201
|
Zhang L, Wang HH. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism. Dig Liver Dis 2016; 48:709-16. [PMID: 27133206 DOI: 10.1016/j.dld.2016.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte.
Collapse
Affiliation(s)
- LiChun Zhang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha, Hunan Province, China.
| |
Collapse
|
202
|
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 2016; 16:469-84. [PMID: 27346803 DOI: 10.1038/nri.2016.62] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.
Collapse
Affiliation(s)
- Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
203
|
Herrema H, Zhou Y, Zhang D, Lee J, Salazar Hernandez MA, Shulman GI, Ozcan U. XBP1s Is an Anti-lipogenic Protein. J Biol Chem 2016; 291:17394-404. [PMID: 27325692 DOI: 10.1074/jbc.m116.728949] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been shown to contribute to various metabolic diseases, including non-alcoholic fatty liver disease and type 2 diabetes. Reduction of ER stress by treatment with chemical chaperones or overexpression of ER chaperone proteins alleviates hepatic steatosis. Nonetheless, X-box binding protein 1s (XBP1s), a key transcription factor that reduces ER stress, has been proposed as a lipogenic transcription factor. In this report, we document that XBP1s leads to suppression of lipogenic gene expression and reduction of hepatic triglyceride and diacylglycerol content in livers of diet-induced obese and genetically obese and insulin-resistant ob/ob mice. Furthermore, we also show that PKCϵ activity, which correlates with fatty liver and which causes insulin resistance, was significantly reduced in diet-induced obese mice. Finally, we have shown that XBP1s reduces the hepatic fatty acid synthesis rate and enhances macrolipophagy, an initiating step in lipolysis. Our results reveal that XBP1s reduces hepatic lipogenic gene expression and improves hepatosteatosis in mouse models of obesity and insulin resistance, which leads us to conclude that XBP1s has anti-lipogenic properties in the liver.
Collapse
Affiliation(s)
- Hilde Herrema
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| | - Yingjiang Zhou
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Dongyan Zhang
- the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06519, and
| | - Justin Lee
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Gerald I Shulman
- the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06519, and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Umut Ozcan
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
204
|
Lee HY, Lee GH, Bhattarai KR, Park BH, Koo SH, Kim HR, Chae HJ. Bax Inhibitor-1 regulates hepatic lipid accumulation via ApoB secretion. Sci Rep 2016; 6:27799. [PMID: 27297735 PMCID: PMC4906294 DOI: 10.1038/srep27799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we explored the effects of Bax Inhibitor-1 (BI-1) on ApoB aggregation in high-fat diet (HFD)-induced hepatic lipid accumulation. After 1 week on a HFD, triglycerides and cholesterol accumulated more in the liver and were not effectively secreted into the plasma, whereas after 8 weeks, lipids were highly accumulated in both the liver and plasma, with a greater effect in BI-1 KO mice compared with BI-1 WT mice. ApoB, a lipid transfer protein, was accumulated to a greater extent in the livers of HFD-BI-1 KO mice compared with HFD-BI-1 WT mice. Excessive post-translational oxidation of protein disulfide isomerase (PDI), intra-ER ROS accumulation and folding capacitance alteration were also observed in HFD-BI-1 KO mice. Higher levels of endoplasmic reticulum (ER) stress were consistently observed in KO mice compared with the WT mice. Adenovirus-mediated hepatic expression of BI-1 in the BI-1 KO mice rescued the above phenotypes. Our results suggest that BI-1-mediated enhancement of ApoB secretion regulates hepatic lipid accumulation, likely through regulation of ER stress and ROS accumulation.
Collapse
Affiliation(s)
- Hwa Young Lee
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Geum-Hwa Lee
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Byung-Hyun Park
- Department of Biochemistry, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 136-713, Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan, 570-749, Korea
| | - Han Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| |
Collapse
|
205
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 452] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
206
|
Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE1α, p38 MAPK and Smad-dependent pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2115-23. [PMID: 27155082 DOI: 10.1016/j.bbamcr.2016.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/16/2016] [Accepted: 05/03/2016] [Indexed: 01/04/2023]
Abstract
Unfolded protein response (UPR) triggered as a consequence of ER stress has been shown to be involved in the development of different pathologies, including fibrotic disorders. In the present paper we explore the role played by UPR on a key fibrogenic parameter in the liver: collagen type I levels in activated hepatic stellate cells (HSC). Using Brefeldin A (BFA) as an ER stress inducer we found that UPR correlated with enhanced mRNA and protein levels of collagen type I in a cell line of immortalized non-tumoral rat HSC. Analysis of the three branches of UPR revealed the activation of IRE1α, PERK and ATF6 in response to BFA, although PERK activation was shown not to be involved in the fibrogenic action of BFA. BFA also activated p38 MAPK in an IRE1α-dependent way and the p38 MAPK inhibitor SB203580 prevented the increase in collagen type I mRNA and protein levels caused by BFA, suggesting the involvement of this kinase on this effect. Analysis of Smad activation showed that phosphorylated nuclear levels of Smad2 and 3 were increased in response to BFA treatment. Inhibition of Smad3 phosphorylation by SIS3 prevented the enhancement of collagen type I levels caused by BFA. Pretreatment with IRE1α and p38 MAPK inhibitors also prevented the increased p-Smad3 accumulation in the nucleus, suggesting an IRE1α-p38 MAPK-Smad pathway to be responsible for the fibrogenic action of BFA on HSC.
Collapse
|
207
|
Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016; 529:326-35. [PMID: 26791723 DOI: 10.1038/nature17041] [Citation(s) in RCA: 1161] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.
Collapse
Affiliation(s)
- Miao Wang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
208
|
Kim HM, Han JW, Chan JY. Nuclear Factor Erythroid-2 Like 1 (NFE2L1): Structure, function and regulation. Gene 2016; 584:17-25. [PMID: 26947393 DOI: 10.1016/j.gene.2016.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
Nrf1 (also referred to as NFE2L1) is a member of the CNC-bZIP family of transcription factors that are characterized by a highly conserved CNC-domain, and a basic-leucine zipper domain required for dimerization and DNA binding. Nrf1 is ubiquitously expressed across tissue and cell types as various isoforms, and is induced by stress signals from a broad spectrum of stimuli. Evidence indicates that Nrf1 plays an important role in regulating a range of cellular functions including oxidative stress response, differentiation, inflammatory response, metabolism, and maintaining proteostasis. Thus, Nrf1 has been implicated in the pathogenesis of various disease processes including cancer development, and degenerative and metabolic disorders. This review summarizes our current understanding of Nrf1 and the molecular mechanism underlying its regulation and action in different cellular functions.
Collapse
Affiliation(s)
- Hyun Min Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jeong Woo Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
209
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
210
|
Jung TW, Choi KM. Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases. Int J Mol Sci 2016; 17:ijms17020192. [PMID: 26840310 PMCID: PMC4783926 DOI: 10.3390/ijms17020192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 01/23/2023] Open
Abstract
The endoplasmic reticulum (ER) is the principal organelle responsible for correct protein folding, a step in protein synthesis that is critical for the functional conformation of proteins. ER stress is a primary feature of secretory cells and is involved in the pathogenesis of numerous human diseases, such as certain neurodegenerative and cardiometabolic disorders. The unfolded protein response (UPR) is a defense mechanism to attenuate ER stress and maintain the homeostasis of the organism. Two major degradation systems, including the proteasome and autophagy, are involved in this defense system. If ER stress overwhelms the capacity of the cell's defense mechanisms, apoptotic death may result. This review is focused on the various pharmacological modulators that can protect cells from damage induced by ER stress. The possible mechanisms for cytoprotection are also discussed.
Collapse
Affiliation(s)
- Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul 152-703, Korea.
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul 152-703, Korea.
| |
Collapse
|
211
|
Zheng J, Peng C, Ai Y, Wang H, Xiao X, Li J. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes. Nutrients 2016; 8:nu8010055. [PMID: 26805874 PMCID: PMC4728666 DOI: 10.3390/nu8010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.
Collapse
Affiliation(s)
- Jinying Zheng
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Chuan Peng
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yanbiao Ai
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Heng Wang
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jibin Li
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| |
Collapse
|
212
|
Xu Z, Chikka MR, Xia H, Ready DF. Ire1 supports normal ER differentiation in developing Drosophila photoreceptors. J Cell Sci 2016; 129:921-9. [PMID: 26787744 PMCID: PMC4813318 DOI: 10.1242/jcs.180406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Abstract
The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called 'professional' secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER.
Collapse
Affiliation(s)
- Zuyuan Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Hongai Xia
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Donald F Ready
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
213
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
214
|
Kakazu E, Mauer AS, Yin M, Malhi H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J Lipid Res 2015; 57:233-45. [PMID: 26621917 DOI: 10.1194/jlr.m063412] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a lipotoxic disease wherein activation of endoplasmic reticulum (ER) stress response and macrophage-mediated hepatic inflammation are key pathogenic features. However, the lipid mediators linking these two observations remain elusive. We postulated that ER stress-regulated release of pro-inflammatory extracellular vesicles (EVs) from lipotoxic hepatocytes may be this link. EVs were isolated from cell culture supernatants of hepatocytes treated with palmitate (PA) to induce lipotoxic ER stress, characterized by immunofluorescence, Western blotting, electron microscopy, and nanoparticle tracking analysis. Sphingolipids were measured by tandem mass spectrometry. EVs were employed in macrophage chemotaxis assays. PA induced significant EV release. Because PA activates ER stress, we used KO hepatocytes to demonstrate that PA-induced EV release was mediated by inositol requiring enzyme 1α (IRE1α)/X-box binding protein-1. PA-induced EVs were enriched in C16:0 ceramide in an IRE1α-dependent manner, and activated macrophage chemotaxis via formation of sphingosine-1-phosphate (S1P) from C16:0 ceramide. This chemotaxis was blocked by sphingosine kinase inhibitors and S1P receptor inhibitors. Lastly, elevated circulating EVs in experimental and human NASH demonstrated increased C16:0 ceramide. PA induces C16:0 ceramide-enriched EV release in an IRE1α-dependent manner. The ceramide metabolite, S1P, activates macrophage chemotaxis, a potential mechanism for the recruitment of macrophages to the liver under lipotoxic conditions.
Collapse
Affiliation(s)
- Eiji Kakazu
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905 Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Aobaku, Sendai, 980-8573 Japan
| | - Amy S Mauer
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN 55905
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
215
|
Hassler JR, Scheuner DL, Wang S, Han J, Kodali VK, Li P, Nguyen J, George JS, Davis C, Wu SP, Bai Y, Sartor M, Cavalcoli J, Malhi H, Baudouin G, Zhang Y, Yates III JR, Itkin-Ansari P, Volkmann N, Kaufman RJ. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells. PLoS Biol 2015; 13:e1002277. [PMID: 26469762 PMCID: PMC4607427 DOI: 10.1371/journal.pbio.1002277] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.
Collapse
Affiliation(s)
- Justin R. Hassler
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Donalyn L. Scheuner
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana, United States of America
| | - Shiyu Wang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jaeseok Han
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Vamsi K. Kodali
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Philip Li
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Julie Nguyen
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jenny S. George
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Cory Davis
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Shengyang P. Wu
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Yongsheng Bai
- NCIBI Department of Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Maureen Sartor
- NCIBI Department of Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - James Cavalcoli
- NCIBI Department of Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Harmeet Malhi
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Gregory Baudouin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Yaoyang Zhang
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates III
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pamela Itkin-Ansari
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Niels Volkmann
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
216
|
Babayev E, Lalioti MD, Favero F, Seli E. Cross-Talk Between FSH and Endoplasmic Reticulum Stress: A Mutually Suppressive Relationship. Reprod Sci 2015; 23:352-64. [PMID: 26342052 DOI: 10.1177/1933719115602770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suboptimal cellular conditions result in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and trigger ER stress. In this study, we investigated the effects of follicle stimulating hormone (FSH) on ER stress in granulosa cells (GCs) obtained from 3-week-old female C57BL6 mice 24 or 48 hours after intraperitoneal injection of 5 IU pregnant mare's serum gonadotropin (PMSG), and in primary mouse GCs in culture treated with FSH (10-100 mIU/mL) for 24 or 48 hours. Moreover, mouse GCs in culture were treated with tunicamycin (Tm) or thapsigargin (Tp), which induce ER stress by inhibiting N-glycosylation of ER proteins and ER calcium adenosine triphosphatase, respectively, and their response to FSH was evaluated. We found that FSH attenuated ER stress in mouse GCs in vivo and in vitro; messenger RNA levels of ER stress-associated genes Xbp1s, Atf6, Chop, and Casp12 were decreased upon exposure to FSH/PMSG. Activating transcription factor 4 protein levels also demonstrated consistent decrease following FSH stimulation. Both Tm and Tp treatments inhibited FSH response, ER stress-induced cells did not show any change in estradiol levels in response to FSH, whereas in untreated GCs, estradiol production increased 3-fold after incubation with FSH for 60 hours. Furthermore, ER stress-induced cells failed to demonstrate aromatase (Cyp19a1) expression upon exposure to FSH. Importantly, under high-ER stress conditions FSH stimulation was unable to downregulate the expression of ER stress-associated genes. Our findings suggest that FSH decreases ER stress in GCs under physiologic conditions. However, under conditions that cause a significant increase in ER stress, FSH response is attenuated.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Maria D Lalioti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Biogen Idec, Cambridge, MA, USA
| | - Federico Favero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
217
|
Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res 2015. [PMID: 26223319 DOI: 10.3109/10715762.2015.1078461] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome. The underlying causes of the disease progression in NAFLD are unclear. Recent evidences suggest endoplasmic reticulum stress in the development of lipid droplets (steatosis) and subsequent generation of reactive oxygen species (ROS) in the progression to non-alcoholic steatohepatitis (NASH). The signalling pathway activated by disruption of endoplasmic reticulum (ER) homoeostasis, called as unfolded protein response, is linked with membrane biosynthesis, insulin action, inflammation and apoptosis. ROS are important mediators of inflammation. Protein folding in ER is linked to ROS. Therefore understanding the basic mechanisms that lead to ER stress and ROS in NAFLD have become the topics of immense interest. The present review focuses on the role of ER stress and ROS in the pathogenesis of NAFLD. We also highlight the cross talk between ER stress and oxidative stress which suggest and encourage the development of therapeutics for NAFLD. Further we have reviewed various strategies used for the management of NAFLD/NASH and limitations of such strategies. Our review therefore highlights the need for newer strategies with regards to ER stress and oxidative stress.
Collapse
Affiliation(s)
- N U Ashraf
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,b PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu Tawi , Jammu and Kashmir , India
| | - T A Sheikh
- a Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India.,b PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu Tawi , Jammu and Kashmir , India
| |
Collapse
|
218
|
Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J 2015; 468:33-47. [PMID: 25730376 DOI: 10.1042/bj20140734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glc7 is the only catalytic subunit of the protein phosphatase type 1 in the yeast S. cerevisiae and, together with its regulatory subunits, is involved in many essential processes. Analysis of the non-essential mutants in the regulatory subunits of Glc7 revealed that the lack of Reg1, and no other subunit, causes hypersensitivity to unfolded protein response (UPR)-inducers, which was concomitant with an augmented UPR element-dependent transcriptional response. The Glc7-Reg1 complex takes part in the regulation of the yeast AMP-activated serine/threonine protein kinase Snf1 in response to glucose. We demonstrate in the present study that the observed phenotypes of reg1 mutant cells are attributable to the inappropriate activation of Snf1. Indeed, growth in the presence of limited concentrations of glucose, where Snf1 is active, or expression of active forms of Snf1 in a wild-type strain increased the sensitivity to the UPR-inducer tunicamycin. Furthermore, reg1 mutant cells showed a sustained HAC1 mRNA splicing and KAR2 mRNA levels during the recovery phase of the UPR, and dysregulation of the Ire1-oligomeric equilibrium. Finally, overexpression of protein phosphatases Ptc2 and Ptc3 alleviated the growth defect of reg1 cells under endoplasmic reticulum (ER) stress conditions. Altogether, our results reveal that Snf1 plays an important role in the attenuation of the UPR, as well as identifying the protein kinase and its effectors as possible pharmacological targets for human diseases that are associated with insufficient UPR activation.
Collapse
|
219
|
Lee SS, Hong OK, Ju A, Kim MJ, Kim BJ, Kim SR, Kim WH, Cho NH, Kang MI, Kang SK, Kim DJ, Yoo SJ. Chronic Alcohol Consumption Results in Greater Damage to the Pancreas Than to the Liver in the Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:309-18. [PMID: 26170734 PMCID: PMC4499642 DOI: 10.4196/kjpp.2015.19.4.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
Alcohol consumption increases the risk of type 2 diabetes. However, its effects on prediabetes or early diabetes have not been studied. We investigated endoplasmic reticulum (ER) stress in the pancreas and liver resulting from chronic alcohol consumption in the prediabetes and early stages of diabetes. We separated Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type-2 diabetic animal model, into two groups based on diabetic stage: prediabetes and early diabetes were defined as occurrence between the ages of 11 to 16 weeks and 17 to 22 weeks, respectively. The experimental group received an ethanol-containing liquid diet for 6 weeks. An intraperitoneal glucose tolerance test was conducted after 16 and 22 weeks for the prediabetic and early diabetes groups, respectively. There were no significant differences in body weight between the control and ethanol groups. Fasting and 120-min glucose levels were lower and higher, respectively, in the ethanol group than in the control group. In prediabetes rats, alcohol induced significant expression of ER stress markers in the pancreas; however, alcohol did not affect the liver. In early diabetes rats, alcohol significantly increased most ER stress-marker levels in both the pancreas and liver. These results indicate that chronic alcohol consumption increased the risk of diabetes in prediabetic and early diabetic OLETF rats; the pancreas was more susceptible to damage than was the liver in the early diabetic stages, and the adaptive and proapoptotic pathway of ER stress may play key roles in the development and progression of diabetes affected by chronic alcohol ingestion.
Collapse
Affiliation(s)
- Seong-Su Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon 420-717, Korea
| | - Oak-Kee Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon 420-717, Korea
| | - Anes Ju
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen 37075, Germany
| | - Myung-Jun Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Cheongju 361-951, Korea
| | - Sung-Rae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon 420-717, Korea
| | - Won-Ho Kim
- Division of Metabolic Disease, Center for Biomedical Sicence, National Institutes of Health, Cheongju 361-951, Korea
| | - Nam-Han Cho
- Department in Preventive Medicine, Ajou University School of Medicine, Suwon 443-749, Korea
| | - Moo-Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 137-701, Korea
| | - Sung-Koo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon 420-767, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | - Soon-Jib Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon 420-717, Korea
| |
Collapse
|
220
|
Kanekura K, Ma X, Murphy JT, Zhu LJ, Diwan A, Urano F. IRE1 prevents endoplasmic reticulum membrane permeabilization and cell death under pathological conditions. Sci Signal 2015; 8:ra62. [PMID: 26106220 DOI: 10.1126/scisignal.aaa0341] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) has emerged as a critical regulator of cell survival. IRE1 is a transmembrane protein with kinase and RNase activities that is localized to the ER and that promotes resistance to ER stress. We showed a mechanism by which IRE1 conferred protection against ER stress-mediated cell death. IRE1 signaling prevented ER membrane permeabilization mediated by Bax and Bak and cell death in cells experiencing ER stress. Suppression of IRE1 signaling triggered by its kinase activity led to the accumulation of the BH3 domain-containing protein Bnip3, which in turn triggered the oligomerization of Bax and Bak in the ER membrane and ER membrane permeabilization. Consequently, in response to ER stress, cells deficient in IRE1 were susceptible to leakage of ER contents, which was associated with the accumulation of calcium in mitochondria, oxidative stress in the cytosol, and ultimately cell death. Our results reveal a role for IRE1 in preventing a cell death-initializing step that emanates from the ER and provide a potential target for treating diseases characterized by ER stress, including diabetes and Wolfram syndrome.
Collapse
Affiliation(s)
- Kohsuke Kanekura
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Xiucui Ma
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T Murphy
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lihua J Zhu
- Programs in Molecular, Cell and Cancer Biology, Molecular Medicine, and Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Abhinav Diwan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO 63110, USA. John Cochran VA Medical Center, St. Louis, MO 63106, USA
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
221
|
Fang J, Liu M, Zhang X, Sakamoto T, Taatjes DJ, Jena BP, Sun F, Woods J, Bryson T, Kowluru A, Zhang K, Chen X. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis. Mol Endocrinol 2015; 29:1156-69. [PMID: 26083833 DOI: 10.1210/me.2015-1012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.
Collapse
Affiliation(s)
- Jingye Fang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Ming Liu
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuebao Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Takeshi Sakamoto
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Douglas J Taatjes
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Bhanu P Jena
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Fei Sun
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - James Woods
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Tim Bryson
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Anjaneyulu Kowluru
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kezhong Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuequn Chen
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
222
|
Zhang N, Lu Y, Shen X, Bao Y, Cheng J, Chen L, Li B, Zhang Q. Fenofibrate treatment attenuated chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice. Pharmacology 2015; 95:173-80. [PMID: 25896720 DOI: 10.1159/000380952] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/13/2015] [Indexed: 12/31/2022]
Abstract
Fenofibrate is widely used in clinical practice, but its influence on chronic endoplasmic reticulum (ER) stress induced by feeding a high-calorie and high-cholesterol diet (HCD) has still not been studied. We thus investigated its effects on the liver of the nonalcoholic fatty liver disease (NAFLD) mouse model. Male C57BL/6 mice fed an HCD for 3 months were treated with fenofibrate (HCD + FF, 40 mg/kg, once daily) via gavage for 4 weeks. Insulin sensitivity, serum lipid and inflammatory cytokines were measured. Liver tissues were procured for histological examination as well as analysis of hepatic triglyceride levels, distribution of inflammatory cytokines and genes involved in ER stress. Our results showed that chronic feeding of an HCD successfully induced an NAFLD model accompanied by inflammatory activation, apoptosis and severe ER stress in the liver. Fenofibrate administration significantly improved symptoms of NAFLD and decreased apoptosis, expression of inflammatory cytokines and genes involved in ER stress, such as inositol-requiring enzyme 1α (IRE1α), X-box binding protein 1 (XBP1) and JNK phosphorylation. Thus, our study suggests that fenofibrate protected against inflammatory injury and apoptosis, maybe alleviating ER stress through the IRE1α-XBP1-JNK pathway in the liver of NAFLD mice.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Rachidi S, Sun S, Wu BX, Jones E, Drake RR, Ogretmen B, Cowart LA, Clarke CJ, Hannun YA, Chiosis G, Liu B, Li Z. Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J Hepatol 2015; 62:879-88. [PMID: 25463537 PMCID: PMC4369194 DOI: 10.1016/j.jhep.2014.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS gp96, or grp94, is an endoplasmic reticulum (ER)-localized heat shock protein 90 paralog that acts as a protein chaperone and plays an important role for example in ER homeostasis, ER stress, Wnt and integrin signaling, and calcium homeostasis, which are vital processes in oncogenesis. However, the cancer-intrinsic function of gp96 remains controversial. METHODS We studied the roles of gp96 in liver biology in mice via an Albumin promoter-driven Cre recombinase-mediated disruption of gp96 gene, hsp90b1. The impact of gp96 status on hepatic carcinogenesis in response to diethyl-nitrosoamine (DENA) was probed. The roles of gp96 on human hepatocellular carcinoma cells (HCC) were also examined pharmacologically with a targeted gp96 inhibitor. RESULTS We demonstrated that gp96 maintains liver development and hepatocyte function in vivo, and its loss genetically promotes adaptive accumulation of long chain ceramides, accompanied by steatotic regeneration of residual gp96+ hepatocytes. The need for compensatory expansion of gp96+ cells in the gp96- background predisposes mice to develop carcinogen-induced hepatic hyperplasia and cancer from gp96+ but not gp96- hepatocytes. We also found that genetic and pharmacological inhibition of gp96 in human HCCs perturbed multiple growth signals, and attenuated proliferation and expansion. CONCLUSIONS gp96 is a pro-oncogenic chaperone and an attractive therapeutic target for HCC.
Collapse
Affiliation(s)
- Saleh Rachidi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shaoli Sun
- Department of Pathology, Medical University of South Carolina, Charleston, SC, United States
| | - Bill X Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth Jones
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veteran's Affairs Medical Center, Charleston, SC, United States
| | | | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Gabriela Chiosis
- Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
224
|
Harris TR, Bettaieb A, Kodani S, Dong H, Myers R, Chiamvimonvat N, Haj FG, Hammock BD. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice. Toxicol Appl Pharmacol 2015; 286:102-11. [PMID: 25827057 DOI: 10.1016/j.taap.2015.03.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/26/2022]
Abstract
Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl4)-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl4-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl4-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl4-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl4, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Sean Kodani
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Hua Dong
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Richard Myers
- Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, CA 95616, USA; Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
225
|
Liu Y, Shao M, Wu Y, Yan C, Jiang S, Liu J, Dai J, Yang L, Li J, Jia W, Rui L, Liu Y. Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. J Hepatol 2015; 62:590-8. [PMID: 25457211 DOI: 10.1016/j.jhep.2014.10.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/14/2014] [Accepted: 10/09/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS As the main detoxifying organ of the body, the liver possesses a remarkable ability to regenerate after toxic injury, tissue resection or viral infection. A growing number of cellular signaling pathways have been implicated in orchestrating the process of liver regeneration. Here we investigated the role of inositol-requiring enzyme-1α (IRE1α), a key signal transducer of the unfolded protein response (UPR), in liver regeneration. METHODS Using mice with hepatocyte-specific deletion of IRE1α, we examined the role of IRE1α in liver regeneration after challenges with carbon tetrachloride (CCl4) or hepatic surgery. We also investigated if IRE1α deficiency could affect the activation state of signal transducer and activator of transcription 3 (STAT3) in hepatocytes. Using co-immunoprecipitation and glutathione S-transferase (GST) pull-down assays, we analyzed whether IRE1α could interact with STAT3 to regulate its phosphorylation. RESULTS We found that in response to CCl4-induced liver damage or after two-thirds partial hepatectomy (PH), abrogation of IRE1α caused marked exacerbation of liver injury and impairment in regenerative proliferation of hepatocytes in mice. Furthermore, IRE1α deficiency resulted in dampened STAT3 activation, and restoration of IRE1α expression led to sustained phosphorylation of STAT3 in IRE1α-null hepatocytes. Additionally, IRE1α could directly and constitutively associate with STAT3, leading to elevated phosphorylation when stimulated by IL-6. CONCLUSIONS These results suggest that IRE1α may promote liver regeneration through acting as a signaling platform to regulate the STAT3 pathway.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengle Shao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Yan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jingnan Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianli Dai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Liu Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
226
|
Vacaru AM, Di Narzo AF, Howarth DL, Tsedensodnom O, Imrie D, Cinaroglu A, Amin S, Hao K, Sadler KC. Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. Dis Model Mech 2015; 7:823-35. [PMID: 24973751 PMCID: PMC4073272 DOI: 10.1242/dmm.014472] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The unfolded protein response (UPR) is a complex network of sensors and target genes that ensure efficient folding of secretory proteins in the endoplasmic reticulum (ER). UPR activation is mediated by three main sensors, which regulate the expression of hundreds of targets. UPR activation can result in outcomes ranging from enhanced cellular function to cell dysfunction and cell death. How this pathway causes such different outcomes is unknown. Fatty liver disease (steatosis) is associated with markers of UPR activation and robust UPR induction can cause steatosis; however, in other cases, UPR activation can protect against this disease. By assessing the magnitude of activation of UPR sensors and target genes in the liver of zebrafish larvae exposed to three commonly used ER stressors (tunicamycin, thapsigargin and Brefeldin A), we have identified distinct combinations of UPR sensors and targets (i.e. subclasses) activated by each stressor. We found that only the UPR subclass characterized by maximal induction of UPR target genes, which we term a stressed-UPR, induced steatosis. Principal component analysis demonstrated a significant positive association between UPR target gene induction and steatosis. The same principal component analysis showed significant correlation with steatosis in samples from patients with fatty liver disease. We demonstrate that an adaptive UPR induced by a short exposure to thapsigargin prior to challenging with tunicamycin reduced both the induction of a stressed UPR and steatosis incidence. We conclude that a stressed UPR causes steatosis and an adaptive UPR prevents it, demonstrating that this pathway plays dichotomous roles in fatty liver disease.
Collapse
Affiliation(s)
- Ana M Vacaru
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Antonio Fabio Di Narzo
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L Howarth
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Orkhontuya Tsedensodnom
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dru Imrie
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ayca Cinaroglu
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Salma Amin
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirsten C Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Box 1020, 1 Gustave L. Levy Place, New York, NY 10029, USA. Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
227
|
Wu H, Wei L, Fan F, Ji S, Zhang S, Geng J, Hong L, Fan X, Chen Q, Tian J, Jiang M, Sun X, Jin C, Yin ZY, Liu Q, Zhang J, Qin F, Lin KH, Yu JS, Deng X, Wang HR, Zhao B, Johnson RL, Chen L, Zhou D. Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat Commun 2015; 6:6239. [PMID: 25695629 DOI: 10.1038/ncomms7239] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
The role of the unfolded protein response (UPR) in tissue homeostasis remains largely unknown. Here we find that loss of Mst1/2, the mammalian Hippo orthologues, or their regulator WW45, leads to a remarkably enlarged endoplasmic reticulum (ER) size-associated UPR. Intriguingly, attenuation of the UPR by tauroursodeoxycholic acid (TUDCA) diminishes Mst1/2 mutant-driven liver overgrowth and tumorigenesis by promoting nuclear exit and degradation of Hippo downstream effector Yap. Yap is required for UPR activity and ER expansion to alleviate ER stress. During the adaptive stage of the UPR, PERK kinase-eIF2α axis activates Yap, while prolonged ER stress-induced Hippo signalling triggers assembly of the GADD34/PP1 complex in a negative feedback loop to inhibit Yap and promote apoptosis. Significantly, the deregulation of UPR signals associated with Yap activation is found in a substantial fraction of human hepatocellular carcinoma (HCC). Thus, we conclude Yap integrates Hippo and UPR signalling to control liver size and tumorigenesis.
Collapse
Affiliation(s)
- Hongtan Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Luyao Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Fuqin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Suyuan Ji
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Xin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Jing Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Mingting Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Changnan Jin
- Department of Hepatology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian 361001, China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China
| | - Qingxu Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Funiu Qin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Kwang-Huei Lin
- College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yang 333, Taiwan
| | - Jau-Song Yu
- College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yang 333, Taiwan
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiang'An district, Xiamen, Fujian 361102, China
| |
Collapse
|
228
|
Sharkey LM, Davies SE, Kaser A, Woodward JM. Endoplasmic Reticulum Stress Is Implicated in Intestinal Failure-Associated Liver Disease. JPEN J Parenter Enteral Nutr 2015; 40:431-6. [PMID: 25666021 DOI: 10.1177/0148607115571014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Intestinal failure-associated liver disease (IFALD) is the most serious consequence of long-term parenteral nutrition for intestinal failure. Little is known about the pathogenesis of IFALD, although many of the risk factors are also linked to endoplasmic reticulum stress (ERS). We propose that ERS may have a role in the development of IFALD. METHODS Archived liver tissue from patients with early and late IFALD, as well as from normal controls, was used for RNA extraction and immunohistochemistry to demonstrate the presence of ERS markers. RESULTS Mean relative RNA levels of glucose regulatory protein 78 in normal liver (n = 3), early IFALD (n = 15), and late IFALD (n = 5) were 0.5, 37.86, and 212.11, respectively. Mean relative expression of ERDj4 (ER DnaJ homologue 4, a downstream ERS effector) in normal liver, early IFALD, and late IFALD was 5.51, 216.68, and 213.22, respectively. The degree of splicing of X-box binding protein 1 in IFALD compared with normal liver was significantly higher (mean, 0.0779 normal, 0.102 early IFALD, 0.2063 late IFALD). CONCLUSIONS This is the first description of ERS in IFALD. This information may open up new therapeutic possibilities in the form of chemical chaperones known to ameliorate ERS.
Collapse
Affiliation(s)
- Lisa M Sharkey
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, UK
| | - Jeremy M Woodward
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
229
|
Ho DV, Chan JY. Induction of Herpud1 expression by ER stress is regulated by Nrf1. FEBS Lett 2015; 589:615-20. [PMID: 25637874 PMCID: PMC10084809 DOI: 10.1016/j.febslet.2015.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 12/30/2022]
Abstract
Herpud1 is an ER-localized protein that contributes to endoplasmic reticulum (ER) homeostasis by participating in the ER-associated protein degradation pathway. The Nrf1 transcription factor is important in cellular stress pathways. We show that loss of Nrf1 function results in decreased Herpud1 expression in cells and liver tissues. Expression of Herpud1 increases in response to ER stress, but not in Nrf1 knockout cells. Transactivation studies show that Nrf1 acts through antioxidant response elements located in the Herpud1 promoter, and chromatin immunoprecipitation demonstrates that Herpud1 is a direct Nrf1 target gene. These results indicate that Nrf1 is a transcriptional activator of Herpud1 expression during ER stress, and they suggest Nrf1 is a key player in the regulation of the ER stress response in cells.
Collapse
Affiliation(s)
- Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
230
|
Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury. Sci Rep 2014; 4:6943. [PMID: 25373918 PMCID: PMC4221790 DOI: 10.1038/srep06943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 11/08/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) are predominant features of pathological processes. However, little is known about the link between ER stress and endovascular injury. We investigated the involvement of ER stress in neointima hyperplasia after vascular injury. The femoral arteries of 7-8-week-old male mice were subjected to wire-induced vascular injury. After 4 weeks, immunohistological analysis showed that ER stress markers were upregulated in the hyperplastic neointima. Neointima formation was increased by 54.8% in X-box binding protein-1 (XBP1) heterozygous mice, a model of compromised UPR. Knockdown of Xbp1 in human coronary artery smooth muscle cells (CASMC) in vitro promoted cell proliferation and migration. Furthermore, treatment with ER stress reducers, 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), decreased the intima-to-media ratio after wire injury by 50.0% and 72.8%, respectively. Chronic stimulation of CASMC with PDGF-BB activated the UPR, and treatment with 4-PBA and TUDCA significantly suppressed the PDGF-BB-induced ER stress markers in CASMC and the proliferation and migration of CASMC. In conclusion, increased ER stress contributes to neointima formation after vascular injury, while UPR signaling downstream of XBP1 plays a suppressive role. Suppression of ER stress would be a novel strategy against post-angioplasty vascular restenosis.
Collapse
|
231
|
Yang H, Qiu Q, Gao B, Kong S, Lin Z, Fang D. Hrd1-mediated BLIMP-1 ubiquitination promotes dendritic cell MHCII expression for CD4 T cell priming during inflammation. ACTA ACUST UNITED AC 2014; 211:2467-79. [PMID: 25366967 PMCID: PMC4235642 DOI: 10.1084/jem.20140283] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin pathway plays critical roles in antigen presentation. However, the ubiquitin ligases that regulate MHC gene transcription remain unidentified. We showed that the ubiquitin ligase Hrd1, expression of which is induced by Toll-like receptor (TLR) stimulation, is required for MHC-II but not MHC-I transcription in dendritic cells (DCs). Targeted Hrd1 gene deletion in DCs diminished MHC-II expression. As a consequence, Hrd1-null DCs failed to prime CD4(+) T cells without affecting the activation of CD8(+) T cells. Hrd1 catalyzed ubiquitination and degradation of the transcriptional suppressor B lymphocyte-induced maturation protein 1 (BLIMP1) to promote MHC-II expression. Genetic suppression of Hrd1 function in DCs protected mice from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We identified Hrd1-mediated BLIMP1 ubiquitination as a previously unknown mechanism in programming DC for CD4(+) T cell activation during inflammation.
Collapse
Affiliation(s)
- Heeyoung Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
232
|
Miyamoto Y, Mauer AS, Kumar S, Mott JL, Malhi H. Mmu-miR-615-3p regulates lipoapoptosis by inhibiting C/EBP homologous protein. PLoS One 2014; 9:e109637. [PMID: 25314137 PMCID: PMC4196923 DOI: 10.1371/journal.pone.0109637] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/11/2014] [Indexed: 12/24/2022] Open
Abstract
Lipoapoptosis occurring due to an excess of saturated free fatty acids such as palmitate is a key pathogenic event in the initiation of nonalcoholic fatty liver disease. Palmitate loading of cells activates the endoplasmic reticulum stress response, including induction of the proapoptotic transcription factor C/EBP homologous protein (CHOP). Furthermore, the loss of microRNAs is implicated in regulating apoptosis under conditions of endoplasmic reticulum (ER) stress. The aim of this study was to identify specific microRNAs regulating CHOP expression during palmitate-induced ER stress. Five microRNAs were repressed under palmitate-induced endoplasmic reticulum stress conditions in hepatocyte cell lines (miR-92b-3p, miR-328-3p, miR-484, miR-574-5p, and miR-615-3p). We identified miR-615-3p as a candidate microRNA which was repressed by palmitate treatment and regulated CHOP protein expression, by RNA sequencing and in silico analyses, respectively. There is a single miR-615-3p binding site in the 3′untranslated region (UTR) of the Chop transcript. We characterized this as a functional binding site using a reporter gene-based assay. Augmentation of miR-615-3p levels, using a precursor molecule, repressed CHOP expression; and under these conditions palmitate- or tunicamycin-induced cell death were significantly reduced. Our results suggest that palmitate-induced apoptosis requires maximal expression of CHOP which is achieved via the downregulation of its repressive microRNA, miR-615-3p. We speculate that enhancement of miR-615-3p levels may be of therapeutic benefit by inhibiting palmitate-induced hepatocyte lipoapoptosis.
Collapse
Affiliation(s)
- Yasuhiro Miyamoto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amy S. Mauer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Swarup Kumar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Justin L. Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
233
|
Mininni AN, Milan M, Ferraresso S, Petochi T, Di Marco P, Marino G, Livi S, Romualdi C, Bargelloni L, Patarnello T. Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genomics 2014; 15:765. [PMID: 25194679 PMCID: PMC4167152 DOI: 10.1186/1471-2164-15-765] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/03/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Water temperature greatly influences the physiology and behaviour of teleost fish as other aquatic organisms. While fish are able to cope with seasonal temperature variations, thermal excursions outside their normal thermal range might exceed their ability to respond leading to severe diseases and death.Profound differences exist in thermal tolerance across fish species living in the same geographical areas, promoting for investigating the molecular mechanisms involved in susceptibility and resistance to low and high temperatures toward a better understanding of adaptation to environmental challenges. The gilthead sea bream, Sparus aurata, is particularly sensitive to cold and the prolonged exposure to low temperatures may lead to the "winter disease", a metabolic disorder that significantly affects the aquaculture productions along the Northern Mediterranean coasts during winter-spring season. While sea bream susceptibility to low temperatures has been extensively investigated, the cascade of molecular events under such stressful condition is not fully elucidated. RESULTS In the present study two groups of wild sea bream were exposed for 21 days to two temperature regimes: 16 ± 0.3°C (control group) and 6.8 ± 0.3°C (cold-exposed group) and DNA microarray analysis of liver transcriptome was carried out at different time points during cold exposure.A large set of genes was found to be differentially expressed upon cold-exposure with increasingly relevant effects being observed after three weeks at low temperature. All major known responses to cold (i.e. anti-oxidant response, increased mitochondrial function, membrane compositional changes) were found to be conserved in the gilthead sea bream, while, evidence for a key role of unfolded protein response (UPR) to endoplasmic reticulum (ER) stress, during short- and long-term exposure to cold is reported here for the first time. CONCLUSIONS Transcriptome data suggest a scenario where oxidative stress, altered lipid metabolism, ATP depletion and protein denaturation converge to induce ER stress. The resulting UPR activation further promotes conditions for cell damage, and the inability to resolve ER stress leads to severe liver dysfunction and potentially to death.
Collapse
Affiliation(s)
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Yamamoto S, Yamazaki T, Komazaki S, Yamashita T, Osaki M, Matsubayashi M, Kidoya H, Takakura N, Yamazaki D, Kakizawa S. Contribution of calumin to embryogenesis through participation in the endoplasmic reticulum-associated degradation activity. Dev Biol 2014; 393:33-43. [DOI: 10.1016/j.ydbio.2014.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
|
235
|
Jiang S, Yan C, Fang QC, Shao ML, Zhang YL, Liu Y, Deng YP, Shan B, Liu JQ, Li HT, Yang L, Zhou J, Dai Z, Liu Y, Jia WP. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis. J Biol Chem 2014; 289:29751-65. [PMID: 25170079 DOI: 10.1074/jbc.m114.565960] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR) and represents a critical mechanism that underlies metabolic dysfunctions. Fibroblast growth factor 21 (FGF21), a hormone that is predominantly secreted by the liver, exerts a broad range of effects upon the metabolism of carbohydrates and lipids. Although increased circulating levels of FGF21 have been documented in animal models and human subjects with obesity and nonalcoholic fatty liver disease, the functional interconnections between metabolic ER stress and FGF21 are incompletely understood. Here, we report that increased ER stress along with the simultaneous elevation of FGF21 expression were associated with the occurrence of nonalcoholic fatty liver disease both in diet-induced obese mice and human patients. Intraperitoneal administration of the ER stressor tunicamycin in mice resulted in hepatic steatosis, accompanied by activation of the three canonical UPR branches and increased the expression of FGF21. Furthermore, the IRE1α-XBP1 pathway of the UPR could directly activate the transcriptional expression of Fgf21. Administration of recombinant FGF21 in mice alleviated tunicamycin-induced liver steatosis, in parallel with reduced eIF2α-ATF4-CHOP signaling. Taken together, these results suggest that FGF21 is an integral physiological component of the cellular UPR program, which exerts beneficial feedback effects upon lipid metabolism through counteracting ER stress.
Collapse
Affiliation(s)
- Shan Jiang
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Cheng Yan
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Qi-chen Fang
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Meng-le Shao
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Yong-liang Zhang
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Yang Liu
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Yi-ping Deng
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Bo Shan
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Jing-qi Liu
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Hua-ting Li
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233
| | - Liu Yang
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Jian Zhou
- the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhi Dai
- the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong Liu
- the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, and
| | - Wei-ping Jia
- From the Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, and Shanghai Key Clinical Center for Metabolic Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233,
| |
Collapse
|
236
|
Guo B, Li Z. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front Genet 2014; 5:242. [PMID: 25120559 PMCID: PMC4110625 DOI: 10.3389/fgene.2014.00242] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022] Open
Abstract
As an adaptive response to the overloading with misfolded proteins in the endoplasmic reticulum (ER), ER stress plays critical roles in maintaining protein homeostasis in the secretory pathway to avoid damage to the host. Such a conserved mechanism is accomplished through three well-orchestrated pathways known collectively as unfolded protein response (UPR). Persistent and pathological ER stress has been implicated in a variety of diseases in metabolic, inflammatory, and malignant conditions. Furthermore, ER stress is directly linked with inflammation through UPR pathways, which modulate transcriptional programs to induce the expression of inflammatory genes. Importantly, the inflammation induced by ER stress is directly responsible for the pathogenesis of metabolic and inflammatory diseases. In this review, we will discuss the potential signaling pathways connecting ER stress with inflammation. We will also depict the interplay between ER stress and inflammation in the pathogenesis of hepatic steatosis, inflammatory bowel diseases and colitis-associated colon cancer.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SCUSA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SCUSA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SCUSA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SCUSA
| |
Collapse
|
237
|
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21:396-413. [PMID: 24702237 PMCID: PMC4076992 DOI: 10.1089/ars.2014.5851] [Citation(s) in RCA: 982] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. RECENT ADVANCES Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. CRITICAL ISSUES Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. FUTURE DIRECTIONS A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- 1 Degenerative Diseases Program, Sanford Burnham Medical Research Institute , La Jolla, California
| | | |
Collapse
|
238
|
Bai Y, Hassler J, Ziyar A, Li P, Wright Z, Menon R, Omenn GS, Cavalcoli JD, Kaufman RJ, Sartor MA. Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data. PLoS One 2014; 9:e100864. [PMID: 24991935 PMCID: PMC4084626 DOI: 10.1371/journal.pone.0100864] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/31/2014] [Indexed: 12/03/2022] Open
Abstract
Setting During endoplasmic reticulum (ER) stress, the endoribonuclease (RNase) Ire1α initiates removal of a 26 nt region from the mRNA encoding the transcription factor Xbp1 via an unconventional mechanism (atypically within the cytosol). This causes an open reading frame-shift that leads to altered transcriptional regulation of numerous downstream genes in response to ER stress as part of the unfolded protein response (UPR). Strikingly, other examples of targeted, unconventional splicing of short mRNA regions have yet to be reported. Objective Our goal was to develop an approach to identify non-canonical, possibly very short, splicing regions using RNA-Seq data and apply it to ER stress-induced Ire1α heterozygous and knockout mouse embryonic fibroblast (MEF) cell lines to identify additional Ire1α targets. Results We developed a bioinformatics approach called the Read-Split-Walk (RSW) pipeline, and evaluated it using two Ire1α heterozygous and two Ire1α-null samples. The 26 nt non-canonical splice site in Xbp1 was detected as the top hit by our RSW pipeline in heterozygous samples but not in the negative control Ire1α knockout samples. We compared the Xbp1 results from our approach with results using the alignment program BWA, Bowtie2, STAR, Exonerate and the Unix “grep” command. We then applied our RSW pipeline to RNA-Seq data from the SKBR3 human breast cancer cell line. RSW reported a large number of non-canonical spliced regions for 108 genes in chromosome 17, which were identified by an independent study. Conclusions We conclude that our RSW pipeline is a practical approach for identifying non-canonical splice junction sites on a genome-wide level. We demonstrate that our pipeline can detect novel splice sites in RNA-Seq data generated under similar conditions for multiple species, in our case mouse and human.
Collapse
Affiliation(s)
- Yongsheng Bai
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Justin Hassler
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ahdad Ziyar
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Philip Li
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Zachary Wright
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Internal Medicine and Human Genetics, and School of Public Health, University of Michigan, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - James D. Cavalcoli
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Randal J. Kaufman
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RJK); (MAS)
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (RJK); (MAS)
| |
Collapse
|
239
|
Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M, Nam M, Zhang D, Yin L, Lee JH. Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 2014; 5:4233. [PMID: 24947615 PMCID: PMC4074707 DOI: 10.1038/ncomms5233] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022] Open
Abstract
Upon prolonged endoplasmic reticulum (ER) stress, cells attenuate protein translation to prevent accumulation of unfolded proteins. Here we show that Sestrin2 is critical for this process. Sestrin2 expression is induced by an ER stress-activated transcription factor CCAAT-enhancer-binding protein beta (c/EBPβ). Once induced, Sestrin2 halts protein synthesis by inhibiting mammalian target of rapamycin complex 1 (mTORC1). As Sestrin2-deficient cells continue to translate a large amount of proteins during ER stress, they are highly susceptible to ER stress-associated cell death. Accordingly, dietary or genetically-induced obesity, which does not lead to any pathological indication other than simple fat accumulation in liver of WT mice, can provoke Sestrin2-deficient mice to develop severe ER stress-associated liver pathologies such as extensive liver damage, steatohepatitis and fibrosis. These pathologies are suppressed by liver-specific Sestrin2 reconstitution, mTORC1 inhibition or chemical chaperone administration. The Sestrin2-mediated unfolded protein response (UPR) may be a general protective mechanism against ER stress-associated diseases.
Collapse
Affiliation(s)
- Hwan-Woo Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Haeli Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Seung-Hyun Ro
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Insook Jang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ian A Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David N Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Myeongjin Nam
- 1] Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Biological Science, Gachon University of Medicine and Science, Yeonsugu, Incheon 406-799, Republic of Korea
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
240
|
Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish. PLoS Genet 2014; 10:e1004335. [PMID: 24874946 PMCID: PMC4038464 DOI: 10.1371/journal.pgen.1004335] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/07/2014] [Indexed: 01/07/2023] Open
Abstract
Fatty liver disease (FLD) is characterized by lipid accumulation in hepatocytes and is accompanied by secretory pathway dysfunction, resulting in induction of the unfolded protein response (UPR). Activating transcription factor 6 (ATF6), one of three main UPR sensors, functions to both promote FLD during acute stress and reduce FLD during chronic stress. There is little mechanistic understanding of how ATF6, or any other UPR factor, regulates hepatic lipid metabolism to cause disease. We addressed this using zebrafish genetics and biochemical analyses and demonstrate that Atf6 is necessary and sufficient for FLD. atf6 transcription is significantly upregulated in the liver of zebrafish with alcoholic FLD and morpholino-mediated atf6 depletion significantly reduced steatosis incidence caused by alcohol. Moreover, overexpression of active, nuclear Atf6 (nAtf6) in hepatocytes caused FLD in the absence of stress. mRNA-Seq and qPCR analyses of livers from five day old nAtf6 transgenic larvae revealed upregulation of genes promoting glyceroneogenesis and fatty acid elongation, including fatty acid synthase (fasn), and nAtf6 overexpression in both zebrafish larvae and human hepatoma cells increased the incorporation of 14C-acetate into lipids. Srebp transcription factors are key regulators of lipogenic enzymes, but reducing Srebp activation by scap morpholino injection neither prevented FLD in nAtf6 transgenics nor synergized with atf6 knockdown to reduce alcohol-induced FLD. In contrast, fasn morpholino injection reduced FLD in nAtf6 transgenic larvae and synergistically interacted with atf6 to reduce alcoholic FLD. Thus, our data demonstrate that Atf6 is required for alcoholic FLD and epistatically interacts with fasn to cause this disease, suggesting triglyceride biogenesis as the mechanism of UPR induced FLD. Fatty liver disease (steatosis) is the most common liver disease worldwide and is commonly caused by obesity, type 2 diabetes, or alcohol abuse. All of these conditions are associated with impaired hepatocyte protein secretion, resulting in hypoproteinemia that contributes to the systemic complications of these diseases. The unfolded protein response (UPR) is activated in response to stress in the protein secretory pathway and a wealth of data indicates that UPR activation can contribute to steatosis, but the mechanistic basis for this relationship is poorly understood. We identify activating transcription factor 6 (Atf6), one of three UPR sensors, as necessary and sufficient for steatosis and show that Atf6 activation can promote lipogenesis, providing a direct connection between the stress response and lipid metabolism. Blocking Atf6 in zebrafish larvae prevents alcohol-induced steatosis and Atf6 overexpression in zebrafish hepatocytes induces genes that drive lipogenesis, increases lipid production and causes steatosis. Fatty acid synthase (fasn) is a key lipogenic enzyme and we show that fasn is required for fatty liver in response to both ethanol and Atf6 overexpression. Our findings point to Atf6 as a potential therapeutic target for fatty liver disease.
Collapse
|
241
|
Abstract
The endoplasmic reticulum (ER) is an important player in regulating protein synthesis and lipid metabolism. Perturbation of ER homeostasis, referred as “ER stress,” has been linked to numerous pathological conditions, such as inflammation, cardiovascular diseases, and metabolic disorders. The liver plays a central role in regulating nutrient and lipid metabolism. Accumulating evidence implicates that ER stress disrupts lipid metabolism and induces hepatic lipotoxicity. Here, we review the major ER stress signaling pathways, how ER stress contributes to the dysregulation of hepatic lipid metabolism, and the potential causative mechanisms of ER stress in hepatic lipotoxicity. Understanding the role of ER stress in hepatic metabolism may lead to the identification of new therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Huiping Zhou
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA ; McGuire Veterans Affairs Medical Center, Richmond VA, USA
| | - Runping Liu
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond VA, USA
| |
Collapse
|
242
|
Ferreira DMS, Simão AL, Rodrigues CMP, Castro RE. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J 2014; 281:2503-24. [PMID: 24702768 DOI: 10.1111/febs.12806] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/16/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of stages from simple steatosis to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and, ultimately, hepatocellular carcinoma. Despite being one of the most common chronic liver diseases, NAFLD pathogenesis remains largely unknown. In this review, we discuss the key molecular mechanisms involved in NAFLD development and progression, focusing on the emerging role of microRNAs. NAFLD is intrinsically related to obesity and the metabolic syndrome. Changes in lipid metabolism increase free fatty acids in blood, which in turn induces peripheral insulin resistance and increases oxidative and endoplasmic reticulum stress. Although not yet considered in the diagnosis of NAFLD, recent reports also reinforce the crucial role of apoptosis in disease progression via activation of either death receptor or mitochondrial pathways and p53. In addition, the role of gut microbiota and the gut-liver axis has been recently associated with NAFLD. Finally, there is an accumulating and growing body of evidence supporting the role of microRNAs in NAFLD pathogenesis and progression, as well as hinting at their use as biomarkers or therapeutic tools. The ultimate goal is to review different molecular pathways that may underlie NAFLD pathogenesis in the hope of finding targets for new and efficient therapeutic interventions.
Collapse
Affiliation(s)
- Duarte M S Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
243
|
Mamrosh JL, Lee JM, Wagner M, Stambrook PJ, Whitby RJ, Sifers RN, Wu SP, Tsai MJ, Demayo FJ, Moore DD. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. eLife 2014; 3:e01694. [PMID: 24737860 PMCID: PMC3987120 DOI: 10.7554/elife.01694] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.001 A protein can only work properly if it has been folded into the correct shape. However, it is estimated that about one third of new proteins have the wrong shape. This is a major challenge for cells because misfolded proteins are often toxic, and cause many neurodegenerative and metabolic disorders. In eukaryotic cells, most protein folding takes place inside a part of the cell called the endoplasmic reticulum (ER). If an incorrectly folded protein is detected, it is prevented from leaving the ER until it is refolded correctly, or destroyed. If too many proteins are misfolded, a process called the unfolded protein response helps the cell to cope with this ‘ER stress’ by expanding the ER and producing more of the molecules that assist protein folding. If this does not relieve the ER stress, the cell self-destructs. Neighboring cells then have to increase protein production to compensate for what would have been produced by the dead cell, thereby increasing the chance that they will also experience ER stress. Activation of a protein called LRH-1 (short for liver receptor homolog-1) that is produced in the liver, pancreas and intestine can relieve the symptoms of the various metabolic diseases that are associated with chronic ER stress, including type II diabetes and fatty liver disease. However, researchers have been puzzled by the fact that although LRH-1 performs many different roles, its molecular structure provides few clues as to how it can do this. Mamrosh et al. now confirm the speculated link between LRH-1 and ER stress relief in mice. LRH-1 triggers a previously unknown pathway that can relieve ER stress and is completely independent of the unfolded protein response. Targeting LRH-1 with certain chemical compounds alters its activity, suggesting that drug treatments could be developed to relieve ER stress. As similar targets for drugs have not been found in the unfolded protein response, the discovery of the LRH-1 pathway could lead to new approaches to the treatment of the diseases that result from ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.002
Collapse
Affiliation(s)
- Jennifer L Mamrosh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Hepatic steatosis exacerbated by endoplasmic reticulum stress-mediated downregulation of FXR in aging mice. J Hepatol 2014; 60:847-54. [PMID: 24333182 DOI: 10.1016/j.jhep.2013.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/12/2013] [Accepted: 12/02/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is characterized by an increase in hepatic triglyceride (TG) contents. The prevalence of NAFLD is increased with aging. However, the molecular mechanism for aging-induced fatty liver remains poorly understood. METHODS Hepatic TG contents and gene expression profiles were analyzed in body weight-matched young (2 months), middle (8 months) and old (18 months) C57BL/6 mice. Endoplasmic reticulum (ER) stress and farnesoid X receptor (FXR) expression were examined. The mechanism of ER stress activation in the regulation of FXR expression was further investigated. RESULTS In the present study, we found that TG was markedly accumulated and lipogenic genes were up-regulated in the liver of C57BL/6 mice aged 18 months. FXR, a key regulator of hepatic lipid metabolism was down-regulated in these old mice. At molecular levels, ER stress was activated in old mice and repressed FXR expression through inhibition of hepatocyte nuclear factor 1 alpha (HNF1α) transcriptional activity. CONCLUSIONS Our findings demonstrate that FXR down-regulation plays a critical role in aging-induced fatty liver.
Collapse
|
245
|
Abstract
PURPOSE OF REVIEW The endoplasmic reticulum (ER) maintains cellular metabolic homeostasis by coordinating protein synthesis, secretion activities, lipid biosynthesis and calcium (Ca²⁺) storage. In this review, we will discuss how altered ER homeostasis contributes to dysregulation of hepatic lipid metabolism and contributes to liver-associated metabolic diseases. RECENT FINDINGS Perturbed ER functions or accumulation of unfolded protein in the ER leads to the activation of the unfolded protein response (UPR) to protect the cell from ER stress. Recent findings pinpoint the key regulatory role of the UPR in hepatic lipid metabolism and demonstrate the potential causal mechanism of ER stress in metabolic dysregulation including diabetes and obesity. SUMMARY A wide range of factors can alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatic lipid metabolism and liver disease. The UPR constitutes a series of adaptive programs that preserve ER protein-folding environment and maintain hepatic lipid homeostasis. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human liver-associated metabolic diseases.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Disease Research, Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
246
|
Hepatic IRE1α regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARα axis signalling. Nat Commun 2014; 5:3528. [PMID: 24670948 DOI: 10.1038/ncomms4528] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/28/2014] [Indexed: 01/19/2023] Open
Abstract
Although the mammalian IRE1α-XBP1 branch of the cellular unfolded protein response has been implicated in glucose and lipid metabolism, the exact metabolic role of IRE1α signalling in vivo remains poorly understood. Here we show that hepatic IRE1α functions as a nutrient sensor that regulates the metabolic adaptation to fasting. We find that prolonged deprivation of food or consumption of a ketogenic diet activates the IRE1α-XBP1 pathway in mouse livers. Hepatocyte-specific abrogation of Ire1α results in impairment of fatty acid β-oxidation and ketogenesis in the liver under chronic fasting or ketogenic conditions, leading to hepatosteatosis; liver-specific restoration of XBP1s reverses the defects in IRE1α null mice. XBP1s directly binds to and activates the promoter of PPARα, the master regulator of starvation responses. Hence, our results demonstrate that hepatic IRE1α promotes the adaptive shift of fuel utilization during starvation by stimulating mitochondrial β-oxidation and ketogenesis through the XBP1s-PPARα axis.
Collapse
|
247
|
Zhang XQ, Xu CF, Yu CH, Chen WX, Li YM. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20:1768-1776. [PMID: 24587654 PMCID: PMC3930975 DOI: 10.3748/wjg.v20.i7.1768] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/20/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a common public health problem in recent decades. However, the underlying mechanisms leading to the development of NAFLD are not fully understood. The endoplasmic reticulum (ER) stress response has recently been proposed to play a crucial role in both the development of steatosis and progression to nonalcoholic steatohepatitis. ER stress is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed due to the accumulation of unfolded or misfolded proteins. However, delayed or insufficient responses to ER stress may turn physiological mechanisms into pathological consequences, including fat accumulation, insulin resistance, inflammation, and apoptosis, all of which play important roles in the pathogenesis of NAFLD. Therefore, understanding the role of ER stress in the pathogenesis of NAFLD has become a topic of intense investigation. This review highlights the recent findings linking ER stress signaling pathways to the pathogenesis of NAFLD.
Collapse
|
248
|
Abstract
The endoplasmic reticulum (ER) is a central organelle for protein biosynthesis, folding, and traffic. Perturbations in ER homeostasis create a condition termed ER stress and lead to activation of the complex signaling cascade called the unfolded protein response (UPR). Recent studies have documented that the UPR coordinates multiple signaling pathways and controls various physiologies in cells and the whole organism. Furthermore, unresolved ER stress has been implicated in a variety of metabolic disorders, such as obesity and type 2 diabetes. Therefore, intervening in ER stress and modulating signaling components of the UPR would provide promising therapeutics for the treatment of human metabolic diseases.
Collapse
Affiliation(s)
- Jaemin Lee
- From the Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
249
|
CCAAT/enhancer-binding protein homologous (CHOP) protein promotes carcinogenesis in the DEN-induced hepatocellular carcinoma model. PLoS One 2013; 8:e81065. [PMID: 24339898 PMCID: PMC3855209 DOI: 10.1371/journal.pone.0081065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022] Open
Abstract
Background and Aims C/EBP homologous protein (CHOP) plays pro-apoptotic roles in the integrated stress response. Recently, a tumor suppressive role for CHOP was demonstrated in lung cancer via regulation of tumor metabolism. To explore the role of CHOP in hepatocarcinogenesis, we induced hepatocellular carcinoma (HCC) in wild type (wt) and CHOP knockout (KO) mice using the carcinogen N-diethylnitrosamine (DEN). Results Analysis of tumor development showed reduced tumor load, with markedly smaller tumor nodules in the CHOP KO animals, suggesting oncogenic roles of CHOP in carcinogen-induced HCC. In wt tumors, CHOP was exclusively expressed in tumor tissue, with minimal expression in normal parenchyma. Analysis of human adenocarcinomas of various origins demonstrated scattered expression of CHOP in the tumors, pointing to relevance in human pathology. Characterization of pathways that may contribute to preferential expression of CHOP in the tumor identified ATF6 as a potential candidate. ATF6, a key member of the endoplasmic reticulum stress signaling machinery, exhibited a similar pattern of expression as CHOP and strong activation in wt but not CHOP KO tumors. Because HCC is induced by chronic inflammation, we assessed whether CHOP deficiency affects tumor-immune system crosstalk. We found that the number of macrophages and levels of IFNγ and CCL4 mRNA were markedly reduced in tumors from CHOP KO relative to wt mice, suggesting a role for CHOP in modulating tumor microenvironment and macrophage recruitment to the tumor. Conclusion Our data highlights a role for CHOP as a positive regulator of carcinogen-induced HCC progression through a complex mechanism that involves the immune system and modulation of stress signaling pathways.
Collapse
|
250
|
Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. J Transl Med 2013; 93:1295-312. [PMID: 24126888 DOI: 10.1038/labinvest.2013.121] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is an important pathogenic mechanism for alcoholic (ALD) and nonalcoholic fatty liver disease (NAFLD). Iron overload is an important cofactor for liver injury in ALD and NAFLD, but its role in ER stress and associated stress signaling pathways is unclear. To investigate this, we developed a murine model of combined liver injury by co-feeding the mildly iron overloaded, the hemochromatosis gene-null (Hfe(-/)) mouse ad libitum with ethanol and a high-fat diet (HFD) for 8 weeks. This co-feeding led to profound steatohepatitis, significant fibrosis, and increased apoptosis in the Hfe(-/-) mice as compared with wild-type (WT) controls. Iron overload also led to induction of unfolded protein response (XBP1 splicing, activation of IRE-1α and PERK, as well as sequestration of GRP78) and ER stress (increased CHOP protein expression) following HFD and ethanol. This is associated with a muted autophagic response including reduced LC3-I expression and impaired conjugation to LC3-II, reduced beclin-1 protein, and failure of induction of autophagy-related proteins (Atg) 3, 5, 7, and 12. As a result of the impaired autophagy, levels of the sequestosome protein p62 were most elevated in the Hfe(-/-) group co-fed ethanol and HFD. Iron overload reduces the activation of adenosine monophosphate protein kinase associated with ethanol and HFD feeding. We conclude that iron toxicity may modulate hepatic stress signaling pathways by impairing adaptive cellular compensatory mechanisms in alcohol- and obesity-induced liver injury.
Collapse
|