201
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|
202
|
Singh S, Singh CM, Ranjan A, Kumar S, Singh DK. Evidences suggesting a possible role of Vitamin D in COVID 19: The missing link. Indian J Pharmacol 2021; 53:394-402. [PMID: 34854410 PMCID: PMC8641745 DOI: 10.4103/ijp.ijp_654_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 is spreading like wildfire with no specific recommended treatment in sight. While some risk factors such as the presence of comorbidities, old age, and ethnicity have been recognized, not a lot is known about who the virus will strike first or impact more. In this hopeless scenario, exploration of time-tested facts about viral infections, in general, seems to be a sound basis to prop further research upon. The fact that immunity and its various determinants (e.g., micronutrients, sleep, and hygiene) have a crucial role to play in the defense against invading organisms, may be a good starting point for commencing research into these as yet undisclosed territories. Herein, the excellent immunomodulatory, antiviral, and anti-inflammatory roles of Vitamin D necessitate thorough investigation, particularly in COVID-19 perspective. This article reviews mechanisms and evidence suggesting the role Vitamin D plays in people infected by the newly identified COVID-19 virus. For this review, we searched the databases of Medline, PubMed, and Embase. We studied several meta-analyses and randomized controlled trials evaluating the role of Vitamin D in influenza and other contagious viral infections. We also reviewed the circumstantial and anecdotal evidence connecting Vitamin D with COVID-19 emerging recently. Consequently, it seems logical to conclude that the immune-enhancing, antiviral, anti-inflammatory, and lung-protective role of Vitamin D can be potentially lifesaving. Hence, Vitamin D deserves exhaustive exploration through rigorously designed and controlled scientific trials. Using Vitamin D as prophylaxis and/or chemotherapeutic treatment of COVID-19 infection is an approach worth considering. In this regard, mass assessment and subsequent supplementation can be tried, especially considering the mechanistic evidence in respiratory infections, low potential for toxicity, and widespread prevalence of the deficiency of Vitamin D affecting many people worldwide.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - C M Singh
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Alok Ranjan
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Sanjeev Kumar
- Department of CTVS, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Dheeraj Kumar Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
203
|
Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021; 17:e1010106. [PMID: 34969061 PMCID: PMC8718010 DOI: 10.1371/journal.ppat.1010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.
Collapse
Affiliation(s)
- Olivier Terrier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mustapha Si-Tahar
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Inserm U1100, Research Center for Respiratory Diseases (CEPR), Université de Tours, Tours, France
| | - Mariette Ducatez
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- IHAP, UMR1225, Université de Toulouse, ENVT, INRAE, Toulouse, France
| | - Christophe Chevalier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Andrés Pizzorno
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Ronan Le Goffic
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Thibaut Crépin
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gaëlle Simon
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Nadia Naffakh
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
204
|
Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and Treatment of Cytokine Storm Induced by Infectious Diseases. Int J Mol Sci 2021; 22:13009. [PMID: 34884813 PMCID: PMC8658039 DOI: 10.3390/ijms222313009] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De-Kun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (X.-D.T.); (T.-T.J.); (J.-R.D.); (H.F.); (F.-Q.C.); (X.C.); (H.-Y.Z.)
| |
Collapse
|
205
|
Almutairi F, Sarr D, Tucker SL, Fantone K, Lee JK, Rada B. RGS10 Reduces Lethal Influenza Infection and Associated Lung Inflammation in Mice. Front Immunol 2021; 12:772288. [PMID: 34912341 PMCID: PMC8667315 DOI: 10.3389/fimmu.2021.772288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.
Collapse
Affiliation(s)
- Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kayla Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
206
|
Ezeonwumelu IJ, Garcia-Vidal E, Ballana E. JAK-STAT Pathway: A Novel Target to Tackle Viral Infections. Viruses 2021; 13:v13122379. [PMID: 34960648 PMCID: PMC8704679 DOI: 10.3390/v13122379] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Modulation of the antiviral innate immune response has been proposed as a putative cellular target for the development of novel pan-viral therapeutic strategies. The Janus kinase–signal transducer and activator of transcription (JAK-STAT) pathway is especially relevant due to its essential role in the regulation of local and systemic inflammation in response to viral infections, being, therefore, a putative therapeutic target. Here, we review the extraordinary diversity of strategies that viruses have evolved to interfere with JAK-STAT signaling, stressing the relevance of this pathway as a putative antiviral target. Moreover, due to the recent remarkable progress on the development of novel JAK inhibitors (JAKi), the current knowledge on its efficacy against distinct viral infections is also discussed. JAKi have a proven efficacy against a broad spectrum of disorders and exhibit safety profiles comparable to biologics, therefore representing good candidates for drug repurposing strategies, including viral infections.
Collapse
|
207
|
Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021; 12:770066. [PMID: 34777390 PMCID: PMC8581451 DOI: 10.3389/fimmu.2021.770066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient’s history of health, and new therapeutic options identified.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ellesandra C Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa I Labzin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
208
|
Murdaca G, Paladin F, Tonacci A, Isola S, Allegra A, Gangemi S. The Potential Role of Cytokine Storm Pathway in the Clinical Course of Viral Respiratory Pandemic. Biomedicines 2021; 9:1688. [PMID: 34829918 PMCID: PMC8615478 DOI: 10.3390/biomedicines9111688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 01/01/2023] Open
Abstract
The "cytokine storm" (CS) consists of a spectrum of different immune dysregulation disorders characterized by constitutional symptoms, systemic inflammation and multiorgan dysfunction triggered by an uncontrolled immune response. Particularly in respiratory virus infections, the cytokine storm plays a primary role in the pathogenesis of respiratory disease and the clinical outcome of respiratory diseases, leading to complications such as alveolar edema and hypoxia. In this review, we wanted to analyze the different pathogenetic mechanisms involved in the various respiratory viral pandemics (COVID-19; SARS; MERS; H1N1 influenza A and Spanish flu) which have affected humans in this and last century, with particular attention to the phenomenon of the "cytokine storm" which determines the clinical severity of the respiratory disease and consequently its lethality.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| |
Collapse
|
209
|
Gallelli L, Mannino GC, Luciani F, de Sire A, Mancuso E, Gangemi P, Cosco L, Monea G, Averta C, Minchella P, Colosimo M, Muraca L, Longhini F, Ammendolia A, Andreozzi F, De Sarro G, G&P Working Group, Cione E. Vitamin D Serum Levels in Subjects Tested for SARS-CoV-2: What Are the Differences among Acute, Healed, and Negative COVID-19 Patients? A Multicenter Real-Practice Study. Nutrients 2021; 13:3932. [PMID: 34836187 PMCID: PMC8625490 DOI: 10.3390/nu13113932] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin D might play a role in counteracting COVID-19, albeit strong evidence is still lacking in the literature. The present multicenter real-practice study aimed to evaluate the differences of 25(OH)D3 serum levels in adults tested for SARS-CoV-2 (acute COVID-19 patients, subjects healed from COVID-19, and non-infected ones) recruited over a 6-month period (March-September 2021). In a sample of 117 subjects, a statistically significant difference was found, with acute COVID-19 patients demonstrating the lowest levels of serum 25(OH)D3 (9.63 ± 8.70 ng/mL), significantly lower than values reported by no-COVID-19 patients (15.96 ± 5.99 ng/mL, p = 0.0091) and healed COVID-19 patients (11.52 ± 4.90 ng/mL, p > 0.05). Male gender across the three groups displayed unfluctuating 25(OH)D3 levels, hinting at an inability to ensure adequate levels of the active vitamin D3 form (1α,25(OH)2D3). As a secondary endpoint, we assessed the correlation between serum 25(OH)D3 levels and pro-inflammatory cytokine interleukin-6 (IL-6) in patients with extremely low serum 25(OH)D3 levels (<1 ng/mL) and in a subset supplemented with 1α,25(OH)2D3. Although patients with severe hypovitaminosis-D showed no significant increase in IL-6 levels, acute COVID-19 patients manifested high circulating IL-6 at admission (females = 127.64 ± 22.24 pg/mL, males = 139.28 ± 48.95 ng/mL) which dropped drastically after the administration of 1α,25(OH)2D3 (1.84 ± 0.77 pg/mL and 2.65 ± 0.92 ng/mL, respectively). Taken together, these findings suggest that an administration of 1α,25(OH)2D3 might be helpful for treating male patients with an acute COVID-19 infection. Further studies on rapid correction of vitamin D deficiency with fast acting metabolites are warranted in COVID-19 patients.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, 88100 Catanzaro, Italy; (L.G.); (G.D.S.)
| | - Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.C.M.); (E.M.); (G.M.); (C.A.)
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.C.M.); (E.M.); (G.M.); (C.A.)
| | - Pietro Gangemi
- Operative Unit of Clinical Chemistry Laboratory, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy;
| | - Lucio Cosco
- Department of Infectious Disease, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy;
| | - Giuseppe Monea
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.C.M.); (E.M.); (G.M.); (C.A.)
| | - Carolina Averta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.C.M.); (E.M.); (G.M.); (C.A.)
| | - Pasquale Minchella
- Department of Microbiology and Virology, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy; (P.M.); (M.C.)
| | - Manuela Colosimo
- Department of Microbiology and Virology, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy; (P.M.); (M.C.)
| | - Lucia Muraca
- Department of General Medicine, ASP 7, 88100 Catanzaro, Italy;
| | - Federico Longhini
- Department of Anesthesiology and Reanimation, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy;
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (G.C.M.); (E.M.); (G.M.); (C.A.)
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, 88100 Catanzaro, Italy; (L.G.); (G.D.S.)
| | | | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, 87036 Cosenza, Italy;
| |
Collapse
|
210
|
Xiang B, Song J, Chen L, Liang J, Li X, Yu D, Lin Q, Liao M, Ren T, Xu C. Duck-origin H5N6 avian influenza viruses induce different pathogenic and inflammatory effects in mice. Transbound Emerg Dis 2021; 68:3509-3518. [PMID: 33316151 DOI: 10.1111/tbed.13956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Since 2013, H5N6 highly pathogenic avian influenza viruses have caused considerable economic losses in the poultry industry and have caused 24 laboratory-confirmed human cases. In this study, we isolated nine (B1-B9) H5N6 viruses from healthy ducks in Guangdong Province, Southern China from December 2018 to April 2019. Phylogenetic analysis revealed that B1, B2, B3, B4, B5, B7, B8, and B9 clustered into the G1.1 genotype and shared high sequence similarity with human H5N6 isolates from Southern China in 2017 and 2018. Meanwhile, B6 clustered into the G1.1.9 genotype. The hemagglutinin (HA), neuraminidase (NA) and nonstructural protein (NS) gene segments of B6 were closely related to the human H5N6 isolates, while the other genomic segments were closely related to H5N6 viruses isolated from waterfowl in Southern China. Compared to B7, B6 had higher pathogenicity and induced stronger inflammatory responses in mice. B6 carried a full-length PB1-F2 protein (90 aa), while the rest carried an 11-amino acid C-terminal-truncated PB1-F2. The PB1-F2 protein may increase the virulence of B6 compared to that of B7. Our findings provide insight into the pathogenic mechanisms of H5N6 viruses in mammals and emphasize the need for continued surveillance of circulating H5N6 viruses in ducks.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jie Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Deshui Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
211
|
Abstract
Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells, and physical irritants. However, inappropriately triggered or sustained inflammation can respectively initiate, propagate, or prolong disease. Post-hemorrhagic (PHH) and post-infectious hydrocephalus (PIH) are the most common forms of hydrocephalus worldwide. They are treated using neurosurgical cerebrospinal fluid (CSF) diversion techniques with high complication and failure rates. Despite their distinct etiologies, clinical studies in human patients have shown PHH and PIH share similar CSF cytokine and immune cell profiles. Here, in light of recent work in model systems, we discuss the concept of "inflammatory hydrocephalus" to emphasize potential shared mechanisms and potential therapeutic vulnerabilities of these disorders. We propose that this change of emphasis could shift our thinking of PHH and PIH from a framework of life-long neurosurgical disorders to that of preventable conditions amenable to immunomodulation.
Collapse
|
212
|
Rappe JC, Finsterbusch K, Crotta S, Mack M, Priestnall SL, Wack A. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J Exp Med 2021; 218:e20201631. [PMID: 34473195 PMCID: PMC8421264 DOI: 10.1084/jem.20201631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cytokine-mediated immune-cell recruitment and inflammation contribute to protection in respiratory virus infection. However, uncontrolled inflammation and the "cytokine storm" are hallmarks of immunopathology in severe infection. Cytokine storm is a broad term for a phenomenon with diverse characteristics and drivers, depending on host genetics, age, and other factors. Taking advantage of the differential use of virus-sensing systems by different cell types, we test the hypothesis that specifically blocking TLR7-dependent, immune cell-produced cytokines reduces influenza-related immunopathology. In a mouse model of severe influenza characterized by a type I interferon (IFN-I)-driven cytokine storm, TLR7 antagonist treatment leaves epithelial antiviral responses unaltered but acts through pDCs and monocytes to reduce IFN-I and other cytokines in the lung, thus ameliorating inflammation and severity. Moreover, even in the absence of IFN-I signaling, TLR7 antagonism reduces inflammation and mortality driven by monocyte-produced chemoattractants and neutrophil recruitment into the infected lung. Hence, TLR7 antagonism reduces diverse types of cytokine storm in severe influenza.
Collapse
Affiliation(s)
- Julie C.F. Rappe
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
213
|
Yu W, Zeng M, Xu P, Liu J, Wang H. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153724. [PMID: 34509953 DOI: 10.1016/j.phymed.2021.153724] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Influenza often leads to acute lung injury (ALI). Few therapeutics options such as vaccines and other antiviral drugs are available. Paeoniflorin is a monoterpene glucoside isolated from the roots of Paeonia lactiflora Pall. that has showed good anti-inflammatory and anti-fibrotic effects. However, it is not known whether paeoniflorin has an effect on influenza virus-induced ALI. PURPOSE To investigative the protective effect and potential mechanism of paeoniflorin on ALI induced by influenza A virus (IAV). STUDY DESIGN AND METHODS The anti-influenza activity of paeoniflorin in vitro was investigated. Influenza virus A/FM/1/47 was intranasally infected in mice to induce ALI, and paeoniflorin (50 and 100 mg/kg) was given orally to mice during 5 days, beginning 2 h after infection. On day 6 post-infection, body and lung weights, histology and survival were observed, and the lungs were examined for viral load, cytokine and cellular pathway protein expression. RESULTS Results showed that paeoniflorin (50 and 100 mg/kg) reduced IAV-induced ALI. It reduces pulmonary oedema and improves histopathological changes in the lung, and also diminishes the accumulation of inflammatory cells in the lung. It was shown that paeoniflorin (50 and 100 mg/kg) alleviated IAV-induced ALI, as evidenced by improved survival in infected mice (40% and 50%, respectively), reduced viral titer in lung tissue, improved histological changes, and reduced lung inflammation. Paeoniflorin also improves pulmonary fibrosis by reducing the levels of pulmonary fibrotic markers (collagen type IV, alpha-smooth muscle actin, hyaluronic acid, laminin, and procollagen type III) and downregulating the expression levels of type I collagen (Col I) and type III collagen (Col III) in the lung tissues. Additionally, paeoniflorin inhibits the expression of αvβ3, TGF-β1, Smad2, NF-κB, and p38MAPK in the lung tissues. CONCLUSION The results showed that paeoniflorin (50 and 100 mg/kg) protected against IAV-induced ALI, and the underlying mechanism may be related to the reduction of pro-inflammatory cytokine production and lung collagen deposition through down-regulation of activation of αvβ3/TGF-β1 pathway in lung tissue.
Collapse
Affiliation(s)
- Wendi Yu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China
| | - Maosen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China.
| | - Jinyuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Huixian Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Rd., San Yuanli St., Bai Yun Dist., Guangzhou, Guangdong 510405, PR China
| |
Collapse
|
214
|
Specific Cytokine Profiles Predict the Severity of Influenza A Pneumonia: A Prospectively Multicenter Pilot Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9533044. [PMID: 34692846 PMCID: PMC8528594 DOI: 10.1155/2021/9533044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Purpose Studying the cytokine profiles in influenza A pneumonia could be helpful to better understand the pathogenesis of the disease and predict its prognosis. Patients and Methods. Patients with influenza A pneumonia (including 2009H1N1, H1N1, H3N1, and H7N1) hospitalized in six hospitals from January 2017 to October 2018 were enrolled (ClinicalTrials.gov ID, NCT03093220). Sputum samples were collected within 24 hours after admission and subsequently analyzed for cytokine profiles using a Luminex assay. Results A total of 35 patients with influenza A pneumonia were included in the study. The levels of IL-6, IFN-γ, and IL-2 were increased in patients with severe influenza A pneumonia (n =10) (P = 0.002, 0.009, and 0.008, respectively), while those of IL-5, IL-25, IL-17A, and IL-22 were decreased compared to patients with nonsevere pneumonia (P = 0.0001, 0.009, 0.0001, and 0.006, respectively). The levels of IL-2 and IL-6 in the nonsurvivors (n = 5) were significantly higher than those in the survivors (P = 0.043 and 0.0001, respectively), while the levels of IL-5, IL-17A, and IL-22 were significantly lower (P = 0.001, 0.012, and 0.043, respectively). The IL-4/IL-17A ratio has the potential to be a good predictor (AUC = 0.94, P < 0.05, sensitivity = 88.89%, specificity = 92.31%) and an independent risk factor (OR, 95% CI: 3.772, 1.188-11.975; P < 0.05) for intermittent positive pressure ventilation (n = 9). Conclusion Significant dysregulation of cytokine profiles can be observed in patients with severe influenza A pneumonia.
Collapse
|
215
|
Li X, Shao M, Zeng X, Qian P, Huang H. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy. Signal Transduct Target Ther 2021; 6:367. [PMID: 34667157 PMCID: PMC8526712 DOI: 10.1038/s41392-021-00764-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 09/05/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.
Collapse
Affiliation(s)
- Xia Li
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Mi Shao
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Xiangjun Zeng
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - He Huang
- grid.13402.340000 0004 1759 700XBone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 People’s Republic of China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China ,grid.13402.340000 0004 1759 700XZhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
216
|
Kolahchi Z, Sohrabi H, Ekrami Nasab S, Jelodari Mamaghani H, Keyfari Alamdari M, Rezaei N. Potential therapeutic approach of intravenous immunoglobulin against COVID-19. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:105. [PMID: 34627384 PMCID: PMC8501925 DOI: 10.1186/s13223-021-00609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Since the outbreak of the novel coronavirus disease (COVID-19), the therapeutic and management options to reduce the burden of the COVID-19 disease are under investigation. IVIG therapy is used as an effective treatment for immunodeficient patients and patients with inflammatory or autoimmune conditions. The therapeutic effect of IVIG in COVID-19 patients has been investigated. But, the results are controversial and some studies reported no benefit of IVIG therapy. More clinical trials on the effect of IVIG therapy in COVID-19 patients should be performed to establish a certain conclusion about IVIG effectiveness.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanye Sohrabi
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ekrami Nasab
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesan Jelodari Mamaghani
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Keyfari Alamdari
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194 Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
217
|
Charman M, McFarlane S, Wojtus JK, Sloan E, Dewar R, Leeming G, Al-Saadi M, Hunter L, Carroll MW, Stewart JP, Digard P, Hutchinson E, Boutell C. Constitutive TRIM22 Expression in the Respiratory Tract Confers a Pre-Existing Defence Against Influenza A Virus Infection. Front Cell Infect Microbiol 2021; 11:689707. [PMID: 34621686 PMCID: PMC8490869 DOI: 10.3389/fcimb.2021.689707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
The induction of antiviral effector proteins as part of a homeostatically controlled innate immune response to infection plays a critical role in limiting the propagation and transmission of respiratory pathogens. However, the prolonged induction of this immune response can lead to lung hyperinflammation, tissue damage, and respiratory failure. We hypothesized that tissues exposed to the constant threat of infection may constitutively express higher levels of antiviral effector proteins to reduce the need to activate potentially harmful innate immune defences. By analysing transcriptomic data derived from a range of human tissues, we identify lung tissue to express constitutively higher levels of antiviral effector genes relative to that of other mucosal and non-mucosal tissues. By using primary cell lines and the airways of rhesus macaques, we show the interferon-stimulated antiviral effector protein TRIM22 (TRIpartite Motif 22) to be constitutively expressed in the lung independently of viral infection or innate immune stimulation. These findings contrast with previous reports that have shown TRIM22 expression in laboratory-adapted cell lines to require interferon stimulation. We demonstrate that constitutive levels of TRIM22 are sufficient to inhibit the onset of human and avian influenza A virus (IAV) infection by restricting the onset of viral transcription independently of interferon-mediated innate immune defences. Thus, we identify TRIM22 to confer a pre-existing (intrinsic) intracellular defence against IAV infection in cells derived from the respiratory tract. Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-existing immune gene expression in the intracellular restriction of IAV from the outset of infection.
Collapse
Affiliation(s)
- Matthew Charman
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.,Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Steven McFarlane
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joanna K Wojtus
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elizabeth Sloan
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rebecca Dewar
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Gail Leeming
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mohammed Al-Saadi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.,Department of Animal Production, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Laura Hunter
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - James P Stewart
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Edward Hutchinson
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chris Boutell
- MRC - University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
218
|
Camp OG, Bai D, Gonullu DC, Nayak N, Abu-Soud HM. Melatonin interferes with COVID-19 at several distinct ROS-related steps. J Inorg Biochem 2021; 223:111546. [PMID: 34304092 PMCID: PMC8285369 DOI: 10.1016/j.jinorgbio.2021.111546] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Recent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19. Conversely, melatonin, a potent MPO inhibitor, has been noted for its anti-inflammatory, anti-oxidative, anti-apoptotic, and neuroprotective actions. Melatonin has been proposed as a safe therapeutic agent for COVID-19 recently, having been given with a US Food and Drug Administration emergency authorized cocktail, REGEN-COV2, for management of COVID-19 progression. This review distinctly highlights both how the destructive interactions of HOCl with tetrapyrrole rings may contribute to oxygen deficiency and hypoxia, vitamin B12 deficiency, NO deficiency, increased oxidative stress, and sleep disturbance, as well as how melatonin acts to prevent these events, thereby improving COVID-19 prognosis.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Damla C Gonullu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neha Nayak
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
219
|
Qiu LN, Tan YR, Luo YJ, Chen XJ. Leonurine protects against influenza A virus infection-induced pneumonia in mice. Pathog Dis 2021; 79:6372906. [PMID: 34543397 DOI: 10.1093/femspd/ftab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus (H1N1), a swine-origin influenza A virus, causes seasonal epidemics that result in severe illnesses and deaths. Leonurine has been reported to function as an anti-inflammatory agent with protective effects on nervous, urinary and cardiovascular systems. However, the therapeutic effects of leonurine on the pneumonia caused by H1N1 infection remain unclear. Hematoxylin and eosin staining was performed to evaluate the lung injuries of mice infected by H1N1. The amount of immune cells was analyzed by flow cytometry. Enzyme-linked immunosorbent assay was used to evaluate the alteration of multiple cytokines in lung tissues. Real-time quantitative polymerase chain reaction assay was performed to investigate the ribonucleic acid (RNA) levels of certain genes. The protein levels in toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR4/NF-κB) signaling were estimated by western blot assay. Leonurine treatment significantly inhibited the mortality caused by H1N1 infection. Leonurine treatment (60 mg/kg) alleviated the lung injuries caused by virus infection. The inflammatory cell accumulation and cytokine expression were inhibited by the leonurine administration. Leonurine inhibited the mRNA expression of pro-inflammatory cytokines in the lung homogenates at day 5 postinfection. Leonurine regulated the TLR4/NF-κB signaling in the lung homogenates of H1N1-infected mice at day 5 postinfection. Leonurine protects against H1N1 infection-induced pneumonia in mice.
Collapse
Affiliation(s)
- Li-Nan Qiu
- Department of Traditional Chinese Medicine, Daqing Oilfield General Hospital, 9 Zhongkang Street, Daqing 163001, China
| | - Ya-Rong Tan
- Day Clinic Centre, Daqing Oilfield General Hospital, 9 Zhongkang Street, Daqing 163001, China
| | - Yu-Ju Luo
- Department of Medical Imaging, Daqing Oilfield General Hospital, 9 Zhongkang Street, Daqing 163001, China
| | - Xiao-Juan Chen
- Department of Pediatrics, Daqing Oilfield General Hospital, 9 Zhongkang Street, Daqing 163001, China
| |
Collapse
|
220
|
Essential Oil-Rich Chinese Formula Luofushan-Baicao Oil Inhibits the Infection of Influenza A Virus through the Regulation of NF- κB P65 and IRF3 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5547424. [PMID: 34497658 PMCID: PMC8421167 DOI: 10.1155/2021/5547424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
Background Luofushan-Baicao Oil (LBO) is an essential oil-rich traditional Chinese medicine (TCM) formula that is commonly used to treat cold, cough, headache, sore throat, swelling, and pain. However, the anti-influenza activities of LBO and the underlying mechanism remain to be investigated. Methods The in vitro anti-influenza activity of LBO was tested with methyl thiazolyl tetrazolium (MTT) and plaque assays. The effects of LBO on the expressions of viral nucleoprotein and cytokines were evaluated. In the polyinosinic-polycytidylic acid- (Poly I: C-) induced inflammation model, the influences of LBO on the expression of cytokines and the activation of NF-κB P65 (P65) and interferon regulatory factor 3 (IRF3) were tested. After influenza A virus (IVA) infection, mice were administered with LBO for 5 days. The lung index, histopathologic change, the expression of viral protein, P65, and IRF3 in the lung tissue were measured. The levels of proinflammatory cytokines in serum were examined. Results In vitro, LBO could significantly inhibit the infection of IVA, decrease the formation of plaques, and reduce the expression of viral nucleoprotein and cytokines. LBO could also effectively downregulate the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and interferon-β and the activation of P65 and IRF3 in Poly I:C-treated cells. In the IVA-infected mice model, inhalation of LBO with atomizer could decrease the lung index, alleviate the pathological injury in the lung tissue, and reduce the serum levels of IL-1β and IL-6. LBO could significantly downregulate the expression of viral protein (nucleoprotein, PB2, and matrix 2 ion channel) and the phosphorylation of P65 and IRF3 in the lungs of mice. Conclusion The therapeutic effects of LBO on treating influenza might result from the regulation of the immune response of IVA infection. LBO can be developed as an alternative therapeutic agent for influenza prevention.
Collapse
|
221
|
Seo SU, Jeong JH, Baek BS, Choi JM, Choi YS, Ko HJ, Kweon MN. Bleomycin-Induced Lung Injury Increases Resistance to Influenza Virus Infection in a Type I Interferon-Dependent Manner. Front Immunol 2021; 12:697162. [PMID: 34484196 PMCID: PMC8416411 DOI: 10.3389/fimmu.2021.697162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Acute lung injury (ALI) results in acute respiratory disease that causes fatal respiratory diseases; however, little is known about the incidence of influenza infection in ALI. Using a ALI-mouse model, we investigated the pro-inflammatory cytokine response to ALI and influenza infection. Mice treated with bleomycin (BLM), which induces ALI, were more resistant to influenza virus infection and exhibited higher levels of type I interferon (IFN-I) transcription during the early infection period than that in PBS-treated control mice. BLM-treated mice also exhibited a lower viral burden, reduced pro-inflammatory cytokine production, and neutrophil levels. In contrast, BLM-treated IFN-I receptor 1 (IFNAR1)-knockout mice failed to show this attenuated phenotype, indicating that IFN-I is key to the antiviral response in ALI-induced mice. The STING/TBK1/IRF3 pathway was found to be involved in IFN-I production and the establishment of an antiviral environment in the lung. The depletion of plasmacytoid dendritic cells (pDCs) reduced the effect of BLM treatment against influenza virus infection, suggesting that pDCs are the major source of IFN-I and are crucial for defense against viral infection in BLM-induced lung injury. Overall, this study showed that BLM-mediated ALI in mice induced the release of double-stranded DNA, which in turn potentiated IFN-I-dependent pulmonary viral resistance by activating the STING/TBK1/IRF3 pathway in association with pDCs.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Hyeon Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Bum-Seo Baek
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, South Korea
| |
Collapse
|
222
|
Vaghari-Tabari M, Mohammadzadeh I, Qujeq D, Majidinia M, Alemi F, Younesi S, Mahmoodpoor A, Maleki M, Yousefi B, Asemi Z. Vitamin D in respiratory viral infections: a key immune modulator? Crit Rev Food Sci Nutr 2021; 63:2231-2246. [PMID: 34470511 DOI: 10.1080/10408398.2021.1972407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory viral infections are common respiratory diseases. Influenza viruses, RSV and SARS-COV2 have the potential to cause severe respiratory infections. Numerous studies have shown that unregulated immune response to these viruses can cause excessive inflammation and tissue damage. Therefore, regulating the antiviral immune response in the respiratory tract is of importance. In this regard, recent years studies have emphasized the importance of vitamin D in respiratory viral infections. Although, the most well-known role of vitamin D is to regulate the metabolism of phosphorus and calcium, it has been shown that this vitamin has other important functions. One of these functions is immune regulation. Vitamin D can regulate the antiviral immune response in the respiratory tract in order to provide an effective defense against respiratory viral infections and prevention from excessive inflammatory response and tissue damage. In addition, this vitamin has preventive effects against respiratory viral infections. Some studies during the COVID-19 pandemic have shown that vitamin D deficiency may be associated with a higher risk of mortality and sever disease in patients with COVID-19. Since, more attention has recently been focused on vitamin D. In this article, after a brief overview of the antiviral immune response in the respiratory system, we will review the role of vitamin D in regulating the antiviral immune response comprehensively. Then we will discuss the importance of this vitamin in influenza, RSV, and COVID-19.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran
| | - Masomeh Maleki
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
223
|
Climente‐Martí M, Ruiz‐Millo O, López‐Cruz I, Atienza‐García Á, Martínez‐Moragón E, Garijo‐Gómez E, López‐Grima ML, Zaragoza‐Crespo R, Llau‐Pitarch JV, Bautista‐Rentero D, Nogueira‐Coito JM, Ripollés‐González T, Marco‐Artal MA, Romero‐Serrano R, Dolz‐Sinisterra F, López‐Estudillo R. Impact of intermediate to high doses of methylprednisolone on mortality rate in patients with COVID-19 pneumonia-induced severe systemic inflammation. Int J Clin Pract 2021; 75:e14479. [PMID: 34107137 PMCID: PMC8237058 DOI: 10.1111/ijcp.14479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION In addition to respiratory support needs, patients' characteristics to guide indication or timing of corticosteroid treatment in COVID-19 patients are not completely established. This study aimed to evaluate the impact of methylprednisolone on mortality rate in patients with COVID-19 pneumonia-induced severe systemic inflammation (PI-SSI). METHODS Between 9 March and 5 May 2020 (final follow-up on 2 July 2020), a retrospective cohort study was conducted in hospitalised patients with COVID-19 PI-SSI (≥2 inflammatory biomarkers [IBs]: temperature ≥38℃, lymphocyte ≤800 cell/µL, C-reactive protein ≥100 mg/L, lactate dehydrogenase ≥300 units/L, ferritin ≥1000 mcg/L, D-dimer ≥500 ng/mL). Patients received 0.5-1.0 mg/kg of methylprednisolone for 5-10 days or standard of care. The primary outcome was 28-day all-cause mortality. Secondary outcomes included ≥2 points improvement on a 7-item WHO-scale (Day 14), transfer to intensive care unit (ICU) (Day 28) and adverse effects. Kaplan-Meier method and Cox proportional hazard regression were implemented to analyse the time to event outcomes. RESULTS A total of 142 patients (corticosteroid group n = 72, control group n = 70) were included. A significant reduction in 28-day all-cause mortality was shown with methylprednisolone in patients with respiratory support (HR: 0.15; 95% CI 0.03-0.71), with ≥3 (HR: 0.17; 95% CI 0.05-0.61) or ≥4 altered IB (HR: 0.15; 95% CI 0.04-0.54) and in patients with both respiratory support and ≥3 (HR: 0.11; 95% CI 0.02-0.53] or ≥4 altered IB (HR: 0.14; 95% CI 0.04-0.51). No significant differences were found in secondary outcomes. CONCLUSION Intermediate to high doses of methylprednisolone, initiated between 5 and 12 days after symptom onset, was associated with a significant reduction in 28-day all-cause mortality in patients with COVID-19 pneumonia and ≥3 o ≥ 4 altered IB, independently of the need of respiratory support.
Collapse
Affiliation(s)
| | - Oreto Ruiz‐Millo
- Pharmacy DepartmentDoctor Peset University HospitalValenciaSpain
| | - Ian López‐Cruz
- Internal Medicine DepartmentDoctor Peset University HospitalValenciaSpain
| | | | | | | | | | | | - Juan Vicente Llau‐Pitarch
- Anaesthesiology and Postsurgical Critical Care DepartmentDoctor Peset University HospitalValenciaSpain
| | | | | | | | | | - Ramón Romero‐Serrano
- Health Information Management DepartmentDoctor Peset University HospitalValenciaSpain
| | | | | |
Collapse
|
224
|
Krupanidhi S, Abraham Peele K, Venkateswarulu TC, Ayyagari VS, Nazneen Bobby M, John Babu D, Venkata Narayana A, Aishwarya G. Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: an in silico study. J Biomol Struct Dyn 2021; 39:5799-5803. [PMID: 32627715 PMCID: PMC7441789 DOI: 10.1080/07391102.2020.1787226] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 06/21/2020] [Indexed: 11/12/2022]
Abstract
In the present study, we explored phytochemical constituents of Tinospora cordifolia in terms of its binding affinity targeting the active site pocket of the main protease (3CL pro) of SARS-CoV-2 using molecular docking study and assessed the stability of top docking complex of tinosponone and 3CL pro using molecular dynamics simulations with GROMACS 2020.2 version. Out of 11 curated screened compounds, we found the significant docking score for tinosponone, xanosporic acid, cardiofolioside B, tembetarine and berberine in Tinospora cordifolia. Based on the findings of the docking study, it was confirmed that tinosponone is the potent inhibitor of main protease of SARS-CoV-2 with the best binding affinity of -7.7 kcal/mol. Further, ADME along with toxicity analysis was studied to predict the pharmacokinetics and drug-likeness properties of five top hits compounds. The molecular dynamics simulation analysis confirmed the stability of tinosponone and 3CL pro complex with a random mean square deviation (RMSD) value of 0.1 nm. The computer-aided drug design approach proved that the compound tinosponone from T. cordifolia is a potent inhibitor of 3CL main protease of SARS-CoV-2. Further, the in vitro and in vivo-based testing will be required to confirm its inhibitory effect on SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S. Krupanidhi
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - K. Abraham Peele
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - T. C. Venkateswarulu
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Vijaya Sai Ayyagari
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Md. Nazneen Bobby
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - D. John Babu
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - A. Venkata Narayana
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - G. Aishwarya
- Department of Bio-Technology, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India
| |
Collapse
|
225
|
Jagannath B, Lin K, Pali M, Sankhala D, Muthukumar S, Prasad S. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng Transl Med 2021; 6:e10220. [PMID: 34589597 PMCID: PMC8459593 DOI: 10.1002/btm2.10220] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
This work presents the viability of passive eccrine sweat as a functional biofluid toward tracking the human body's inflammatory response. Cytokines are biomarkers that orchestrate the manifestation and progression of an infection/inflammatory event. Hence, noninvasive, real-time monitoring of cytokines can be pivotal in assessing the progression of infection/inflammatory event, which may be feasible through monitoring of host immune markers in eccrine sweat. This work is the first experimental proof demonstrating the ability to detect inflammation/infection such as fever, FLU directly from passively expressed sweat in human subjects using a wearable "SWEATSENSER" device. The developed SWEATSENSER device demonstrates stable, real-time monitoring of inflammatory cytokines in passive sweat. An accuracy of >90% and specificity >95% was achieved using SWEATSENSER for a panel of cytokines (interleukin-6, interleukin-8, interleukin-10, and tumor necrosis factor-α) over an analytical range of 0.2-200 pg mL-1. The SWEATSENSER demonstrated a correlation of Pearson's r > 0.98 for the study biomarkers in a cohort of 26 subjects when correlated with standard reference method. Comparable IL-8 levels (2-15 pg mL-1) between systemic circulation (serum) and eccrine sweat through clinical studies in a cohort of 15 subjects, and the ability to distinguish healthy and sick (infection) cohort using inflammatory cytokines in sweat provides pioneering evidence of the SWEATSENSER technology for noninvasive tracking of host immune response biomarkers. Such a wearable device can offer significant strides in improving prognosis and provide personalized therapeutic treatment for several inflammatory/infectious diseases.
Collapse
Affiliation(s)
| | - Kai‐Chun Lin
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| | - Madhavi Pali
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| | - Devangsingh Sankhala
- Department of Electrical EngineeringUniversity of Texas at DallasRichardsonTexasUSA
| | | | - Shalini Prasad
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
226
|
Fiorino S, Tateo F, Biase DD, Gallo CG, Orlandi PE, Corazza I, Budriesi R, Micucci M, Visani M, Loggi E, Hong W, Pica R, Lari F, Zippi M. SARS-CoV-2: lessons from both the history of medicine and from the biological behavior of other well-known viruses. Future Microbiol 2021; 16:1105-1133. [PMID: 34468163 PMCID: PMC8412036 DOI: 10.2217/fmb-2021-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is the etiological agent of the current pandemic worldwide and its associated disease COVID-19. In this review, we have analyzed SARS-CoV-2 characteristics and those ones of other well-known RNA viruses viz. HIV, HCV and Influenza viruses, collecting their historical data, clinical manifestations and pathogenetic mechanisms. The aim of the work is obtaining useful insights and lessons for a better understanding of SARS-CoV-2. These pathogens present a distinct mode of transmission, as SARS-CoV-2 and Influenza viruses are airborne, whereas HIV and HCV are bloodborne. However, these viruses exhibit some potential similar clinical manifestations and pathogenetic mechanisms and their understanding may contribute to establishing preventive measures and new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, 40054, Italy
| | - Fabio Tateo
- Institute of Geosciences & Earth Resources, CNR, c/o Department of Geosciences, Padova University, 35127, Italy
| | - Dario De Biase
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Claudio G Gallo
- Fisiolaserterapico Emiliano, Castel San Pietro Terme, Bologna, 40024, Italy
| | | | - Ivan Corazza
- Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Roberta Budriesi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, 40126, Italy
| | - Matteo Micucci
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, 40126, Italy
| | - Michela Visani
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Elisabetta Loggi
- Hepatology Unit, Department of Medical & Surgical Sciences, University of Bologna, Bologna, 40126, Italy
| | - Wandong Hong
- Department of Gastroenterology & Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, 325035, PR China
| | - Roberta Pica
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, 00157, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, 40054, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, 00157, Italy
| |
Collapse
|
227
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
228
|
Wu X, Bao L, Hu Z, Yao D, Li F, Li H, Xu X, An Y, Wang X, Cao B, Zhang X. Ficolin A exacerbates severe H1N1 influenza virus infection-induced acute lung immunopathological injury via excessive complement activation. Cell Mol Immunol 2021; 18:2278-2280. [PMID: 34302063 PMCID: PMC8298942 DOI: 10.1038/s41423-021-00737-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xu Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Ziqi Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fengdi Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Hui Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Xiaoxue Xu
- Department of Core Facility Center, Capital Medical University, Beijing, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
229
|
Namba T, Tsuge M, Yashiro M, Saito Y, Liu K, Nishibori M, Morishima T, Tsukahara H. Anti-high mobility group box 1 monoclonal antibody suppressed hyper-permeability and cytokine production in human pulmonary endothelial cells infected with influenza A virus. Inflamm Res 2021; 70:1101-1111. [PMID: 34455489 PMCID: PMC8403468 DOI: 10.1007/s00011-021-01496-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/18/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objective High mobility group box-1 (HMGB1) has been reported to be involved in influenza A virus-induced acute respiratory distress syndrome (ARDS). We studied the efficacy of an anti-HMGB1 mAb using an in vitro model of TNF-α stimulation or influenza A virus infection in human pulmonary microvascular endothelial cells (HMVECs). Methods Vascular permeability of HMVECs was quantified using the Boyden chamber assay under tumor necrosis factor-α (TNF-α) stimulation or influenza A virus infection in the presence of anti-HMGB1 mAb or control mAb. The intracellular localization of HMGB1 was assessed by immunostaining. Extracellular cytokine concentrations and intracellular viral mRNA expression were quantified by the enzyme-linked immunosorbent assay and quantitative reverse transcription PCR, respectively. Results Vascular permeability was increased by TNF-α stimulation or influenza A infection; HMVECs became elongated and the intercellular gaps were extended. Anti-HMGB1 mAb suppressed both the increase in permeability and the cell morphology changes. Translocation of HMGB1 to the cytoplasm was observed in the non-infected cells. Although anti-HMGB1 mAb did not suppress viral replication, it did suppress cytokine production in HMVECs. Conclusion Anti-HMGB1 mAb might be an effective therapy for severe influenza ARDS.
Collapse
Affiliation(s)
- Takahiro Namba
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Mitsuru Tsuge
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yukie Saito
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuneo Morishima
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
230
|
Bayraktar N, Turan H, Bayraktar M, Ozturk A, Erdoğdu H. Analysis of serum cytokine and protective vitamin D levels in severe cases of COVID-19. J Med Virol 2021; 94:154-160. [PMID: 34427934 PMCID: PMC8661791 DOI: 10.1002/jmv.27294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the role and relationship between the cytokine profile and protective vitamin D by measuring their serum levels in COVID‐19 intensive care unit patients with severe illnesses. A total of 74 patients were included in our study. Patients were divided into two groups. Patients in the COVID‐19 group (n = 31) and individuals without a history of serious illness or infection were used as the control group (n = 43). The serum concentrations of interleukin‐1 (IL‐1), IL‐6, IL‐10, IL‐21, and tumor necrosis factor‐α (TNF‐α) were measured by enzyme‐linked immunosorbent assays. Levels of serum vitamin D were detected with Liquid chromatography–mass spectrometry methodologies. TNF‐α, IL‐1, IL‐6, IL‐10, IL‐21, and vitamin D levels were measured in all patients. The serum cytokine levels in the COVID‐19 patient group were significantly higher (151.59 ± 56.50, 140.37 ± 64.32, 249.02 ± 62.84, 129.04 ± 31.64, and 123.58 ± 24.49, respectively) than control groups. Serum vitamin D was also significantly low (6.82 ± 3.29) in patients in the COVID‐19 group than the controls (21.96 ± 5.39). Regarding the correlation of vitamin D with cytokine levels, it was significantly variable. Our study shows that COVID‐19 patients are associated with lower serum vitamin D and higher pro‐inflammatory cytokines associated with increased virus presence. Our data provide more evidence of the anti‐inflammatory effect of vitamin D on COVID‐19 patients and the protective effects of vitamin D on risk were demonstrated.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Hamdiye Turan
- Department of Chest Diseases, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Mehmet Bayraktar
- Department of Medical Microbiology, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Hamza Erdoğdu
- Department of Statistics, Faculty of Administration and Economics, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
231
|
Khan S, Bolotova O, Sahib H, Foster D, Mallipattu SK. Endotoxemia in Critically Ill Patients with COVID-19. Blood Purif 2021; 51:513-519. [PMID: 34515062 PMCID: PMC8450835 DOI: 10.1159/000518230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
Introduction Mechanism(s) mediating critical illness in coronavirus disease 2019 (COVID-19) remain unclear. Previous reports demonstrate the existence of endotoxemia in viral infections without superimposed gram-negative bacteremia, but the rate and severity of endotoxemia in critically ill patients with COVID-19 requires further exploration. Materials and Methods This is a single-center cross-sectional study of 92 intensive care unit patients diagnosed with COVID-19 pneumonia. Endotoxin activity (EA) was measured in patients that met the following criteria: (1) age ≥18 years and (2) multi-organ dysfunction score >9 from March 24, 2020, to June 20, 2020. Results A total of 32 patients met the inclusion/exclusion criteria for measurement of EA. The median age of the study cohort was 60 years with a majority male (21/32, 65%) with hypertension (50%). A significant proportion of the patients exhibited either elevated EA in the intermediate range (0.40–0.59 EA units) (10/32, 31%) or high range (≥0.60 EA units) (14/32, 44%) or were nonresponders (NRs, low neutrophil response) to EA (6/32, 19%), with the presence of gram-negative bacteremia only in 2/32 (6%) patients. Low EA was reported in 2/32 patients. NRs (5/6, 83%) and patients with high EA (7/14, 50%) exhibited higher acute kidney injury (AKI) as compared to patients with low/intermediate EA level (1/12, 8.3%). Discussion/Conclusion Elevated EA was observed in a large majority of critically ill patients with COVID-19 and multi-organ dysfunction despite a low incidence of concurrent gram-negative bacteremia. While we observed that elevated EA and nonresponsiveness to EA were associated with AKI in critically ill patients with COVID-19, these findings require further validation in larger longitudinal cohorts.
Collapse
Affiliation(s)
- Sobia Khan
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Olena Bolotova
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Haseena Sahib
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | | - Sandeep K Mallipattu
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA.,Renal Section, Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
232
|
Comparative Computational Modeling of the Bat and Human Immune Response to Viral Infection with the Comparative Biology Immune Agent Based Model. Viruses 2021; 13:v13081620. [PMID: 34452484 PMCID: PMC8402910 DOI: 10.3390/v13081620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Given the impact of pandemics due to viruses of bat origin, there is increasing interest in comparative investigation into the differences between bat and human immune responses. The practice of comparative biology can be enhanced by computational methods used for dynamic knowledge representation to visualize and interrogate the putative differences between the two systems. We present an agent based model that encompasses and bridges differences between bat and human responses to viral infection: the comparative biology immune agent based model, or CBIABM. The CBIABM examines differences in innate immune mechanisms between bats and humans, specifically regarding inflammasome activity and type 1 interferon dynamics, in terms of tolerance to viral infection. Simulation experiments with the CBIABM demonstrate the efficacy of bat-related features in conferring viral tolerance and also suggest a crucial role for endothelial inflammasome activity as a mechanism for bat systemic viral tolerance and affecting the severity of disease in human viral infections. We hope that this initial study will inspire additional comparative modeling projects to link, compare, and contrast immunological functions shared across different species, and in so doing, provide insight and aid in preparation for future viral pandemics of zoonotic origin.
Collapse
|
233
|
SARS-CoV-2 Isolates Show Impaired Replication in Human Immune Cells but Differential Ability to Replicate and Induce Innate Immunity in Lung Epithelial Cells. Microbiol Spectr 2021; 9:e0077421. [PMID: 34378952 PMCID: PMC8552721 DOI: 10.1128/spectrum.00774-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.
Collapse
|
234
|
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021; 13:v13081590. [PMID: 34452455 PMCID: PMC8402746 DOI: 10.3390/v13081590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) continuously causes epidemics and claims numerous lives every year. The available treatment options are insufficient and the limited pertinence of animal models for human IAV infections is hampering the development of new therapeutics. Bioprinted tissue models support studying pathogenic mechanisms and pathogen-host interactions in a human micro tissue environment. Here, we describe a human lung model, which consisted of a bioprinted base of primary human lung fibroblasts together with monocytic THP-1 cells, on top of which alveolar epithelial A549 cells were printed. Cells were embedded in a hydrogel consisting of alginate, gelatin and collagen. These constructs were kept in long-term culture for 35 days and their viability, expression of specific cell markers and general rheological parameters were analyzed. When the models were challenged with a combination of the bacterial toxins LPS and ATP, a release of the proinflammatory cytokines IL-1β and IL-8 was observed, confirming that the model can generate an immune response. In virus inhibition assays with the bioprinted lung model, the replication of a seasonal IAV strain was restricted by treatment with an antiviral agent in a dose-dependent manner. The printed lung construct provides an alveolar model to investigate pulmonary pathogenic biology and to support development of new therapeutics not only for IAV, but also for other viruses.
Collapse
|
235
|
Serino M, Melo N, Caldas JP, Ferreira A, Garcia D, Lourenço P. Predictors of severity and in-hospital mortality in patients with influenza. Monaldi Arch Chest Dis 2021; 92. [PMID: 34461705 DOI: 10.4081/monaldi.2021.1876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
Influenza virus is a common agent of acute respiratoty infections during epidemic periods. It is a major cause of morbidity and mortality and represent a significant burden on the healthcare system. We aimed to evaluate predictors of severity and of in-hospital mortality in patients hospitalized with influenza infection. We performed a retrospective cohort study of hospitalized, laboratory confirmed cases of influenza disease in Centro Hospitalar de São João between October 2016-May 2017 and October 2017-May 2018. The endpoints being analysed were severity and in-hospital mortality. A multivariate logistic regression analysis was used to determine independent predictors of severity and of in-hospital mortality. We studied 221 hospitalized influenza infection cases. Mean age 66±16 years, 57.9% were male, thirty-seven patients (16.7%) died in-hospital and 101 patients (45.7%) met severity criteria. C-reactive protein (CRP) was the only independent predictor of severity as well as the only independent predictor of higher in-hospital mortality in patients admitted due to influenza infection. Multivariate-adjusted CRP OR for severity was 1.10, 95% CI 1.06-1.15 per each 10 mg/L increase in CPR and for in-hospital mortality risk the OR was of 1.05, 95% CI 1.01-1.09, p=0.01, per each 10 mg/L increase. Concluding, in patients' hospital-admitted due to influenza infection CRP was the only predictor of severity with a 10% increased risk of inotropic support/ventilatory support/prolonged hospitalization needs and a 5% increase risk of in-hospital death per each 10 mg/l increase.
Collapse
Affiliation(s)
- Mariana Serino
- Department of Pneumology, Centro Hospitalar Universitário de São João, E.P.E., Porto.
| | - Nuno Melo
- Department of Internal Medicine, Centro Hospitalar Universitário de São João, E.P.E., Porto.
| | - João Paulo Caldas
- Department of Infectious Diseases, Centro Hospitalar Universitário de São João, E.P.E., Porto.
| | - Ana Ferreira
- Department of Internal Medicine, Centro Hospitalar Universitário de São João, E.P.E., Porto.
| | - David Garcia
- Department of Clinical Pathology, Centro Hospitalar Universitário de São João, E.P.E., Porto.
| | - Patrícia Lourenço
- Department of Internal Medicine, Centro Hospitalar Universitário de São João, E.P.E., Porto.
| |
Collapse
|
236
|
Li J, Xu Y, Lin Z, Guan L, Chen S, Zhou L. Isorhamnetin inhibits amplification of influenza A H1N1 virus inflammation mediated by interferon via the RIG-I/JNK pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1327. [PMID: 34532464 PMCID: PMC8422108 DOI: 10.21037/atm-21-3532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interferon (IFN) amplifies the influenza virus-mediated inflammatory response by forming a paracrine signal feedback loop, which is considered an important cause of excessive inflammatory damage. Isorhamnetin has a wide spectrum of beneficial pharmacological properties, including anti-inflammatory and antiviral effects. The regulatory effect and mechanism of isorhamnetin on influenza virus-mediated inflammation have not yet been reported. METHODS We pre-treated A549 cells with IFN-β (50 ng/mL) for 4 h followed by IAV (H1N1) infection to simulate the inflammation amplification effect caused by the paracrine effect of IFN-β. The anti-inflammation activity of isorhamnetin against amplification inflammation of interferon mediated by IAV (H1N1) was assessed by performing quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and enzyme-linked immunosorbent assay (ELISA) in A549 cells. RESULTS Compared with the virus infection group, the IFN-β pretreatment virus infection group had an upregulated level of pro-inflammatory cytokine expression, which was inhibited by isorhamnetin significantly via the retinoic acid-induced gene I (RIG-I)/c-Jun N-terminal kinase (JNK) signaling pathway. Molecular docking studies further verified that isorhamnetin can interact with JNK. CONCLUSIONS Our work was the first to demonstrate the anti-inflammatory activity and mechanism of isorhamnetin during influenza virus infection. Isorhamnetin significantly improves the excessive inflammatory response mediated by IAV (H1N1) infection mainly via the RIG-I/JNK pathway. Additionally, isorhamnetin exhibited an apparent antiviral effect of H1N1 in vitro.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yifan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lili Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuqi Chen
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, China
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
237
|
Khanh VC, Fukushige M, Chang YH, Hoang NN, Yamashita T, Obata-Yasuoka M, Hamada H, Osaka M, Hiramatsu Y, Ohneda O. Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles Reduce SARS-CoV2-Induced Inflammatory Cytokines Under High Glucose and Uremic Toxin Conditions. Stem Cells Dev 2021; 30:758-772. [PMID: 34074129 PMCID: PMC8356045 DOI: 10.1089/scd.2021.0065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine storm is recognized as one of the factors contributing to organ failures and mortality in patients with COVID-19. Due to chronic inflammation, COVID-19 patients with diabetes mellitus (DM) or renal disease (RD) have more severe symptoms and higher mortality. However, the factors that contribute to severe outcomes of COVID-19 patients with DM and RD have received little attention. In an effort to investigate potential treatments for COVID-19, recent research has focused on the immunomodulation functions of mesenchymal stem cells (MSCs). In this study, the correlation between DM and RD and the severity of COVID-19 was examined by a combined approach with a meta-analysis and experimental research. The results of a systematic review and meta-analysis suggested that the odd of mortality in patients with both DM and RD was increased in comparison to those with a single comorbidity. In addition, in the experimental research, the data showed that high glucose and uremic toxins contributed to the induction of cytokine storm in human lung adenocarcinoma epithelial cells (Calu-3 cells) in response to SARS-CoV Peptide Pools. Of note, the incorporation of Wharton's jelly MSC-derived extracellular vesicles (WJ-EVs) into SARS-CoV peptide-induced Calu-3 resulted in a significant decrease in nuclear NF-κB p65 and the downregulation of the cytokine storm under high concentrations of glucose and uremic toxins. This clearly suggests the potential for WJ-EVs to reduce cytokine storm reactions in patients with both chronic inflammation diseases and viral infection.
Collapse
Affiliation(s)
- Vuong Cat Khanh
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Mizuho Fukushige
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Yun Hsuan Chang
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Ngo Nhat Hoang
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| | | | - Hiromi Hamada
- Obstetrics and Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Motoo Osaka
- Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yuji Hiramatsu
- Cardiovascular Surgery, University of Tsukuba, Tsukuba, Japan
| | - Osamu Ohneda
- Laboratory of Regenerative Medicine and Stem Cell Biology, Departments of University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
238
|
Morris G, Bortolasci CC, Puri BK, Marx W, O'Neil A, Athan E, Walder K, Berk M, Olive L, Carvalho AF, Maes M. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021; 144:155593. [PMID: 34074585 PMCID: PMC8149193 DOI: 10.1016/j.cyto.2021.155593] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
An analysis of published data appertaining to the cytokine storms of COVID-19, H1N1 influenza, cytokine release syndrome (CRS), and macrophage activation syndrome (MAS) reveals many common immunological and biochemical abnormalities. These include evidence of a hyperactive coagulation system with elevated D-dimer and ferritin levels, disseminated intravascular coagulopathy (DIC) and microthrombi coupled with an activated and highly permeable vascular endothelium. Common immune abnormalities include progressive hypercytokinemia with elevated levels of TNF-α, interleukin (IL)-6, and IL-1β, proinflammatory chemokines, activated macrophages and increased levels of nuclear factor kappa beta (NFκB). Inflammasome activation and release of damage associated molecular patterns (DAMPs) is common to COVID-19, H1N1, and MAS but does not appear to be a feature of CRS. Elevated levels of IL-18 are detected in patients with COVID-19 and MAS but have not been reported in patients with H1N1 influenza and CRS. Elevated interferon-γ is common to H1N1, MAS, and CRS but levels of this molecule appear to be depressed in patients with COVID-19. CD4+ T, CD8+ and NK lymphocytes are involved in the pathophysiology of CRS, MAS, and possibly H1N1 but are reduced in number and dysfunctional in COVID-19. Additional elements underpinning the pathophysiology of cytokine storms include Inflammasome activity and DAMPs. Treatment with anakinra may theoretically offer an avenue to positively manipulate the range of biochemical and immune abnormalities reported in COVID-19 and thought to underpin the pathophysiology of cytokine storms beyond those manipulated via the use of, canakinumab, Jak inhibitors or tocilizumab. Thus, despite the relative success of tocilizumab in reducing mortality in COVID-19 patients already on dexamethasone and promising results with Baricitinib, the combination of anakinra in combination with dexamethasone offers the theoretical prospect of further improvements in patient survival. However, there is currently an absence of trial of evidence in favour or contravening this proposition. Accordingly, a large well powered blinded prospective randomised controlled trial (RCT) to test this hypothesis is recommended.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australi
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, School of Psychology, Geelong, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
239
|
Çolak Ş, Genç Yavuz B, Yavuz M, Özçelik B, Öner M, Özgültekin A, Şenbayrak S. Effectiveness of ozone therapy in addition to conventional treatment on mortality in patients with COVID-19. Int J Clin Pract 2021; 75:e14321. [PMID: 33971067 PMCID: PMC8236993 DOI: 10.1111/ijcp.14321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
AIM In this study, we aimed to investigate the effectiveness of ozone therapy, which is one of the integrative medicine applications that has been used safely for many years, on the prevalence of mortality in patients receiving COVID-19 treatment. METHODS This was a prospective, controlled study conducted on patients with COVID-19 who were hospitalised. In this study, 55 patients were included. The patients were divided into two groups as the ozone and control group. Ozone therapy (major autohemotherapy) was applied to 37 patients who were being treated with the appropriate COVID-19 treatment protocol determined by the infectious diseases committee of our hospital. The ozone treatment protocol consisted of seven sessions (one session per day) of intravenous ozone administration, applied in a volume of 100 mL and a concentration of 30 μg/mL. Only the conventional COVID-19 treatment protocol was applied to 18 patients in the control group. Clinical follow-up was performed until the discharge of the patients from the hospital with successful treatment or until the mortality occurred. Factors affecting mortality were analysed using univariate regression analysis. RESULTS Intensive care unit (ICU) hospitalisation was required in 6 of the 37 patients who were treated with ozone (16.2%), while 4 of 18 patients in the control group required ICU treatment (22.2%) (P = .713). When the mortality rates between the two groups were compared, mortality was lower in the ozone group (P = .032). As a result of univariate logistic regression analysis performed to investigate the factors affecting mortality, treatment with ozone therapy was determined as a risk factor for mortality. Patients receiving ozone therapy appear to have a lower mortality risk (odds ratio [OR]: 0.149, 95% confidence interval [CI] 0.026-0.863, P = .034). CONCLUSION In this study, the findings suggested that the administration of ozone therapy along with the conventional medical treatment in patients hospitalised for COVID-19 could reduce mortality.
Collapse
Affiliation(s)
- Şahin Çolak
- Haydarpaşa Numune Training and Research HospitalDepartment of Emergency MedicineUniversity of Health SciencesIstanbulTurkey
| | - Burcu Genç Yavuz
- Haydarpaşa Numune Training and Research HospitalDepartment of Emergency MedicineUniversity of Health SciencesIstanbulTurkey
| | - Mürsel Yavuz
- Kosuyolu Rezonans ClinicIntegrative MedicineIstanbulTurkey
| | - Burak Özçelik
- Haydarpaşa Numune Training and Research HospitalDepartment of Emergency MedicineUniversity of Health SciencesIstanbulTurkey
| | - Metin Öner
- Haydarpaşa Numune Training and Research HospitalDepartment of Emergency MedicineUniversity of Health SciencesIstanbulTurkey
| | - Asu Özgültekin
- Haydarpasa Numune Training and Research HospitalDepartment of Anesthesiology and Intensive CareUniversity of Health SciencesIstanbulTurkey
| | - Seniha Şenbayrak
- Haydarpasa Numune Training and Research HospitalDepartment of Infectious Disease and Clinical MicrobiologyUniversity of Health SciencesIstanbulTurkey
| |
Collapse
|
240
|
Al Noumani J, Al Busaidi I, Al Hajri M. Brucellosis-Induced Hemophagocytic Lymphohistiocytosis. Cureus 2021; 13:e15677. [PMID: 34277268 PMCID: PMC8283244 DOI: 10.7759/cureus.15677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a fatal syndrome, which can be primary or triggered by a systemic disease or an infection. The commonly reported infectious causes of secondary HLH include Epstein-Barr virus (EBV), cytomegalovirus (CMV), mycobacterium, and leishmaniasis among other infections. In this case report, we report a 50-year-old woman with brucellosis-related HLH after presenting with prolonged fever, hepatosplenomegaly, and cytopenia.
Collapse
Affiliation(s)
| | - Ibrahim Al Busaidi
- Infectious Diseases Unit, Sultan Qaboos University Hospital, Muscat, OMN
| | - Malak Al Hajri
- Internal Medicine, Internal Medicine Residency Program, Muscat, OMN
| |
Collapse
|
241
|
Cosenza M, Sacchi S, Pozzi S. Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. Int J Mol Sci 2021; 22:ijms22147652. [PMID: 34299273 PMCID: PMC8305850 DOI: 10.3390/ijms22147652] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokines are a broad group of small regulatory proteins with many biological functions involved in regulating the hematopoietic and immune systems. However, in pathological conditions, hyperactivation of the cytokine network constitutes the fundamental event in cytokine release syndrome (CRS). During the last few decades, the development of therapeutic monoclonal antibodies and T-cell therapies has rapidly evolved, and CRS can be a serious adverse event related to these treatments. CRS is a set of toxic adverse events that can be observed during infection or following the administration of antibodies for therapeutic purposes and, more recently, during T-cell-engaging therapies. CRS is triggered by on-target effects induced by binding of chimeric antigen receptor (CAR) T cells or bispecific antibody to its antigen and by subsequent activation of bystander immune and non-immune cells. CRS is associated with high circulating concentrations of several pro-inflammatory cytokines, including interleukins, interferons, tumor necrosis factors, colony-stimulating factors, and transforming growth factors. Recently, considerable developments have been achieved with regard to preventing and controlling CRS, but it remains an unmet clinical need. This review comprehensively summarizes the pathophysiology, clinical presentation, and treatment of CRS caused by T-cell-engaging therapies utilized in the treatment of hematological malignancies.
Collapse
|
242
|
Farella I, Panza R, Capozza M, Laforgia N. Lecithinized superoxide dismutase in the past and in the present: Any role in the actual pandemia of COVID-19? Biomed Pharmacother 2021; 141:111922. [PMID: 34323703 PMCID: PMC8277551 DOI: 10.1016/j.biopha.2021.111922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus disease 19 (Covid-19) pandemic is devastating the public health: it is urgent to find a viable therapy to reduce the multiorgan damage of the disease. A validated therapeutic protocol is still missing. The most severe forms of the disease are related to an exaggerated inflammatory response. The pivotal role of reactive oxygen species (ROS) in the amplification of inflammation makes the antioxidants a potential therapy, but clinical trials are needed. The lecitinized superoxide dismutase (PC-SOD) could represent a possibility because of bioaviability, safety, and its modulatory effect on the innate immune response in reducing the harmful consequences of oxidative stress. In this review we summarize the evidence on lecitinized superoxide dismutase in animal and human studies, to highlight the rationale for using the PC-SOD to treat COVID-19.
Collapse
Affiliation(s)
- Ilaria Farella
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
243
|
Gu Y, Zuo X, Zhang S, Ouyang Z, Jiang S, Wang F, Wang G. The Mechanism behind Influenza Virus Cytokine Storm. Viruses 2021; 13:1362. [PMID: 34372568 PMCID: PMC8310017 DOI: 10.3390/v13071362] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses are still a serious threat to human health. Cytokines are essential for cell-to-cell communication and viral clearance in the immune system, but excessive cytokines can cause serious immune pathology. Deaths caused by severe influenza are usually related to cytokine storms. The recent literature has described the mechanism behind the cytokine-storm network and how it can exacerbate host pathological damage. Biological factors such as sex, age, and obesity may cause biological differences between different individuals, which affects cytokine storms induced by the influenza virus. In this review, we summarize the mechanism behind influenza virus cytokine storms and the differences in cytokine storms of different ages and sexes, and in obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| |
Collapse
|
244
|
Hafezi B, Chan L, Knapp JP, Karimi N, Alizadeh K, Mehrani Y, Bridle BW, Karimi K. Cytokine Storm Syndrome in SARS-CoV-2 Infections: A Functional Role of Mast Cells. Cells 2021; 10:1761. [PMID: 34359931 PMCID: PMC8308097 DOI: 10.3390/cells10071761] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokine storm syndrome is a cascade of escalated immune responses disposing the immune system to exhaustion, which might ultimately result in organ failure and fatal respiratory distress. Infection with severe acute respiratory syndrome-coronavirus-2 can result in uncontrolled production of cytokines and eventually the development of cytokine storm syndrome. Mast cells may react to viruses in collaboration with other cells and lung autopsy findings from patients that died from the coronavirus disease that emerged in 2019 (COVID-19) showed accumulation of mast cells in the lungs that was thought to be the cause of pulmonary edema, inflammation, and thrombosis. In this review, we present evidence that a cytokine response by mast cells may initiate inappropriate antiviral immune responses and cause the development of cytokine storm syndrome. We also explore the potential of mast cell activators as adjuvants for COVID-19 vaccines and discuss the medications that target the functions of mast cells and could be of value in the treatment of COVID-19. Recognition of the cytokine storm is crucial for proper treatment of patients and preventing the release of mast cell mediators, as impeding the impacts imposed by these mediators could reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Bahareh Hafezi
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran; (B.H.); (N.K.)
| | - Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Jason P. Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Negar Karimi
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran; (B.H.); (N.K.)
| | - Kimia Alizadeh
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.C.); (J.P.K.); (Y.M.)
| |
Collapse
|
245
|
Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021; 6:255. [PMID: 34234112 PMCID: PMC8261820 DOI: 10.1038/s41392-021-00679-0] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xueru Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Zikun Tu
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Jinrong Fu
- General Department, Children's Hospital of Fudan University, Shanghai, China
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China.
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
246
|
Barbosa-Silva MC, Lima MN, Battaglini D, Robba C, Pelosi P, Rocco PRM, Maron-Gutierrez T. Infectious disease-associated encephalopathies. Crit Care 2021; 25:236. [PMID: 34229735 PMCID: PMC8259088 DOI: 10.1186/s13054-021-03659-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood-brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation.
Collapse
Affiliation(s)
- Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
247
|
ALICI G, HARBALIOĞLU H, GENÇ Ö, ALLAHVERDİYEV S, YILDIRIM A, ER F, KURT İH, QUİSİ A. High-sensitivity cardiac troponin I and D-dimer are risk factors for in-hospital mortality of adult patients with COVID-19: A retrospective cohort study. EGE TIP DERGISI 2021. [DOI: 10.19161/etd.950576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
248
|
Su CM, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep 2021; 11:13464. [PMID: 34188167 PMCID: PMC8242070 DOI: 10.1038/s41598-021-92941-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19) that emerged in human populations recently. Severely ill COVID-19 patients exhibit the elevation of proinflammatory cytokines, and such an unbalanced production of proinflammatory cytokines is linked to acute respiratory distress syndrome with high mortality in COVID-19 patients. Our study provides evidence that the ORF3a, M, ORF7a, and N proteins of SARS-CoV-2 were NF-κB activators. The viral sequence from infected zoo lions belonged to clade V, and a single mutation of G251V is found for ORF3a gene compared to all other clades. No significant functional difference was found for clade V ORF3a, indicating the NF-κB activation is conserved among COVID-19 variants. Of the four viral proteins, the ORF7a protein induced the NF-κB dictated proinflammatory cytokines including IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFNβ. The ORF7a protein also induced IL-3, IL-4, IL-7, IL-23. Of 15 different chemokines examined in the study, CCL11, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL26, CCL27, and CXCL9 were significantly upregulated by ORF7. These cytokines and chemokines were frequently elevated in severely ill COVID-19 patients. Our data provide an insight into how SARS-CoV-2 modulates NF-κB signaling and inflammatory cytokine expressions. The ORF7a protein may be a desirable target for strategic developments to minimize uncontrolled inflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 Lincoln Ave, Urbana, IL, 61802, USA
| | - Leyi Wang
- Department of Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 Lincoln Ave, Urbana, IL, 61802, USA.
| |
Collapse
|
249
|
Deng L, Lei S, Wang X, Jiang F, Lubarsky DA, Zhang L, Liu D, Han C, Zhou D, Wang Z, Sun X, Zhang Y, Cheung CW, Wang S, Xia Z, Applegate RL, Tang J, Mai Z, Liu H, Xia Z. Course of illness and outcomes in older COVID-19 patients treated with HFNC: a retrospective analysis. Aging (Albany NY) 2021; 13:15801-15814. [PMID: 34182540 PMCID: PMC8266360 DOI: 10.18632/aging.203224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022]
Abstract
Coronavirus disease-2019 (COVID-19) has rapidly spread worldwide and causes high mortality of elderly patients. High-flow nasal cannula therapy (HFNC) is an oxygen delivery method for severely ill patients. We retrospectively analyzed the course of illness and outcomes in 110 elderly COVID-19 patients (≥65 years) treated with HFNC from 6 hospitals. 38 patients received HFNC (200 mmHg < PaO2/FiO2 ≤ 300 mmHg, early HFNC group), and 72 patients received HFNC (100 mmHg < PaO2/FiO2 ≤ 200 mmHg, late HFNC group). There were no significant differences of sequential organ failure assessment (SOFA) scores and APECH II scores between early and late HFNC group on admission. Compared with the late HFNC group, patients in the early HFNC group had a lower likelihood of developing severe acute respiratory distress syndrome (ARDS), longer time from illness onset to severe ARDS and shorter duration of viral shedding after illness onset, as well as shorter lengths of ICU and hospital stay. 24 patients died during hospitalization, of whom 22 deaths (30.6%) were in the late HFNC group and 2 (5.3%) in the early HFNC group. The present study suggested that the outcomes were better in severely ill elderly patients with COVID-19 receiving early compared to late HFNC.
Collapse
Affiliation(s)
- Liehua Deng
- Department of Critical Care Medicine of Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wang
- Guangdong Medical University Affiliated Lianjiang People's Hospital, Guangdong, China
| | - Fang Jiang
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - David A Lubarsky
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Liangqing Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Danyong Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Conghua Han
- Department of Critical Care Medicine of Xiantao First People's Hospital of Xiantao City, Hubei, China
| | - Dunrong Zhou
- Department of Critical Care Medicine of People's Hospital of Yangjiang City, Guangdong, China
| | - Zheng Wang
- Department of Critical Care Medicine of People's Hospital of Maoming City, Guangdong, China
| | - Xiaocong Sun
- Department of Critical Care Medicine of Affiliated Hospital of Guangdong Medical University, Guangdong, China.,Chinese Medicine Hospital of Shishou City, Hubei, China
| | - Yuanli Zhang
- Department of Critical Care Medicine of Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Chi Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Richard L Applegate
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhenhua Mai
- Department of Critical Care Medicine of Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China.,The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
250
|
King PT, Londrigan SL. The 1918 influenza and COVID-19 pandemics: The effect of age on outcomes. Respirology 2021; 26:840-841. [PMID: 34180106 PMCID: PMC8447138 DOI: 10.1111/resp.14109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Paul T King
- Monash Lung, Sleep, Allergy and Immunology, Monash Medical Centre, Melbourne, Victoria, Australia.,Monash University Department of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute, Melbourne, Victoria, Australia
| |
Collapse
|