201
|
Kaş HS. Drug delivery to Brain by Microparticulate Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 553:221-30. [PMID: 15503459 DOI: 10.1007/978-0-306-48584-8_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The site specific delivery of chemotherapeutic agents allows maximum concentration of an agent at a desired body site. This area specific drug delivery decreases the unwanted systemic distribution and decreases toxicity of the administered drugs. Blood-Brain Barrier (BBB) is considered to be an obstacle in delivering large number of drugs to brain. The endothelial cells forming the tubular capillaries in the brain are cemented together by intercellular tight junctions. In this way, the BBB has an important role in providing a stable extracellular environment in the central nervous system. Lack of fenestrations, very few pinocytotic vesicles, and more mitochondria are other differences of the brain capillaries which play important role in transport of drugs to brain (Fig.1). The purpose of this paper is to summarise the methods for BBB permeability modifications and to focus on various examples in delivering drugs, especially neuroncology and neuroactive drugs, to brain by microparticulate systems.
Collapse
Affiliation(s)
- H Süheyla Kaş
- Department of Pharmaceutical Technology, University of Hacettepe, Sihhiye, Ankara, Turkey
| |
Collapse
|
202
|
Krauel K, Pitaksuteepong T, Davies NM, Rades T. Entrapment of Bioactive Molecules in Poly (Alkylcyanoacrylate) Nanoparticles. ACTA ACUST UNITED AC 2004. [DOI: 10.2165/00137696-200402040-00005] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
203
|
Abstract
UNLABELLED The blood-brain barrier presents a challenging obstacle to effective drug delivery to the central nervous system (CNS). Although biologically intended to protect the brain and spinal cord and provide a very stable fluid environment, the presence of a blood-brain barrier makes treatment of many CNS diseases difficult to achieve, as the required therapies cannot be delivered across the barrier in sufficient quantities or at all. Until relatively recently the blood-brain barrier was viewed largely as a physical barrier to diffusion, and the presence of tight junctions between endothelial cells simply prevented the passive diffusion of solutes from blood into the brain. Recent advances in cell and molecular biology have provided new insights into the function of the blood-brain barrier and it is now appreciated that, in addition to being a physical barrier, it is a complex transport and metabolic barrier and is a highly reactive and dynamic endothelium. Advances in understanding of the cell biology of the blood-brain barrier have opened new avenues and possibilities for improved drug delivery to the CNS. The challenges posed by the blood-brain barrier and the possibilities for overcoming them are reviewed. CONCLUSION Increased understanding of the molecular biology of the blood-brain barrier is now opening the way for new strategies to deliver drugs to the CNS.
Collapse
Affiliation(s)
- D J Begley
- Centre for Neuroscience Research, Kings College London, Guy's Campus, London, UK.
| |
Collapse
|
204
|
Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 2003. [DOI: 10.1016/s0009-2509(03)00234-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
205
|
Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003; 55:519-48. [PMID: 12706049 DOI: 10.1016/s0169-409x(03)00041-3] [Citation(s) in RCA: 315] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review considers the use of poly(alkylcyanoacrylates) (PACAs) as biomedical materials. We first present the different aspects of the polymerization of alkylcyanoacrylate monomers and briefly discuss their applications as skin adhesives, surgical glues and embolitic materials. An extensive review of the developments and applications of PACAs as nanoparticles for the delivery of drugs is then given. The methods of preparation of the nanoparticles are presented and considerations concerning the degradation, in vivo distribution, toxicity and cytotoxicity of the nanoparticles are discussed. The different therapeutic applications are presented according to the route of administration of the nanoparticles and include the most recent developments in the field.
Collapse
Affiliation(s)
- Christine Vauthier
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université de Paris XI, 5 Rue Jean Baptiste Clément, 92296 Cedex, Chatenay-Malabry, France.
| | | | | | | | | |
Collapse
|
206
|
Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, von Briesen H, Begley DJ. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003; 20:409-16. [PMID: 12669961 DOI: 10.1023/a:1022604120952] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE [corrected] It has recently been suggested that the poly(butylcyanoacrylate) (PBCA) nanoparticle drug delivery system has a generalized toxic effect on the blood-brain barrier (BBB) (8) and that this effect forms the basis of an apparent enhanced drug delivery to the brain. The purpose of this study is to explore more fully the mechanism by which PBCA nanoparticles can deliver drugs to the brain. METHODS Both in vivo and in vitro methods have been applied to examine the possible toxic effects of PBCA nanoparticles and polysorbate-80 on cerebral endothelial cells. Human, bovine, and rat models have been used in this study. RESULTS In bovine primary cerebral endothelial cells, nontoxic levels of PBCA particles and polysorbate-80 did not increase paracellular transport of sucrose and inulin in the monolayers. Electron microscopic studies confirm cell viability. In vivo studies using the antinociceptive opioid peptide dalargin showed that both empty PBCA nanoparticles and polysorbate-80 did not allow dalargin to enter the brain in quantities sufficient to cause antinociception. Only dalargin preadsorbed to PBCA nanoparticles was able to induce an antinociceptive effect in the animals. CONCLUSION At concentrations of PBCA nanoparticles and polysorbate-80 that achieve significant drug delivery to the brain, there is little in vivo or in vitro evidence to suggest that a generalized toxic effect on the BBB is the primary mechanism for drug delivery to the brain. The fact that dalargin has to be preadsorbed onto nanoparticles before it is effective in inducing antinociception suggests specific mechanisms of delivery to the CNS rather than a simple disruption of the BBB allowing a diffusional drug entry.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institut für Pharmazeutische Technologie, Biozentrum, J.W. Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Vyas SP. CNS-delivery via conjugation to biological carriers: physiological-based approaches. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 61:189-219. [PMID: 14674613 DOI: 10.1007/978-3-0348-8049-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar (M.P.) 470 003, India
| |
Collapse
|
208
|
Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C, Klein C, Andreux JP, Couvreur P. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci 2002; 15:1317-26. [PMID: 11994126 DOI: 10.1046/j.1460-9568.2002.01967.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Under healthy conditions, the blood-brain barrier (BBB) limits the passage of solutes and cells from the blood to the CNS. During neurological diseases, BBB permeability increases dramatically and it has been hypothesized that drug carrier systems such as polymeric nanoparticles could cross the BBB and penetrate into the CNS. PEGylated polyalkylcyanoacrylate nanoparticles (long-circulating carrier) are one such system and have been investigated during experimental allergic encephalomyelitis (EAE). Brain and spinal cord concentrations of [(14)C]-radiolabelled PEGylated polyalkylcyanoacrylate nanoparticles were compared with another blood long-circulating carrier (poloxamine 908-coated polyalkylcyanoacrylate nanoparticles) and with conventional non-long-circulating polyalkylcyanoacrylate nanoparticles. The microscopic localization of fluorescent nanoparticles in the CNS was also investigated in order to further understand the mechanism by which the particles penetrate the BBB. The results demonstrate that the concentration of PEGylated nanoparticles in the CNS, especially in white matter, is greatly increased in comparison to conventional non-PEGylated nanoparticles. In addition, this increase was significantly higher in pathological situations where BBB permeability is augmented and/or macrophages have infiltrated. Passive diffusion and macrophage uptake in inflammatory lesions seems to be the mechanism underlying such particles' brain penetration. Based on their long-circulating properties in blood and on their surface characteristics that allow cell interactions, PEGylated nanoparticles penetrated into CNS to a larger extent than all the other formulations tested. Thus, PEGylated polycyanoacrylate nanoparticles are proposed here as a new brain delivery system for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Pilar Calvo
- Université Paris-Sud XI, Faculté de Pharmacie, Physico-Chimie-Pharmacotechnie-Biopharmacie, UMR CNRS 8612, 5, rue Jean Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Gelperina SE, Khalansky AS, Skidan IN, Smirnova ZS, Bobruskin AI, Severin SE, Turowski B, Zanella FE, Kreuter J. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett 2002; 126:131-41. [PMID: 11751017 DOI: 10.1016/s0378-4274(01)00456-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles (NP) were shown to enable the transport of a number of drugs including the anti-tumour antibiotic doxorubicin (DOX) across the blood-brain barrier (BBB) to the brain after intravenous administration and to considerably reduce the growth of brain tumours in rats. The objective of the present study was to evaluate the acute toxicity of DOX associated with polysorbate 80-coated NP in healthy rats and to establish a therapeutic dose range for this formulation in rats with intracranially implanted 101/8 glioblastoma. Single intravenous administration of empty poly(butyl cyanoacrylate) NP in the dose range 100-400 mg/kg did not cause mortality within the period of observation. NP also did not affect body weight or weight of internal organs. Association of DOX with poly(butyl cyanoacrylate) NP did not produce significant changes of quantitative parameters of acute toxicity of the anti-tumour agent. Likewise, the presence of polysorbate 80 in the formulations was not associated with changes in toxicity compared with free or nanoparticulate drug. Dose regimen of 3x1.5 mg/kg on days 2, 5, 8 after tumour implantation did not cause drug-induced mortality. The results in tumour-bearing rats were similar to those in healthy rats. These results demonstrate that the toxicity of DOX bound to NP was similar or even lower than that of free DOX.
Collapse
Affiliation(s)
- S E Gelperina
- Moscow Institute of Medical Ecology, Sympheropolsky Blvd. 8, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Lode J, Fichtner I, Kreuter J, Berndt A, Diederichs JE, Reszka R. Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly (methylmethacrylate) nanoparticles in experimental tumor models. Pharm Res 2001; 18:1613-9. [PMID: 11758771 DOI: 10.1023/a:1013094801351] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The aim of this study was to investigate the different pharmacokinetic behavior of surface-modified poly(methylmethacrylate) (PMMA) nanoparticles. METHODS The particles were 14C-labeled and coated with polysorbate 80, poloxamer 407, and poloxamine 908. Plain particles served as control particles. In vivo studies were performed in three tumor models differing in growth, localization, and origin. Particle suspensions were administered via the tail vein, and at given time animals were killed and organs were dissected for determination of PMMA concentration. RESULTS For the PMMA nanoparticles coated with poloxamer 407 or poloxamine 908, high and long-lasting concentrations were observed in the melanoma and at a lower level in the breast cancer model. In an intracerebrally growing glioma xenograft, the lowest concentrations that did not differ between the tumor-loaded and tumor-free hemispheres were measured. Organ distribution of the four investigated batches differed significantly. For instance, poloxamer 407- and poloxamine 908-coated particles circulated over a longer period of time in the blood, leading additionally to a higher tumor accumulation. In contrast, plain and polysorbate 80-coated particles accumulated mainly in the liver. The strong expression of vascular endothelial growth factor and Flk-1 in the melanoma correlated with high concentrations of PMMA in this tumor. CONCLUSION The degree of accumulation of PMMA nanoparticles in tumors depended on the particle surface properties and the specific growth differences of tumors.
Collapse
Affiliation(s)
- J Lode
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
211
|
Calvo P, Gouritin B, Chacun H, Desmaële D, D'Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001; 18:1157-66. [PMID: 11587488 DOI: 10.1023/a:1010931127745] [Citation(s) in RCA: 357] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this study was to evaluate the ability of long-circulating PEGylated cyanoacrylate nanoparticles to diffuse into the brain tissue. METHODS Biodistribution profiles and brain concentrations of [14C]-radiolabeled PEG-PHDCA, polysorbate 80 or poloxamine 908-coated PHDCA nanoparticles, and uncoated PHDCA nanoparticles were determined by radioactivity counting after intravenous administration in mice and rats. In addition, the integrity of the blood-brain barrier (BBB) after nanoparticles administration was evaluated by in vivo quantification of the diffusion of [14C]-sucrose into the brain. The location of fluorescent nanoparticles in the brain was also investigated by epi-fluorescent microscopy. RESULTS Based on their long-circulating characteristics, PEGylated PHDCA nanoparticles penetrated into the brain to a larger extent than all the other tested formulations. Particles were localized in the ependymal cells of the choroid plexuses, in the epithelial cells of pia mater and ventricles, and to a lower extent in the capillary endothelial cells of BBB. These phenomena occurred without any modification of BBB permeability whereas polysorbate 80-coated nanoparticles owed, in part, their efficacy to BBB permeabilization induced by the surfactant. Poloxamine 908-coated nanoparticles failed to increase brain concentration probably because of their inability to interact with cells. CONCLUSIONS This study proposes PEGylated poly (cyanoacrylate) nanoparticles as a new brain delivery system and highlights two requirements to design adequate delivery systems for such a purpose: a) long-circulating properties of the carrier, and b) appropriate surface characteristics to allow interactions with BBB endothelial cells.
Collapse
Affiliation(s)
- P Calvo
- Université Paris-Sud XI, UMR CNRS 8612, Physico-Chimie, Pharmacotechnie, Biopharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.
Collapse
Affiliation(s)
- J Kreuter
- Institut für Pharmazeutische Technologie, Biozentrum, J.W.Goethe-Universität, D-60439 Frankfurt, Germany.
| |
Collapse
|
213
|
Schöler N, Olbrich C, Tabatt K, Müller RH, Hahn H, Liesenfeld O. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 2001; 221:57-67. [PMID: 11397567 DOI: 10.1016/s0378-5173(01)00660-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
After intravenous (i.v.) injection, solid lipid nanoparticles (SLN) interact with mononuclear cells. Murine peritoneal macrophages were incubated with SLN formulations consisting of Dynasan 114 coated with different surfactants. The present study was performed to examine the impact of surfactants, which are important surface defining components of SLN, on viability and cytokine production by macrophages. Cytotoxicity, as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) test, was strongly influenced by the surfactant used being marked with cetylpyridinium chloride- (CPC-) coated SLN at a concentration of 0.001% and further increased at SLN concentrations of 0.01 and 0.1%. All other SLN formulations -- containing Poloxamine 908 (P908), Poloxamer 407 (P407), Poloxamer 188 (P188), Solutol HS15 (HS15), Tween 80 (T80), Lipoid S75 (S75), sodium cholate (SC), or sodium dodecylsulfate (SDS) -- when used at the same concentrations reduced cell viability only slightly. None of the SLN formulations tested induced cytokine production but a concentration-dependent decrease of IL-6 production was observed, which appeared to be associated with cytotoxic effects. IL-12 and TNF-alpha were detected neither in supernatants of macrophages treated with SLN at any concentration nor in those of untreated cells. In contrast to the type of surfactant, the size of SLN was found neither to affect cytotoxicity of SLN nor to result in induction or digression of cytokine production by macrophages. In conclusion, testing the effects of surfactants on SLN on activity of macrophages is a prerequisite prior to in vivo use of SLN.
Collapse
Affiliation(s)
- N Schöler
- Department of Medical Microbiology and Immunology of Infection, Institute for Infection Medicine, Benjamin Franklin Medical Center, Free University of Berlin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
214
|
Alyaudtin RN, Reichel A, Löbenberg R, Ramge P, Kreuter J, Begley DJ. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J Drug Target 2001; 9:209-21. [PMID: 11697206 DOI: 10.3109/10611860108997929] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poly(butylcyanoacrylate) nanoparticles were produced by emulsion polymerisation and used either uncoated or overcoated with polysorbate 80 (Tween 80). [3H]-dalargin bound to nanoparticles overcoated with polysorbate 80 or in the form of saline solution was injected into mice and the brain concentrations of radioactivity determined. Statistically significant, three-fold higher brain concentrations with the nanoparticle preparations were obtained after 45 minutes, the time of greatest pharmacological response assessed as analgesia in previous experiments. In addition the brain inulin spaces in rats and the uptake of fluoresceine isothiocyanate labelled nanoparticles in immortalised rat cerebral endothelial cells, (RBE4) were measured. The inulin spaces after i.v. injection of polysorbate 80-coated nanoparticles were significantly increased by 1% compared to controls. This is interpreted as indicating that there is no large scale opening of the tight junctions of the brain endothelium by the polysorbate 80-coated nanoparticles. In in vitro experiments endocytic uptake of fluorescent nanoparticles by RBE4 cells was only observed after polysorbate 80-overcoating, not with uncoated particles. These results further support the hypothesis that the mechanism of blood-brain barrier transport of drugs by polysorbate 80-coated nanoparticles is one of endocytosis followed by possible transcytosis. The experiments were conducted in several laboratories as part of an EEC/INTAS collaborative program. For various procedural and regulatory reasons this necessitated the use of both rats and mice as experimental animals. The brain endothelial cell line used for the in vitro studies is the rat RBE4.
Collapse
Affiliation(s)
- R N Alyaudtin
- Department of Pharmacology, Sechnov Medical Academy, B. Pirogovskaja 2-6, 119881 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
215
|
Bargoni A, Cavalli R, Zara GP, Fundarò A, Caputo O, Gasco MR. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II--tissue distribution. Pharmacol Res 2001; 43:497-502. [PMID: 11394943 DOI: 10.1006/phrs.2001.0813] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tobramycin-loaded solid lipid nanoparticles (SLN) were prepared and administered by duodenal and intravenous (i.v.) routes to rats and the tissue distributions were determined successively at fixed times (30 min, 4 h and 24 h) and compared to those of the tobramycin solution after i.v. administration. The tissue distribution between tobramycin-loaded SLN administered duodenally and i.v. was different. A marked difference between tobramycin-loaded SLN administered duodenally and tobramycin solution administered i.v. was also evidenced. In particular, the amounts of tobramycin in the kidneys after tobramycin-loaded SLN administration either duodenally or i.v. were lower than after administration of i.v. solution. Tobramycin-loaded SLN were able to pass across the blood-brain barrier in rats to a greater extent after i.v. injection than after duodenal administration.
Collapse
Affiliation(s)
- A Bargoni
- Dipartimento di Fisiopatologia Clinica-Università degli Studi di Torino, Italy
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.
Collapse
Affiliation(s)
- J Kreuter
- Institut für Pharmazeutische Technologie, Biozentrum, J.W.Goethe-Universität, D-60439 Frankfurt, Germany.
| |
Collapse
|
217
|
Emborg ME, Kordower JH. Delivery of therapeutic molecules into the CNS. PROGRESS IN BRAIN RESEARCH 2001; 128:323-32. [PMID: 11105691 DOI: 10.1016/s0079-6123(00)28029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- M E Emborg
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA
| | | |
Collapse
|
218
|
Dimitrijevic D, Whitton PS, Domin M, Welham K, Florence AT. Increased vigabatrin entry into the brain by polysorbate 80 and sodium caprate. J Pharm Pharmacol 2001; 53:149-54. [PMID: 11273010 DOI: 10.1211/0022357011775343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effects of a non-ionic surfactant, polysorbate 80, and the sodium salt of the saturated fatty acid, sodium caprate (C10), as potential brain absorption enhancers for vigabatrin were studied. Vigabatrin is an enzyme-activated irreversible inhibitor of gamma-aminobutyric acid (GABA) transaminase that increases brain and cerebrospinal GABA concentrations in animals and man. Before intravenous administration, a range of concentrations of the surfactants were tested using erythrocyte lysis or the red blood cell lysis test to establish the non-toxic concentration range. Vigabatrin was dissolved in 0.1% polysorbate 80 and 0.1% sodium caprate and administered intravenously in doses of 4 mL kg(-1) to male Wistar rats (230-250 g; n = 3). Rats were killed 2 h after drug and surfactant administration and the brains were immediately removed and homogenized in 0.4 M perchloric acid. Selected ion monitoring electrospray mass spectrometry was used to determine the concentration of vigabatrin and GABA directly from the perchloric acid extract of the rat brain. This method was developed to increase the speed and efficiency of the analysis by removing the need for complex extraction and derivatization procedures while retaining the specificity of the mass spectrometer as a detector. The stability of both vigabatrin and GABA in perchloric acid was established by monitoring their pseudo molecular ions in standard solutions at timed intervals over 24 h. Although the detection level for vigabatrin and GABA was at least 50 pg, only GABA was detected in rat brain. Vigabatrin caused a small increase in whole brain GABA. However, GABA levels were higher in the samples with vigabatrin + enhancer than in the samples where vigabatrin alone was administered. One-way analysis of variance indicated a significant effect of the surfactants on GABA levels (F (5,17) = 11.86, P < 0.01) and vigabatrin absorption was presumed. The rectal temperature of the rats is lowered by the presence of vigabatrin in the brain. Vigabatrin alone decreased rectal temperature by 6%. When given with either polysorbate 80 or sodium caprate, the extent of temperature lowering was significantly greater (P < 0.001). There was no significant difference after 2 h between polysorbate 80 + vigabatrin, and sodium caprate + vigabatrin.
Collapse
Affiliation(s)
- D Dimitrijevic
- Centre for Drug Delivery Research, The School of Pharmacy, University of London, UK
| | | | | | | | | |
Collapse
|
219
|
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70:1-20. [PMID: 11166403 DOI: 10.1016/s0168-3659(00)00339-4] [Citation(s) in RCA: 2072] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems. Methods of preparation, drug loading and drug release are covered. The most important findings on surface modification methods as well as surface characterization are covered from 1990 through mid-2000.
Collapse
Affiliation(s)
- K S Soppimath
- Department of Chemistry, Polymer Research Group, Karnatak University, Dharwad 580 003, India
| | | | | | | |
Collapse
|
220
|
Witt KA, Slate CA, Egleton RD, Huber JD, Yamamura HI, Hruby VJ, Davis TP. Assessment of stereoselectivity of trimethylphenylalanine analogues of delta-opioid [D-Pen(2),D-Pen(5)]-enkephalin. J Neurochem 2000; 75:424-35. [PMID: 10854288 DOI: 10.1046/j.1471-4159.2000.0750424.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
[D-Pen(2),D-Pen(5)]-Enkephalin (DPDPE) is an enzymatically stable delta-opioid receptor-selective peptide, which was modified by the trimethylation of the Phe(4) residue to give beta-methyl-2', 6'-dimethylphenylalanine (TMP), resulting in four conformations : (2R,3S)-beta-Phe-DPDPE, (2R,3R)-beta-Phe-DPDPE, (2R, 3S)-beta-Phe-DPDPE, and (2S,3R)-beta-Phe-DPDPE. Synthesis was by solid-phase techniques using enantiomerically pure amino acids to give the four optically pure diastereoisomer peptides. The potency and selectivity (delta- versus mu-opioid receptor) were evaluated by radioreceptor binding in rat brain, with a mu/delta ratio decrease for all TMP conformations, compared with the parent compound (DPDPE). Octanol/buffer distribution analysis showed enhanced lipophilicity of all TMP forms, with a sixfold enhancement associated with (2S,3S)-TMP. In situ vascular perfusion in anesthetized rats showed a 1.6-fold (p < 0.01) increase in the ratio of brain uptake for (2S,3S)-TMP and a 1.5-fold (p < 0.01) decrease in uptake for (2R,3R)-TMP. Saturability of (2S,3S)-TMP was shown (p < 0.01) against 100 microM unlabeled DPDPE, showing a shared nondiffusionary transport system. P-glycoprotein affinity was shown in situ for the parent and (2S,3S)-TMP (p < 0.01). Protein binding capacity of the TMP compounds in rat plasma and in situ mammalian bovine serum albumin-Ringer showed (2R,3S)-TMP and (2S,3R)-TMP with the lowest degree of protein binding (p < 0.01), and (2S,3S)-TMP and (2R,3R)-TMP with comparable affinities to DPDPE. Analgesia, via intravenous administration, showed significantly reduced (p < 0.01) end effect and time course for (2R,3R)-TMP, (2R,3S)-TMP, and (2S, 3R)-TMP as compared with DPDPE. These results demonstrate that topographical modification in a conformationally restricted peptide can significantly modulate potency and receptor selectivity, binding capacity, enzymatic stability, lipophilicity, P-glycoprotein affinity, and blood-brain barrier permeability, resulting in a change of bioavailability, and thereby provides insight for future peptide drug design.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Alanine/analogs & derivatives
- Alanine/chemistry
- Alanine/metabolism
- Analgesia
- Animals
- Blood-Brain Barrier
- Brain/blood supply
- Brain/metabolism
- Capillaries/metabolism
- Cattle
- Endothelium, Vascular/metabolism
- Enkephalin, D-Penicillamine (2,5)-/analogs & derivatives
- Enkephalin, D-Penicillamine (2,5)-/chemistry
- Female
- Methylation
- Molecular Conformation
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- K A Witt
- Department of Pharmacology, University of Arizona, College of Medicine, Tucson, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
221
|
Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley D, Kreuter J, Von Briesen H. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 2000; 12:1931-40. [PMID: 10886334 DOI: 10.1046/j.1460-9568.2000.00078.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Certain drugs such as dalargin, loperamide or tubocurarine are not transported across the blood-brain barrier (BBB) and therefore exhibit no effects on the central nervous system. However, effects on the central nervous system can be observed when these drugs are loaded onto polybutylcyanoacrylate (PBCA)-nanoparticles and coated with polysorbate 80. The mechanism by which these complexed nanoparticles cross the BBB and exhibit their effects has not been elucidated. Cultured microvessel brain endothelial cells of human and bovine origin were used as an in vitro model for the BBB to gain further insight into the mechanism of uptake of nanoparticles. With cells from these species we were able to show that polysorbate 80-coated nanoparticles were taken up by brain endothelial cells much more rapidly and in significantly higher amounts (20-fold) than uncoated nanoparticles. The process of uptake was followed by fluorescence and confocal laser scanning microscopy. The results demonstrate that the nanoparticles are taken up by cells and that this uptake occurs via an endocytotic mechanism.
Collapse
Affiliation(s)
- P Ramge
- Institut für Pharm. Technologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Genetic engineering methodology offers the ability to synthesize protein-based polymers with precisely controlled structures. Protein-based polymers synthesized by recombinant techniques have a well-defined monomer composition and sequence, stereochemistry, and a narrow molecular weight distribution. The structure of the polymeric carrier at the molecular level influences its biological disposition and drug release profile. Current methodologies of polymer synthesis (chemical polymerization) result in the production of polymers with heterogeneous molecular weights, and with monomer sequences and compositions defined in terms of statistical distributions. Genetic engineering methodologies can be used to design new polymeric drug carriers with improved properties, such as better-defined biorecognition, pharmacokinetic, biodegradation, and drug release profiles. In this review article the rationale and methodology of polymer synthesis using genetic engineering techniques, the status of such polymers in drug delivery to-date, and the potential of these polymers for the development of new systems in the future are discussed.
Collapse
Affiliation(s)
- A Nagarsekar
- Department of Pharmaceutics and the National Center for the Development of Natural Products, The University of Mississippi, 38677, USA
| | | |
Collapse
|
223
|
Olivier JC, Fenart L, Chauvet R, Pariat C, Cecchelli R, Couet W. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999; 16:1836-42. [PMID: 10644071 DOI: 10.1023/a:1018947208597] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To investigate the mechanism underlying the entry of the analgesic peptide dalargin into brain using biodegradable polybutylcyanoacrylate (PBCA) nanoparticles (NP) overcoated with polysorbate 80. METHODS The investigations were carried out with PBCA NP and with non biodegradable polystyrene (PS) NP (200 nm diameter). Dalargin adsorption was assessed by HPLC. Its entry into the CNS in mice was evaluated using the tail-flick procedure. Locomotor activity measurements were performed to compare NP toxicities. BBB permeabilization by PBCA NP was studied in vitro using a coculture of bovine brain capillary endothelial cells and rat astrocytes. RESULTS Dalargin loading was 11.7 microg/mg on PBCA NP and 16.5 microg/ mg on PS NP. Adding polysorbate 80 to NP led to a complete desorption. Nevertheless, dalargin associated with PBCA NP and polysorbate 80 induced a potent and prolonged analgesia, which could not be obtained using PS NP in place of PBCA NP. Locomotor activity dramatically decreased in mice dosed with PBCA NP, but not with PS NP. PBCA NP also caused occasional mortality. In vitro, PBCA NP (10 microg/ml) induced a permeabilization of the BBB model. CONCLUSIONS A non specific permeabilization of the BBB, probably related to the toxicity of the carrier, may account for the CNS penetration of dalargin associated with PBCA NP and polysorbate 80.
Collapse
Affiliation(s)
- J C Olivier
- Laboratoire de Pharmacie Galénique et Biopharmacie UPRES EA 1223 34, Poitiers, France.
| | | | | | | | | | | |
Collapse
|
224
|
Ramge P, Kreuter J, Lemmer B. Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles. Chronobiol Int 1999; 16:767-77. [PMID: 10584177 DOI: 10.3109/07420529909016944] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peptides normally do not cross the blood-brain barrier (BBB). Previously, it has been shown that the hexapeptide enkephalin analogue dalargin with polysorbate-80-coated nanoparticles (DAL/NP) can be transported across the BBB and is able to exhibit an antinociceptive effect in mice. In the present study, the circadian time and dose dependencies of the antinociceptive effect of different dalargin preparations were investigated. The active preparation (DAL/NP, 5 mg/kg, 10 mg/kg), as well as a dalargin solution in phosphate buffered saline (DAL/SOL, 10 mg/kg) were injected intravenously to groups of 10-12 inbred DBA/2 mice at 12 different circadian times; mice were synchronized to a light-dark (LD) 12:12 regimen. The antinociceptive effect was determined 15 minutes postinjection by the hot-plate test. Experiments with DAL/NP were repeated using the tail-flick test system at two selected times (08:00 and 20:00) to test for dose dependency (2.5, 5, 7.5, 10 mg/kg). Hot-plate latencies were rhythmic under baseline and after DAL/SOL, with acrophases in the dark phase; DAL/SOL did not influence latency time. In contrast, DAL/NP significantly increased reaction time dose dependently; the maximal possible effect was rhythmic with the 10 mg/kg preparation, with a peak effect in the early light phase. Results were confirmed by the tail-flick test. The experiments demonstrate that an enkephalin analogue coated with nanoparticles can easily cross the BBB and is able to display a dose- and time-dependent antinociceptive effect.
Collapse
Affiliation(s)
- P Ramge
- Institut für Pharmazeutische Technologie, Johann-Wolfgang-Goethe Universität, Frankfurt/M., Germany
| | | | | |
Collapse
|
225
|
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999; 16:1564-9. [PMID: 10554098 DOI: 10.1023/a:1018983904537] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To investigate the possibility of delivering of anticancer drugs into the brain using colloidal carriers (nanoparticles). METHODS Rats obtained 5 mg/kg of doxorubicin by i.v. injection in form of 4 preparations: 1. a simple solution in saline, 2. a simple solution in polysorbate 80 1% in saline, 3. bound to poly(butyl cyanoacrylate) nanoparticles, and 4. bound to poly(butyl cyanoacrylate) nanoparticles overcoated with 1% polysorbate 80 (Tween 80). After sacrifice of the animals after 10 min, 1, 2, 4, 6, and 8 hours, the doxorubicin concentrations in plasma, liver, spleen, lungs, kidneys, heart and brain were determined after extraction by HPLC. RESULTS No significant difference in the body distribution was observed between the two solution formulations. The two nanoparticle formulations very significantly decreased the heart concentrations. High brain concentrations of doxorubicin (>6 microg/g) were achieved with the nanoparticles overcoated with polysorbate 80 between 2 and 4 hours. The brain concentrations observed with the other three preparations were always below the detection limit (< 0.1 microg/g). CONCLUSIONS The present study demonstrates that the brain concentration of systemically administered doxorubicin can be enhanced over 60-fold by binding to biodegradable poly(butyl cyanoacrylate) nanoparticles, overcoated with the nonionic surfactant polysorbate 80. It is highly probable that coated particles reached the brain intact and released the drug after endocytosis by the brain blood vessel endothelial cells.
Collapse
|
226
|
Lamprecht A, Ubrich N, Hombreiro Pérez M, Lehr C, Hoffman M, Maincent P. Biodegradable monodispersed nanoparticles prepared by pressure homogenization-emulsification. Int J Pharm 1999; 184:97-105. [PMID: 10425355 DOI: 10.1016/s0378-5173(99)00107-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present work was to investigate the preparation of nanoparticles (NP) as potential drug carriers for proteins. The hydrophilic protein bovine serum albumin (BSA) was chosen as the model drug to be incorporated within NP. Owing to the high solubility of the protein in water, the double emulsion technique has been chosen as one of the most appropriate method. In order to reach submicron size we used a microfluidizer as a homogenization device with a view to obtaining NP with a very high grade of monodispersity. Two different biodegradable polymers, poly[D, L-lactic-co-glycolic acid] 50/50 (PLGA) and poly[epsilon-caprolactone] (PCL) has been used for the preparation of the NP. The drug loading has been optimized by varying the concentration of the protein in the inner aqueous phase, the polymer in the organic phase, the surfactant in the external aqueous phase, as well as the volume of the external aqueous phase. The BSA encapsulation efficiency was high (>80%) and release profiles were characterized by a substantial initial burst release for both PLGA and PCL NP. A higher release was obtained at the end of the dissolution study for PLGA NP (92%) compared with PCL NP (72%).
Collapse
Affiliation(s)
- A Lamprecht
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, BP 403, 5 rue A. Lebrun, 54001, Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
227
|
Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999; 59:299-307. [PMID: 10332062 DOI: 10.1016/s0168-3659(99)00007-3] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of the present study was to investigate the specific drug targeting of anticarcinogenic drugs, such as camptothecin (CA), after intravenous (i.v.) injection by incorporation into solid lipid nanoparticles (SLN). A CA loaded SLN suspension consisted of 0.1% (w/w) camptothecin, 2.0% (w/w) stearic acid, 1.5% (w/w) soybean lecithin and 0.5% (w/w) polyoxyethylene-polyoxypropylene copolymer (Poloxamer 188) was prepared by high pressure homogenization. In vitro drug release was investigated in pH 7.4 phosphate-buffered saline at 37 degrees C. The concentrations of camptothecin in various organs were determined using reversed-phase high-performance liquid chromatography with a fluorescence detector after i.v. administration of CA-SLN and a camptothecin control solution (CA-Sol). The results showed that the CA-SLN had an average diameter 196.8 nm with a Zeta potential of -69.3 mV and in vitro drug release was achieved for up to a week. In tested organs, the AUC/dose and the mean residence times (MRT) of CA-SLN were much higher than those of CA-Sol, especially in brain, heart and reticuloendothelial cells containing organs. The brain AUC ratio of CA-SLN to CA-Sol was the highest among the tested organs. These results indicate that SLN are a promising sustained release and drug targeting system for lipophilic antitumour drugs, and may also allow a reduction in dosage and a decrease in systemic toxicity.
Collapse
Affiliation(s)
- S C Yang
- Department of Polymer Science and Engineering, College of Chemistry and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
228
|
Marchal-Heussler L, Thouvenot P, Hoffman M, Maincent P. Comparison of the biodistribution in mice of 111indium oxine encapsulated into poly(lactic-co-glycolic)-D,L-85/15 and poly(epsilon caprolactone) nanocapsules. J Pharm Sci 1999; 88:450-3. [PMID: 10187756 DOI: 10.1021/js980307k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(lactic-co-glycolic)-D,L-85/15 (PLAGA) nanocapsules and poly(epsilon caprolactone) (PCL) nanocapsules were labeled with a relatively long half-life compound that is usually used in humans; that is, 111In-labelled oxine (111In oxine). This labeling technique led to a high 111In oxine entrapment efficiency and good stability during dialysis against phosphate buffer and phosphate buffered albumin solution. Because of these characteristics, the nanocapsules biodistribution was followed up after intravenous administration for up to 96 h by determining the gamma activity in the tissues after sampling. The administration of the PCL-encapsulated 111In oxine led to a decrease in the blood radioactivity and an increase in the liver radioactivity compared with the solution. This effect was even more pronounced with the PLAGA nanocapsules. Finally, the activity level in other tissues, such as the kidneys, the lungs, and the spleen, appeared to be rather low and only slightly affected by the encapsulation into one or the other polymer.
Collapse
|
229
|
Emerich DF, Snodgrass P, Pink M, Bloom F, Bartus RT. Central analgesic actions of loperamide following transient permeation of the blood brain barrier with Cereport (RMP-7). Brain Res 1998; 801:259-66. [PMID: 9729419 DOI: 10.1016/s0006-8993(98)00571-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bradykinin analog, Cereport (RMP-7), was designed to increase permeability of the blood brain barrier (BBB). Over the past several years it has been developed primarily as a means of increasing permeability of the blood brain tumor barrier, where early evidence indicated a particularly robust and reliable effect. The present series of experiments were intended to determine whether Cereport might also be used to increase delivery of pharmacological agents across the normal (i.e., non-tumor) BBB. This was accomplished by testing the ability of Cereport to enhance delivery of the peripherally acting opiate agonist, loperamide, to the brain, as evidenced by induction of a centrally mediated analgesic effect. Intravenous administration of a combination of Cereport and loperamide produced a significant analgesic effect (2-fold increase in response times) when animals were tested on a hotplate apparatus. Loperamide alone did not produce analgesia. An analysis of the time course of analgesia revealed a graded onset of analgesia which peaked at 30 min, maintained asymptote at 60 min, and began to diminish by 120 min following Cereport and loperamide administration. Finally, the analgesic effects of combining Cereport and loperamide were completely blocked when animals were pre-treated with the opiate antagonist naloxone, demonstrating that the analgesia was mediated through opiate receptors. Collectively, these results suggest that Cereport was able to increase delivery of loperamide across the BBB, allowing it to gain access to opiate receptors in the CNS to produce a centrally mediated analgesic effect. They therefore provide clear evidence that safe and well-tolerated doses of Cereport can increase permeability of the normal (i.e., non-tumor) BBB. Moreover, they provide the first evidence of a pharmacological effect specifically enabled by controlled (i.e., receptor-mediated) modulation of the BBB.
Collapse
Affiliation(s)
- D F Emerich
- Preclinical R and D, Alkermes, Inc., 64 Sidney Street, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
230
|
Granholm AC, Albeck D, Bäckman C, Curtis M, Ebendal T, Friden P, Henry M, Hoffer B, Kordower J, Rose GM, Söderström S, Bartus RT. A non-invasive system for delivering neural growth factors across the blood-brain barrier: a review. Rev Neurosci 1998; 9:31-55. [PMID: 9683326 DOI: 10.1515/revneuro.1998.9.1.31] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intraventricular administration of nerve growth factor (NGF) in rats has been shown to reduce age-related atrophy of central cholinergic neurons and the accompanying memory impairment, as well as protect these neurons against a variety of perturbations. Since neurotrophins do not pass the blood-brain barrier (BBB) in significant amounts, a non-invasive delivery system for this group of therapeutic molecules needs to be developed. We have utilized a carrier system, consisting of NGF covalently linked to an anti-transferrin receptor antibody (OX-26), to transport biologically active NGF across the BBB. The biological activity of this carrier system was tested using in vitro bioassays and intraocular transplants; we were able to demonstrate that cholinergic markers in both developing and aged intraocular septal grafts were enhanced by intravenous delivery of the OX-26-NGF conjugate. In subsequent experiments, aged (24 months old) Fischer 344 rats received intravenous injections of the OX-26-NGF conjugate for 6 weeks, resulting in a significant improvement in spatial learning in previously impaired rats, but disrupting the learning ability of previously unimpaired rats. Neuroanatomical analyses showed that OX-26-NGF conjugate treatment resulted in a significant increase in cholinergic cell size as well as an upregulation of both low and high affinity NGF receptors in the medial septal region of rats initially impaired in spatial learning. Finally, OX-26-NGF was able to protect striatal cholinergic neurons against excitotoxicity and basal forebrain cholinergic neurons from degeneration associated with chemically-induced loss of target neurons. These results indicate the potential utility of the transferrin receptor antibody delivery system for treatment of neurodegenerative disorders with neurotrophic substances.
Collapse
Affiliation(s)
- A C Granholm
- Department of Basic Science, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Kreuter J, Petrov V, Kharkevich D, Alyautdin R. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J Control Release 1997. [DOI: 10.1016/s0168-3659(97)00061-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|