201
|
De Marzo AM, Haffner MC, Lotan TL, Yegnasubramanian S, Nelson WG. Premalignancy in Prostate Cancer: Rethinking What we Know. Cancer Prev Res (Phila) 2016; 9:648-56. [PMID: 26813971 DOI: 10.1158/1940-6207.capr-15-0431] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 11/16/2022]
Abstract
High-grade prostatic intraepithelial neoplasia (PIN) has been accepted as the main precursor lesion to invasive adenocarcinoma of the prostate, and this is likely to be the case. However, in an unknown number of cases, lesions fulfilling the diagnostic criteria for high-grade PIN may actually represent intra-acinar or intraductal spread of invasive carcinoma. Intriguingly, this possibility would not contradict many of the findings of previous epidemiologic studies linking high-grade PIN to carcinoma or molecular pathologic studies showing similar genomic (e.g., TMPRSS2-ERG gene fusion) as well as epigenomic and molecular phenotypic alterations between high-grade PIN and carcinoma. Also, this possibility would be consistent with previous anatomic studies in prostate specimens linking high-grade PIN and carcinoma in autopsy and other whole prostate specimens. In addition, if some cases meeting morphologic criteria for PIN actually represent intra-acinar spread of invasive carcinoma, this could be an important potential confounder of the interpretation of past clinical trials enrolling patients presumed to be without carcinoma, who are at high risk of invasive carcinoma. Thus, in order to reduce possible bias in future study/trial designs, novel molecular pathology approaches are needed to decipher when an apparent PIN lesion may be intra-acinar/intra-ductal spread of an invasive cancer and when it truly represents a precursor state. Similar approaches are needed for lesions known as intraductal carcinoma to facilitate better classification of them as true intra-ductal/acinar spread on one hand or as precursor high-grade PIN (cribriform type) on the other hand; a number of such molecular approaches (e.g., coevaluating TMPRSS-ERG fusion and PTEN loss) are already showing excellent promise. Cancer Prev Res; 9(8); 648-56. ©2016 AACR.
Collapse
Affiliation(s)
- Angelo M De Marzo
- Departments of Pathology Oncology Urology The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center The Brady Urological Research Institute at Johns Hopkins, Johns Hopkins University, Baltimore, MD.
| | - Michael C Haffner
- Departments of Pathology Oncology The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center
| | - Tamara L Lotan
- Departments of Pathology Oncology Urology The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center The Brady Urological Research Institute at Johns Hopkins, Johns Hopkins University, Baltimore, MD
| | - Srinivasan Yegnasubramanian
- Departments of Pathology Oncology Urology The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center The Brady Urological Research Institute at Johns Hopkins, Johns Hopkins University, Baltimore, MD
| | - William G Nelson
- Departments of Pathology Oncology Urology The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center The Brady Urological Research Institute at Johns Hopkins, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
202
|
Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer. PLoS One 2015; 10:e0145322. [PMID: 26683658 PMCID: PMC4687717 DOI: 10.1371/journal.pone.0145322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis.
Collapse
|
203
|
Cai Q, Medeiros LJ, Xu X, Young KH. MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management. Oncotarget 2015; 6:38591-38616. [PMID: 26416427 PMCID: PMC4770723 DOI: 10.18632/oncotarget.5774] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
MYC, a potent oncogene located at chromosome locus 8q24.21, was identified initially by its involvement in Burkitt lymphoma with t(8;14)(q24;q32). MYC encodes a helix-loop-helix transcription factor that accentuates many cellular functions including proliferation, growth and apoptosis. MYC alterations also have been identified in other mature B-cell neoplasms and are associated with aggressive clinical behavior. There are several regulatory factors and dysregulated signaling that lead to MYC up-regulation in B-cell lymphomas. One typical example is the failure of physiological repressors such as Bcl6 or BLIMP1 to suppress MYC over-expression. In addition, MYC alterations are often developed concurrently with other genetic alterations that counteract the proapoptotic function of MYC. In this review, we discuss the physiologic function of MYC and the role that MYC likely plays in the pathogenesis of B-cell lymphomas. We also summarize the role MYC plays in the diagnosis, prognostication and various strategies to detect MYC rearrangement and expression.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolu Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
204
|
Lee SH, Shen MM. Cell types of origin for prostate cancer. Curr Opin Cell Biol 2015; 37:35-41. [PMID: 26506127 DOI: 10.1016/j.ceb.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022]
Abstract
Analyses of cell types of origin for prostate cancer should result in new insights into mechanisms of tumor initiation, and may lead to improved prognosis and selection of appropriate therapies. Here, we review studies using a range of methodologies to investigate the cell of origin for mouse and human prostate cancer. Notably, analyses using tissue recombination assays support basal epithelial cells as a cell of origin, whereas in vivo lineage-tracing studies in genetically-engineered mice implicate luminal cells. We describe how these results can be potentially reconciled by a conceptual distinction between cells of origin and cells of mutation, and outline how new experimental approaches can address the potential relationship between cell types of origin and disease outcome.
Collapse
Affiliation(s)
- Suk Hyung Lee
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
205
|
Shi X, Zhang X, Yi C, Liu Y, He Q. [¹³N]Ammonia positron emission tomographic/computed tomographic imaging targeting glutamine synthetase expression in prostate cancer. Mol Imaging 2015; 13. [PMID: 25431095 DOI: 10.2310/7290.2014.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the expression of glutamine synthetase (GS) in prostate cancer (PCa) and the utility of [¹³N]ammonia positron emission tomography/computed tomography (PET/CT) in the imaging of PCa. The uptake ratio of [¹³N]ammonia and the expression of GS in PC3 and DU145 cells was measured. Thirty-four patients with suspected PCa underwent [¹³N]ammonia PET/CT imaging, and immunohistochemistry staining of GS was performed. The uptake of [¹³N]ammonia in PC3 and DU145 cells elevated along with the decrease in glutamine in medium. The expression of GS messenger ribonucleic acid and protein also increased when glutamine was deprived. In biopsy samples, the GS expression scores were significantly higher in PCa tissue than in benign tissues (p < .001), and there was a positive correlation between the maximum GS expression scores and Gleason scores (Spearman r = .52). In 34 patients, [¹³N]ammonia uptake in PCa segments was significantly higher than that in benign segments (p ≤ .01), and there was a weak correlation between GS expression scores and the uptake of [¹³N]ammonia (Spearman r = .47). The expression of GS in PCa cells upregulated along with the deprivation of glutamine. GS is the main reason for the uptake of [¹³N]ammonia, and [¹³N]ammonia is a useful tracer for PCa imaging.
Collapse
|
206
|
Abstract
A wide array of molecular markers and genomic signatures, reviewed in this article, may soon be used as adjuncts to currently established screening strategies, prognostic parameters, and early detection markers. Markers of genetic susceptibility to PCA, recurrent epigenetic and genetic alterations, including ETS gene fusions, PTEN alterations, and urine-based early detection marker PCA3, are discussed. Impact of recent genome-wide assessment on our understanding of key pathways of PCA development and progression and their potential clinical implications are highlighted.
Collapse
|
207
|
Ni X, Zhang Y, Zennami K, Castanares M, Mukherjee A, Raval RR, Zhou H, DeWeese TL, Lupold SE. Systemic Administration and Targeted Radiosensitization via Chemically Synthetic Aptamer-siRNA Chimeras in Human Tumor Xenografts. Mol Cancer Ther 2015; 14:2797-804. [PMID: 26438155 DOI: 10.1158/1535-7163.mct-15-0291-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/20/2015] [Indexed: 01/11/2023]
Abstract
Radiation therapy is a highly effective tool for treating all stages of prostate cancer, from curative approaches in localized disease to palliative care and enhanced survival for patients with distant bone metastases. The therapeutic index of these approaches may be enhanced with targeted radiation-sensitizing agents. Aptamers are promising nucleic acid delivery agents for short interfering RNAs (siRNA) and short hairpin RNAs (shRNA). We have previously developed a radiation-sensitizing RNA aptamer-shRNA chimera that selectively delivers DNA-PK targeting shRNAs to prostate-specific membrane antigen (PSMA) positive cells in the absence of transfection reagents. Although these chimera are effective, their synthesis requires in vitro transcription and their evaluation was limited to intratumoral administration. Here, we have developed a second-generation aptamer-siRNA chimera that can be assembled through the annealing of three separate chemically synthesized components. The resulting chimera knocked down DNA-PK in PSMA-positive prostate cancer cells, without the need of additional transfection reagents, and enhanced the efficacy of radiation-mediated cell death. Following intravenous injection, the chimera effectively knocked down DNA-PK in established subcutaneous PSMA-positive tumors. Systemic treatment with these radiation-sensitizing agents selectively enhanced the potency of external beam radiation therapy for established PSMA-positive tumors.
Collapse
Affiliation(s)
- Xiaohua Ni
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland. Shanghai Institute of Planned Parenthood Research, National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai, China
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kenji Zennami
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark Castanares
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amarnath Mukherjee
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Raju R Raval
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haoming Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Theodore L DeWeese
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
208
|
Wen M, Kwon Y, Wang Y, Mao JH, Wei G. Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer. Oncotarget 2015; 6:25226-25239. [PMID: 26308072 PMCID: PMC4694827 DOI: 10.18632/oncotarget.4712] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/17/2015] [Indexed: 01/13/2023] Open
Abstract
Increased expression of ubiquitin-conjugating enzyme E2T (UBE2T) is reported in human prostate cancer. However, whether UBE2T plays any functional role in prostate cancer development remains unknown. We here report the first functional characterization of UBE2T in prostate carcinogenesis. Prostate cancer tissue array analysis confirmed upregulation of UBE2T in prostate cancer, especially these with distant metastasis. Moreover, higher level of UBE2T expression is associated with poorer prognosis of prostate cancer patients. Ectopic expression of UBE2T significantly promotes prostate cancer cell proliferation, motility and invasion, while UBE2T depletion by shRNA significantly inhibits these abilities of prostate cancer cells. Xenograft mouse model studies showed that overexpression of UBE2T promotes whereas UBE2T depletion inhibits tumor formation and metastasis significantly. Collectively, we identify critical roles of UBE2T in prostate cancer development and progression. These findings may serve as a framework for future investigations designed to more comprehensive determination of UBE2T as a potential therapeutic target.
Collapse
Affiliation(s)
- Mingxin Wen
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Yongwon Kwon
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94127, USA
| | - Yongsheng Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94127, USA
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| |
Collapse
|
209
|
Labbé DP, Zadra G, Ebot EM, Mucci LA, Kantoff PW, Loda M, Brown M. Role of diet in prostate cancer: the epigenetic link. Oncogene 2015; 34:4683-91. [PMID: 25531313 PMCID: PMC4476943 DOI: 10.1038/onc.2014.422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022]
Abstract
Diet is hypothesized to be a critical environmentally related risk factor for prostate cancer (PCa) development, and specific diets and dietary components can also affect PCa progression; however, the mechanisms underlying these associations remain elusive. As for a maturing organism, PCa's epigenome is plastic and evolves from the pre-neoplastic to the metastatic stage. In particular, epigenetic remodeling relies on substrates or cofactors obtained from the diet. Here we review the evidence that bridges dietary modulation to alterations in the prostate epigenome. We propose that such diet-related effects offer a mechanistic link between the impact of different diets and the course of PCa development and progression.
Collapse
Affiliation(s)
- D P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - G Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E M Ebot
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - L A Mucci
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
210
|
Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene 2015; 35:2441-52. [PMID: 26279298 PMCID: PMC4757517 DOI: 10.1038/onc.2015.309] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/27/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022]
Abstract
The histone demethylase JMJD1A, which controls gene expression by epigenetic regulation of H3K9 methylation marks, functions in diverse activities, including spermatogenesis, metabolism and stem cell self-renewal and differentiation. Here, we found that JMJD1A knockdown in prostate cancer cells antagonizes their proliferation and survival. Profiling array analyses revealed that JMJD1A-dependent genes function in cellular growth, proliferation and survival, and implicated that the c-Myc transcriptional network is deregulated following JMJD1A inhibition. Biochemical analyses confirmed that JMJD1A enhances c-Myc transcriptional activity by upregulating c-Myc expression levels. Mechanistically, JMJD1A activity promoted recruitment of androgen receptor (AR) to the c-Myc gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA. In parallel, we found that JMJD1A regulated c-Myc stability, likely by inhibiting HUWE1, an E3 ubiquitin ligase known to target degradation of several substrates including c-Myc. JMJD1A (wild type or mutant lacking histone demethylase activity) bound to HUWE1, attenuated HUWE1-dependent ubiquitination and subsequent degradation of c-Myc, increasing c-Myc protein levels. Furthermore, c-Myc knockdown in prostate cancer cells phenocopied effects of JMJD1A knockdown, and c-Myc re-expression in JMJD1A-knockdown cells partially rescued prostate cancer cell growth in vitro and in vivo. c-Myc protein levels were positively correlated with those of JMJD1A in a subset of human prostate cancer specimens. Collectively, our findings identify a critical role for JMJD1A in regulating proliferation and survival of prostate cancer cells by controlling c-Myc expression at transcriptional and post-translational levels.
Collapse
|
211
|
Turetsky A, Lee K, Song J, Giedt RJ, Kim E, Kovach AE, Hochberg EP, Castro CM, Lee H, Weissleder R. On chip analysis of CNS lymphoma in cerebrospinal fluid. Am J Cancer Res 2015; 5:796-804. [PMID: 26000053 PMCID: PMC4440438 DOI: 10.7150/thno.11220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
Molecular profiling of central nervous system lymphomas in cerebrospinal fluid (CSF) samples can be challenging due to the paucicellular and limited nature of the samples. Presented herein is a microfluidic platform for complete CSF lymphoid cell analysis, including single cell capture in sub-nanoliter traps, and molecular and chemotherapeutic response profiling via on-chip imaging, all in less than one hour. The system can detect scant lymphoma cells and quantitate their kappa/lambda immunoglobulin light chain restriction patterns. The approach can be further customized for measurement of additional biomarkers, such as those for differential diagnosis of lymphoma subtypes or for prognosis, as well as for imaging exposure to experimental drugs.
Collapse
|
212
|
Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, Sadowski MC, Balaban S, Schreuder M, Nagarajah R, Wong JJL, Metierre C, Pinello N, Otte NJ, Lehman ML, Gleave M, Nelson CC, Bailey CG, Ritchie W, Rasko JEJ, Holst J. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 2015; 236:278-89. [PMID: 25693838 PMCID: PMC4973854 DOI: 10.1002/path.4518] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/19/2015] [Accepted: 02/12/2015] [Indexed: 12/11/2022]
Abstract
Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC‐3 prostate cancer cell lines, we showed that chemical or shRNA‐mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2‐mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC‐3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down‐regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2‐mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Rae-Anne Hardie
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Andrew J Hoy
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Dadi Gao
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Seher Balaban
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Mark Schreuder
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Rajini Nagarajah
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Justin J-L Wong
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Cynthia Metierre
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Natalia Pinello
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Nicholas J Otte
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Charles G Bailey
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - William Ritchie
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - John E J Rasko
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jeff Holst
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| |
Collapse
|
213
|
Gordon CA, Gulzar ZG, Brooks JD. NUSAP1 expression is upregulated by loss of RB1 in prostate cancer cells. Prostate 2015; 75:517-26. [PMID: 25585568 DOI: 10.1002/pros.22938] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Overexpression of NUSAP1 is associated with poor prognosis in prostate cancer, but little is known about what leads to its overexpression. Based on previous observations that NUSAP1 expression is enhanced by E2F1, we hypothesized that NUSAP1 expression is regulated, at least in part, by loss of RB1 via the RB1/E2F1 axis. METHODS Using Significance Analysis of Microarrays, we examined RB1, E2F1, and NUSAP1 transcript levels in prostate cancer gene expression datasets. We compared NUSAP1 expression levels in DU145, LNCaP, and PC-3 prostate cancer cell lines via use of cDNA microarray data, RT-qPCR, and Western blots. In addition, we used lentiviral expression constructs to knockdown RB1 in prostate cancer cell lines and transient transfections to knockdown E2F1, and investigated RB1, E2F1, and NUSAP1 expression levels with RT-qPCR and Western blots. Finally, in DU145 cells or PC-3 cells that stably underexpress RB1, we used proliferation and invasion assays to assess whether NUSAP1 knockdown affects proliferation or invasion. RESULTS NUSAP1 transcript levels are positively correlated with E2F1 and negatively correlated with RB1 transcript levels in prostate cancer microarray datasets. NUSAP1 expression is elevated in the RB1-null DU145 prostate cancer cell line, as opposed to LNCaP and PC-3 cell lines. Furthermore, NUSAP1 expression increases upon knockdown of RB1 in prostate cancer cell lines (LNCaP and PC-3) and decreases after knockdown of E2F1. Lastly, knockdown of NUSAP1 in DU145 cells or PC-3 cells with stable knockdown of RB1 decreases proliferation and invasion of these cells. CONCLUSION Our studies support the notion that NUSAP1 expression is upregulated by loss of RB1 via the RB1/E2F1 axis in prostate cancer cells. Such upregulation may promote prostate cancer progression by increasing proliferation and invasion of prostate cancer cells. NUSAP1 may thus represent a novel therapeutic target.
Collapse
Affiliation(s)
- Catherine A Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
214
|
Abstract
When the National Institutes of Health Mouse Models of Human Cancer Consortium initiated the Prostate Steering Committee 15 years ago, there were no genetically engineered mouse (GEM) models of prostate cancer (PCa). Today, a PubMed search for "prostate cancer mouse model" yields 3,200 publications and this list continues to grow. The first generation of GEM utilized the newly discovered and characterized probasin promoter driving viral oncogenes such as Simian virus 40 large T antigen to yield the LADY and TRAMP models. As the PCa research field has matured, the second generation of models has incorporated the single and multiple molecular changes observed in human disease, such as loss of PTEN and overexpression of Myc. Application of these models has revealed that mice are particularly resistant to developing invasive PCa, and once they achieve invasive disease, the PCa rarely resembles human disease. Nevertheless, these models and their application have provided vital information on human PCa progression. The aim of this review is to provide a brief primer on mouse and human prostate histology and pathology, provide descriptions of mouse models, as well as attempt to answer the age old question: Which GEM model of PCa is the best for my research question?
Collapse
|
215
|
Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, Hurley PJ, Berman DM, Drake CG, Thumbikat P, Schaeffer EM. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol 2015; 235:478-89. [PMID: 25348195 DOI: 10.1002/path.4472] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 01/10/2023]
Abstract
Inflammation is associated with several diseases of the prostate including benign enlargement and cancer, but a causal relationship has not been established. Our objective was to characterize the prostate inflammatory microenvironment after infection with a human prostate-derived bacterial strain and to determine the effect of inflammation on prostate cancer progression. To this end, we mimicked typical human prostate infection with retrograde urethral instillation of CP1, a human prostatic isolate of Escherichia coli. CP1 bacteria were tropic for the accessory sex glands and induced acute inflammation in the prostate and seminal vesicles, with chronic inflammation lasting at least 1 year. Compared to controls, infection induced both acute and chronic inflammation with epithelial hyperplasia, stromal hyperplasia, and inflammatory cell infiltrates. In areas of inflammation, epithelial proliferation and hyperplasia often persist, despite decreased expression of androgen receptor (AR). Inflammatory cells in the prostates of CP1-infected mice were characterized at 8 weeks post-infection by flow cytometry, which showed an increase in macrophages and lymphocytes, particularly Th17 cells. Inflammation was additionally assessed in the context of carcinogenesis. Multiplex cytokine profiles of inflamed prostates showed that distinct inflammatory cytokines were expressed during prostate inflammation and cancer, with a subset of cytokines synergistically increased during concurrent inflammation and cancer. Furthermore, CP1 infection in the Hi-Myc mouse model of prostate cancer accelerated the development of invasive prostate adenocarcinoma, with 70% more mice developing cancer by 4.5 months of age. This study provides direct evidence that prostate inflammation accelerates prostate cancer progression and gives insight into the microenvironment changes induced by inflammation that may accelerate tumour initiation or progression.
Collapse
Affiliation(s)
- Brian W Simons
- The Brady Urological Institute, Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Thieu W, Tilki D, de Vere White R, Evans CP. The role of microRNA in castration-resistant prostate cancer. Urol Oncol 2015; 32:517-523. [PMID: 24935732 DOI: 10.1016/j.urolonc.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Castration-resistant prostate cancer (CRPC) has a historically low median survival rate, but recent advances and discoveries in microRNAs (miRNAs) have opened the potential for new prognostication modalities to enhance therapeutic success. As new chemotherapies and immunotherapies are developed, there is an increasing need for precision and stratification of CRPC to allow for optimization and personalization of therapy. METHODS A systematic literature review was conducted via electronic database resulting in the selection of 42 articles based on title, abstract, study format, and content by a consensus of all participating authors. Most selected articles were published between 2002 and 2013. In this review, we discuss the robustness of miRNAs as a biomarker platform, miRNAs associated with prostate cancer, and recent discoveries of miRNA associations with CRPC. RESULTS The associations discovered have been of interest owing to the ability to differentiate between CRPC and localized prostate cancer. With the evaluation of multiple miRNAs, it is possible to provide a profile regarding tumor characteristics. Furthermore, actions of miRNAs on CRPC tumor cells have the ability to suppress metastatic phenotypes. CONCLUSION miRNAs may have a growing role in CRPC prognostication and may potentially transform into a therapeutic potential.
Collapse
Affiliation(s)
- William Thieu
- Department of Urology, University of California, Davis, Medical Center, Sacramento, CA, USA
| | - Derya Tilki
- Department of Urology, University of California, Davis, Medical Center, Sacramento, CA, USA
| | - Ralph de Vere White
- Department of Urology, University of California, Davis, Medical Center, Sacramento, CA, USA
| | - Christopher P Evans
- Department of Urology, University of California, Davis, Medical Center, Sacramento, CA, USA
| |
Collapse
|
217
|
Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, Sadowski MC, Balaban S, Schreuder M, Nagarajah R, Wong JJL, Metierre C, Pinello N, Otte NJ, Lehman ML, Gleave M, Nelson CC, Bailey CG, Ritchie W, Rasko JEJ, Holst J. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 2015. [PMID: 25693838 DOI: 10.1002/path.4518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Rae-Anne Hardie
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Andrew J Hoy
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Dadi Gao
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Seher Balaban
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Mark Schreuder
- Discipline of Physiology, Bosch Institute and Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Rajini Nagarajah
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Justin J-L Wong
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Cynthia Metierre
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Natalia Pinello
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Nicholas J Otte
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Martin Gleave
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Australia
| | - Charles G Bailey
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| | - William Ritchie
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Bioinformatics, Centenary Institute, Camperdown, NSW, Australia
| | - John E J Rasko
- Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jeff Holst
- Origins of Cancer Laboratory, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia.,Gene and Stem Cell Therapy Program, Centenary Institute, Camperdown, NSW, Australia
| |
Collapse
|
218
|
Zeng W, Sun H, Meng F, Liu Z, Xiong J, Zhou S, Li F, Hu J, Hu Z, Liu Z. Nuclear C-MYC expression level is associated with disease progression and potentially predictive of two year overall survival in prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1878-1888. [PMID: 25973080 PMCID: PMC4396295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
PURPOSE Upregulation of nuclear C-MYC protein has been reported to be an early event in prostate cancer (PCa); however, its clinicopathological and prognostic significance remain controversial. We determined the association of nuclear C-MYC protein expression with clinicopathological parameters, prognosis, ETS-related gene (ERG) expression, and TMPRSS2-ERG status in PCa. METHODS Nuclear C-MYC and ERG expression by immunohistochemistry and TMPRSS2-ERG status by triple-color probe fluorescence in situ hybridization assay were determined in 50 hormone-naïve PCa patients and 31 radical prostatectomy specimens. RESULTS Nuclear C-MYC immunostaining was negative, positive, and strong positive in 27.5%, 32.5%, and 40.0% of cases, respectively. C-MYC immunostaining was significantly associated with clinical T stage (P < 0.001), distant metastasis at the time of diagnosis (P < 0.001) and TMPRSS2-ERG status (P = 0.001) but not with ERG immunostaining (P = 0.818). In the Kaplan-Meier analysis, C-MYC positive cases were found to have worse 2-year OS compared with C-MYC negative cases (P = 0.027). However, in the univariate Cox analysis, only TMPRSS2-ERG status (hazard ratio [HR] 0.189, 95% CI 0.057-0.629; P = 0.007) and distant metastasis (HR 3.545, 95% CI 1.056-11.894; P = 0.040) were significantly associated with 2-year OS. After adjusting for these two factors, TMPRSS2-ERG status still impacted 2-year OS (HR 0.196, 95% CI 0.049-0.778; P = 0.020). CONCLUSIONS Nuclear C-MYC overexpression may be associated with disease progression and potentially predictive of 2-year OS in PCa. This is the first study to demonstrate an association between nuclear C-MYC immunostaining and TMPRSS2-ERG status in PCa.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Hanying Sun
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Zeming Liu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jing Xiong
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| |
Collapse
|
219
|
Barfeld SJ, East P, Zuber V, Mills IG. Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med Genomics 2014; 7:513. [PMID: 25551447 PMCID: PMC4351903 DOI: 10.1186/s12920-014-0074-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumorigenesis is characterised by changes in transcriptional control. Extensive transcript expression data have been acquired over the last decade and used to classify prostate cancers. Prostate cancer is, however, a heterogeneous multifocal cancer and this poses challenges in identifying robust transcript biomarkers. METHODS In this study, we have undertaken a meta-analysis of publicly available transcriptomic data spanning datasets and technologies from the last decade and encompassing laser capture microdissected and macrodissected sample sets. RESULTS We identified a 33 gene signature that can discriminate between benign tissue controls and localised prostate cancers irrespective of detection platform or dissection status. These genes were significantly overexpressed in localised prostate cancer versus benign tissue in at least three datasets within the Oncomine Compendium of Expression Array Data. In addition, they were also overexpressed in a recent exon-array dataset as well a prostate cancer RNA-seq dataset generated as part of the The Cancer Genomics Atlas (TCGA) initiative. Biologically, glycosylation was the single enriched process associated with this 33 gene signature, encompassing four glycosylating enzymes. We went on to evaluate the performance of this signature against three individual markers of prostate cancer, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) expression, prostate specific antigen (PSA) expression and androgen receptor (AR) expression in an additional independent dataset. Our signature had greater discriminatory power than these markers both for localised cancer and metastatic disease relative to benign tissue, or in the case of metastasis, also localised prostate cancer. CONCLUSION In conclusion, robust transcript biomarkers are present within datasets assembled over many years and cohorts and our study provides both examples and a strategy for refining and comparing datasets to obtain additional markers as more data are generated.
Collapse
Affiliation(s)
- Stefan J Barfeld
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Philip East
- Bioinformatics & Biostatistics, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | - Verena Zuber
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership University of Oslo and Oslo University Hospital, Oslo, Norway. .,Department of Cancer Prevention and Urology, Institute of Cancer Research and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
220
|
Sarveswaran S, Chakraborty D, Chitale D, Sears R, Ghosh J. Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J Biol Chem 2014; 290:4994-5006. [PMID: 25540201 DOI: 10.1074/jbc.m114.599035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myc is up-regulated in almost all cancer types and is the subject of intense investigation because of its pleiotropic effects controlling a broad spectrum of cell functions. However, despite its recognition as a stand-alone molecular target, development of suitable strategies to block its function is hindered because of its nonenzymatic nature. We reported earlier that arachidonate 5-lipoxygenase (5-Lox) plays an important role in the survival and growth of prostate cancer cells, although details of the underlying mechanisms have yet to be characterized. By whole genome gene expression array, we observed that inhibition of 5-Lox severely down-regulates the expression of c-Myc oncogene in prostate cancer cells. Moreover, inhibition of 5-Lox dramatically decreases the protein level, nuclear accumulation, DNA binding, and transcriptional activities of c-Myc. Both the 5-Lox inhibition-induced down-regulation of c-Myc and induction of apoptosis are mitigated when the cells are treated with 5-oxoeicosatetraenoic acid, a metabolite of 5-Lox, confirming a role of 5-Lox in these processes. c-Myc is a transforming oncogene widely expressed in prostate cancer cells and maintains their transformed phenotype. Interestingly, MK591, a specific 5-Lox inhibitor, strongly affects the viability of Myc-overactivated prostate cancer cells and completely blocks their invasive and soft agar colony-forming abilities, but it spares nontransformed cells where expression of 5-Lox is undetectable. These findings indicate that the oncogenic function of c-Myc in prostate cancer cells is regulated by 5-Lox activity, revealing a novel mechanism of 5-Lox action and suggesting that the oncogenic function of c-Myc can be suppressed by suitable inhibitors of 5-Lox.
Collapse
Affiliation(s)
| | | | - Dhananjay Chitale
- Pathology,; The Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan 48202 and
| | - Rosalie Sears
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Jagadananda Ghosh
- From the Departments of Urology and; The Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan 48202 and.
| |
Collapse
|
221
|
Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses. Adv Drug Deliv Rev 2014; 79-80:193-213. [PMID: 24969478 DOI: 10.1016/j.addr.2014.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Abstract
Tissue engineering technologies, which have originally been designed to reconstitute damaged tissue structure and function, can mimic not only tissue regeneration processes but also cancer development and progression. Bioengineered approaches allow cell biologists to develop sophisticated experimentally and physiologically relevant cancer models to recapitulate the complexity of the disease seen in patients. Tissue engineering tools enable three-dimensionality based on the design of biomaterials and scaffolds that re-create the geometry, chemistry, function and signalling milieu of the native tumour microenvironment. Three-dimensional (3D) microenvironments, including cell-derived matrices, biomaterial-based cell culture models and integrated co-cultures with engineered stromal components, are powerful tools to study dynamic processes like proteolytic functions associated with cancer progression, metastasis and resistance to therapeutics. In this review, we discuss how biomimetic strategies can reproduce a humanised niche for human cancer cells, such as peritoneal or bone-like microenvironments, addressing specific aspects of ovarian and prostate cancer progression and therapy response.
Collapse
|
222
|
Felgueiras J, Fardilha M. Phosphoprotein phosphatase 1-interacting proteins as therapeutic targets in prostate cancer. World J Pharmacol 2014; 3:120-139. [DOI: 10.5497/wjp.v3.i4.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major public health concern worldwide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specificity of prostate-specific antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modification critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phosphatase, whose specificity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identified as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
Collapse
|
223
|
Wyce A, Degenhardt Y, Bai Y, Le B, Korenchuk S, Crouthame MC, McHugh CF, Vessella R, Creasy CL, Tummino PJ, Barbash O. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget 2014; 4:2419-29. [PMID: 24293458 PMCID: PMC3926837 DOI: 10.18632/oncotarget.1572] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BET (bromodomain and extra-terminal) proteins regulate gene expression through their ability to bind to acetylated chromatin and subsequently activate RNA PolII-driven transcriptional elongation. Small molecule BET inhibitors prevent binding of BET proteins to acetylated histones and inhibit transcriptional activation of BET target genes. BET inhibitors attenuate cell growth and survival in several hematologic cancer models, partially through the down-regulation of the critical oncogene, MYC. We hypothesized that BET inhibitors will regulate MYC expression in solid tumors that frequently over-express MYC. Here we describe the effects of the highly specific BET inhibitor, I-BET762, on MYC expression in prostate cancer models. I-BET762 potently reduced MYC expression in prostate cancer cell lines and a patient-derived tumor model with subsequent inhibition of cell growth and reduction of tumor burden in vivo. Our data suggests that I-BET762 effects are partially driven by MYC down-regulation and underlines the critical importance of additional mechanisms of I-BET762 induced phenotypes.
Collapse
Affiliation(s)
- Anastasia Wyce
- Cancer Epigenetics DPU, Oncology R and D GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Shtivelman E, Beer TM, Evans CP. Molecular pathways and targets in prostate cancer. Oncotarget 2014; 5:7217-59. [PMID: 25277175 PMCID: PMC4202120 DOI: 10.18632/oncotarget.2406] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge.
Collapse
Affiliation(s)
| | - Tomasz M. Beer
- Oregon Health & Science University, Knight Cancer Institute, Portland, OR
| | - Christopher P. Evans
- Department of Urology and Comprehensive Cancer Center, University of California Davis, Davis, CA
| |
Collapse
|
225
|
Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 2014; 8:1339-46. [PMID: 25176651 DOI: 10.1016/j.celrep.2014.08.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/21/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022] Open
Abstract
The identification of cell types of origin for cancer has important implications for tumor stratification and personalized treatment. For prostate cancer, the cell of origin has been intensively studied, but it has remained unclear whether basal or luminal epithelial cells, or both, represent cells of origin under physiological conditions in vivo. Here, we use a novel lineage-tracing strategy to assess the cell of origin in a diverse range of mouse models, including Nkx3.1(+/-); Pten(+/-), Pten(+/-), Hi-Myc, and TRAMP mice, as well as a hormonal carcinogenesis model. Our results show that luminal cells are consistently the observed cell of origin for each model in situ; however, explanted basal cells from these mice can generate tumors in grafts. Consequently, we propose that luminal cells are favored as cells of origin in many contexts, whereas basal cells only give rise to tumors after differentiation into luminal cells.
Collapse
Affiliation(s)
- Zhu A Wang
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Roxanne Toivanen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sarah K Bergren
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, 67400 Illkirch, France
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
226
|
Prognostic histopathological and molecular markers on prostate cancer needle-biopsies: a review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:341324. [PMID: 25243131 PMCID: PMC4163394 DOI: 10.1155/2014/341324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/04/2014] [Indexed: 12/16/2022]
Abstract
Prostate cancer is diverse in clinical presentation, histopathological tumor growth patterns, and survival. Therefore, individual assessment of a tumor's aggressive potential is crucial for clinical decision-making in men with prostate cancer. To date a large number of prognostic markers for prostate cancer have been described, most of them based on radical prostatectomy specimens. However, in order to affect clinical decision-making, validation of respective markers in pretreatment diagnostic needle-biopsies is essential. Here, we discuss established and promising histopathological and molecular parameters in diagnostic needle-biopsies.
Collapse
|
227
|
MYC expression in concert with BCL2 and BCL6 expression predicts outcome in Chinese patients with diffuse large B-cell lymphoma, not otherwise specified. PLoS One 2014; 9:e104068. [PMID: 25090026 PMCID: PMC4121314 DOI: 10.1371/journal.pone.0104068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/05/2014] [Indexed: 01/25/2023] Open
Abstract
Recent studies provide convincing evidence that a combined immunohistochemical or fluorescence in situ hybridization (FISH) score of MYC, BCL2, BCL6 proteins and MYC translocations predicted outcome in diffuse large B-cell lymphoma (DLBCL) patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). However, by far, all these researches are based on Western populations. Therefore, we investigate the prognostic relevance of MYC-, BCL2- and BCL6-rearrangements and protein expression by immunohistochemistry and FISH from 336 de novo DLBCL, NOS treated with CHOP or R-CHOP. Breaks in MYC and BCL6, and fusion in IGH/BCL2 were detected in 9.7%, 20.0%, and 11.1% of the cases, respectively, and were not significantly associated with clinical outcomes. Protein overexpression of MYC (≥40%), BCL2 (≥70%) and BCL6 (≥50%) was encountered in 51%, 51% and 36% of the tumors, respectively. On the basis of MYC, BCL2 and BCL6 expression, double-hit scores (DHSs) and triple-hit score (THS) were assigned to all patients with DLBCL. Patients with high MYC/BCL2 DHS, high MYC/BCL6 DHS and high THS had multiple adverse prognostic factors including high LDH level, poor performance status, advanced clinical stage, high International Prognostic Index (IPI) score, and non-germinal center B-cell. In univariate analysis, high MYC/BCL2 DHS, high MYC/BCL6 DHS and high THS were associated with inferior OS and PFS in both CHOP and R-CHOP cohorts (P<0.05). The highly significant correlations with OS and PFS were maintained in multivariate models that controlled for IPI (P<0.05). DLBCLs with high DHSs and high THS share the clinical features and poor prognosis of double-hit lymphoma (P>0.05). These data together suggest that the immunohistochemical DHSs and THS defined a large subset of DLBCLs with double-hit biology and was strongly associated with poor outcome in patients treated with R-CHOP or CHOP.
Collapse
|
228
|
Antony L, van der Schoor F, Dalrymple SL, Isaacs JT. Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/β-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate 2014; 74:1118-31. [PMID: 24913829 PMCID: PMC4856018 DOI: 10.1002/pros.22828] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/02/2014] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5' and 3' c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3' c-MYC enhancer, but now suppresses c-MYC transcription.
Collapse
Affiliation(s)
- Lizamma Antony
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Correspondence to: Lizamma Antony, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans St., Baltimore, MD 21287.
| | - Freek van der Schoor
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Susan L. Dalrymple
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John T. Isaacs
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
229
|
Nandana S, Chung LWK. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:92-101. [PMID: 25374910 PMCID: PMC4219303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/26/2014] [Indexed: 06/04/2023]
Abstract
Skeletal metastasis in advanced prostate cancer (PCa) patients remains a significant cause of morbidity and mortality. Research utilizing animal models during the past decade has reached a consensus that PCa progression and distant metastasis can be tackled at the molecular level. Although there are a good number of models that have shown to facilitate the study of PCa initiation and progression at the primary site, models that mimic the distant dissemination of cancer cells, particularly bone metastasis, are scarce. Despite this limitation, the field has gleaned valuable knowledge on the underlying molecular mechanisms and pathways of PCa progression, including local invasion and distant metastasis, and has moved forward in developing the concepts of current therapeutic modalities. The purpose of this review is to put together recent work on pathways that are currently being targeted for therapy, as well as other prospective novel therapeutic targets to be developed in the future against metastatic and potentially lethal PCa in patients.
Collapse
Affiliation(s)
- Srinivas Nandana
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| | - Leland WK Chung
- Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical CenterLos Angeles, CA 90048, USA
| |
Collapse
|
230
|
Wee ZN, Li Z, Lee PL, Lee ST, Lim YP, Yu Q. EZH2-mediated inactivation of IFN-γ-JAK-STAT1 signaling is an effective therapeutic target in MYC-driven prostate cancer. Cell Rep 2014; 8:204-16. [PMID: 24953652 DOI: 10.1016/j.celrep.2014.05.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/04/2014] [Accepted: 05/22/2014] [Indexed: 12/16/2022] Open
Abstract
Although small-molecule targeting of EZH2 appears to be effective in lymphomas carrying EZH2 activating mutations, finding similar approaches to target EZH2-overexpressing epithelial tumors remains challenging. In MYC-driven, but not PI3K-driven prostate cancer, we show that interferon-γ receptor 1 (IFNGR1) is directly repressed by EZH2 in a MYC-dependent manner and is downregulated in a subset of metastatic prostate cancers. EZH2 knockdown restored the expression of IFNGR1 and, when combined with IFN-γ treatment, led to strong activation of IFN-JAK-STAT1 tumor-suppressor signaling and robust apoptosis. Pharmacologic depletion of EZH2 by the histone-methylation inhibitor DZNep mimicked the effects of EZH2 knockdown on IFNGR1 induction and delivered a remarkable synergistic antitumor effect with IFN-γ. In contrast, although they efficiently depleted histone Lysine 27 trimethylation, EZH2 catalytic inhibitors failed to mimic EZH2 depletion. Thus, EZH2-inactivated IFN signaling may represent a therapeutic target, and patients with advanced prostate cancer driven by MYC may benefit from the combination of EZH2 and IFN-γ-targeted therapy.
Collapse
Affiliation(s)
- Zhen Ning Wee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Zhimei Li
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Puay Leng Lee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Shuet Theng Lee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Qiang Yu
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
231
|
Cole MD. MYC association with cancer risk and a new model of MYC-mediated repression. Cold Spring Harb Perspect Med 2014; 4:a014316. [PMID: 24985129 DOI: 10.1101/cshperspect.a014316] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase.
Collapse
Affiliation(s)
- Michael D Cole
- Departments of Pharmacology and Genetics, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
232
|
Vander Griend DJ, Litvinov IV, Isaacs JT. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Int J Biol Sci 2014; 10:627-42. [PMID: 24948876 PMCID: PMC4062956 DOI: 10.7150/ijbs.8756] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.
Collapse
Affiliation(s)
- Donald J Vander Griend
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 3. The Brady Urological Institute, Johns Hopkins
| | - Ivan V Litvinov
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 2. Cellular and Molecular Medicine Graduate Program at Johns Hopkins
| | - John T Isaacs
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 2. Cellular and Molecular Medicine Graduate Program at Johns Hopkins. ; 3. The Brady Urological Institute, Johns Hopkins
| |
Collapse
|
233
|
Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen YT, Yin F, Liao CP, Stiles BL, Zhau HE, Shih JC, Chung LWK. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 2014; 124:2891-908. [PMID: 24865426 DOI: 10.1172/jci70982] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
Tumors from patients with high-grade aggressive prostate cancer (PCa) exhibit increased expression of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines. Despite the association between MAOA and aggressive PCa, it is unclear how MAOA promotes PCa progression. Here, we found that MAOA functions to induce epithelial-to-mesenchymal transition (EMT) and stabilize the transcription factor HIF1α, which mediates hypoxia through an elevation of ROS, thus enhancing growth, invasiveness, and metastasis of PCa cells. Knockdown and overexpression of MAOA in human PCa cell lines indicated that MAOA induces EMT through activation of VEGF and its coreceptor neuropilin-1. MAOA-dependent activation of neuropilin-1 promoted AKT/FOXO1/TWIST1 signaling, allowing FOXO1 binding at the TWIST1 promoter. Importantly, the MAOA-dependent HIF1α/VEGF-A/FOXO1/TWIST1 pathway was activated in high-grade PCa specimens, and knockdown of MAOA reduced or even eliminated prostate tumor growth and metastasis in PCa xenograft mouse models. Pharmacological inhibition of MAOA activity also reduced PCa xenograft growth in mice. Moreover, high MAOA expression in PCa tissues correlated with worse clinical outcomes in PCa patients. These findings collectively characterize the contribution of MAOA in PCa pathogenesis and suggest that MAOA has potential as a therapeutic target in PCa.
Collapse
|
234
|
Clinical significance of MYC expression and/or "high-grade" morphology in non-Burkitt, diffuse aggressive B-cell lymphomas: a SWOG S9704 correlative study. Am J Surg Pathol 2014; 38:494-501. [PMID: 24625415 DOI: 10.1097/pas.0000000000000147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The clinicopathologic findings in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) may show significant overlap, and MYC abnormalities, found in all BLs, also occur in a subset of DLBCL. The 2008 World Health Organization classification introduced the category of "B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL" (BCLU) in recognition of this overlap, but the clinical significance of BCLU (ie, "high-grade") morphology and the relationship between BCLU morphology and MYC abnormalities remains unclear. In this study, we identified 260 cases of non-Burkitt, diffuse aggressive B-cell lymphomas from SWOG S9704, a phase 3 randomized study of standard immunochemotherapy versus autologous stem cell transplantation. Of these, 31 cases (12%) showed BCLU morphology, and 229 (88%) showed typical DLBCL morphology. Of 198, 27 (14%) were positive for MYC by immunohistochemistry. BCLU morphology was associated with an increased incidence of MYC expression but otherwise was not associated with distinct clinicopathologic features or significantly decreased survival. MYC-positive cases were morphologically and phenotypically heterogenous and were associated with poor progression-free and overall survival in multivariate analysis. These findings confirm that BCLU does not represent a distinct clinicopathologic entity and demonstrate that BCLU morphology alone does not significantly impact survival compared with typical DLBCL. In contrast, MYC protein expression is a poor prognostic factor that may be associated with either BCLU or DLBCL morphology, and MYC immunohistochemistry is suggested for routine prognostic evaluation (Clinicaltrials.gov identifier: NCT00004031).
Collapse
|
235
|
Suraneni MV, Moore JR, Zhang D, Badeaux M, Macaluso MD, DiGiovanni J, Kusewitt D, Tang DG. Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle 2014; 13:1798-810. [PMID: 24732589 PMCID: PMC4111726 DOI: 10.4161/cc.28757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
15-Lipoxygenase-2 (15-LOX2) is a human-specific lipid-peroxidizing enzyme most prominently expressed in epithelial cells of normal human prostate but downregulated or completely lost in>70% of prostate cancer (PCa) cases. Transgenic expression of 15-LOX2 in the mouse prostate surprisingly causes hyperplasia. Here we first provide evidence that 15-LOX2-induced prostatic hyperplasia does not progress to PCa even in p53(+/-) or p53(-/-) background. More important, by generating 15-LOX2; Hi-Myc double transgenic (dTg) mice, we show that 15-LOX2 expression inhibits Myc-induced PCa development, such that in the 3-month- and 6-month-old dTg mice, there is a significant reduction in prostate intraneoplasia (PIN) and PCa prevalent in age-matched Hi-Myc prostates. The dTg prostates show increased cell senescence and expression of several senescence-associated molecules, including p27, phosphorylated Rb, and Rb1cc1. We further show that in HPCa, 15-LOX2 and c-Myc manifest reciprocal protein expression patterns. Moreover, RB1CC1 accumulates in senescing normal human prostate (NHP) cells, and in both NHP and RWPE-1 cells, the 15-LOX2 metabolic products 15(S)-HPETE and 15(S)-HETE induce RB1CC1. We finally show that unlike 15-LOX2, RB1CC1 is not lost but rather frequently overexpressed in PCa samples. RB1CC1 knockdown in PC3 cells enhances clonal growth in vitro and tumor growth in vivo. Together, our present studies provide evidence for tumor-suppressive functions for both 15-LOX2 and RB1CC1.
Collapse
Affiliation(s)
- Mahipal V Suraneni
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - John R Moore
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Dingxiao Zhang
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Mark Badeaux
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Marc D Macaluso
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology; College of Pharmacy; The University of Texas at Austin; Austin, TX USA
| | - Donna Kusewitt
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA
| | - Dean G Tang
- Department of Molecular Carcinogenesis; The University of Texas MD Anderson Cancer Center; Smithville, TX USA; Cancer Stem Cell Institute; Research Center for Translational Medicine; Shanghai East Hospital; Tongji University School of Medicine; Shanghai, China
| |
Collapse
|
236
|
Zhou M, Wang J, Ouyang J, Xu JY, Chen B, Zhang QG, Zhou RF, Yang YG, Shao XY, Xu Y, Chen YM, Fan XS, Wu HY. MYC protein expression is associated with poor prognosis in diffuse large B cell lymphoma patients treated with RCHOP chemotherapy. Tumour Biol 2014; 35:6757-62. [PMID: 24719189 DOI: 10.1007/s13277-014-1907-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022] Open
Abstract
This study aims to investigate the prognostic significance of the MYC protein expression in diffuse large B cell lymphoma (DLBCL) patients treated with RCHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone). A total of 60 patients with DLBCL from 2008 to 2013 were included. Formalin-fixed, paraffin-embedded DLBCL samples were analyzed for MYC protein expression and divided into high or low MYC group. The MYC protein expression and the international prognostic variables were evaluated. The high MYC protein expression predicted a shorter 3-year estimated overall survival (OS) and progression-free survival (PFS) versus the low MYC protein expression (57 % vs. 96 %, P < 0.001 and 50 % vs. 96 %, P = 0.001, respectively). Multivariate analysis confirmed the prognostic significance of the MYC protein expression for both OS (HR, 11.862; 95 % CI, 1.462-96.218; P = 0.021) and PFS (HR, 6.073; 95 % CI, 1.082-34.085; P = 0.040). MYC protein expression with International Prognostic Index (IPI) score distinguished patients into three risk groups with different 3-year OS rates (χ (2) 23.079; P < 0.001) and distinct 3-year PFS rates (χ (2) 15.862; P < 0.001). This study suggests that the MYC protein expression is an important inferior prognostic factor for survival in patients with DLBCL treated with RCHOP. The combinative model with IPI score and MYC protein expression could stratify DLBCL patients into prognostically relevant subgroups more effectively than either the IPI or the MYC alone.
Collapse
Affiliation(s)
- Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Xie Y, Bulbul MA, Ji L, Inouye CM, Groshen SG, Tulpule A, O’Malley DP, Wang E, Siddiqi IN. p53 expression is a strong marker of inferior survival in de novo diffuse large B-cell lymphoma and may have enhanced negative effect with MYC coexpression: a single institutional clinicopathologic study. Am J Clin Pathol 2014; 141:593-604. [PMID: 24619762 DOI: 10.1309/ajcpphmz6vhf0wqv] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To examine interactions among clinical factors and pathologic biomarkers in predicting the outcome of patients with diffuse large B-cell lymphoma (DLBCL) treated with rituximab-based immunochemotherapy. METHODS In 85 patients treated at a single institution, clinicopathologic variables were analyzed, including the International Prognostic Index (IPI); germinal/nongerminal center phenotype; MYC, p53, BCL2, Ki-67, and Epstein-Barr virus (EBV) expression; and MYC translocation status. RESULTS In univariate analysis, overall survival (OS) was worse for patients with high IPI scores, nongerminal center phenotype, high MYC and p53 expression by immunohistochemistry, and EBV positivity. In multivariable analysis, p53 expression was the strongest prognostic factor (P < .05) independent of IPI and cell of origin. A significant positive association between p53 and MYC expression was found. Moreover, coexpression of p53/MYC had an enhanced negative effect on OS independent of BCL2 expression. CONCLUSIONS Immunohistochemical assessment of p53, particularly in combination with MYC, could be useful in identifying a high-risk subgroup of DLBCL.
Collapse
Affiliation(s)
- Yi Xie
- Department of Pathology, University of Southern California, Los Angeles, CA
| | | | - Lingyun Ji
- Department of Preventive Medicine and Biostatistics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Casey M. Inouye
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Susan G. Groshen
- Department of Preventive Medicine and Biostatistics, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Anil Tulpule
- Department of Medicine, Division of Hematology, University of Southern California, Los Angeles, CA
| | | | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Imran N. Siddiqi
- Department of Pathology, University of Southern California, Los Angeles, CA
| |
Collapse
|
238
|
Hofner T, Macher-Goeppinger S, Klein C, Schillert A, Eisen C, Wagner S, Rigo-Watermeier T, Baccelli I, Vogel V, Trumpp A, Sprick MR. Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy. Urol Oncol 2014; 32:678-86. [PMID: 24631171 DOI: 10.1016/j.urolonc.2014.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 12/15/2013] [Accepted: 01/02/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate CD24/CD44/CD47 cancer stem cell marker expressions in bladder cancer (BCa) and provide data on their prognostic significance for clinical outcome in patients undergoing radical cystectomy (RC). MATERIAL AND METHODS Primary BCa tissue was used for xenograft studies. A tissue microarray was prepared using specimens from a cohort of 132 patients. All patients underwent RC for urothelial BCa between 2001 and 2010. Expression of CD24, CD44, and CD47 was examined in primary samples and xenografts by fluorescence-activated cell sorting. Populations of CD24(low)- and CD24(high)-expressing cells were sorted and evaluated for tumorigenicity in vivo. Tissue microarray was analyzed for CD24/CD44 staining intensity and tumor-specific vs. stromal cell staining. Associations with BCa survival, BCa stage, and lymph node status were evaluated by univariate and multivariate analyses. RESULTS CD24 and CD44/CD47 expressions mark distinct cell populations within the normal urothelium as well as in BCa. CD24(high/low) expression was not sufficient to characterize CD24 as a BCa-initiating marker in in vivo primary xenotransplants. CD24 and CD44 expressions correlated with lower cancer-specific survival in patients. However, multivariate analyses of CD24 or CD44 did not demonstrate significantly increased hazards for cancer-specific death if analyzed together with stage, grade, and nodal status of patients. CONCLUSIONS Cancer stem cell markers CD24/CD44/CD47 are differentially expressed in cells of urothelial BCa in patients undergoing RC and influence cancer-specific survival of patients. Further evaluation of CD24/CD44/CD47 protein expression could be of high therapeutic value in BCa. However, both CD24 and CD44 expressions cannot be regarded as independent prognostic parameters for patients undergoing RC.
Collapse
Affiliation(s)
- Thomas Hofner
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Urology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Stephan Macher-Goeppinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Molecular Tumor Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Corinna Klein
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Schillert
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Eisen
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steve Wagner
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Teresa Rigo-Watermeier
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Irène Baccelli
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vanessa Vogel
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin R Sprick
- Division of Stem Cells and Cancer, HI-STEM gGmbH, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
239
|
Zeglis BM, Houghton JL, Evans MJ, Viola-Villegas N, Lewis JS. Underscoring the influence of inorganic chemistry on nuclear imaging with radiometals. Inorg Chem 2014; 53:1880-99. [PMID: 24313747 PMCID: PMC4151561 DOI: 10.1021/ic401607z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past several decades, radionuclides have matured from largely esoteric and experimental technologies to indispensible components of medical diagnostics. Driving this transition, in part, have been mutually necessary advances in biomedical engineering, nuclear medicine, and cancer biology. Somewhat unsung has been the seminal role of inorganic chemistry in fostering the development of new radiotracers. In this regard, the purpose of this Forum Article is to more visibly highlight the significant contributions of inorganic chemistry to nuclear imaging by detailing the development of five metal-based imaging agents: (64)Cu-ATSM, (68)Ga-DOTATOC, (89)Zr-transferrin, (99m)Tc-sestamibi, and (99m)Tc-colloids. In a concluding section, several unmet needs both in and out of the laboratory will be discussed to stimulate conversation between inorganic chemists and the imaging community.
Collapse
Affiliation(s)
- Brian M. Zeglis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jacob L. Houghton
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Michael J. Evans
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Nerissa Viola-Villegas
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Jason S. Lewis
- Department of Radiology and the Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| |
Collapse
|
240
|
Van der Kwast TH. Prognostic prostate tissue biomarkers of potential clinical use. Virchows Arch 2014; 464:293-300. [PMID: 24487790 DOI: 10.1007/s00428-014-1540-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 01/02/2023]
Abstract
In prostate biopsies and in prostatectomy specimens, the Gleason score remains the strongest prognosticator of prostate cancer progression, in addition to serum PSA level and DRE findings, in spite of numerous potential biomarkers discovered during the last few decades. Inter- and intratumoural heterogeneity may have limited the employment of tissue biomarkers on prostate biopsies. Nevertheless, the monoclonality of morphologically heterogeneous (Gleason score 7) tumour foci would suggest that genetic biomarkers, arising early in prostate carcinogenesis, may overcome issues related to intratumoural heterogeneity. In spite of the above limitations, a few biomarkers including the proliferation marker Ki-67 and genetic markers such as c-MYC and PTEN have consistently shown their independent prognostic impact both for biochemical recurrence and for clinical outcome parameters such as metastatic disease or prostate-specific mortality. The routine application of biomarkers requiring immunostaining (e.g. Ki-67) has particularly been hindered by the lack of standardized protocols for processing and scoring, while the application of fluorescence in situ hybridization (FISH) technology is considered more labour intensive but better standardized. Future steps to enhance the uptake of prostate tissue biomarkers should be focused on prospective studies, particularly on prostate biopsy specimens, using protocols that are highly standardized for the processing and scoring of the biomarkers. A few recently developed RNA-based test signatures may provide an alternative to FISH or immunohistochemistry-based tests.
Collapse
Affiliation(s)
- Theodorus H Van der Kwast
- Department of Pathology, Princess Margaret Cancer Center and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,
| |
Collapse
|
241
|
Fonseca-Alves CE, Rodrigues MMP, de Moura VMBD, Rogatto SR, Laufer-Amorim R. Alterations of C-MYC, NKX3.1, and E-cadherin expression in canine prostate carcinogenesis. Microsc Res Tech 2013; 76:1250-1256. [PMID: 24030851 DOI: 10.1002/jemt.22292] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Abstract
The dog (canis lupus familiaris) is the only other species besides humans that develop spontaneous prostatic carcinomas (PCa) at a high frequency. The canine model is primarily utilized for the study of the PCa molecular mechanisms and provides a natural animal model for the study of potential therapies. In humans, the PCa frequently exhibits mutations in the C-MYC and a reduced expression of the E-cadherin and NKX3.1 proteins. This study's objective was to evaluate the NKX3.1, C-MYC, and E-cadherin expression in the canine normal prostate, benign prostatic hyperplasia (BPH), proliferative inflammatory atrophy (PIA) and PCa and to verify differences in expression and subcellular localization of these proteins in the prostatic carcinogenesis. A tissue microarray (TMA) slide was constructed, and immunohistochemistry with antibodies raised against C-MYC, NKX3.1, E-cadherin and p63 was performed using the peroxidase and DAB methods. The C-MYC protein expression was elevated in the cytoplasm and nuclei of the canine PCa and PIA compared with the normal prostate (P = 0.004. The NKX3.1 protein expression was reduced in 94.75% of the PCa and 100% of the PIA compared with the normal prostate (P = 0.0022). In fact, the expression of E-cadherin trended towards a decrease in carcinomas when compared to normal prostate and PIA. By immunohistochemistry, more p63-positive basal cells were observed in the PCa and PIA when compared with the normal prostate (P = 0.0002). This study has demonstrated that the carcinogenesis of canine prostatic tissue may be related to basal cell proliferation, the gain of C-MYC function and the loss of NKX3.1 protein expression.
Collapse
Affiliation(s)
- Carlos E Fonseca-Alves
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
242
|
Hupin C, Rombaux P, Bowen H, Gould H, Lecocq M, Pilette C. Downregulation of polymeric immunoglobulin receptor and secretory IgA antibodies in eosinophilic upper airway diseases. Allergy 2013; 68:1589-97. [PMID: 24117840 DOI: 10.1111/all.12274] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immunoglobulin (Ig) A represents a first-line defence mechanism in the airways, but little is known regarding its implication in upper airway disorders. This study aimed to address the hypothesis that polymeric Ig receptor (pIgR)-mediated secretory IgA immunity could be impaired in chronic upper airway diseases. METHODS Nasal and ethmoidal biopsies, as well as nasal secretions, were collected from patients with chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) or without nasal polyps (CRSsNP), allergic rhinitis (AR) and controls, and assayed for IgA1/IgA2 synthesis, pIgR expression, production of secretory component (SC), IgA and relevant IgA antibodies, and correlated with local eosinophils and inflammatory features (IL-12, IL-13 and ECP). RESULTS pIgR expression was decreased in the ethmoidal mucosa in patients with CRSwNP (P = 0.003) and in AR (P = 0.006). This pIgR defect was associated with reduced levels of SC (P = 0.007) and IgA antibodies to Staphylococcus aureus enterotoxin B (SAEB) (P = 0.003) in nasal secretions from patients with CRSwNP, and with increased IgA deposition in subepithelial areas. pIgR downregulation was selectively observed in patients with tissue eosinophilia, whilst no clear relation to smoking history was observed. CONCLUSION Epithelial pIgR expression is decreased in patients with CRSwNP and AR and results in decreased SC and IgA antibodies to certain bacterial antigens (SAEB) in nasal secretions of patients with CRSwNP in parallel to subepithelial accumulation of IgA. This defect in mucosal immunity is associated with eosinophilic, Th2-related inflammation.
Collapse
Affiliation(s)
- C. Hupin
- Institut de Recherche Expérimentale et Clinique (IREC); Pole de Pneumologie; ORL & Dermatologie; Université catholique de Louvain (UCL); Brussels Belgium
- Service d'ORL; Cliniques Universitaires St-Luc; Brussels Belgium
| | - P. Rombaux
- Institut de Recherche Expérimentale et Clinique (IREC); Pole de Pneumologie; ORL & Dermatologie; Université catholique de Louvain (UCL); Brussels Belgium
- Service d'ORL; Cliniques Universitaires St-Luc; Brussels Belgium
| | - H. Bowen
- Randall Division of Cell and Molecular Biophysics; MRC/Asthma UK Centre in Allergic Mechanisms of Asthma; King's College London; London UK
| | - H. Gould
- Randall Division of Cell and Molecular Biophysics; MRC/Asthma UK Centre in Allergic Mechanisms of Asthma; King's College London; London UK
| | - M. Lecocq
- Institut de Recherche Expérimentale et Clinique (IREC); Pole de Pneumologie; ORL & Dermatologie; Université catholique de Louvain (UCL); Brussels Belgium
| | - C. Pilette
- Institut de Recherche Expérimentale et Clinique (IREC); Pole de Pneumologie; ORL & Dermatologie; Université catholique de Louvain (UCL); Brussels Belgium
| |
Collapse
|
243
|
Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc Natl Acad Sci U S A 2013; 110:20111-6. [PMID: 24282295 DOI: 10.1073/pnas.1320565110] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The relationship between the cells that initiate cancer and the cancer stem-like cells that propagate tumors has been poorly defined. In a human prostate tissue transformation model, basal cells expressing the oncogenes Myc and myristoylated AKT can initiate heterogeneous tumors. Tumors contain features of acinar-type adenocarcinoma with elevated eIF4E-driven protein translation and squamous cell carcinoma marked by activated beta-catenin. Lentiviral integration site analysis revealed that alternative histological phenotypes can be clonally derived from a common cell of origin. In advanced disease, adenocarcinoma can be propagated by self-renewing tumor cells with an androgen receptor-low immature luminal phenotype in the absence of basal-like cells. These data indicate that advanced prostate adenocarcinoma initiated in basal cells can be maintained by luminal-like tumor-propagating cells. Determining the cells that maintain human prostate adenocarcinoma and the signaling pathways characterizing these tumor-propagating cells is critical for developing effective therapeutic strategies against this population.
Collapse
|
244
|
Schrecengost RS, Dean JL, Goodwin JF, Schiewer MJ, Urban MW, Stanek TJ, Sussman RT, Hicks JL, Birbe RC, Draganova-Tacheva RA, Visakorpi T, DeMarzo AM, McMahon SB, Knudsen KE. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression. Cancer Res 2013; 74:272-86. [PMID: 24197134 DOI: 10.1158/0008-5472.can-13-1954] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.
Collapse
Affiliation(s)
- Randy S Schrecengost
- Authors' Affiliations: Departments of Cancer Biology, Urology, Radiation Oncology, Pathology, and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; Sidney Kimmel Comprehensive Cancer Center; Department of Pathology, Johns Hopkins University, Baltimore, Maryland; and Institute of Biomedical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Frank SB, Miranti CK. Disruption of prostate epithelial differentiation pathways and prostate cancer development. Front Oncol 2013; 3:273. [PMID: 24199173 PMCID: PMC3813973 DOI: 10.3389/fonc.2013.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the foremost problems in the prostate cancer (PCa) field is the inability to distinguish aggressive from indolent disease, which leads to difficult prognoses and thousands of unnecessary surgeries. This limitation stems from the fact that the mechanisms of tumorigenesis in the prostate are poorly understood. Some genetic alterations are commonly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to androgen-regulated promoters, and loss of Pten. However, the specific roles of these aberrations in tumor initiation and progression are poorly understood. Likewise, the cell of origin for PCa remains controversial and may be linked to the aggressive potential of the tumor. One important clue is that prostate tumors co-express basal and luminal protein markers that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In support of this hypothesis, many of the pathways known to be involved in prostate differentiation can be linked to genes commonly altered in PCa. In this article, we review what is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in the prostate and how their misregulation could lead to oncogenesis. Better understanding of normal differentiation will offer new insights into tumor initiation and may help explain the functional significance of common genetic alterations seen in PCa. Additionally, this understanding could lead to new methods for classifying prostate tumors based on their differentiation status and may aid in identifying more aggressive tumors.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute , Grand Rapids, MI , USA ; Genetics Graduate Program, Michigan State University , East Lansing, MI , USA
| | | |
Collapse
|
246
|
Akinyeke T, Matsumura S, Wang X, Wu Y, Schalfer ED, Saxena A, Yan W, Logan SK, Li X. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 2013; 34:2823-32. [PMID: 24130167 DOI: 10.1093/carcin/bgt307] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Prostate cancer (PCa) is the second leading cause of cancer-related death in American men and many PCa patients develop skeletal metastasis. Current treatment modalities for metastatic PCa are mostly palliative with poor prognosis. Epidemiological studies indicated that patients receiving the diabetic drug metformin have lower PCa risk and better prognosis, suggesting that metformin may have antineoplastic effects. The mechanism by which metformin acts as chemopreventive agent to impede PCa initiation and progression is unknown. The amplification of c-MYC oncogene plays a key role in early prostate epithelia cell transformation and PCa growth. The purpose of this study is to investigate the effect of metformin on c-myc expression and PCa progression. Our results demonstrated that (i) in Hi-Myc mice that display murine prostate neoplasia and highly resemble the progression of human prostate tumors, metformin attenuated the development of prostate intraepithelial neoplasia (PIN, the precancerous lesion of prostate) and PCa lesions. (ii) Metformin reduced c-myc protein levels in vivo and in vitro. In Myc-CaP mouse PCa cells, metformin decreased c-myc protein levels by at least 50%. (iii) Metformin selectively inhibited the growth of PCa cells by stimulating cell cycle arrest and apoptosis without affecting the growth of normal prostatic epithelial cells (RWPE-1). (iv) Reduced PIN formation by metformin was associated with reduced levels of androgen receptor and proliferation marker Ki-67 in Hi-Myc mouse prostate glands. Our novel findings suggest that by downregulating c-myc, metformin can act as a chemopreventive agent to restrict prostatic neoplasia initiation and transformation. SUMMARY Metformin, an old antidiabetes drug, may inhibit prostate intraepithelial neoplasia transforming to cancer lesion via reducing c-MYC, an 'old' overexpressed oncogene. This study explores chemopreventive efficacy of metformin in prostate cancer and its link to cMYC in vitro and in vivo.
Collapse
Affiliation(s)
- Tunde Akinyeke
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Cunningham JT, Ruggero D. New connections between old pathways: PDK1 signaling promotes cellular transformation through PLK1-dependent MYC stabilization. Cancer Discov 2013; 3:1099-102. [PMID: 24124229 PMCID: PMC3857155 DOI: 10.1158/2159-8290.cd-13-0581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Limited understanding of the functional link between multiple oncogenic pathways is a major barrier in the ongoing effort of cancer biologists to design an effective therapeutic approach to treat malignancies characterized by driver oncogenic network signals. In this issue of Cancer Discovery, Tan and colleagues elucidate a novel PDK1-PLK1-MYC signaling pathway connecting two fundamental oncogenic programs, phosphoinositide 3-kinase and MYC. They define the functional role for PDK1-PLK1-MYC signaling in cancer cell survival and tumor formation and show the therapeutic benefit of inhibiting PDK1 and PLK1 pharmacologically in cancer, tackling the most undruggable tumors defined by elevated levels of the MYC oncoprotein.
Collapse
Affiliation(s)
- John T. Cunningham
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| |
Collapse
|
248
|
Abstract
PURPOSE OF REVIEW To explore several serum and genetic-based biomarkers that may prove useful in following men being managed with active surveillance for localized prostate cancer by predicting those that either have the potential to develop, or already harbor occult high grade disease. RECENT FINDINGS There is increasing evidence that serum biomarkers human Kallikrein 2, early prostate cancer antigen, urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor, transforming growth factor-β1 and interleukin-6/interleukin-6 receptor and genetic biomarkers BRCA1 and BRCA2, Phosphatase and tensin homolog, cellular myelocytomatosis oncogene and NKX3.1 may predict for aggressive high grade disease and are identifiable early in prostate carcinogenesis. SUMMARY One of the barriers of widespread adoption of active surveillance for low risk, localized prostate cancer is the concern that some patients may harbor occult high-risk disease at diagnosis, or develop more aggressive/noncurable disease not detected by our current well established prognostic factors. This review examines several serum and genetic-based biomarkers that appear to be of value in localized prostate cancer, unlike the vast majority of more established prostate cancer biomarkers that have been validated in far more advanced disease. Although the biomarkers discussed show exciting promise, their clinical utility is unknown, and their role in the active surveillance scenario needs further study.
Collapse
|
249
|
Civenni G, Malek A, Albino D, Garcia-Escudero R, Napoli S, Di Marco S, Pinton S, Sarti M, Carbone GM, Catapano CV. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res 2013; 73:6816-27. [PMID: 24063893 DOI: 10.1158/0008-5472.can-13-0615] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several studies link disease progression, recurrence, and treatment failures to the cancer stem-like cell (CSC) subpopulation within the heterogeneous tumor cell population. Myc is a transcription factor having a central function in stem cell biology and in human cancers. Hence, Myc represents an attractive target to develop CSC-specific therapies. Recent findings suggest that Myc transcription can be silenced using an RNA interference (RNAi)-based strategy that targets noncoding promoter-associated RNA (paRNA) overlapping the transcription start site. In this study, we investigated the effects of silencing Myc transcription on prostate CSC in cell culture and xenograft models of human prostate cancer. Treatment with an effective promoter-targeting siRNA reduced the fraction of CSCs, leading to reduced self-renewal, tumor-initiating, and metastatic capability. Combined analysis of stem-like cells and senescence markers indicated that Myc silencing triggered a phenotypic shift and senescence in the CSC subpopulation. Notably, systemic delivery of the promoter-targeting siRNA in the xenograft model produced a striking suppression in the development of prostate tumors. Our results support a pivotal role for Myc in CSC maintenance and show that Myc targeting via RNAi-based transcriptional silencing can trigger CSC senescence and loss of their tumor-initiating capability. More generally, our findings demonstrate the efficacy of RNAi-based transcriptional strategies and the potential to target regulatory noncoding paRNAs for therapeutic applications.
Collapse
Affiliation(s)
- Gianluca Civenni
- Authors' Affiliations: Institute of Oncology Research; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; and Molecular Oncology Unit, CIEMAT, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Prostate cancer (PCa) is the most commonly diagnosed noncutaneous malignancy and second leading cause of cancer-related deaths in US males. Clinically, locally confined disease is treated surgically and/or with radiation therapy. Invasive disease, however, must be treated with pharmacological inhibitors of androgen receptor (AR) activity, since disease progression is fundamentally reliant on AR activation. However, despite initially effective treatment options, recurrent castration-resistant PCa (CRPC) often occurs due to aberrant reactivation of AR. Additionally, it is appreciated that many other signaling molecules, such as transcription factors, oncogenes, and tumor suppressors, are often perturbed and significantly contribute to PCa initiation and progression to incurable disease. Understanding the interplay between AR signaling and other signaling networks altered in PCa will advance therapeutic approaches. Overall, comprehension of the molecular composition promoting neoplastic growth and formation of CRPC is paramount for developing durable treatment options.
Collapse
Affiliation(s)
- Randy Schrecengost
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|