201
|
Plant Cytokinesis – Insights Gained from Electron Tomography Studies. PLANT CELL MONOGRAPHS 2007. [DOI: 10.1007/7089_2007_131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
202
|
Varelas X, Stuart D, Ellison MJ, Ptak C. The Cdc34/SCF ubiquitination complex mediates Saccharomyces cerevisiae cell wall integrity. Genetics 2006; 174:1825-39. [PMID: 17028344 PMCID: PMC1698636 DOI: 10.1534/genetics.106.059154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify novel functions for the Cdc34/SCF ubiquitination complex, we analyzed genomewide transcriptional profiles of cdc53-1 and cdc34-2 Saccharomyces cerevisiae mutants. This analysis revealed altered expression for several gene families, including genes involved in the regulation of cell wall organization and biosynthesis. This led us to uncover a role for the Cdc34/SCF complex in the regulation of cell wall integrity. In support of this, cdc53-1 and cdc34-2 mutants exhibit phenotypes characteristic of cell wall integrity mutants, such as SDS sensitivity and temperature-sensitive suppression by osmotic stabilizers. Examination of these mutants revealed defects in their induction of Slt2 phosphorylation, indicating defects in Pkc1-Slt2 MAPK signaling. Consistent with this, synthetic genetic interactions were observed between the genes encoding the Cdc34/SCF complex and key components of the Pck1-Slt2 MAPK pathway. Further analysis revealed that Cdc34/SCF mutants have reduced levels of active Rho1, suggesting that these defects stem from the deregulated activity of the Rho1 GTPase. Altering the activity of Rho1 via manipulation of the Rho1-GAPs LRG1 or SAC7 affected Cdc34/SCF mutant growth. Strikingly, however, deletion of LRG1 rescued the growth defects associated with Cdc34/SCF mutants, whereas deletion of SAC7 enhanced these defects. Given the differential roles that these GAPs play in the regulation of Rho1, these observations indicate the importance of coordinating Cdc34/SCF activity with specific Rho1 functions.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Institute for Biomolecular Design, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
203
|
Kim JT, Cho MY, Choi SC, Kim JW, Chae SK, Yoon DY, Kim JW, Lim JS. Prenylated Rab acceptor 1 (PRA1) inhibits TCF/β-catenin signaling by binding to β-catenin. Biochem Biophys Res Commun 2006; 349:200-8. [PMID: 16930546 DOI: 10.1016/j.bbrc.2006.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/05/2006] [Indexed: 11/24/2022]
Abstract
The prenylated Rab acceptor 1 (PRA1) is a ubiquitously expressed 21 kDa protein containing two transmembrane domains that possibly induce its localization to the Golgi complex. It binds to prenylated Rab GTPases and VAMP2. In this study, we report that PRA1-overexpressing cells exhibited a significantly retarded growth rate as compared to that of the mock-transfected cells, and the transcriptional activity of TCF, as evaluated by TOPflash luciferase reporter assay, was profoundly reduced in the PRA1-overexpressed cells. These intracellular functions of PRA1 were verified by introducing deletion mutant or site-directed mutants, or small interfering RNA of PRA1. In addition, the translocation of beta-catenin from the cytosol to the nucleus was blocked to a significant degree in the PRA1-cells, and the interaction of PRA1 and beta-catenin was identified by confocal microscopy and immunoprecipitation analysis. Finally, we observed that the inhibition of TCF/beta-catenin signaling by PRA1 is associated with ERK1/2 dephosphorylation. Therefore, our data suggest that the in vivo modulation of PRA1 may be involved in TCF/beta-catenin signaling, as well as cellular proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
The exocyst complex is required for the interaction of vesicles with the plasma membrane in preparation for exocytic fusion. Recent crystallographic studies indicate that at least four of the eight subunits contain long, rod-like domains formed from helical bundles. These rods may pack against one another to generate the framework of the complex. How this complex assembles, how it responds to various GTPases and how it is ultimately displaced to allow bilayer fusion are key questions for the future.
Collapse
Affiliation(s)
- Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
205
|
Rodicio R, Koch S, Schmitz HP, Heinisch JJ. KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis. Microbiology (Reading) 2006; 152:2635-2649. [PMID: 16946259 DOI: 10.1099/mic.0.29105-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell integrity in yeasts is ensured by a rigid cell wall whose synthesis is triggered by a MAP kinase-mediated signal-transduction cascade. Upstream regulatory components of this pathway inSaccharomyces cerevisiaeinvolve a single protein kinase C, which is regulated by interaction with the small GTPase Rho1. Here, two genes were isolated which encode these proteins fromKluyveromyces lactis(KlPKC1andKlRHO1). Sequencing showed ORFs which encode proteins of 1161 and 208 amino acids, respectively. The deduced proteins shared 59 and 85 % overall amino acid identities, respectively, with their homologues fromS. cerevisiae. Null mutants in both genes were non-viable, as shown by tetrad analyses of the heterozygous diploid strains. Overexpression of theKlRHO1gene under the control of theScGAL1promoter severely impaired growth in bothS. cerevisiaeandK. lactis. On the other hand, a similar construct withKlPKC1did not show a pronounced phenotype. Two-hybrid analyses showed interaction between Rho1 and Pkc1 for theK. lactisproteins and theirS. cerevisiaehomologues. A green fluorescent protein (GFP) fusion to the C-terminal end of KlPkc1 located the protein to patches in the growing bud, and at certain stages of the division process also to the bud neck. N-terminal GFP fusions to KlRho1 localized mainly to the cell surface (presumably the cytoplasmic side of the plasma membrane) and to the vacuole, with some indications of traffic from the former to the latter. Thus, KlPkc1 and KlRho1 have been shown to serve vital functions inK. lactis, to interact in cell integrity signalling and to traffic between the plasma membrane and the vacuole.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Sabrina Koch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Hans-Peter Schmitz
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jürgen J Heinisch
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Genetik, Barbarastr. 11, 49076 Osnabrück, Germany
| |
Collapse
|
206
|
Abstract
An extracellular matrix composed of a layered meshwork of beta-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls.
Collapse
Affiliation(s)
- Guillaume Lesage
- Department of Biology, McGill University, Montreal, PQ H3A 1B1, Canada
| | | |
Collapse
|
207
|
Kozminski KG, Alfaro G, Dighe S, Beh CT. Homologues of Oxysterol-Binding Proteins Affect Cdc42p- and Rho1p-Mediated Cell Polarization in Saccharomyces cerevisiae. Traffic 2006; 7:1224-42. [PMID: 17004323 DOI: 10.1111/j.1600-0854.2006.00467.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polarized cell growth requires the establishment of an axis of growth along which secretion can be targeted to a specific site on the cell cortex. How polarity establishment and secretion are choreographed is not fully understood, though Rho GTPase- and Rab GTPase-mediated signaling is required. Superimposed on this regulation are the functions of specific lipids and their cognate binding proteins. In a screen for Saccharomyces cerevisiae genes that interact with Rho family CDC42 to promote polarity establishment, we identified KES1/OSH4, which encodes a homologue of mammalian oxysterol-binding protein (OSBP). Other yeast OSH genes (OSBP homologues) had comparable genetic interactions with CDC42, implicating OSH genes in the regulation of CDC42-dependent polarity establishment. We found that the OSH gene family (OSH1-OSH7) promotes cell polarization by maintaining the proper localization of septins, the Rho GTPases Cdc42p and Rho1p, and the Rab GTPase Sec4p. Disruption of all OSH gene function caused specific defects in polarized exocytosis, indicating that the Osh proteins are collectively required for a secretory pathway implicated in the maintenance of polarized growth.
Collapse
Affiliation(s)
- Keith G Kozminski
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
208
|
Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 2006; 103:11821-7. [PMID: 16882731 PMCID: PMC1567661 DOI: 10.1073/pnas.0601617103] [Citation(s) in RCA: 796] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
Collapse
Affiliation(s)
- Bianka L. Grosshans
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Darinel Ortiz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Peter Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
209
|
Fridmann-Sirkis Y, Kent HM, Lewis MJ, Evans PR, Pelham HRB. Structural analysis of the interaction between the SNARE Tlg1 and Vps51. Traffic 2006; 7:182-90. [PMID: 16420526 DOI: 10.1111/j.1600-0854.2005.00374.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Membrane fusion in cells involves the interaction of SNARE proteins on apposing membranes. Formation of SNARE complexes is preceded by tethering events, and a number of protein complexes that are thought to mediate this have been identified. The VFT or GARP complex is required for endosome-Golgi traffic in yeast. It consists of four subunits, one of which, Vps51, has been shown to bind specifically to the SNARE Tlg1, which participates in the same fusion event. We have determined the structure of the N-terminal domain of Tlg1 bound to a peptide from the N terminus of Vps51. Binding depends mainly on residues 18-30 of Vps51. These form a short helix which lies in a conserved groove in the three-helix bundle formed by Tlg1. Surprisingly, although both Vps51 and Tlg1 are required for transport to the late Golgi from endosomes, removal of the Tlg1-binding sequences from Vps51 does not block such traffic in vivo. Thus, this particular interaction cannot be crucial to the process of vesicle docking or fusion.
Collapse
|
210
|
France YE, Boyd C, Coleman J, Novick PJ. The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit. J Cell Sci 2006; 119:876-88. [PMID: 16478783 DOI: 10.1242/jcs.02849] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spatial regulation of the secretory machinery is essential for the formation of a new bud in Saccharomyces cerevisiae. Yet, the mechanisms underlying cross-talk between the secretory and the cell-polarity-establishment machineries have not been fully elucidated. Here, we report that Sec15p, a subunit of the exocyst complex, might provide one line of communication. Not only is Sec15p an effector of the rab protein Sec4p, the master regulator of post-Golgi trafficking, but it also interacts with components of the polarity-establishment machinery. We have demonstrated a direct physical interaction between Sec15p and Bem1p, a protein involved in the Cdc42p-mediated polarity-establishment pathway, confirming a prior two-hybrid study. When this interaction is compromised, as in the case of cells lacking the N-terminal 138 residues of Bem1p, including the first Src-homology 3 (SH3) domain, the localization of green fluorescent protein (GFP)-tagged Sec15 is affected, especially in the early stage of bud growth. In addition, Sec15-1p, which is defective in Bem1p binding, mislocalizes along with Sec8p, another exocyst subunit. Overall, our evidence suggests that the interaction of Sec15p with Bem1p is important for Sec15p localization at the early stage of bud growth and, through this interaction, Sec15p might play a crucial role in integrating the signals between Sec4p and the components of the early-polarity-establishment machinery. This, in turn, helps to coordinate the secretory pathway and polarized bud growth.
Collapse
Affiliation(s)
- Y Ellen France
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
211
|
Fialkowski M, Bishop KJM, Klajn R, Smoukov SK, Campbell CJ, Grzybowski BA. Principles and Implementations of Dissipative (Dynamic) Self-Assembly. J Phys Chem B 2006; 110:2482-96. [PMID: 16471845 DOI: 10.1021/jp054153q] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic self-assembly (DySA) processes occurring outside of thermodynamic equilibrium underlie many forms of adaptive and intelligent behaviors in natural systems. Relatively little, however, is known about the principles that govern DySA and the ways in which it can be extended to artificial ensembles. This article discusses recent advances in both the theory and the practice of nonequilibrium self-assembly. It is argued that a union of ideas from thermodynamics and dynamic systems' theory can provide a general description of DySA. In parallel, heuristic design rules can be used to construct DySA systems of increasing complexities based on a variety of suitable interactions/potentials on length scales from nanoscopic to macroscopic. Applications of these rules to magnetohydrodynamic DySA are also discussed.
Collapse
Affiliation(s)
- Marcin Fialkowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
212
|
Quenneville NR, Chao TY, McCaffery JM, Conibear E. Domains within the GARP subunit Vps54 confer separate functions in complex assembly and early endosome recognition. Mol Biol Cell 2006; 17:1859-70. [PMID: 16452629 PMCID: PMC1415290 DOI: 10.1091/mbc.e05-11-1002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.
Collapse
Affiliation(s)
- Nicole R Quenneville
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | |
Collapse
|
213
|
Abstract
Coiled-coil and multisubunit tethers have emerged as key regulators of membrane traffic and organellar architecture. The restricted subcellular localization of tethers and their ability to interact with Rabs and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) suggests that tethers participate in determining the specificity of membrane fusion. An accepted model of tether function considers them molecular “bridges” that link opposing membranes before SNARE pairing. This model has been extended by findings in various experimental systems, suggesting that tethers may have other functions. Recent reports implicate tethers in the assembly of SNARE complexes, cargo selection and transit, cytoskeletal events, and localized attachment of regulatory proteins. A concept of tethers as scaffolding machines that recruit protein components involved in varied cellular responses is emerging. In this model, tethers function as integration switches that simultaneously transmit information to coordinate distinct processes required for membrane traffic.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Dept. of Cell Biology, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., Birmingham, AL 35294, USA.
| | | |
Collapse
|
214
|
Abstract
The formation of highly polarized hyphae that grow by apical extension is a defining feature of the filamentous fungi. High-resolution microscopy and mathematical modeling have revealed the importance of the cytoskeleton and the Spitzenkorper (an apical vesicle cluster) in hyphal morphogenesis. However, the underlying molecular mechanisms remain poorly characterized. In this review, the pathways and functions known to be involved in polarized hyphal growth are summarized. A central theme is the notion that the polarized growth of hyphae is more complex than in yeast, though similar sets of core pathways are likely utilized. In addition, a model for the establishment and maintenance of hyphal polarity is presented. Key features of the model include the idea that polarity establishment is a stochastic process that occurs independent of internal landmarks. Moreover, the stabilization of nascent polarity axes may be the critical step that permits the emergence of a new hypha.
Collapse
Affiliation(s)
- Steven D Harris
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
215
|
Hamburger ZA, Hamburger AE, West AP, Weis WI. Crystal structure of the S.cerevisiae exocyst component Exo70p. J Mol Biol 2005; 356:9-21. [PMID: 16359701 DOI: 10.1016/j.jmb.2005.09.099] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/29/2005] [Indexed: 11/17/2022]
Abstract
The exocyst is an evolutionarily conserved multiprotein complex required for the targeting and docking of post-Golgi vesicles to the plasma membrane. Through its interactions with a variety of proteins, including small GTPases, the exocyst is thought to integrate signals from the cell and signal that vesicles arriving at the plasma membrane are ready for fusion. Here we describe the three-dimensional crystal structure of one of the components of the exocyst, Exo70p, from Saccharomyces cerevisiae at 3.5A resolution. Exo70p binds the small GTPase Rho3p in a GTP-dependent manner with an equilibrium dissociation constant of approximately 70 microM. Exo70p is an extended rod approximately 155 angstroms in length composed principally of alpha helices, and is a novel fold. The structure provides a first view of the Exo70 protein family and provides a framework to study the molecular function of this exocyst component.
Collapse
Affiliation(s)
- Zsuzsa A Hamburger
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | |
Collapse
|
216
|
Cubelos B, Giménez C, Zafra F. The glycine transporter GLYT1 interacts with Sec3, a component of the exocyst complex. Neuropharmacology 2005; 49:935-44. [PMID: 16181645 DOI: 10.1016/j.neuropharm.2005.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/27/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Evidence is accumulating that the glycine transporter GLYT1 regulates NMDA receptor function by modulating the glycine concentration in glutamatergic synapses. In this article, we describe a physical and functional interaction between GLYT1 and the exocyst complex. Through a yeast two-hybrid screen to search for proteins capable of interacting with the intracellular C-terminal tail of GLYT1, we identified a protein that is highly homologous to the human and mouse Sec3 protein, a component of the exocyst complex. Pull-down and immunoprecipitation assays confirmed the physical interaction between the C-terminus of GLYT1 and Sec3. Subsequently, immunofluorescence experiments indicated that Sec3-GFP was partially recruited to the plasma membrane upon coexpression with GLYT1. The interaction of GLYT1 with exocyst components was also observed in the native rat brain since complexes immunoprecipitated from brain extracts with anti-GLYT1 antibodies contained both Sec6 and Sec8. Functional assays revealed that Sec3 increased the transporter capacity of GLYT1, suggesting that the exocyst favors insertion of GLYT1 into the plasma membrane.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
217
|
Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 2005; 12:1094-100. [PMID: 16249794 DOI: 10.1038/nsmb1017] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/11/2005] [Indexed: 01/20/2023]
Abstract
The exocyst is a large complex that is required for tethering vesicles at the final stages of the exocytic pathway in all eukaryotes. Here we present the structures of the Exo70p subunit of this complex and of the C-terminal domains of Exo84p, at 2.0-A and 2.85-A resolution, respectively. Exo70p forms a 160-A-long rod with a novel fold composed of contiguous alpha-helical bundles. The Exo84p C terminus also forms a long rod (80 A), which unexpectedly has the same fold as the Exo70p N terminus. Our structural results and our experimental observations concerning the interaction between Exo70p and other exocyst subunits or Rho3p GTPase are consistent with an architecture wherein exocyst subunits are composed of mostly helical modules strung together into long rods.
Collapse
Affiliation(s)
- Gang Dong
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
218
|
Langevin J, Morgan MJ, Sibarita JB, Aresta S, Murthy M, Schwarz T, Camonis J, Bellaïche Y. Drosophila Exocyst Components Sec5, Sec6, and Sec15 Regulate DE-Cadherin Trafficking from Recycling Endosomes to the Plasma Membrane. Dev Cell 2005; 9:365-76. [PMID: 16224820 DOI: 10.1016/j.devcel.2005.07.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The E-Cadherin-catenin complex plays a critical role in epithelial cell-cell adhesion, polarization, and morphogenesis. Here, we have analyzed the mechanism of Drosophila E-Cadherin (DE-Cad) localization. Loss of function of the Drosophila exocyst components sec5, sec6, and sec15 in epithelial cells results in DE-Cad accumulation in an enlarged Rab11 recycling endosomal compartment and inhibits DE-Cad delivery to the membrane. Furthermore, Rab11 and Armadillo interact with the exocyst components Sec15 and Sec10, respectively. Our results support a model whereby the exocyst regulates DE-Cadherin trafficking, from recycling endosomes to sites on the epithelial cell membrane where Armadillo is located.
Collapse
|
219
|
Roumanie O, Wu H, Molk JN, Rossi G, Bloom K, Brennwald P. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 2005; 170:583-94. [PMID: 16103227 PMCID: PMC2171504 DOI: 10.1083/jcb.200504108] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 07/12/2005] [Indexed: 11/22/2022] Open
Abstract
Rho GTPases are important regulators of polarity in eukaryotic cells. In yeast they are involved in regulating the docking and fusion of secretory vesicles with the cell surface. Our analysis of a Rho3 mutant that is unable to interact with the Exo70 subunit of the exocyst reveals a normal polarization of the exocyst complex as well as other polarity markers. We also find that there is no redundancy between the Rho3-Exo70 and Rho1-Sec3 pathways in the localization of the exocyst. This suggests that Rho3 and Cdc42 act to polarize exocytosis by activating the exocytic machinery at the membrane without the need to first recruit it to sites of polarized growth. Consistent with this model, we find that the ability of Rho3 and Cdc42 to hydrolyze GTP is not required for their role in secretion. Moreover, our analysis of the Sec3 subunit of the exocyst suggests that polarization of the exocyst may be a consequence rather than a cause of polarized exocytosis.
Collapse
Affiliation(s)
- Olivier Roumanie
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
220
|
Abstract
The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small G-protein Rho1 is principally responsible for orchestrating changes to the cell wall periodically through the cell cycle and in response to various forms of cell wall stress. This signaling pathway acts through direct control of wall biosynthetic enzymes, transcriptional regulation of cell wall-related genes, and polarization of the actin cytoskeleton. However, additional signaling pathways interface both with the cell wall integrity signaling pathway and with the actin cytoskeleton to coordinate polarized secretion with cell wall expansion. These include Ca(2+) signaling, phosphatidylinositide signaling at the plasma membrane, sphingoid base signaling through the Pkh1 and -2 protein kinases, Tor kinase signaling, and pathways controlled by the Rho3, Rho4, and Cdc42 G-proteins.
Collapse
Affiliation(s)
- David E Levin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
221
|
VerPlank L, Li R. Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis. Mol Biol Cell 2005; 16:2529-43. [PMID: 15772160 PMCID: PMC1087255 DOI: 10.1091/mbc.e04-12-1090] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/07/2005] [Accepted: 03/02/2005] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis requires the coordination of many cellular complexes, particularly those involved in the constriction and reconstruction of the plasma membrane in the cleavage furrow. We have investigated the regulation and function of vesicle transport and fusion during cytokinesis in budding yeast. By using time-lapse confocal microscopy, we show that post-Golgi vesicles, as well as the exocyst, a complex required for the tethering and fusion of these vesicles, localize to the bud neck at a precise time just before spindle disassembly and actomyosin ring contraction. Using mutants affecting cyclin degradation and the mitotic exit network, we found that targeted secretion, in contrast to contractile ring activation, requires cyclin degradation but not the mitotic exit network. Analysis of cells in late anaphase bearing exocyst and myosin V mutations show that both vesicle transport and fusion machineries are required for the completion of cytokinesis, but this is not due to a delay in mitotic exit or assembly of the contractile ring. Further investigation of the dynamics of contractile rings in exocyst mutants shows these cells may be able to initiate contraction but often fail to complete the contraction due to premature disassembly during the contraction phase. This phenotype led us to identify Chs2, a transmembrane protein targeted to the bud neck through the exocytic pathway, as necessary for actomyosin ring stability during contraction. Chs2, as the chitin synthase that produces the primary septum, thus couples the assembly of the extracellular matrix with the dynamics of the contractile ring during cytokinesis.
Collapse
Affiliation(s)
- Lynn VerPlank
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
222
|
Fadri M, Daquinag A, Wang S, Xue T, Kunz J. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 2005; 16:1883-900. [PMID: 15689497 PMCID: PMC1073669 DOI: 10.1091/mbc.e04-07-0564] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 01/25/2005] [Indexed: 01/15/2023] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] is a key second messenger that regulates actin and membrane dynamics, as well as other cellular processes. Many of the effects of PtdIns(4,5)P(2) are mediated by binding to effector proteins that contain a pleckstrin homology (PH) domain. Here, we identify two novel effectors of PtdIns(4,5)P(2) in the budding yeast Saccharomyces cerevisiae: the PH domain containing protein Slm1 and its homolog Slm2. Slm1 and Slm2 serve redundant roles essential for cell growth and actin cytoskeleton polarization. Slm1 and Slm2 bind PtdIns(4,5)P(2) through their PH domains. In addition, Slm1 and Slm2 physically interact with Avo2 and Bit61, two components of the TORC2 signaling complex, which mediates Tor2 signaling to the actin cytoskeleton. Together, these interactions coordinately regulate Slm1 targeting to the plasma membrane. Our results thus identify two novel effectors of PtdIns(4,5)P(2) regulating cell growth and actin organization and suggest that Slm1 and Slm2 integrate inputs from the PtdIns(4,5)P(2) and TORC2 to modulate polarized actin assembly and growth.
Collapse
Affiliation(s)
- Maria Fadri
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
223
|
Zhang X, Zajac A, Zhang J, Wang P, Li M, Murray J, TerBush D, Guo W. The critical role of Exo84p in the organization and polarized localization of the exocyst complex. J Biol Chem 2005; 280:20356-64. [PMID: 15788396 DOI: 10.1074/jbc.m500511200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exocyst complex plays an essential role in tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. However, how the exocyst complex is assembled and targeted to sites of secretion is unclear. Here, we have investigated the role of the exocyst component Exo84p in these processes. We have generated an array of temperature-sensitive yeast exo84 mutants. Electron microscopy and cargo protein traffic analyses of these mutants indicated that Exo84p is specifically involved in the post-Golgi stage of secretion. Using various yeast mutants, we systematically studied the localization of Exo84p and other exocyst proteins by fluorescence microscopy. We found that pre-Golgi traffic and polarized actin organization are required for Exo84p localization. However, none of the exocyst proteins controls Exo84p polarization. In addition, Sec3p is not responsible for the polarization of Exo84p or any other exocyst component to the daughter cell. On the other hand, several exocyst members, including Sec10p, Sec15p, and Exo70p, clearly require Exo84p for their polarization. Biochemical analyses of the exocyst composition indicated that the assembly of Sec10p, Sec15p, and Exo70p with the rest of the complex requires Exo84p. We propose that there are at least two distinct regulatory mechanisms for exocyst polarization, one for Sec3p and one for the other members, including Exo84p. Exo84p plays a critical role in both the assembly of the exocyst and its targeting to sites of secretion.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Kono K, Matsunaga R, Hirata A, Suzuki G, Abe M, Ohya Y. Involvement of actin and polarisome in morphological change during spore germination of Saccharomyces cerevisiae. Yeast 2005; 22:129-39. [PMID: 15645411 DOI: 10.1002/yea.1205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We studied the morphological changes of Saccharomyces cerevisiae ascospores during germination. Initiation of germination is followed by polarization of actin patches, maintaining their localization to the site of cell surface growth. Loss of polarisome components, Spa2p, Pea2p, Bud6p or Bni1p, results in depolarization of actin patches. Green fluorescent protein-fused polarisome components exhibit the polarized localization, implying that polarisome is involved in the polarized outgrowth during germination. At the late stage of germination, we found that actin patches temporally depolarize before bud emergence. The observation that loss of Cla4p extends the polarized growth period suggests that Cla4p is involved in the actin-depolization step. Actin polarization in the initial stage is accelerated by overexpression of Ras2p, whereas hyperpolarization is continuously observed by overexpression of Rho1p. Thus, yeast spore germination is a morphological event that is regulated by a number of factors implicated in mitotic bud morphogenesis.
Collapse
Affiliation(s)
- Keiko Kono
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277- 8562, Japan
| | | | | | | | | | | |
Collapse
|
225
|
Fitch PG, Gammie AE, Lee DJ, de Candal VB, Rose MD. Lrg1p Is a Rho1 GTPase-activating protein required for efficient cell fusion in yeast. Genetics 2005; 168:733-46. [PMID: 15514049 PMCID: PMC1448843 DOI: 10.1534/genetics.104.028027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify additional cell fusion genes in Saccharomyces cerevisiae, we performed a high-copy suppressor screen of fus2Delta. Higher dosage of three genes, BEM1, LRG1, and FUS1, partially suppressed the fus2Delta cell fusion defect. BEM1 and FUS1 were high-copy suppressors of many cell-fusion-defective mutations, whereas LRG1 suppressed only fus2Delta and rvs161Delta. Lrg1p contains a Rho-GAP homologous region. Complete deletion of LRG1, as well as deletion of the Rho-GAP coding region, caused decreased rates of cell fusion and diploid formation comparable to that of fus2Delta. Furthermore, lrg1Delta caused a more severe mating defect in combination with other cell fusion mutations. Consistent with an involvement in cell fusion, Lrg1p localized to the tip of the mating projection. Lrg1p-GAP domain strongly and specifically stimulated the GTPase activity of Rho1p, a regulator of beta(1-3)-glucan synthase in vitro. beta(1-3)-glucan deposition was increased in lrg1Delta strains and mislocalized to the tip of the mating projection in fus2Delta strains. High-copy LRG1 suppressed the mislocalization of beta(1-3) glucan in fus2Delta strains. We conclude that Lrg1p is a Rho1p-GAP involved in cell fusion and speculate that it acts to locally inhibit cell wall synthesis to aid in the close apposition of the plasma membranes of mating cells.
Collapse
Affiliation(s)
- Pamela G Fitch
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
226
|
Zajac A, Sun X, Zhang J, Guo W. Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth. Mol Biol Cell 2005; 16:1500-12. [PMID: 15647373 PMCID: PMC551511 DOI: 10.1091/mbc.e04-10-0896] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/26/2004] [Accepted: 12/28/2004] [Indexed: 01/02/2023] Open
Abstract
Polarized exocytosis is important for morphogenesis and cell growth. The exocyst is a multiprotein complex implicated in tethering secretory vesicles at specific sites of the plasma membrane for exocytosis. In the budding yeast, the exocyst is localized to sites of bud emergence or the tips of small daughter cells, where it mediates secretion and cell surface expansion. To understand how exocytosis is spatially controlled, we systematically analyzed the localization of Sec15p, a member of the exocyst complex and downstream effector of the rab protein Sec4p, in various mutants. We found that the polarized localization of Sec15p relies on functional upstream membrane traffic, activated rab protein Sec4p, and its guanine exchange factor Sec2p. The initial targeting of both Sec4p and Sec15p to the bud tip depends on polarized actin cable. However, different recycling mechanisms for rab and Sec15p may account for the different kinetics of polarization for these two proteins. We also found that Sec3p and Sec15p, though both members of the exocyst complex, rely on distinctive targeting mechanisms for their localization. The assembly of the exocyst may integrate various cellular signals to ensure that exocytosis is tightly controlled. Key regulators of cell polarity such as Cdc42p are important for the recruitment of the exocyst to the budding site. Conversely, we found that the proper localization of these cell polarity regulators themselves also requires a functional exocytosis pathway. We further report that Bem1p, a protein essential for the recruitment of signaling molecules for the establishment of cell polarity, interacts with the exocyst complex. We propose that a cyclical regulatory network contributes to the establishment and maintenance of polarized cell growth in yeast.
Collapse
Affiliation(s)
- Allison Zajac
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | |
Collapse
|
227
|
Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S. Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 2005; 16:1913-27. [PMID: 15703216 PMCID: PMC1073671 DOI: 10.1091/mbc.e04-07-0562] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100-insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64-labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.
Collapse
Affiliation(s)
- Daria Bloch
- Department of Plant Sciences, Tel Aviv University, Israel
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. ACTA ACUST UNITED AC 2005; 167:1087-98. [PMID: 15611334 PMCID: PMC2172599 DOI: 10.1083/jcb.200409068] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein–protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble “vertex” ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)–VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the “regulatory lipids” ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin regulate phosphatidylinositol 3-phosphate vertex enrichment. Though the PX domain of the SNARE Vam7p has direct affinity for only 3-phosphoinositides, all the regulatory lipids which are needed for vertex assembly affect Vam7p association with vacuoles. Thus, the assembly of the vacuole vertex ring microdomain arises from interdependent lipid and protein partitioning and binding rather than either lipid partitioning or protein interactions alone.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
229
|
Firon A, Lesage G, Bussey H. Integrative studies put cell wall synthesis on the yeast functional map. Curr Opin Microbiol 2005; 7:617-23. [PMID: 15556034 DOI: 10.1016/j.mib.2004.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fungal cell wall field, traditionally focused on polysaccharide composition and synthesis, retains a certain static architectural imagery of structural rigidity and integrity, with the wall offering protection from a harsh environment. This picture of the wall is increasingly changing to that of a bustling construction site, as research uncovers the organizational complexity of its assembly. With recent molecular and genomic studies on Saccharomyces cerevisiae, cell wall synthesis and biology appear increasingly to be dynamic and adaptable processes that are fully integrated with the underlying cytoskeletal and polarity machinery that drive cell cycle progression.
Collapse
Affiliation(s)
- Arnaud Firon
- Department of Biology, McGill University, Stewart Biology Building, 1205 Dr Penfield Avenue, Montreal, Québec H3A 1B1, Canada
| | | | | |
Collapse
|
230
|
Wiederkehr A, De Craene JO, Ferro-Novick S, Novick P. Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p. ACTA ACUST UNITED AC 2005; 167:875-87. [PMID: 15583030 PMCID: PMC2172455 DOI: 10.1083/jcb.200408001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exocyst is an octameric protein complex required to tether secretory vesicles to exocytic sites and to retain ER tubules at the apical tip of budded cells. Unlike the other five exocyst genes, SEC3, SEC5, and EXO70 are not essential for growth or secretion when either the upstream activator rab, Sec4p, or the downstream SNARE-binding component, Sec1p, are overproduced. Analysis of the suppressed sec3Δ, sec5Δ, and exo70Δ strains demonstrates that the corresponding proteins confer differential effects on vesicle targeting and ER inheritance. Sec3p and Sec5p are more critical than Exo70p for ER inheritance. Although nonessential under these conditions, Sec3p, Sec5p, and Exo70p are still important for tethering, as in their absence the exocyst is only partially assembled. Sec1p overproduction results in increased SNARE complex levels, indicating a role in assembly or stabilization of SNARE complexes. Furthermore, a fraction of Sec1p can be coprecipitated with the exoycst. Our results suggest that Sec1p couples exocyst-mediated vesicle tethering with SNARE-mediated docking and fusion.
Collapse
Affiliation(s)
- Andreas Wiederkehr
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
231
|
Boyd C, Hughes T, Pypaert M, Novick P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol 2004; 167:889-901. [PMID: 15583031 PMCID: PMC2172445 DOI: 10.1083/jcb.200408124] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 10/19/2004] [Indexed: 11/22/2022] Open
Abstract
Exocytosis in the budding yeast Saccharomyces cerevisiae occurs at discrete domains of the plasma membrane. The protein complex that tethers incoming vesicles to sites of secretion is known as the exocyst. We have used photobleaching recovery experiments to characterize the dynamic behavior of the eight subunits that make up the exocyst. One subset (Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, and Exo84p) exhibits mobility similar to that of the vesicle-bound Rab family protein Sec4p, whereas Sec3p and Exo70p exhibit substantially more stability. Disruption of actin assembly abolishes the ability of the first subset of subunits to recover after photobleaching, whereas Sec3p and Exo70p are resistant. Immunogold electron microscopy and epifluorescence video microscopy indicate that all exocyst subunits, except for Sec3p, are associated with secretory vesicles as they arrive at exocytic sites. Assembly of the exocyst occurs when the first subset of subunits, delivered on vesicles, joins Sec3p and Exo70p on the plasma membrane. Exocyst assembly serves to both target and tether vesicles to sites of exocytosis.
Collapse
Affiliation(s)
- Charles Boyd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
232
|
Bounacer A, McGregor A, Skinner J, Bond J, Poghosyan Z, Wynford-Thomas D. Mutant ras-induced proliferation of human thyroid epithelial cells requires three effector pathways. Oncogene 2004; 23:7839-45. [PMID: 15361839 DOI: 10.1038/sj.onc.1208085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ras mutations occur as an early event in many human tumours of epithelial origin, including thyroid. Using primary human thyroid epithelial cells to model tumour initiation by Ras, we have shown previously that activation of both the MAP kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) effector pathways are necessary, but even when activated together are not sufficient, for Ras-induced proliferation. Here, we show that a third effector, RalGEF, is also activated by Ras in these cells, that this activation is necessary for Ras-induced proliferation, and furthermore that in combination with the MAPK and PI3K effectors, it is able to reproduce the proliferative effect of activated Ras. The requirement for three effector pathways indicates a more robust control of cell proliferation in this normal human epithelial cell type than has been displayed in previous similar studies using rodent and human cell lines. Our findings highlight the importance of the appropriate cellular context in models of Ras-induced tumour development.
Collapse
Affiliation(s)
- Ali Bounacer
- Cancer Research UK Laboratories, Department of Pathology, University of Wales College of Medicine, Cardiff CF14 4XN, UK
| | | | | | | | | | | |
Collapse
|
233
|
Gao XD, Caviston JP, Tcheperegine SE, Bi E. Pxl1p, a paxillin-like protein in Saccharomyces cerevisiae, may coordinate Cdc42p and Rho1p functions during polarized growth. Mol Biol Cell 2004; 15:3977-85. [PMID: 15215315 PMCID: PMC515332 DOI: 10.1091/mbc.e04-01-0079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 05/19/2004] [Accepted: 06/14/2004] [Indexed: 11/11/2022] Open
Abstract
Rho-family GTPases Cdc42p and Rho1p play critical roles in the budding process of the yeast Saccharomyces cerevisiae. However, it is not clear how the functions of these GTPases are coordinated temporally and spatially during this process. Based on its ability to suppress cdc42-Ts mutants when overexpressed, a novel gene PXL1 was identified. Pxl1p resembles mammalian paxillin, which is involved in integrating various signaling events at focal adhesion. Both proteins share amino acid sequence homology and structural organization. When expressed in yeast, chicken paxillin localizes to the sites of polarized growth as Pxl1p does. In addition, the LIM domains in both proteins are the primary determinant for targeting the proteins to the cortical sites in their native cells. These data strongly suggest that Pxl1p is the "ancient paxillin" in yeast. Deletion of PXL1 does not produce any obvious phenotype. However, Pxl1p directly binds to Rho1p-GDP in vitro, and inhibits the growth of rho1-2 and rho1-3 mutants in a dosage-dependent manner. The opposite effects of overexpressed Pxl1p on cdc42 and rho1 mutants suggest that the functions of Cdc42p and Rho1p may be coordinately regulated during budding and that Pxl1p may be involved in this coordination.
Collapse
Affiliation(s)
- Xiang-Dong Gao
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
234
|
Balasubramanian MK, Bi E, Glotzer M. Comparative Analysis of Cytokinesis in Budding Yeast, Fission Yeast and Animal Cells. Curr Biol 2004; 14:R806-18. [PMID: 15380095 DOI: 10.1016/j.cub.2004.09.022] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis is a temporally and spatially regulated process through which the cellular constituents of the mother cell are partitioned into two daughter cells, permitting an increase in cell number. When cytokinesis occurs in a polarized cell it can create daughters with distinct fates. In eukaryotes, cytokinesis is carried out by the coordinated action of a cortical actomyosin contractile ring and targeted membrane deposition. Recent use of model organisms with facile genetics and improved light-microscopy methods has led to the identification and functional characterization of many proteins involved in cytokinesis. To date, this analysis indicates that some of the basic components involved in cytokinesis are conserved from yeast to humans, although their organization into functional machinery that drives cytokinesis and the associated regulatory mechanisms bear species-specific features. Here, we briefly review the current status of knowledge of cytokinesis in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and animal cells, in an attempt to highlight both the common and the unique features. Although these organisms diverged from a common ancestor about a billion years ago, there are eukaryotes that are far more divergent. To evaluate the overall evolutionary conservation of cytokinesis, it will be necessary to include representatives of these divergent branches. Nevertheless, the three species discussed here provide substantial mechanistic diversity.
Collapse
|
235
|
Boldogh IR, Ramcharan SL, Yang HC, Pon LA. A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol Biol Cell 2004; 15:3994-4002. [PMID: 15215313 PMCID: PMC515334 DOI: 10.1091/mbc.e04-01-0053] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.
Collapse
Affiliation(s)
- Istvan R Boldogh
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
236
|
Tethering proteins in membrane traffic. REGULATORY MECHANISMS OF INTRACELLULAR MEMBRANE TRANSPORT 2004. [DOI: 10.1007/b98495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
237
|
deHart AKA, Schnell JD, Allen DA, Tsai JY, Hicke L. Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell 2004; 14:4676-84. [PMID: 14593073 PMCID: PMC266782 DOI: 10.1091/mbc.e03-05-0323] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Efficient internalization of proteins from the cell surface is essential for regulating cell growth and differentiation. In a screen for yeast mutants defective in ligand-stimulated internalization of the alpha-factor receptor, we identified a mutant allele of TOR2, tor2G2128R. Tor proteins are known to function in translation initiation and nutrient sensing and are required for cell cycle progression through G1. Yeast Tor2 has an additional role in regulating the integrity of the cell wall by activating the Rho1 guanine nucleotide exchange factor Rom2. The endocytic defect in tor2G2128R cells is due to disruption of this Tor2 unique function. Other proteins important for cell integrity, Rom2 and the cell integrity sensor Wsc1, are also required for efficient endocytosis. A rho1 mutant specifically defective in activation of the glucan synthase Fks1/2 does not internalize alpha-factor efficiently, and fks1Delta cells exhibit a similar phenotype. Removal of the cell wall does not inhibit internalization, suggesting that the function of Rho1 and Fks1 in endocytosis is not through cell wall synthesis or structural integrity. These findings reveal a novel function for the Tor2-Rho1 pathway in controlling endocytosis in yeast, a function that is mediated in part through the plasma membrane protein Fks1.
Collapse
Affiliation(s)
- Amy K A deHart
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
238
|
Seguí-Simarro JM, Austin JR, White EA, Staehelin LA. Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. THE PLANT CELL 2004; 16:836-56. [PMID: 15020749 PMCID: PMC412860 DOI: 10.1105/tpc.017749] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 01/28/2004] [Indexed: 05/17/2023]
Abstract
We have investigated the process of somatic-type cytokinesis in Arabidopsis (Arabidopsis thaliana) meristem cells with a three-dimensional resolution of approximately 7 nm by electron tomography of high-pressure frozen/freeze-substituted samples. Our data demonstrate that this process can be divided into four phases: phragmoplast initials, solid phragmoplast, transitional phragmoplast, and ring-shaped phragmoplast. Phragmoplast initials arise from clusters of polar microtubules (MTs) during late anaphase. At their equatorial planes, cell plate assembly sites are formed, consisting of a filamentous ribosome-excluding cell plate assembly matrix (CPAM) and Golgi-derived vesicles. The CPAM, which is found only around growing cell plate regions, is suggested to be responsible for regulating cell plate growth. Virtually all phragmoplast MTs terminate inside the CPAM. This association directs vesicles to the CPAM and thereby to the growing cell plate. Cell plate formation within the CPAM appears to be initiated by the tethering of vesicles by exocyst-like complexes. After vesicle fusion, hourglass-shaped vesicle intermediates are stretched to dumbbells by a mechanism that appears to involve the expansion of dynamin-like springs. This stretching process reduces vesicle volume by approximately 50%. At the same time, the lateral expansion of the phragmoplast initials and their CPAMs gives rise to the solid phragmoplast. Later arriving vesicles begin to fuse to the bulbous ends of the dumbbells, giving rise to the tubulo-vesicular membrane network (TVN). During the transitional phragmoplast stage, the CPAM and MTs disassemble and then reform in a peripheral ring phragmoplast configuration. This creates the centrifugally expanding peripheral cell plate growth zone, which leads to cell plate fusion with the cell wall. Simultaneously, the central TVN begins to mature into a tubular network, and ultimately into a planar fenestrated sheet (PFS), through the removal of membrane via clathrin-coated vesicles and by callose synthesis. Small secondary CPAMs with attached MTs arise de novo over remaining large fenestrae to focus local growth to these regions. When all of the fenestrae are closed, the new cell wall is complete. Few endoplasmic reticulum (ER) membranes are seen associated with the phragmoplast initials and with the TVN cell plate that is formed within the solid phragmoplast. ER progressively accumulates thereafter, reaching a maximum during the late PFS stage, when most cell plate growth is completed.
Collapse
Affiliation(s)
- José M Seguí-Simarro
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | | | |
Collapse
|
239
|
Sjölinder M, Uhlmann J, Ponstingl H. Characterisation of an evolutionary conserved protein interacting with the putative guanine nucleotide exchange factor DelGEF and modulating secretion. Exp Cell Res 2004; 294:68-76. [PMID: 14980502 DOI: 10.1016/j.yexcr.2003.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Indexed: 11/26/2022]
Abstract
A human cDNA library was screened for proteins interacting with the deafness locus putative guanine nucleotide exchange factor (DelGEF) using a yeast two-hybrid system. A protein with a predicted size of 9 kDa was identified as a binding partner, this protein was designated DelGEF interacting protein 1 (DelGIP1). The interaction between DelGEF and DelGIP1 was verified by co-immunoprecipitation of a DelGEF-DelGIP1 complex from cell lysates. Highly conserved homologues of DelGIP1 were identified in higher and lower eukaryotes by database searching. The human DelGIP1 gene is ubiquitously expressed as judged by human multiple tissue Northern blot analysis. DelGEF was recently shown to interact with Sec5, a protein involved in secretion, and to regulate secretion of proteoglycans. Downregulation of endogenous DelGIP1 in HeLa cells induced increased extracellular secretion of proteoglycans indicating a possible role for DelGIP1 in the secretion process.
Collapse
Affiliation(s)
- Mikael Sjölinder
- Division for Molecular Biology of Mitosis, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
240
|
Mackin NA, Sousou TJ, Erdman SE. The PXL1 gene of Saccharomyces cerevisiae encodes a paxillin-like protein functioning in polarized cell growth. Mol Biol Cell 2004; 15:1904-17. [PMID: 14767053 PMCID: PMC379286 DOI: 10.1091/mbc.e04-01-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae open reading frame YKR090w encodes a predicted protein displaying similarity in organization to paxillin, a scaffolding protein that organizes signaling and actin cytoskeletal regulating activities in many higher eucaryotic cell types. We found that YKR090w functions in a manner analogous to paxillin as a mediator of polarized cell growth; thus, we have named this gene PXL1 (Paxillin-like protein 1). Analyses of pxl1Delta strains show that PXL1 is required for the selection and maintenance of polarized growth sites during vegetative growth and mating. Genetic analyses of strains lacking both PXL1 and the Rho GAP BEM2 demonstrate that such cells display pronounced growth defects in response to different conditions causing Rho1 pathway activation. PXL1 also displays genetic interactions with the Rho1 effector FKS1. Pxl1p may therefore function as a modulator of Rho-GTPase signaling. A GFP::Pxl1 fusion protein localizes to sites of polarized cell growth. Experiments mapping the localization determinants of Pxl1p demonstrate the existence of localization mechanisms conserved between paxillin and Pxl1p and indicate an evolutionarily ancient and conserved role for LIM domain proteins in acting to modulate cell signaling and cytoskeletal organization during polarized growth.
Collapse
Affiliation(s)
- Nancy A Mackin
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | |
Collapse
|
241
|
Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rossé C, Camonis J, Chavrier P. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. ACTA ACUST UNITED AC 2004; 163:1111-21. [PMID: 14662749 PMCID: PMC2173613 DOI: 10.1083/jcb.200305029] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The small guanosine triphosphate (GTP)–binding protein ADP-ribosylation factor (ARF) 6 regulates membrane recycling to regions of plasma membrane remodeling via the endocytic pathway. Here, we show that GTP–bound ARF6 interacts with Sec10, a subunit of the exocyst complex involved in docking of vesicles with the plasma membrane. We found that Sec10 localization in the perinuclear region is not restricted to the trans-Golgi network, but extends to recycling endosomes. In addition, we report that depletion of Sec5 exocyst subunit or dominant inhibition of Sec10 affects the function and the morphology of the recycling pathway. Sec10 is found to redistribute to ruffling areas of the plasma membrane in cells expressing GTP-ARF6, whereas dominant inhibition of Sec10 interferes with ARF6-induced cell spreading. Our paper suggests that ARF6 specifies delivery and insertion of recycling membranes to regions of dynamic reorganization of the plasma membrane through interaction with the vesicle-tethering exocyst complex.
Collapse
Affiliation(s)
- Magali Prigent
- Membrane and Cytoskeleton Dynamics Group, UMR144 Centre National de la Recherche Scientifique, Institut Curie, 26 rue d'Ulm, F-75248 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Yeaman C, Grindstaff KK, Nelson WJ. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Sci 2004; 117:559-70. [PMID: 14709721 PMCID: PMC3368615 DOI: 10.1242/jcs.00893] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sec6/8 (exocyst) complex regulates vesicle delivery and polarized membrane growth in a variety of cells, but mechanisms regulating Sec6/8 localization are unknown. In epithelial cells, Sec6/8 complex is recruited to cell-cell contacts with a mixture of junctional proteins, but then sorts out to the apex of the lateral membrane with components of tight junction and nectin complexes. Sec6/8 complex fractionates in a high molecular mass complex with tight junction proteins and a portion of E-cadherin, and co-immunoprecipitates with cell surface-labeled E-cadherin and nectin-2alpha. Recruitment of Sec6/8 complex to cell-cell contacts can be achieved in fibroblasts when E-cadherin and nectin-2alpha are co-expressed. These results support a model in which localized recruitment of Sec6/8 complex to the plasma membrane by specific cell-cell adhesion complexes defines a site for vesicle delivery and polarized membrane growth during development of epithelial cell polarity.
Collapse
Affiliation(s)
- Charles Yeaman
- Department of Molecular and Cellular Physiology, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| | | | | |
Collapse
|
243
|
Guest GM, Lin X, Momany M. Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol 2004; 41:13-22. [PMID: 14643255 DOI: 10.1016/j.fgb.2003.08.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth of the filamentous fungus Aspergillus nidulans begins when the conidium breaks dormancy and grows isotropically. Eventually a germ tube emerges and the axis of growth remains fixed in the primary hypha while new growth axes are established basally to form secondary germ tubes and lateral branches. Rho1 is a Rho family GTPase that has been shown to be involved in polarity establishment and cell wall deposition in Saccharomyces cerevisiae. A gene predicted to encode a Rho1 homolog was cloned from A. nidulans and named rhoA. Strains carrying ectopic copies of the constitutively active rhoA(G14V) allele or the dominant rhoA(E40I) allele were created and characterized. The constitutively active rhoA(G14V) strain grew slowly relative to wild type and showed an abnormal clustered pattern of branch emergence. The rhoA(G14V) strain also labeled intensely with calcofluor, showed elevated levels of cell wall N-acetylglucosamine and had unusually thick cell walls. The dominant rhoA(E40I)strain was accelerated in the emergence of secondary and tertiary germ tubes, and lateral branches relative to wild type and showed lysis with prolonged incubation. The rhoA(E40I) strain also was hypersensitive to the cell wall disrupting agents calcofluor and caspofungin acetate and showed an increase in cell wall N-acetylglucosamine levels. Our results suggest that rhoA plays a role in polarity, proper branching pattern, and cell wall deposition.
Collapse
Affiliation(s)
- Gretel M Guest
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
244
|
Hsu SC, TerBush D, Abraham M, Guo W. The exocyst complex in polarized exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 233:243-65. [PMID: 15037366 DOI: 10.1016/s0074-7696(04)33006-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exocytosis is an essential membrane traffic event mediating the secretion of intracellular protein contents such as hormones and neurotransmitters as well as the incorporation of membrane proteins and lipids to specific domains of the plasma membrane. As a fundamental cell biological process, exocytosis is crucial for cell growth, cell-cell communication, and cell polarity establishment. For most eukaryotic cells exocytosis is polarized. A multiprotein complex, named the exocyst, is required for polarized exocytosis from yeast to mammals. The exocyst consists of eight components: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84. They are localized to sites of active exocytosis, where they mediate the targeting and tethering of post-Golgi secretory vesicles for subsequent membrane fusion. Here we review the progress made in the understanding of the exocyst and its role in polarized exocytosis.
Collapse
Affiliation(s)
- Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
245
|
Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol Biol Cell 2003; 14:4770-82. [PMID: 12960429 PMCID: PMC284782 DOI: 10.1091/mbc.e03-04-0229] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec3p is a component of the exocyst complex that tethers secretory vesicles to the plasma membrane at exocytic sites in preparation for fusion. Unlike all other exocyst structural genes, SEC3 is not essential for growth. Cells lacking Sec3p grow and secrete surprisingly well at 25 degrees C; however, late markers of secretion, such as the vesicle marker Sec4p and the exocyst subunit Sec8p, localize more diffusely within the bud. Furthermore, sec3Delta cells are strikingly round relative to wild-type cells and are unable to form pointed mating projections in response to alpha factor. These phenotypes support the proposed role of Sec3p as a spatial landmark for secretion. We also find that cells lacking Sec3p exhibit a dramatic defect in the inheritance of cortical ER into the bud, whereas the inheritance of mitochondria and Golgi is unaffected. Overexpression of Sec3p results in a prominent patch of the endoplasmic reticulum (ER) marker Sec61p-GFP at the bud tip. Cortical ER inheritance in yeast has been suggested to involve the capture of ER tubules at the bud tip. Sec3p may act in this process as a spatial landmark for cortical ER inheritance.
Collapse
Affiliation(s)
- Andreas Wiederkehr
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
246
|
Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA. Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 2003; 278:51743-8. [PMID: 14525976 DOI: 10.1074/jbc.m308702200] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ral GTPases have been implicated in the regulation of a variety of dynamic cellular processes including proliferation, oncogenic transformation, actin-cytoskeletal dynamics, endocytosis, and exocytosis. Recently the Sec6/8 complex, or exocyst, a multisubunit complex facilitating post-Golgi targeting of distinct subclasses of secretory vesicles, has been identified as a bona fide Ral effector complex. Ral GTPases regulate exocyst-dependent vesicle trafficking and are required for exocyst complex assembly. Sec5, a membrane-associated exocyst subunit, has been identified as a direct target of activated Ral; however, the mechanism by which Ral can modulate exocyst assembly is unknown. Here we report that an additional component of the exocyst, Exo84, is a direct target of activated Ral. We provide evidence that mammalian exocyst components are present as distinct subcomplexes on vesicles and the plasma membrane and that Ral GTPases regulate the assembly interface of a full octameric exocyst complex through interaction with Sec5 and Exo84.
Collapse
Affiliation(s)
- Serge Moskalenko
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039, USA
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Lecuona E, Ridge K, Pesce L, Batlle D, Sznajder JI. The GTP-binding protein RhoA mediates Na,K-ATPase exocytosis in alveolar epithelial cells. Mol Biol Cell 2003; 14:3888-97. [PMID: 12972572 PMCID: PMC196585 DOI: 10.1091/mbc.e02-12-0781] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 05/01/2003] [Accepted: 05/02/2003] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to define the role of the Rho family of small GTPases in the beta-adrenergic regulation of the Na,K-ATPase in alveolar epithelial cells (AEC). The beta-adrenergic receptor agonist isoproterenol (ISO) increased the Na,K-ATPase protein abundance at the plasma membrane and activated RhoA in a time-dependent manner. AEC pretreated with mevastatin, a specific inhibitor of prenylation, or transfected with the dominant negative RhoAN19, prevented ISO-mediated Na,K-ATPase exocytosis to the plasma membrane. The ISO-mediated activation of RhoA in AEC occurred via beta2-adrenergic receptors and involved Gs-PKA as demonstrated by incubation with the protein kinase A (PKA)-specific inhibitors H89 and PKI (peptide specific inhibitor), and Gi, as incubation with pertussis toxin or cells transfected with a minigene vector for Gi inhibited the ISO-mediated RhoA activation. However, cells transfected with minigene vectors for G12 and G13 did not prevent RhoA activation by ISO. Finally, the ISO-mediated Na,K-ATPase exocytosis was regulated by the Rho-associated kinase (ROCK), as preincubation with the specific inhibitor Y-27632 or transfection with dominant negative ROCK, prevented the increase in Na,K-ATPase at the plasma membrane. Accordingly, ISO regulates Na,K-ATPase exocytosis in AEC via the activation of beta2-adrenergic receptor, Gs, PKA, Gi, RhoA, and ROCK.
Collapse
Affiliation(s)
- Emilia Lecuona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
248
|
Elazar Z, Scherz-Shouval R, Shorer H. Involvement of LMA1 and GATE-16 family members in intracellular membrane dynamics. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:145-56. [PMID: 12914955 DOI: 10.1016/s0167-4889(03)00086-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intracellular membrane fusion is conserved from yeast to man as well as among different intracellular trafficking pathways. This process can be generally divided into several well-defined biochemical reactions. First, an early recognition (or tethering) takes place between donor and acceptor membranes, mediated by ypt/rab GTPases and complexes of tethering factors. Subsequently, a closer association between the two membranes is achieved by a docking process, which involves tight association between membrane proteins termed SNAREs. The formation of such a trans-SNARE complex leads to the final membrane fusion, resulting in an accumulation of cis-SNARE complexes on the acceptor membrane. Thus, multiple rounds of transport and delivery of the donor SNARE back to its original membrane require dissociation of the SNARE complexes. SNARE dissociation, termed priming, is mediated by the AAA ATPase, N-ethylmaleimide-sensitive factor (NSF) and its partner, soluble NSF attachment protein (SNAP), in a reaction that requires ATP hydrolysis. In the present review we focus on LMA1 and GATE-16, two low-molecular-weight proteins, which assist in priming SNARE molecules in the vacuole in yeast and the Golgi complex in mammals, respectively. LMA1 and GATE-16 are suggested to keep the dissociated cis-SNAREs apart from each other, allowing multiple fusion processes to take place. GATE-16 belongs to a novel family of ubiquitin-like proteins conserved from yeast to man. We discuss here the involvement of this family in multiple intracellular trafficking pathways.
Collapse
Affiliation(s)
- Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
249
|
Abstract
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events.
Collapse
Affiliation(s)
- Gary Eitzen
- Department of Cell Biology, MSB 5-14, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
250
|
Wang H, Tang X, Balasubramanian MK. Rho3p regulates cell separation by modulating exocyst function in Schizosaccharomyces pombe. Genetics 2003; 164:1323-31. [PMID: 12930742 PMCID: PMC1462644 DOI: 10.1093/genetics/164.4.1323] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytokinesis is the final stage of the cell division cycle in which the mother cell is physically divided into two daughters. In recent years the fission yeast Schizosaccharomyces pombe has emerged as an attractive model organism for the study of cytokinesis, since it divides using an actomyosin ring whose constriction is coordinated with the centripetal deposition of new membranes and a division septum. The final step of cytokinesis in S. pombe requires the digestion of the primary septum to liberate two daughters. We have previously shown that the multiprotein exocyst complex is essential for this process. Here we report the isolation of rho3(+), encoding a Rho family GTPase, as a high-copy suppressor of an exocyst mutant, sec8-1. Overproduction of Rho3p also suppressed the temperature-sensitive growth phenotype observed in cells lacking Exo70p, another conserved component of the S. pombe exocyst complex. Cells deleted for rho3 arrest at higher growth temperatures with two or more nuclei and uncleaved division septa between pairs of nuclei. rho3Delta cells accumulate approximately 100-nm vesicle-like structures. These phenotypes are all similar to those observed in exocyst component mutants, consistent with a role for Rho3p in modulation of exocyst function. Taken together, our results suggest the possibility that S. pombe Rho3p regulates cell separation by modulation of exocyst function.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | | | | |
Collapse
|