: (SS); , (NK)
| |
Collapse
|
204
|
Faria NR, da Costa AC, Lourenço J, Loureiro P, Lopes ME, Ribeiro R, Alencar CS, Kraemer MUG, Villabona-Arenas CJ, Wu CH, Thézé J, Khan K, Brent SE, Romano C, Delwart E, Custer B, Busch MP, Pybus OG, Sabino EC. Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil. Sci Rep 2017; 7:15216. [PMID: 29123142 PMCID: PMC5680240 DOI: 10.1038/s41598-017-15152-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023] Open
Abstract
Outbreaks caused by Dengue, Zika and Chikungunya viruses can spread rapidly in immunologically naïve populations. By analysing 92 newly generated viral genome sequences from blood donors and recipients, we assess the dynamics of dengue virus serotype 4 during the 2012 outbreak in Rio de Janeiro. Phylogenetic analysis indicates that the outbreak was caused by genotype II, although two isolates of genotype I were also detected for the first time in Rio de Janeiro. Evolutionary analysis and modelling estimates are congruent, indicating a reproduction number above 1 between January and June, and at least two thirds of infections being unnoticed. Modelling analysis suggests that viral transmission started in early January, which is consistent with multiple introductions, most likely from the northern states of Brazil, and with an increase in within-country air travel to Rio de Janeiro. The combination of genetic and epidemiological data from blood donor banks may be useful to anticipate epidemic spread of arboviruses.
Collapse
Affiliation(s)
- Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Antonio Charlys da Costa
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil. .,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paula Loureiro
- Faculdade de Ciências Médicas, Fundação Hemope, Recife, Brazil
| | | | - Roberto Ribeiro
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Chieh-Hsi Wu
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kamran Khan
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E Brent
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Camila Romano
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Brian Custer
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ester C Sabino
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil. .,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
205
|
Kusmintarsih ES, Hayati RF, Turnip ON, Yohan B, Suryaningsih S, Pratiknyo H, Denis D, Sasmono RT. Molecular characterization of dengue viruses isolated from patients in Central Java, Indonesia. J Infect Public Health 2017; 11:617-625. [PMID: 29056517 DOI: 10.1016/j.jiph.2017.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/14/2017] [Accepted: 09/09/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV. METHODS A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed. RESULTS A total of 105 dengue-suspected patients' sera were collected, in which 80 (76.2%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries. CONCLUSION We reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region.
Collapse
Affiliation(s)
- Endang S Kusmintarsih
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia
| | - Rahma F Hayati
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Oktaviani N Turnip
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia; Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - Suhestri Suryaningsih
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia
| | - Hery Pratiknyo
- Fakultas Biologi, Universitas Jenderal Soedirman, Jl. dr. Soeparno No. 63, Purwokerto, 53122, Indonesia
| | - Dionisius Denis
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta, 10430, Indonesia.
| |
Collapse
|
206
|
Ramos BA, Chiang JO, Martins LC, Chagas LLD, Silva FDAE, Ferreira MS, Freitas MNO, Alcantara BND, Silva SPD, Miranda SA, Sepulvreda BA, Corrêa LTG, Negrão AMG, Vasconcelos PFDC, Casseb ADR. Clinical and serological tests for arboviruses in free-living domestic pigeons (Columba livia). Mem Inst Oswaldo Cruz 2017; 112:532-536. [PMID: 28767977 PMCID: PMC5530544 DOI: 10.1590/0074-02760170014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/22/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In this study, we evaluated the role of free-living domestic pigeons (Columba livia) as a reservoir of arboviruses in the city of Belém, state of Pará, Brazil. We investigated the presence of antibodies against the most prevalent arboviruses. OBJECTIVES This study was aimed at evaluating some clinical and physical parameters of domestic pigeons, including the presence of antibodies to Amazon-endemic arboviruses. METHODS Eighty-five healthy pigeons were captured in Mangal das Garças Park, in Belém, and were bled. Upon capture, the birds were subjected to a clinical examination in search of alterations that could indicate the presence of arboviruses. Blood samples were converted to serum and tested using the haemagglutination inhibition (HI) technique with a panel of 19 antigens of arboviruses circulating in the Amazon. The confirmation assay for the positive reactions to the viral species tested by HI was a neutralisation test in new-born Swiss albino mice (Mus musculus) [mouse neutralisation test (MNT)]. FINDINGS A total of 10 (11.8%) serum samples tested positive for antiflavivirus antibodies by HI. All the samples positive for the HI test were subjected to MNT for detection of viruses and yielded negative results (logarithmic neutralisation index < 1.7). MAIN CONCLUSION The results represent the first serological detection of antiarbovirus antibodies in domestic pigeons as potential hosts of arboviruses in Brazil. The detection of haemagglutination-inhibiting antibodies against genus Flavivirus indicated that there was recent contact between the analysed domestic pigeons and these arboviruses. Further studies are needed to evaluate the role of free-living pigeons in the maintenance cycle and spread of arboviruses in the Amazon.
Collapse
Affiliation(s)
- Bruna Alves Ramos
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brasil
| | - Jannifer Oliveira Chiang
- Instituto Evandro Chagas, Setor de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brasil
| | - Lívia Carício Martins
- Instituto Evandro Chagas, Setor de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brasil
| | - Liliane Leal das Chagas
- Instituto Evandro Chagas, Setor de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brasil
| | - Franko de Arruda E Silva
- Instituto Evandro Chagas, Setor de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brasil
| | - Milene Silveira Ferreira
- Instituto Evandro Chagas, Setor de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brasil
| | | | | | - Sandro Patroca da Silva
- Instituto Evandro Chagas, Setor de Arbovirologia e Febres Hemorrágicas, Ananindeua, Pará, Brasil
| | | | | | - Layna Thayssa Guimarães Corrêa
- Universidade Federal Rural da Amazônia, Instituto da Saúde e Produção Animal, Laboratório de Biologia Molecular, Belém, PA, Brasil
| | - Andréa Maria Góes Negrão
- Universidade Federal Rural da Amazônia, Instituto da Saúde e Produção Animal, Laboratório de Biologia Molecular, Belém, PA, Brasil
| | | | - Alexandre do Rosário Casseb
- Universidade Federal Rural da Amazônia, Instituto da Saúde e Produção Animal, Laboratório de Biologia Molecular, Belém, PA, Brasil
| |
Collapse
|
207
|
Silva FD, dos Santos AM, Corrêa RDGCF, Caldas ADJM. Temporal relationship between rainfall, temperature and occurrence of dengue cases in São Luís, Maranhão, Brazil. CIENCIA & SAUDE COLETIVA 2017; 21:641-6. [PMID: 26910171 DOI: 10.1590/1413-81232015212.09592015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
This study analyzed the relationship between rainfall, temperature and occurrence of dengue cases. Ecological study performed with autochthonous dengue cases reported during 2003 to 2010 in São Luís, Maranhão. Data of rainfall and temperature were collected monthly. The monthly incidence of dengue cases was calculated by year/100,000 inhabitants. In order to identify the influence of climate variables and dengue cases different distributed lag models using negative binomial distribution were considered. Model selection was based on the lowest AIC (Akaike Information Criterion). Thirteen thousand, four hundred forty-four cases of dengue between 2003 and 2010 were reported, with peaks in 2005, 2007 and 2010. The correlation between rainfall and the occurrence of dengue cases showed increase in the first months after the rainy months. Occurrence of dengue cases was observed during all the period of study. Only rainfall-lag per three months showed a positive association with the number of cases dengue. Thus, this municipality is considered as an endemic and epidemic site. In addition, the relation between rainfall and dengue cases was significant with a lag of three months. These results should be useful to the future development of politics healthy for dengue prevention and control.
Collapse
|
208
|
Thongyuan S, Kittayapong P. First evidence of dengue infection in domestic dogs living in different ecological settings in Thailand. PLoS One 2017; 12:e0180013. [PMID: 28854207 PMCID: PMC5576688 DOI: 10.1371/journal.pone.0180013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/08/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Dengue is a vector-borne disease transmitted by Aedes mosquitoes. It is considered an important public health problem in many countries worldwide. However, only a few studies have been conducted on primates and domestic animals that could potentially be a reservoir of dengue viruses. Since domestic dogs share both habitats and vectors with humans, this study aimed to investigate whether domestic dogs living in different ecological settings in dengue endemic areas in Thailand could be naturally infected with dengue viruses. METHODOLOGY/PRINCIPAL FINDINGS Serum samples were collected from domestic dogs in three different ecological settings of Thailand: urban dengue endemic areas of Nakhon Sawan Province; rubber plantation areas of Rayong Province; and Koh Chang, an island tourist spot of Trat Province. These samples were screened for dengue viral genome by using semi-nested RT-PCR. Positive samples were then inoculated in mosquito and dog cell lines for virus isolation. Supernatant collected from cell culture was tested for the presence of dengue viral genome by semi-nested RT-PCR, then double-strand DNA products were double-pass custom-sequenced. Partial nucleotide sequences were aligned with the sequences already recorded in GenBank, and a phylogenetic tree was constructed. In the urban setting, 632 domestic dog serum samples were screened for dengue virus genome by RT-PCR, and six samples (0.95%) tested positive for dengue virus. Four out of six dengue viruses from positive samples were successfully isolated. Dengue virus serotype 2 and serotype 3 were found to have circulated in domestic dog populations. One of 153 samples (0.65%) collected from the rubber plantation area showed a PCR-positive result, and dengue serotype 3 was successfully isolated. Partial gene phylogeny revealed that the isolated dengue viruses were closely related to those strains circulating in human populations. None of the 71 samples collected from the island tourist spot showed a positive result. CONCLUSIONS/SIGNIFICANCE We concluded that domestic dogs can be infected with dengue virus strains circulating in dengue endemic areas. The role of domestic dogs in dengue transmission needs to be further investigated, i.e., whether they are potential reservoirs or incidental hosts of dengue viruses.
Collapse
Affiliation(s)
- Suporn Thongyuan
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pattamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, Thailand
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
209
|
Lim XX, Chandramohan A, Lim XYE, Crowe JE, Lok SM, Anand GS. Epitope and Paratope Mapping Reveals Temperature-Dependent Alterations in the Dengue-Antibody Interface. Structure 2017; 25:1391-1402.e3. [PMID: 28823471 DOI: 10.1016/j.str.2017.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Uncovering mechanisms of antibody-mediated neutralization for viral infections requires epitope and paratope mapping in the context of whole viral particle interactions with the antibody in solution. In this study, we use amide hydrogen/deuterium exchange mass spectrometry to describe the interface of a dengue virus-neutralizing antibody, 2D22, with its target epitope. 2D22 binds specifically to DENV2, a serotype showing strain-specific structural expansion at human host physiological temperatures of 37°C. Our results identify the heavy chain of 2D22 to be the primary determinant for binding DENV2. Temperature-mediated expansion alters the mode of interaction of 2D22 binding. Importantly, 2D22 interferes with the viral expansion process and offers a basis for its neutralization mechanism. The relative magnitude of deuterium exchange protection upon antibody binding across the various epitope loci allows a deconstruction of the antibody-viral interface in host-specific environments and offers a robust approach for targeted antibody engineering.
Collapse
Affiliation(s)
- Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Xin-Ying Elisa Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232-0417, USA
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
210
|
Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014. Epidemiol Infect 2017; 145:2563-2574. [DOI: 10.1017/s0950268817001479] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
SUMMARYThe burden of dengue virus infections increased globally during recent years. Though India is considered as dengue hyper-endemic country, limited data are available on disease epidemiology. The present study includes molecular characterization of dengue virus strains occurred in Hyderabad, India, during the year 2014. A total of 120 febrile cases were recruited for this study, which includes only children and 41 were serologically confirmed for dengue positive infections using non-structural (NS1) and/or IgG/IgM ELISA tests. RT-PCR, nucleotide sequencing and evolutionary analyses were carried out to identify the circulating serotypes/genotypes. The data indicated a high percent of severe dengue (63%) in primary infections. Simultaneous circulation of all four serotypes and co-infections were observed for the first time in Hyderabad, India. In total, 15 patients were co-infected with more than one dengue serotype and 12 (80%) of them had severe dengue. One of the striking findings of the present study is the identification of serotype Den-1 as the first report from this region and this strain showed close relatedness to the Thailand 1980 strains but not to any of the strains reported from India until now. Phylogenetically, all four strains of the present study showed close relatedness to the strains, which are reported to be high virulent.
Collapse
|
211
|
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate Reservoirs of Arboviruses: Myth, Synonym of Amplifier, or Reality? Viruses 2017; 9:E185. [PMID: 28703771 PMCID: PMC5537677 DOI: 10.3390/v9070185] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
The rapid succession of the pandemic of arbovirus diseases, such as dengue, West Nile fever, chikungunya, and Zika fever, has intensified research on these and other arbovirus diseases worldwide. Investigating the unique mode of vector-borne transmission requires a clear understanding of the roles of vertebrates. One major obstacle to this understanding is the ambiguity of the arbovirus definition originally established by the World Health Organization. The paucity of pertinent information on arbovirus transmission at the time contributed to the notion that vertebrates played the role of reservoir in the arbovirus transmission cycle. Because this notion is a salient feature of the arbovirus definition, it is important to reexamine its validity. This review addresses controversial issues concerning vertebrate reservoirs and their role in arbovirus persistence in nature, examines the genesis of the problem from a historical perspective, discusses various unresolved issues from multiple points of view, assesses the present status of the notion in light of current knowledge, and provides options for a solution to resolve the issue.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Control and Prevention, Fort Collins, CO, USA.
| | - John S Mackenzie
- Faculty of Medical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
- Division of Microbiology & Infectious Diseases, PathWest, Nedlands, Western Australia 6009.
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Helmut-Ruska-Haus, Chariteplatz 1, 10117 Berlin, Germany.
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of Czech Republic, 60365 Brno, Czech Republic.
| | - Alexander Plyusnin
- Department of Virology, University of Helsinki, Haartmaninkatu 3, University of Helsinki, 00014 Helsinki, Finland.
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Rd., Singapore 169857 Singapore.
| |
Collapse
|
212
|
Lestari CSW, Yohan B, Yunita A, Meutiawati F, Hayati RF, Trimarsanto H, Sasmono RT. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia. Virus Genes 2017; 53:778-788. [PMID: 28600724 DOI: 10.1007/s11262-017-1474-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/03/2017] [Indexed: 02/01/2023]
Abstract
Dengue has affected Indonesia for the last five decades and become a major health problem in many cities in the country. Jakarta, the capital of Indonesia, reports dengue cases annually, with several outbreaks documented. To gain information on the dynamic and evolutionary history of dengue virus (DENV) in Jakarta, we conducted phylogenetic and evolutionary analyses of DENV isolated in 2009. Three hundred thirty-three dengue-suspected patients were recruited. Our data revealed that dengue predominantly affected young adults, and the majority of cases were due to secondary infection. A total of 171 virus isolates were successfully serotyped. All four DENV serotypes were circulating in the city, and DENV-1 was the predominant serotype. The DENV genotyping of 17 isolates revealed the presence of Genotypes I and IV in DENV-1, while DENV-2 isolates were grouped into the Cosmopolitan genotype. The grouping of isolates into Genotype I and II was seen for DENV-3 and DENV-4, respectively. Evolutionary analysis revealed the relatedness of Jakarta isolates with other isolates from other cities in Indonesia and isolates from imported cases in other countries. We revealed the endemicity of DENV and the role of Jakarta as the potential source of imported dengue cases in other countries. Our study provides genetic information regarding DENV from Jakarta, which will be useful for upstream applications, such as the study of DENV epidemiology and evolution and transmission dynamics.
Collapse
Affiliation(s)
- C S Whinie Lestari
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Anisa Yunita
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Febrina Meutiawati
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Rahma Fitri Hayati
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia.
| |
Collapse
|
213
|
Rodhain F. [Arboviruses also have an American dream]. ACTA ACUST UNITED AC 2017; 110:147-159. [PMID: 28509947 DOI: 10.1007/s13149-017-0557-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/04/2017] [Indexed: 01/18/2023]
Abstract
Some arboviruses that originated in the Old World have been introduced by humans into the American continent. The first of them was the yellow fever virus, coming from the West African coast with slaves in the 17th-19th centuries, followed by dengue viruses, which were always prevalent within the Americas. Next was theWest Nile virus, introduced in New York in 1999, that spread in only a few years over the whole continent. Then, Chikungunya virus arrived on Saint Martin Island in 2013 after its outbreak in Polynesia; it is now widespread in the Caribbean Islands and on the American continent from the United States to Brazil. Finally, Zika virus, already active in Asia and in the South Pacific region, was introduced in Brazil and spread between the southern part of United States and south Brazil. These unexpected emergences are the consequence of the generalization of transoceanic trading; so, it is humans who are truly responsible for such transportation of viruses from the African and Asian continents. The mechanisms of virus establishment in unusual ecosystems have to be analyzed in order to understand the conditions for the circulation of the viruses, which supposes an adaptation to new hosts and vectors that are sometimes local species (like Culex vectors of West Nile virus) but mainly previously introduced mosquitoes (like Aedes aegypti and/or Aedes albopictus). Over time, all these vectors developed a strong anthropophily and, most of them, a remarkable adaptation to urban environment; hence, these arboviruses can disseminate both in rural and urban context. This type of arboviral emergences will certainly continue in the following years and we must imperatively develop preventive strategies by detecting virus mutations with capacity for emergence, enhancing the sensibility and rapidity of epidemiological surveillance, and becoming ready to face such events that cause a truly international health crisis.
Collapse
Affiliation(s)
- F Rodhain
- Institut Pasteur, 25 rue du Docteur-Roux, 75724, Paris cedex 15, France.
| |
Collapse
|
214
|
Megawati D, Masyeni S, Yohan B, Lestarini A, Hayati RF, Meutiawati F, Suryana K, Widarsa T, Budiyasa DG, Budiyasa N, Myint KSA, Sasmono RT. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses. PLoS Negl Trop Dis 2017; 11:e0005483. [PMID: 28531223 PMCID: PMC5456401 DOI: 10.1371/journal.pntd.0005483] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/02/2017] [Accepted: 03/11/2017] [Indexed: 01/28/2023] Open
Abstract
A high number of dengue cases are reported annually in Bali. Despite the endemicity, limited data on dengue is available for Bali localities. Molecular surveillance study was conducted to explore the clinical and virological characteristics of dengue patients in urban Denpasar and rural Gianyar areas in Bali during the peak season in 2015. A total of 205 adult dengue-suspected patients were recruited in a prospective cross-sectional study. Demographic and clinical information were obtained, and dengue screening was performed using NS1 and IgM/IgG ELISAs. Viral RNA was subsequently extracted from patients' sera for serotyping using conventional RT-PCR and Simplexa Dengue real-time RT-PCR, followed by genotyping with sequencing method. We confirmed 161 patients as having dengue by NS1 and RT-PCR. Among 154 samples successfully serotyped, the DENV-3 was predominant, followed by DENV-1, DENV-2, and DENV-4. Serotype predominance was different between Denpasar and Gianyar. Genotyping results classify DENV-1 isolates into Genotype I and DENV-2 as Cosmopolitan Genotype. The classification grouped isolates into Genotype I and II for DENV-3 and DENV-4, respectively. Clinical parameters showed no relationship between infecting serotypes and severity. We observed the genetic diversity of circulating DENV isolates and their relatedness with historical data and importation to other countries. Our data highlights the role of this tourist destination as a potential source of dengue transmission in the region.
Collapse
Affiliation(s)
- Dewi Megawati
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Sri Masyeni
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - Asri Lestarini
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Rahma F. Hayati
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - Febrina Meutiawati
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - Ketut Suryana
- Wangaya General Hospital. Jl. Kartini No 133 Denpasar, Bali, Indonesia
| | - Tangking Widarsa
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Dewa G. Budiyasa
- Sanjiwani General Hospital. Jl. Ciung Wenara No 2 Gianyar, Bali, Indonesia
| | - Ngurah Budiyasa
- Wangaya General Hospital. Jl. Kartini No 133 Denpasar, Bali, Indonesia
| | - Khin S. A. Myint
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| |
Collapse
|
215
|
Dengue virus replicates and accumulates in Aedes aegypti salivary glands. Virology 2017; 507:75-81. [PMID: 28431281 DOI: 10.1016/j.virol.2017.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidence that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution.
Collapse
|
216
|
Kim JE, Lee H, Lee CH, Lee S. Assessment of optimal strategies in a two-patch dengue transmission model with seasonality. PLoS One 2017; 12:e0173673. [PMID: 28301523 PMCID: PMC5354280 DOI: 10.1371/journal.pone.0173673] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/26/2017] [Indexed: 11/19/2022] Open
Abstract
Emerging and re-emerging dengue fever has posed serious problems to public health officials in many tropical and subtropical countries. Continuous traveling in seasonally varying areas makes it more difficult to control the spread of dengue fever. In this work, we consider a two-patch dengue model that can capture the movement of host individuals between and within patches using a residence-time matrix. A previous two-patch dengue model without seasonality is extended by adding host demographics and seasonal forcing in the transmission rates. We investigate the effects of human movement and seasonality on the two-patch dengue transmission dynamics. Motivated by the recent Peruvian dengue data in jungle/rural areas and coast/urban areas, our model mimics the seasonal patterns of dengue outbreaks in two patches. The roles of seasonality and residence-time configurations are highlighted in terms of the seasonal reproduction number and cumulative incidence. Moreover, optimal control theory is employed to identify and evaluate patch-specific control measures aimed at reducing dengue prevalence in the presence of seasonality. Our findings demonstrate that optimal patch-specific control strategies are sensitive to seasonality and residence-time scenarios. Targeting only the jungle (or endemic) is as effective as controlling both patches under weak coupling or symmetric mobility. However, focusing on intervention for the city (or high density areas) turns out to be optimal when two patches are strongly coupled with asymmetric mobility.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyojung Lee
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chang Hyeong Lee
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sunmi Lee
- Department of Applied Mathematics, Kyung Hee University, Yongin, Republic of Korea
- Institute of Natural Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
217
|
Muturi EJ, Buckner E, Bara J. Superinfection interference between dengue-2 and dengue-4 viruses in Aedes aegypti mosquitoes. Trop Med Int Health 2017; 22:399-406. [PMID: 28150899 DOI: 10.1111/tmi.12846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Dengue virus consists of four antigenically distinct serotypes (DENV 1-4) that are transmitted to humans by Aedes aegypti and Aedes albopictus mosquitoes. In many dengue-endemic regions, co-circulation of two or more DENV serotypes is fairly common increasing the likelihood for exposure of the two vectors to multiple serotypes. We used a model system of DENV-2 and DENV-4 to investigate how prior exposure of Aedes aegypti to one DENV serotype affects its susceptibility to another serotype. METHODS Aedes aegypti mosquitoes were sequentially infected with DENV-2 and DENV-4 and the infection and dissemination rates for each virus determined. RESULTS We found that prior infection of Ae. aegypti mosquitoes with DENV-4 rendered them significantly less susceptible to secondary infection with DENV-2. Although the results were not statistically significant, mosquitoes infected with DENV-2 were also less susceptible to secondary infection with DENV-4. The midgut dissemination and population dissemination rates for DENV-2 were significantly higher than those of DENV-4 when either virus was administered 7 days after administration of either a non-infectious blood meal or a blood meal containing a heterologous dengue serotype. CONCLUSION These results demonstrate that superinfection interference between DENV serotypes is possible within Ae. aegypti mosquitoes, but its effect on DENV epidemiology may be dependent on the fitness of interacting serotypes.
Collapse
Affiliation(s)
- Ephantus J Muturi
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Eva Buckner
- Manatee County Mosquito Control District, Palmetto, FL, USA
| | - Jeffrey Bara
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
218
|
Complete genome characterization and evolutionary analysis of serotype-4 associated with severe dengue. Epidemiol Infect 2017; 145:1443-1450. [PMID: 28215186 DOI: 10.1017/s0950268817000243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue virus circulates as four independent serotypes posing a major public health threat around the globe. In the recent years, frequent dengue outbreaks are being reported in many parts of the world including India. Among four serotypes, Den-4 is the least sampled and studied serotype until recent times, but the reported cases with Den-4 infections were mostly known to associate with severe dengue. In the past three decades, only one complete genome sequence of Den-4 has been published from India. Hence there is a deficit in information with reference to this serotype which would be required in deciphering its association with severe dengue. In this study, we have carried out the complete genome characterization of Den-4 virus, isolated from a dengue shock syndrome patient during the 2015 outbreak from Hyderabad, South India. Phylogenetic analysis revealed the circulation of genotype I (lineage C) which showed close relatedness to the reported virulent strains. The data also indicated few unique amino acid substitutions which are known to be important in virus replication and epitope presentation. This is the first report of complete genome characterization of Den-4 from South India, which may assist in shaping the genetic diversity of circulating strains in India.
Collapse
|
219
|
Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. J Virol 2017; 91:JVI.02041-16. [PMID: 28031369 DOI: 10.1128/jvi.02041-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination.IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses, but these principally recognize only the infecting serotype. An effective vaccine against dengue should elicit long-lasting protective antibody responses to all four serotypes simultaneously. We and others have defined antigenic sites on the envelope (E) protein of viruses of dengue virus serotypes 1, 2, and 3 targeted by human neutralizing antibodies. The epitopes on DENV4 E protein targeted by the human neutralizing antibodies and the mechanisms of serotype 4 neutralization are poorly understood. Here, we report the properties of human antibodies that neutralize dengue virus serotype 4. People exposed to serotype 4 infections or a live attenuated serotype 4 vaccine developed neutralizing antibodies that bound to similar sites on the viral E protein. These studies have provided a foundation for developing and evaluating DENV4 vaccines.
Collapse
|
220
|
Conformational changes in intact dengue virus reveal serotype-specific expansion. Nat Commun 2017; 8:14339. [PMID: 28186093 PMCID: PMC5309819 DOI: 10.1038/ncomms14339] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes. Temperature differences between mosquitoes and humans trigger structural changes in dengue virus 2 (DENV2) particles, but not in other DENV serotypes. Here, using HDXMS, the authors describe serotype-specific expansion of intact viral particles of DENV1 and DENV2 at 28 °C (mosquitoes), 37 °C (humans) and 40 °C (fever).
Collapse
|
221
|
Abstract
Dengue viruses are the most important arboviral pathogens in the world, which have adapted to human transmission and replication over several hundred years and were initially recognized to cause outbreaks of clinical disease in tropical and subtropical countries by Aedes aegypti mosquitoes. Subsequent global expansion of dengue infection outbreaks has occurred, with millions of cases yearly, probably from a combination of factors including proliferation of international travel and trade, possibly global climate changes, adaptation of the vectors to new environment, and emergence of a new mosquito vector, Aedes albopictus. Chikungunya virus, also transmitted by Aedes mosquitoes, causes a very similar clinical disease but with more prominent arthralgia or arthritis and was originally described in Africa in the 1960s. After a quiescent period of several decades, it reemerged in Africa in 2004 and rapidly spread across the Indian Ocean to involve Asian countries and parts of Europe. However, the past 2 years have seen the emergence of chikungunya virus in the western hemisphere with major outbreaks in the Caribbean and the Americas. Similar to dengue virus, chikungunya virus has adapted to Ae. albopictus mosquitoes which can transmit the disease. Although dengue infection is a more deadly disease especially in young children, chikungunya infection can cause prolonged severe disability and occasionally rare fatalities from encephalitis. No specific treatment is available for either diseases, but development of an effective vaccine for dengue infection is in progress. Until 2007, Zika virus [also transmitted by Aedes species] was associated with only sporadic mild infections in Africa and Asia. In 2007, Zika virus for the first time caused an outbreak beyond Africa and Asia to the Yap Island in the Federated States of Micronesia. Since then Zika virus has spread to French Polynesia, New Caledonia, Cook Islands, and Easter Island in the southeastern Pacific Ocean [Chile] in 2014 and by 2015 to Brazil. By January 2016, it became evident that Zika virus had caused an explosive outbreak in the Americas and the Caribbean with over 30 countries affected. On February 1, 2016, the World Health Organization declared Zika outbreak a global public health emergency. Zika virus infection is most commonly asymptomatic, and 20% of patients may develop a mild viral disease, but of major concern is the reported association of microcephaly in infected pregnant women in Brazil. This chapter explores the history, epidemiology, pathogenesis, clinical features, treatment, and prevention of these rapidly emerging zoonoses.
Collapse
|
222
|
Evolutionary dynamics of dengue virus populations within the mosquito vector. Curr Opin Virol 2016; 21:47-53. [DOI: 10.1016/j.coviro.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
|
223
|
First study of complete genome of Dengue-3 virus from Rajasthan, India: genomic characterization, amino acid variations and phylogenetic analysis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.virep.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
224
|
Amuzu HE, McGraw EA. Wolbachia-Based Dengue Virus Inhibition Is Not Tissue-Specific in Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0005145. [PMID: 27855218 PMCID: PMC5113870 DOI: 10.1371/journal.pntd.0005145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Dengue fever, caused by the dengue virus (DENV), is now the most common arbovirus transmitted disease globally. One novel approach to control DENV is to use the endosymbiotic bacterium, Wolbachia pipientis, to limit DENV replication inside the primary mosquito vector, Aedes aegypti. Wolbachia that is naturally present in a range of insects reduces the capacity for viruses, bacteria, parasites and fungi to replicate inside insects. Wolbachia’s mode of action is not well understood but may involve components of immune activation or competition with pathogens for limited host resources. The strength of Wolbachia-based anti DENV effects appear to correlate with bacterial density in the whole insect and in cell culture. Here we aimed to determine whether particular tissues, especially those with high Wolbachia densities or immune activity, play a greater role in mediating the anti DENV effect. Methodology/findings Ae. aegypti mosquito lines with and without Wolbachia (Wildtype) were orally fed DENV 3 and their viral loads subsequently measured over two time points post infection in the midgut, head, salivary glands, Malpighian tubules, fat body and carcass. We did not find correlations between Wolbachia densities and DENV loads in any tissue, nor with DENV loads in salivary glands, the endpoint of infection. This is in contrast with strong positive correlations between DENV loads in a range of tissues and salivary gland loads for Wildtype mosquitoes. Lastly, there was no evidence of a heightened role for tissues with known immune function including the fat body and the Malpighian tubules in Wolbachia’s limitation of DENV. Conclusion/significance We conclude that the efficacy of DENV blocking in Wolbachia infected mosquitoes is not reliant on any particular tissue. This work therefore suggests that the mechanism of Wolbachia-based antiviral effects is either systemic or acts locally via processes that are fundamental to diverse cell types. We further conclude that the relationship between DENV blocking and Wolbachia density is not linear in mosquito tissues Dengue fever caused by the dengue virus (DENV) is transmitted by the mosquito, Aedes aegypti. To control the disease, an intracellular bacterium called Wolbachia has been introduced into Ae. aegypti where it blocks/limits success of infection of DENV. The mechanistic basis of blocking is not well understood but may involve Wolbachia activating the host immune system or competing with DENV for host resources. The strength of blocking appears to correlate with Wolbachia density. Here, we aimed to determine if any particular tissues inside the mosquito play a greater role in blocking. Tissues were chosen based on their Wolbachia density and their roles in infection and immunity. Wolbachia infected and uninfected mosquitoes were orally infected with DENV and Wolbachia density and DENV load were assessed in midgut, salivary gland, head, Malpighian tubules, fat body and carcass. Wolbachia density did not correlate with DENV loads in the same tissues nor with DENV loads in the salivary glands. We also showed that no one tissue appeared to play a greater role in blocking. In summary, these finding suggest that in the mosquito a threshold Wolbachia density may be required for DENV blocking. Our findings also suggest that blocking may involve mechanisms that are fundamental to all cells.
Collapse
Affiliation(s)
- Hilaria E. Amuzu
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
225
|
Wang P, Wang H, Yu J, Xie Q, Yao Z, Qin Z, Lu W, Li J, Zhang M, Cao G, Zhong Z, He T, Ma D, Zhang B, Zhao W. Molecular characterization and phylogenetic analysis of dengue virus type 1 in Guangdong in 2014. SPRINGERPLUS 2016; 5:1942. [PMID: 27933232 PMCID: PMC5102991 DOI: 10.1186/s40064-016-3604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
Background Dengue is one of the most important emerging diseases of humans, with no preventive vaccines or antiviral cures available currently. In 2014, the Southeast Asian region experienced an unprecedented outbreak of dengue, especially in Guangdong, China. Results
The nucleotide sequences of the E gene from 23 patients sera of dengue virus type 1 (DENV-1) from Guangzhou, China, were determined. One isolate that was recovered from a patient with serious liver damage was designated GZ02. The whole genome sequence of GZ02 was amplified, and confocal microscopy and plaque reduction neutralization test were performed to investigate the replication kinetics in liver L02 cells. In the study, assembly and genetic comparisons showed 11 of those E gene nucleotide sequences were absolutely accordant, and the nucleic acid sequence divergence among the other strains had no marked difference. Conclusions Phylogenetic analysis based on the E gene indicated that the 23 new strains were closely related to strains from Malaysia or Singapore. Two different genotypes (genotype I and III) of DENV-1 were co-circulating in Guangdong, Malaysia, and Singapore from 2013 to 2014. However, no recombination event was found after 2005 between DENV strains from Guangdong and Malaysia or Singapore. GZ02 had a significant replicative advantage over DG14 and the DV1 standard strain. Importation of DENV-1 from Southeast Asian countries may have been an important contributing factor to the 2014 outbreak in Guangdong.
Collapse
Affiliation(s)
- Pei Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China ; Department of Laboratory Medicine, The Second People's Hospital of Guangdong Province, No. 466 Xingangdong Road, Guangzhou, 510317 China
| | - Huiling Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Qian Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Zhiwei Yao
- The Third Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060 China
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Weizhi Lu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Jia Li
- Guang Dong Medical University Teaching Hospital, Guang Dong No. 2 People's Hospital, Guangzhou, 510317 China
| | - Minyi Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Guangjin Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Zhicheng Zhong
- Medical Genetical Center, Guangdong Women and Children Hospital, Guangzhou, 511442 China
| | - Tianwen He
- Medical Genetical Center, Guangdong Women and Children Hospital, Guangzhou, 511442 China
| | - Danjuan Ma
- Department of Clinical Laboratory, Guangdong Provincial Maternity and Child Care, Guangzhou, 510010 China
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
226
|
Fleith RC, Lobo FP, Dos Santos PF, Rocha MM, Bordignon J, Strottmann DM, Patricio DO, Pavanelli WR, Lo Sarzi M, Santos CND, Ferguson BJ, Mansur DS. Genome-wide analyses reveal a highly conserved Dengue virus envelope peptide which is critical for virus viability and antigenic in humans. Sci Rep 2016; 6:36339. [PMID: 27805018 PMCID: PMC5090869 DOI: 10.1038/srep36339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Targeting regions of proteins that show a high degree of structural conservation has been proposed as a method of developing immunotherapies and vaccines that may bypass the wide genetic variability of RNA viruses. Despite several attempts, a vaccine that protects evenly against the four circulating Dengue virus (DV) serotypes remains elusive. To find critical conserved amino acids in dengue viruses, 120 complete genomes of each serotype were selected at random and used to calculate conservation scores for nucleotide and amino acid sequences. The identified peptide sequences were analysed for their structural conservation and localisation using crystallographic data. The longest, surface exposed, highly conserved peptide of Envelope protein was found to correspond to amino acid residues 250 to 270. Mutation of this peptide in DV1 was lethal, since no replication of the mutant virus was detected in human cells. Antibodies against this peptide were detected in DV naturally infected patients indicating its potential antigenicity. Hence, this study has identified a highly conserved, critical peptide in DV that is a target of antibodies in infected humans.
Collapse
Affiliation(s)
- Renata C Fleith
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francisco P Lobo
- Department of General Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula F Dos Santos
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mariana M Rocha
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliano Bordignon
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | - Daisy M Strottmann
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | - Daniel O Patricio
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | - Claudia N D Santos
- Laboratory of Molecular Virology, Instituto Carlos Chagas, Curitiba, Brazil
| | | | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
227
|
Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu Rev Virol 2016; 3:125-145. [DOI: 10.1146/annurev-virology-110615-035630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Walter J. Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, Florida 32962;
| |
Collapse
|
228
|
Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania. PLoS One 2016; 11:e0162649. [PMID: 27681327 PMCID: PMC5040426 DOI: 10.1371/journal.pone.0162649] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022] Open
Abstract
Background Dengue is the second most important vector-borne disease of humans globally after malaria. Incidence of dengue infections has dramatically increased recently, potentially due to changing climate. Climate projections models predict increases in average annual temperature, precipitation and extreme events in the future. The objective of this study was to assess the effect of changing climate on distribution of dengue vectors in relation to epidemic risk areas in Tanzania. Methods/Findings We used ecological niche models that incorporated presence-only infected Aedes aegypti data co-occurrence with dengue virus to estimate potential distribution of epidemic risk areas. Model input data on infected Ae. aegypti was collected during the May to June 2014 epidemic in Dar es Salaam. Bioclimatic predictors for current and future projections were also used as model inputs. Model predictions indicated that habitat suitability for infected Ae. aegypti co-occurrence with dengue virus in current scenarios is highly localized in the coastal areas, including Dar es Salaam, Pwani, Morogoro, Tanga and Zanzibar. Models indicate that areas of Kigoma, Ruvuma, Lindi, and those around Lake Victoria are also at risk. Projecting to 2020, we show that risk emerges in Mara, Arusha, Kagera and Manyara regions, but disappears in parts of Morogoro, Ruvuma and near Lake Nyasa. In 2050 climate scenario, the predicted habitat suitability of infected Ae. aegypti co-occurrence with dengue shifted towards the central and north-eastern parts with intensification in areas around all major lakes. Generally, model findings indicated that the coastal regions would remain at high risk for dengue epidemic through 2050. Conclusion/Significance Models incorporating climate change scenarios to predict emerging risk areas for dengue epidemics in Tanzania show that the anticipated risk is immense and results help guiding public health policy decisions on surveillance and control of dengue epidemics. A collaborative approach is recommended to develop and adapt control and prevention strategies.
Collapse
|
229
|
Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates. Protein Expr Purif 2016; 129:53-59. [PMID: 27650871 DOI: 10.1016/j.pep.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 01/16/2023]
Abstract
Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions.
Collapse
|
230
|
Dengue fever virus in Pakistan: effects of seasonal pattern and temperature change on distribution of vector and virus. Rev Med Virol 2016; 27. [DOI: 10.1002/rmv.1899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/01/2023]
|
231
|
Heinen LBDS, Zuchi N, Cardoso BF, Santos MAMD, Nogueira ML, Dezengrini-Slhessarenko R. DENGUE OUTBREAK IN MATO GROSSO STATE, MIDWESTERN BRAZIL. Rev Inst Med Trop Sao Paulo 2016; 57:489-96. [PMID: 27049702 PMCID: PMC4727134 DOI: 10.1590/s0036-46652015000600005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/05/2015] [Indexed: 12/29/2022] Open
Abstract
Dengue virus (DENV) is the most frequent arbovirus worldwide. In this study, we report a large outbreak in Mato Grosso State (MT). Serum samples from 604 patients with acute febrile illness for less than five days were inoculated in C6/36 cells, then infected cells were subjected to an indirect immunofluorescence test for DENV serotypes and yellow fever virus. Serum samples were submitted to a multiplex-semi-nested-RT-PCR for 11 flaviviruses. DENV-4 was isolated in 150/604 (24.8%) and DENV-1 in 19/604 (3.1%) specimens. By RT-PCR, 331 (54.8%) samples tested positive for DENV; 321 had single infections (DENV-4 n = 305; DENV-1 n = 15; DENV-3 n = 1), nine had co-infections of DENV-1/DENV-4, and one of DENV-2/DENV-4. DENV-4 was detected in 315/331 (95.2%) positive patients from 17 municipalities, and DENV-1 in 24/331 (7.2%) patients from five cities in north-central MT and the city of Cuiaba. The incidence of infection was higher in patients aged 20-39 (142/331; 42.9%). The NS5 partial nucleotide sequence of DENV-1 was most similar to that of genotype V, DENV-2 to Southeast Asian/American, DENV-3 to genotype III, and DENV-4 to genotype II strains, considered the most frequent strains in Brazil. This outbreak coincided with the introduction of DENV-4 in the state. Cuiaba was hyperendemic for the four DENV serotypes, highlighting the necessity for arbovirus surveillance in MT.
Collapse
Affiliation(s)
| | - Nayara Zuchi
- Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brasil
| | | | | | | | | |
Collapse
|
232
|
Kartzinel MA, Alto BW, Deblasio MW, Burkett-Cadena ND. Testing of Visual and Chemical Attractants in Correlation with the Development and Field Evaluation of an Autodissemination Station for the Suppression of Aedes aegypti and Aedes albopictus in Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2016; 32:194-202. [PMID: 27802398 DOI: 10.2987/16-6555.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three exotic mosquito-borne pathogens-dengue, chikungunya, and Zika viruses-transmitted by Aedes albopictus and Ae. aegypti have undergone dramatic global expansion in recent years. The control of vector populations and minimizing bites from these vectors are the primary methods of reducing risk of transmission of these viruses to humans. However, Ae. albopictus and Ae. aegypti are notoriously challenging to control through conventional chemical means, due primarily to difficulties in applying pesticides to their cryptic larval habitats. A novel strategy for suppressing populations of these species is the autodissemination of insect growth regulators (IGRs), in which adult female mosquitoes are attracted to a treatment station where they are tainted with small amounts of potent IGR. When the adult females subsequently visit oviposition sites, they inadvertently disseminate the IGR to larval development sites, suppressing their own population. Implementing this technology to control natural vector populations presents substantial logistical challenges. The current manuscript describes laboratory bioassays and field evaluations to design a novel autodissemination station (ADS) and test the methodology at field locations in Florida where Ae. aegypti and Ae. albopictus are abundant and pose a risk for transmission of emerging pathogens. The prototype ADS is intended to attract host-seeking, resting site-seeking, and oviposition site-seeking females through a combination of visual and olfactory cues. The efficacy of this strategy was assessed through the use of sentinel ovicups at field locations in Indian River County and Martin County, FL. Greatest efficacy (45.3 ± 7.7% mortality in treatment sentinel ovicups) was achieved at a field site with few competing natural ovisites, while much lower efficacy was observed in locations with numerous competing ovisites (0.0 to 29.0 ± 8.2% mortality). The efficacy of the ADS is likely to be strongly affected by the abundance of competing ovisites, the population dynamics, and climatic conditions.
Collapse
Affiliation(s)
- Mark A Kartzinel
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL 32962
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL 32962
| | - Michael W Deblasio
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL 32962
| | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL 32962
| |
Collapse
|
233
|
Waman VP, Kolekar P, Ramtirthkar MR, Kale MM, Kulkarni-Kale U. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes. PeerJ 2016; 4:e2326. [PMID: 27635316 PMCID: PMC5012332 DOI: 10.7717/peerj.2326] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae). There are four serotypes of Dengue Virus (DENV-1 to DENV-4), each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. METHODS Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. RESULTS DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. DISCUSSION Complete genome-based analysis revealed that the worldwide population of DENV-2 strains is subdivided into fifteen lineages. The population structure of DENV-2 is spatiotemporal and is shaped by episodic positive selection and recombination. Intra-genotype diversity was observed in four genotypes (Asian/American, Asian I, cosmopolitan and sylvatic). Episodic positive selection on envelope and non-structural genes translates into antigenic diversity and appears to be responsible for emergence of strains/lineages in DENV-2 genotypes. Understanding of the genotype diversity and emerging lineages will be useful to design strategies for epidemiological surveillance and vaccine design.
Collapse
Affiliation(s)
- Vaishali P. Waman
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune, Maharashtra, India
| | - Pandurang Kolekar
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune, Maharashtra, India
| | - Mukund R. Ramtirthkar
- Department of Statistics, Savitribai Phule Pune University (formerly University of Pune), Pune, Maharashtra, India
| | - Mohan M. Kale
- Department of Statistics, Savitribai Phule Pune University (formerly University of Pune), Pune, Maharashtra, India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune, Maharashtra, India
| |
Collapse
|
234
|
Vazeille M, Gaborit P, Mousson L, Girod R, Failloux AB. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. BMC Infect Dis 2016; 16:318. [PMID: 27390932 PMCID: PMC4939008 DOI: 10.1186/s12879-016-1666-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Background Dengue viruses (DENV) are comprised in four related serotypes (DENV-1 to 4) and are critically important arboviral pathogens affecting human populations in the tropics. South American countries have seen the reemergence of DENV since the 1970’s associated with the progressive re-infestation by the mosquito vector, Aedes aegypti. In French Guiana, DENV is now endemic with the co-circulation of different serotypes resulting in viral epidemics. Between 2009 and 2010, a predominant serotype change occurred from DENV-1 to DENV-4 suggesting a competitive displacement. The aim of the present study was to evaluate the potential role of the mosquito in the selection of the new epidemic serotype. Methods To test this hypothesis of competitive displacement of one serotype by another in the mosquito vector, we performed mono- and co-infections of local Ae. aegypti collected during the inter-epidemic period with both viral autochthonous epidemic serotypes and compared infection, dissemination and transmission rates. We performed oral artificial infections of F1 populations in BSL-3 conditions and analyzed infection, dissemination and transmission rates. Results When two populations of Ae. aegypti from French Guiana were infected with either serotype, no significant differences in dissemination and transmission were observed between DENV-1 and DENV-4. However, in co-infection experiments, a strong competitive advantage for DENV-4 was seen at the midgut level leading to a much higher dissemination of this serotype. Furthermore only DENV-4 was present in Ae. aegypti saliva and therefore able to be transmitted. Conclusions In an endemic context, mosquito vectors may be infected by several DENV serotypes. Our results suggest a possible competition between serotypes at the midgut level in co-infected mosquitoes leading to a drastically different transmission potential and, in this case, favoring the competitive displacement of DENV-1 by DENV-4. This phenomenon was observed despite a similar replicative fitness in mono-infections conditions.
Collapse
Affiliation(s)
- Marie Vazeille
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Pascal Gaborit
- Medical Entomology Unit, Institut Pasteur of French Guiana, Cayenne, French Guiana
| | - Laurence Mousson
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur of French Guiana, Cayenne, French Guiana
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25 rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
235
|
Hapuarachchi HC, Koo C, Rajarethinam J, Chong CS, Lin C, Yap G, Liu L, Lai YL, Ooi PL, Cutter J, Ng LC. Epidemic resurgence of dengue fever in Singapore in 2013-2014: A virological and entomological perspective. BMC Infect Dis 2016; 16:300. [PMID: 27316694 PMCID: PMC4912763 DOI: 10.1186/s12879-016-1606-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue resurged in Singapore during 2013-14, causing an outbreak with unprecedented number of cases in the country. In the present study, we summarise the epidemiological, virological and entomological findings gathered through the dengue surveillance programme and highlight the drivers of the epidemic. We also describe how the surveillance system facilitated the preparedness to moderate epidemic transmission of dengue in the country. METHODS The case surveillance was based on a mandatory notification system that requires all medical practitioners to report clinically-suspected and laboratory-confirmed cases within 24 hours. The circulating Dengue virus (DENV) populations were monitored through an island wide virus surveillance programme aimed at determining the serotypes and genotypes of circulating virus strains. Entomological surveillance included adult Aedes surveillance as well as premise checks for larval breeding. RESULTS A switch in the dominant serotype from DENV-2 to DENV-1 in March 2013 signalled a potential spike in cases, and the alert was corroborated by an increase in average Aedes house index. The alert triggered preparedness and early response to moderate the impending outbreak. The two-year outbreak led to 22,170 cases in 2013 and 18,338 in 2014, corresponding to an incidence rate of 410.6 and 335.0 per 100,000 population, respectively. DENV-1 was the dominant serotype in 2013 (61.7 %, n = 5,071) and 2014 (79.2 %, n = 5,226), contributed largely by a newly-introduced DENV-1 genotype III strain. The percentage of houses with Ae. aegypti breeding increased significantly (p < 0.001) from 2012 (annual average of 0.07 %) to 2013 (annual average of 0.14 %), followed by a drop in 2014 (annual average of 0.10 %). Aedes breeding data further showed a wide spread distribution of Ae. aegypti in the country that corresponded with the dengue case distribution pattern in 2013 and 2014. The adult Aedes data from 34 gravitrap sentinel sites revealed that approximately 1/3 of the monitored sites remained at high risk of DENV transmission in 2013. CONCLUSIONS The culmination of the latest epidemic is likely to be due to a number of demographic, social, virological, entomological, immunological, climatic and ecological factors that contribute to DENV transmission. A multi-pronged approach backed by the epidemiological, virological and entomological understanding paved way to moderate the case burden through an integrated vector management approach.
Collapse
Affiliation(s)
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Jayanthi Rajarethinam
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Chee-Seng Chong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Cui Lin
- National Public Health Laboratory, Ministry of Health, College of Medicine Building 16 College Road, Singapore, 169854, Singapore
| | - Grace Yap
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Lilac Liu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Yee-Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Peng Lim Ooi
- Communicable Diseases Division, Ministry of Health, College of Medicine Building, 16 College Road, Singapore, 169854, Singapore
| | - Jeffery Cutter
- Communicable Diseases Division, Ministry of Health, College of Medicine Building, 16 College Road, Singapore, 169854, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
236
|
Maia SHF, Brasil IRC, Esmeraldo RDM, Ponte CND, Costa RCS, Lira RA. Severe dengue in the early postoperative period after kidney transplantation: two case reports from Hospital Geral de Fortaleza. Rev Soc Bras Med Trop 2016; 48:783-5. [PMID: 26676509 DOI: 10.1590/0037-8682-0205-2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 02/03/2023] Open
Abstract
Dengue is an arbovirosis that ranges from an asymptomatic presentation to a more severe disease, which is characterized by a vascular leakage syndrome where abdominal pain is a major symptom. Transplant recipients are immunosuppressed and are less likely to develop a severe form of the disease because of a reduction in immune-mediated responses that trigger plasma extravasation events. Herein, we report two cases of severe dengue in the early postoperative period of two kidney transplant recipients. Considering the severity of the cases, we emphasize the importance of dengue screening immediately before transplantation in areas endemic for the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Roberta Alves Lira
- Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
237
|
Cunha MDP, Guimarães VN, Souza M, de Paula Cardoso DDD, de Almeida TNV, de Oliveira TS, Fiaccadori FS. Phylodynamics of DENV-1 reveals the spatiotemporal co-circulation of two distinct lineages in 2013 and multiple introductions of dengue virus in Goiás, Brazil. INFECTION GENETICS AND EVOLUTION 2016; 43:130-4. [PMID: 27223633 DOI: 10.1016/j.meegid.2016.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/02/2023]
Abstract
Dengue virus type 1 (DENV-1) was the first serotype introduced in Brazil, during in the 1980s. Since then, this virus has spread in the Brazilian territory, causing several outbreaks. In 2013 the highest number of dengue cases was notified, when compared to the previous years in Brazil, and the state of Goiás reported over 160 thousand cases. In this study, we aimed to present the Phylodynamics of DENV-1 isolates from the state of Goiás, Brazil, during 2013 outbreak, based on the envelope gene (E) sequences. Phylogenetic analysis revealed that Brazilian DENV-1 isolates are grouped together with viruses from genotype V in two distinct lineages (lineage I and lineage II) reflecting co-circulation. Phylogeographic analyses showed that these lineages were introduced in different moments in Goiás, Brazil, using distinct routes, likely originated from the Caribbean. Lineage I was first introduced coming from Rio de Janeiro (2007-2012), followed by the introduction from Argentina (2010-2013). Lineage II was introduced in a single moment from Rio de Janeiro and this clade has existed since 2007-2010. The different viral introduction events demonstrate the viral dispersion process with neighboring regions, which is essential for the maintenance of outbreaks and introduction of new emerging viruses. In conclusion, obtained data reveals the importance of continuous molecular surveillance of this virus in different regions, providing a better understanding of DENV-1 circulation, considering the evolutionary and virus spread patterns.
Collapse
Affiliation(s)
| | | | - Menira Souza
- Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | |
Collapse
|
238
|
Waman VP, Kasibhatla SM, Kale MM, Kulkarni-Kale U. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution. Arch Virol 2016; 161:2133-48. [DOI: 10.1007/s00705-016-2886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/02/2016] [Indexed: 12/30/2022]
|
239
|
Du J, Chen Z, Zhang T, Wang J, Jin Q. Inhibition of dengue virus replication by diisopropyl chrysin-7-yl phosphate. SCIENCE CHINA-LIFE SCIENCES 2016; 59:832-8. [PMID: 27106619 DOI: 10.1007/s11427-016-5050-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 12/19/2022]
Abstract
Dengue fever is a tropical disease and caused by dengue virus (DENV), which is transmitted by mosquitoes and infects about 400 million people annually. With the development of international trade and travel, China is facing a growing threat. Over 40 thousands of people were infected during the 2014 DENV outbreak in Guangdong. Neither licensed vaccine nor therapeutic drug has been available. In this report, we isolated two clinical DENV strains. The full-length genome was sequenced and characterized. We also applied a flavonoid, CPI, into an anti-DENV assay. Replication of viral RNA and expression of viral protein was all strongly inhibited. These results indicated that CPI may serve as potential protective agents in the treatment of patients with chronic DENV infection.
Collapse
Affiliation(s)
- Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Zhe Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China
| | - Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, China.
| |
Collapse
|
240
|
Busch MP, Sabino EC, Brambilla D, Lopes ME, Capuani L, Chowdhury D, McClure C, Linnen JM, Prince H, Simmons G, Lee TH, Kleinman S, Custer B. Duration of Dengue Viremia in Blood Donors and Relationships Between Donor Viremia, Infection Incidence and Clinical Case Reports During a Large Epidemic. J Infect Dis 2016; 214:49-54. [PMID: 27302934 DOI: 10.1093/infdis/jiw122] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dengue viruses (DENV-1-4) pose a transfusion-transmission risk. This study estimated the dengue RNA detection period in asymptomatic blood donors and relationships between donor viremia and dengue incidence during a large epidemic. METHODS Donor samples from the 2012 dengue transmission season in Rio de Janeiro, Brazil, were tested for DENV RNA by a transcription-mediated amplification (TMA) assay, with DENV types and viral loads determined by polymerase chain reaction. Samples collected during the first and last weeks of enrollment were tested for DENV immunoglobulin (Ig) G and IgM to estimate incidence during the study period, which was analyzed relative to nucleic acid amplification technology (NAT) yield to estimate the duration of NAT-detectable viremia and compared with reported clinical dengue cases in Rio. RESULTS Samples from 16 241 donations were tested; 87 (0.54%) were confirmed as DENV-4 RNA positive. Dengue IgM-positive/IgG-positive reactivity increased from 2.8% to 8.8%, indicating a 6.2% incidence (95% confidence interval [CI], 3.2%-9.1%) during the study period. Based on these data, we estimated a 9.1-day period (95% CI, 4.4-13.9 days) of RNA detectable with TMA. With 100 475 reported cases of clinical dengue, 1 RNA-positive donation was identified per 800 DENV cases. CONCLUSIONS These parameters allow projections of dengue incidence from donor NAT yield data and vice versa, and suggest that viremic donations will be rare relative to clinical disease cases.
Collapse
Affiliation(s)
- Michael P Busch
- Blood Systems Research Institute Department of Laboratory Medicine, University of California, San Francisco
| | - Ester C Sabino
- Department of Infectious Diseases and Institute of Tropical Medicine, University of Sao Paulo
| | | | | | - Ligia Capuani
- Department of Infectious Diseases and Institute of Tropical Medicine, University of Sao Paulo
| | | | | | | | - Harry Prince
- Focus Diagnostics, San Juan Capistrano, California
| | - Graham Simmons
- Blood Systems Research Institute Department of Laboratory Medicine, University of California, San Francisco
| | | | | | - Brian Custer
- Blood Systems Research Institute Department of Laboratory Medicine, University of California, San Francisco
| | | |
Collapse
|
241
|
A Pan-Dengue Virus Reverse Transcription-Insulated Isothermal PCR Assay Intended for Point-of-Need Diagnosis of Dengue Virus Infection by Use of the POCKIT Nucleic Acid Analyzer. J Clin Microbiol 2016; 54:1528-1535. [PMID: 27030492 DOI: 10.1128/jcm.00225-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) infection is considered a major public health problem in developing tropical countries where the virus is endemic and continues to cause major disease outbreaks every year. Here, we describe the development of a novel, inexpensive, and user-friendly diagnostic assay based on a reverse transcription-insulated isothermal PCR (RT-iiPCR) method for the detection of all four serotypes of DENV in clinical samples. The diagnostic performance of the newly established pan-DENV RT-iiPCR assay targeting a conserved 3' untranslated region of the viral genome was evaluated. The limit of detection with a 95% confidence was estimated to be 10 copies of in vitro-transcribed (IVT) RNA. Sensitivity analysis using RNA prepared from 10-fold serial dilutions of tissue culture fluid containing DENVs suggested that the RT-iiPCR assay was comparable to the multiplex real-time quantitative RT-PCR (qRT-PCR) assay for DENV-1, -3, and -4 detection but 10-fold less sensitive for DENV-2 detection. Subsequently, plasma collected from patients suspected of dengue virus infection (n = 220) and individuals not suspected of dengue virus infection (n = 45) were tested by the RT-iiPCR and compared to original test results using a DENV NS1 antigen rapid test and the qRT-PCR. The diagnostic agreement of the pan-DENV RT-iiPCR, NS1 antigen rapid test, and qRT-PCR tests was 93.9%, 84.5%, and 97.4%, respectively, compared to the composite reference results. This new RT-iiPCR assay along with the portable POCKIT nucleic acid analyzer could provide a highly reliable, sensitive, and specific point-of-need diagnostic assay for the diagnosis of DENV in clinics and hospitals in developing countries.
Collapse
|
242
|
Hapuarachchi HC, Koo C, Kek R, Xu H, Lai YL, Liu L, Kok SY, Shi Y, Chuen RLT, Lee KS, Maurer-Stroh S, Ng LC. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Sci Rep 2016; 6:22592. [PMID: 26940650 PMCID: PMC4778070 DOI: 10.1038/srep22592] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013–2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design.
Collapse
Affiliation(s)
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Relus Kek
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lilac Liu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suet Yheng Kok
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Raphael Lee Tze Chuen
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671
| | - Kim-Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Block 83, #04-00, 535 Clementi Road, Singapore 599489
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551.,National Public Health Laboratory (NPHL), Ministry of Health (MOH), 3 Biopolis Drive, #05-14 to 16, Synapse, Singapore 138623
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
243
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
244
|
Pyke AT, Moore PR, Taylor CT, Hall-Mendelin S, Cameron JN, Hewitson GR, Pukallus DS, Huang B, Warrilow D, van den Hurk AF. Highly divergent dengue virus type 1 genotype sets a new distance record. Sci Rep 2016; 6:22356. [PMID: 26924208 PMCID: PMC4770315 DOI: 10.1038/srep22356] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/30/2022] Open
Abstract
Dengue viruses (DENVs) are the leading cause of mosquito-borne viral disease of humans. They exist in both endemic and sylvatic ecotypes. In 2014, a viremic patient who had recently visited the rainforests of Brunei returned to Australia displaying symptoms consistent with DENV infection. A unique DENV strain was subsequently isolated from the patient, which we propose belongs to a new genotype within DENV serotype 1 (DENV-1). Bayesian evolutionary phylogenetic analysis suggests that the putative sylvatic DENV-1 Brunei 2014 (Brun2014) is the most divergent DENV-1 yet recorded and increases the time to the most recent common ancestor (MRCA) for DENV-1 from ≈120 years to ≈315 years. DENV-1 classification of the Brun2014 strain was further supported by monoclonal antibody serotyping data. Phenotypic characterization demonstrated that Brun2014 replication rates in mosquito cells and infection rates in Aedes aegypti mosquitoes were not significantly different from an epidemic DENV-1 strain. Given its ability to cause human illness and infect Ae. aegypti, potential urban spillover and clinical disease from further Brun2014 transmission cannot be discounted.
Collapse
Affiliation(s)
- Alyssa T. Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Peter R. Moore
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Carmel T. Taylor
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Jane N. Cameron
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Glen R. Hewitson
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Dennis S. Pukallus
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| |
Collapse
|
245
|
Fansiri T, Pongsiri A, Klungthong C, Ponlawat A, Thaisomboonsuk B, Jarman RG, Scott TW, Lambrechts L. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand. Evol Appl 2016; 9:608-18. [PMID: 27099625 PMCID: PMC4831462 DOI: 10.1111/eva.12360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023] Open
Abstract
Despite their epidemiological importance, the evolutionary forces that shape the spatial structure of dengue virus genetic diversity are not fully understood. Fine-scale genetic structure of mosquito vector populations and evidence for genotype × genotype interactions between dengue viruses and their mosquito vectors are consistent with the hypothesis that the geographical distribution of dengue virus genetic diversity may reflect viral adaptation to local mosquito populations. To test this hypothesis, we measured vector competence in all sympatric and allopatric combinations of 14 low-passage dengue virus isolates and two wild-type populations of Aedes aegypti mosquitoes sampled in Bangkok and Kamphaeng Phet, two sites located about 300 km apart in Thailand. Despite significant genotype × genotype interactions, we found no evidence for superior vector competence in sympatric versus allopatric vector-virus combinations. Viral phylogenetic analysis revealed no geographical clustering of the 14 isolates, suggesting that high levels of viral migration (gene flow) in Thailand may counteract spatially heterogeneous natural selection. We conclude that it is unlikely that vector-mediated selection is a major driver of dengue virus adaptive evolution at the regional scale that we examined. Dengue virus local adaptation to mosquito vector populations could happen, however, in places or times that we did not test, or at a different geographical scale.
Collapse
Affiliation(s)
- Thanyalak Fansiri
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Arissara Pongsiri
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Chonticha Klungthong
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Alongkot Ponlawat
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Richard G Jarman
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand; Present address: Viral Diseases Branch Walter Reed Army Institute of Research Silver Spring MD USA
| | - Thomas W Scott
- Department of Entomology and Nematology University of California Davis CA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - Louis Lambrechts
- Insect-Virus Interactions Group Department of Genomes and Genetics Institut Pasteur Paris France; Unité de Recherche Associée Centre National de la Recherche Scientifique Paris France
| |
Collapse
|
246
|
Goldhardt R, Patel H, Davis JL. Acute Posterior Multifocal Placoid Pigment Epitheliopathy Following Dengue Fever: A New Association for an Old Disease. Ocul Immunol Inflamm 2016; 24:610-614. [DOI: 10.3109/09273948.2015.1125513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Raquel Goldhardt
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Heena Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Janet L. Davis
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
247
|
de Armas-Rillo L, Valera MS, Marrero-Hernández S, Valenzuela-Fernández A. Membrane dynamics associated with viral infection. Rev Med Virol 2016; 26:146-60. [PMID: 26817660 PMCID: PMC5066672 DOI: 10.1002/rmv.1872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022]
Abstract
Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical Virology Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| |
Collapse
|
248
|
Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Natl Acad Sci U S A 2016; 113:728-33. [PMID: 26729879 DOI: 10.1073/pnas.1522136113] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The four dengue virus serotypes (DENV1-4) are mosquito-borne flaviviruses that infect ∼ 390 million people annually; up to 100 million infections are symptomatic, and 500,000 cases progress to severe disease. Exposure to a heterologous DENV serotype, the specific infecting DENV strains, and the interval of time between infections, as well as age, ethnicity, genetic polymorphisms, and comorbidities of the host, are all risk factors for severe dengue. In contrast, neutralizing antibodies (NAbs) are thought to provide long-lived protection against symptomatic infection and severe dengue. The objective of dengue vaccines is to provide balanced protection against all DENV serotypes simultaneously. However, the association between homotypic and heterotypic NAb titers and protection against symptomatic infection remains poorly understood. Here, we demonstrate that the titer of preinfection cross-reactive NAbs correlates with reduced likelihood of symptomatic secondary infection in a longitudinal pediatric dengue cohort in Nicaragua. The protective effect of NAb titers on infection outcome remained significant when controlled for age, number of years between infections, and epidemic force, as well as with relaxed or more stringent criteria for defining inapparent DENV infections. Further, individuals with higher NAb titers immediately after primary infection had delayed symptomatic infections compared with those with lower titers. However, overall NAb titers increased modestly in magnitude and remained serotype cross-reactive in the years between infections, possibly due to reexposure. These findings establish that anti-DENV NAb titers correlate with reduced probability of symptomatic DENV infection and provide insights into longitudinal characteristics of antibody-mediated immunity to DENV in an endemic setting.
Collapse
|
249
|
Rapid Point-of-Care Diagnosis of Malaria and Dengue Infection. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
250
|
Ourique GS, Vianna JF, Neto JXL, Oliveira JIN, Mauriz PW, Vasconcelos MS, Caetano EWS, Freire VN, Albuquerque EL, Fulco UL. A quantum chemistry investigation of a potential inhibitory drug against the dengue virus. RSC Adv 2016. [DOI: 10.1039/c6ra10121f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The total interaction energy of the inhibitor Bz-nKRR-H bound to a serine protease of the dengue virus is mainly due to the action of Asn152, Met49, Tyr161, Asp129 and Gly151 (Met84, Met75, Asp81, Asp79 and Asp80) residues at the NS3 (NS2B) subunit.
Collapse
Affiliation(s)
- G. S. Ourique
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. F. Vianna
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - P. W. Mauriz
- Departamento de Física
- Instituto Federal de Educação
- Ciência e Tecnologia do Maranhão
- São Luís
- Brazil
| | - M. S. Vasconcelos
- Escola de Ciência e Tecnologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|