201
|
Sawaki D, Zhang Y, Mohamadi A, Pini M, Mezdari Z, Lipskaia L, Naushad S, Lamendour L, Altintas DM, Breau M, Liang H, Halfaoui M, Delmont T, Surenaud M, Rousseau D, Yoshimitsu T, Louache F, Adnot S, Henegar C, Gual P, Czibik G, Derumeaux G. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight 2023; 8:145811. [PMID: 37092554 DOI: 10.1172/jci.insight.145811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2023] [Indexed: 04/25/2023] Open
Abstract
Adipose tissue macrophages (ATMs) play an important role in obesity and inflammation, and they accumulate in adipose tissue (AT) with aging. Furthermore, increased ATM senescence has been shown in obesity-related AT remodeling and dysfunction. However, ATM senescence and its role are unclear in age-related AT dysfunction. Here, we show that ATMs (a) acquire a senescence-like phenotype during chronological aging; (b) display a global decline of basic macrophage functions such as efferocytosis, an essential process to preserve AT homeostasis by clearing dysfunctional or apoptotic cells; and (c) promote AT remodeling and dysfunction. Importantly, we uncover a major role for the age-associated accumulation of osteopontin (OPN) in these processes in visceral AT. Consistently, loss or pharmacologic inhibition of OPN and bone marrow transplantation of OPN-/- mice attenuate the ATM senescence-like phenotype, preserve efferocytosis, and finally restore healthy AT homeostasis in the context of aging. Collectively, our findings implicate pharmacologic OPN inhibition as a viable treatment modality to counter ATM senescence-mediated AT remodeling and dysfunction during aging.
Collapse
Affiliation(s)
- Daigo Sawaki
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Yanyan Zhang
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Amel Mohamadi
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Maria Pini
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Zaineb Mezdari
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | - Suzain Naushad
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | | | - Marielle Breau
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Hao Liang
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | | | - Thaïs Delmont
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Mathieu Surenaud
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP Vaccine Research Institute, Créteil, France
| | | | - Takehiko Yoshimitsu
- Laboratory of Synthetic Organic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fawzia Louache
- Université Paris-Saclay, Inserm UMR-S-MD1197, Hôpital Paul Brousse, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Serge Adnot
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP, Department of Physiology, Henri Mondor Hospital, FHU SENEC, Créteil, France
| | | | - Philippe Gual
- Université Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Gabor Czibik
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Geneviève Derumeaux
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- AP-HP, Department of Physiology, Henri Mondor Hospital, FHU SENEC, Créteil, France
| |
Collapse
|
202
|
Jost P, Klein F, Brand B, Wahl V, Wyatt A, Yildiz D, Boehm U, Niemeyer BA, Vaeth M, Alansary D. Acute Downregulation but Not Genetic Ablation of Murine MCU Impairs Suppressive Capacity of Regulatory CD4 T Cells. Int J Mol Sci 2023; 24:ijms24097772. [PMID: 37175478 PMCID: PMC10178810 DOI: 10.3390/ijms24097772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
By virtue of mitochondrial control of energy production, reactive oxygen species (ROS) generation, and maintenance of Ca2+ homeostasis, mitochondria play an essential role in modulating T cell function. The mitochondrial Ca2+ uniporter (MCU) is the pore-forming unit in the main protein complex mediating mitochondrial Ca2+ uptake. Recently, MCU has been shown to modulate Ca2+ signals at subcellular organellar interfaces, thus fine-tuning NFAT translocation and T cell activation. The mechanisms underlying this modulation and whether MCU has additional T cell subpopulation-specific effects remain elusive. However, mice with germline or tissue-specific ablation of Mcu did not show impaired T cell responses in vitro or in vivo, indicating that 'chronic' loss of MCU can be functionally compensated in lymphocytes. The current work aimed to specifically investigate whether and how MCU influences the suppressive potential of regulatory CD4 T cells (Treg). We show that, in contrast to genetic ablation, acute siRNA-mediated downregulation of Mcu in murine Tregs results in a significant reduction both in mitochondrial Ca2+ uptake and in the suppressive capacity of Tregs, while the ratios of Treg subpopulations and the expression of hallmark transcription factors were not affected. These findings suggest that permanent genetic inactivation of MCU may result in compensatory adaptive mechanisms, masking the effects on the suppressive capacity of Tregs.
Collapse
Affiliation(s)
- Priska Jost
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Franziska Klein
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Benjamin Brand
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Daniela Yildiz
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | | | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
203
|
Chen L, Zhang W, Chen D, Yang Q, Sun S, Dai Z, Li Z, Liang X, Chen C, Jiao Y, Zhi L, Zhao L, Zhang J, Liu X, Zhao J, Li M, Wang Y, Qi Y. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Signal Transduct Target Ther 2023; 8:159. [PMID: 37080995 PMCID: PMC10119322 DOI: 10.1038/s41392-023-01367-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
Cellular senescence provides a protective barrier against tumorigenesis in precancerous or normal tissues upon distinct stressors. However, the detailed mechanisms by which tumor cells evade premature senescence to malignant progression remain largely elusive. Here we reported that RBM4 adversely impacted cellular senescence to favor glutamine-dependent survival of esophageal squamous cell carcinoma (ESCC) cells by dictating the activity of LKB1, a critical governor of cancer metabolism. The level of RBM4 was specifically elevated in ESCC compared to normal tissues, and RBM4 overexpression promoted the malignant phenotype. RBM4 contributed to overcome H-RAS- or doxorubicin-induced senescence, while its depletion caused P27-dependent senescence and proliferation arrest by activating LKB1-AMPK-mTOR cascade. Mechanistically, RBM4 competitively bound LKB1 to disrupt the LKB1/STRAD/MO25 heterotrimeric complex, subsequently recruiting the E3 ligase TRIM26 to LKB1, promoting LKB1 ubiquitination and degradation in nucleus. Therefore, such molecular process leads to bypassing senescence and sustaining cell proliferation through the activation of glutamine metabolism. Clinically, the ESCC patients with high RBM4 and low LKB1 have significantly worse overall survival than those with low RBM4 and high LKB1. The RBM4 high/LKB1 low expression confers increased sensitivity of ESCC cells to glutaminase inhibitor CB-839, providing a novel insight into mechanisms underlying the glutamine-dependency to improve the efficacy of glutamine inhibitors in ESCC therapeutics.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Quan Yang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Siwen Sun
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhenwei Dai
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Li
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Xuemei Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Yuexia Jiao
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Lili Zhi
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Man Li
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Yang Wang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China.
| | - Yangfan Qi
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
204
|
Ajouaou Y, Magnani E, Madakashira B, Jenkins E, Sadler KC. atm Mutation and Oxidative Stress Enhance the Pre-Cancerous Effects of UHRF1 Overexpression in Zebrafish Livers. Cancers (Basel) 2023; 15:cancers15082302. [PMID: 37190230 DOI: 10.3390/cancers15082302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
The ataxia-telangiectasia mutated (atm) gene is activated in response to genotoxic stress and leads to activation of the tp53 tumor suppressor gene which induces either senescence or apoptosis as tumor suppressive mechanisms. Atm also serves non-canonical functions in the response to oxidative stress and chromatin reorganization. We previously reported that overexpression of the epigenetic regulator and oncogene Ubiquitin Like with PHD and Ring Finger Domains 1 (UHRF1) in zebrafish hepatocytes resulted in tp53-dependent hepatocyte senescence, a small liver and larval lethality. We investigated the role of atm on UHRF1-mediated phenotypes by generating zebrafish atm mutants. atm-/- adults were viable but had reduction in fertility. Embryos developed normally but were protected from lethality caused by etoposide or H2O2 exposure and failed to fully upregulate Tp53 targets or oxidative stress response genes in response to these treatments. In contrast to the finding that Tp53 prevents the small liver phenotype caused by UHRF1 overexpression, atm mutation and exposure to H2O2 further reduced the liver size in UHRF1 overexpressing larvae whereas treatment with the antioxidant N-acetyl cysteine suppressed this phenotype. We conclude that UHRF1 overexpression in hepatocytes causes oxidative stress, and that loss of atm further enhances this, triggering elimination of these precancerous cells, leading to a small liver.
Collapse
Affiliation(s)
- Yousra Ajouaou
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Bhavani Madakashira
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Eleanor Jenkins
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates
| |
Collapse
|
205
|
Oesterreich S, Aird KM. Senescence and Immunotherapy: Redundant Immunomodulatory Pathways Promote Resistance. Cancer Immunol Res 2023; 11:401-404. [PMID: 36826438 PMCID: PMC11221415 DOI: 10.1158/2326-6066.cir-23-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Senescent cancer cells alter their microenvironment through secretion of pro-inflammatory cytokines and chemokines called the senescence-associated secretory phenotype (SASP) and upregulation of immunoinhibitory proteins such as CD80 and programmed death-ligand 1. The senescence field is just beginning to explore the role of these changes on antitumor immunity and response to immunotherapy. In this Perspective, we highlight a new study that aimed to determine how senescent breast cancer cells are shielded from immunosurveillance via upregulation of redundant immunoinhibitory proteins in two distinct senescent populations. We also discuss recent articles regarding how the SASP alters the tumor immune microenvironment and response to immunotherapy. As many therapies used to treat cancers induce senescence, future work will need to better refine the composition of the SASP and heterogeneity of senescence in the tumor microenvironment to more completely understand how the immune compartment is regulated by senescent tumors.
Collapse
Affiliation(s)
- Steffi Oesterreich
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
206
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
207
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
208
|
Li Z, Tian M, Wang G, Cui X, Ma J, Liu S, Shen B, Liu F, Wu K, Xiao X, Zhu C. Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Front Cell Infect Microbiol 2023; 13:1098712. [PMID: 37065192 PMCID: PMC10094634 DOI: 10.3389/fcimb.2023.1098712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality. The underlying mechanisms may involve mitochondrial dysfunction, abnormal activation of the cGAS-STING pathway and NLRP3 inflammasome, the role of pre-activated macrophages and over-recruited immune cells, and accumulation of immune cells with trained immunity. Thus, senescence-targeted drugs were shown to have positive effects on the treatment of viral infectious diseases in the elderly, which has received great attention and extensive research. Therefore, this review focused on the relationship between senescence and viral infection, as well as the significance of senotherapeutics for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| |
Collapse
|
209
|
Sumimoto H, Takano A, Igarashi T, Hanaoka J, Teramoto K, Daigo Y. Oncogenic epidermal growth factor receptor signal-induced histone deacetylation suppresses chemokine gene expression in human lung adenocarcinoma. Sci Rep 2023; 13:5087. [PMID: 36991099 PMCID: PMC10060241 DOI: 10.1038/s41598-023-32177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutated (mt) lung adenocarcinoma (LA) is refractory to immune checkpoint inhibitors (ICIs). However, the mechanisms have not been fully elucidated. CD8+ T cell infiltration was significantly lower in EGFR-mt than in EGFR-wild-type LA, which was associated with suppression of chemokine expression. Since this T cell-deserted tumor microenvironment may lead to the refractoriness of ICIs against EGFR-mt LA, we investigated the mechanism by focusing on the regulation of chemokine expression. The expression of C-X-C motif ligand (CXCL) 9, 10 and 11, which constitute a gene cluster on chromosome 4, was suppressed under EGFR signaling. The assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) revealed open chromatin peaks near this gene cluster following EGFR-tyrosine kinase inhibitor (TKI) treatment. The histone deacetylase (HDAC) inhibitor recovered the expression of CXCL9, 10 and 11 in EGFR-mt LA. Nuclear HDAC activity, as well as histone H3 deacetylation, were dependent on oncogenic EGFR signaling. Furthermore, the Cleavage Under Targets and Tagmentation (CUT & Tag) assay revealed a histone H3K27 acetylation peak at 15 kb upstream of CXCL11 after treatment with EGFR-TKI, which corresponded to one of the open chromatin peaks detected by ATAC-seq. The data suggest that EGFR-HDAC axis mediates silencing of the chemokine gene cluster through chromatin conformational change, which might be relevant to the ICI resistance by creating T cell-deserted tumor microenvironment. Targeting this axis may develop a new therapeutic strategy to overcome the ICI resistance of EGFR-mt LA.
Collapse
Affiliation(s)
- Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Igarashi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Hanaoka
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Otsu, Shiga, Japan.
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
210
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
211
|
Majhi PD, Sharma A, Jerry DJ. Genetic modifiers of p53: opportunities for breast cancer therapies. Oncotarget 2023; 14:236-241. [PMID: 36961913 PMCID: PMC10038353 DOI: 10.18632/oncotarget.28387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Indexed: 03/26/2023] Open
Affiliation(s)
| | | | - D. Joseph Jerry
- Correspondence to:D. Joseph Jerry, Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA; Pioneer Valley Life Sciences Institute and Rays of Hope Center for Breast Cancer Research, Springfield, MA 01107, USA email
| |
Collapse
|
212
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
213
|
Cotarelo CL, Schad A, Schmidt M, Hönig A, Sleeman JP, Thaler S. Detection of Cellular Senescence Reveals the Existence of Senescent Tumor Cells within Invasive Breast Carcinomas and Related Metastases. Cancers (Basel) 2023; 15:cancers15061860. [PMID: 36980745 PMCID: PMC10047432 DOI: 10.3390/cancers15061860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Oncogene-induced senescence is thought to constitute a barrier to carcinogenesis by arresting cells at risk of malignant transformation. However, numerous findings suggest that senescent cells may conversely promote tumor growth and metastatic progression, for example, through the senescence-associated secretory phenotype (SASP) they produce. Here, we investigated the degree to which senescent tumor cells exist within untreated human primary breast carcinomas and whether the presence of senescent cancer cells in primary tumors is recapitulated in their matched lymph node metastases. For the detection of senescence, we used SA-β-galactosidase (SA-β-gal) staining and other senescence markers such as Ki67, p21, p53, and p16. In patients with invasive luminal A and B breast carcinomas, we found broad similarities in the appearance of cancer cells between primary tumors and their corresponding metastases. Analysis of lymph nodes from patients with other breast cancer subtypes also revealed senescent tumor cells within metastatic lesions. Collectively, our findings show that senescent tumor cells exist within primary breast carcinomas and metastatic lesions. These results suggest a potential role for senescent breast tumor cells during metastatic progression and raise the question as to whether the targeting of senescent tumor cells with anti-senescent drugs might represent a novel avenue for improved treatment of breast and other cancers.
Collapse
Affiliation(s)
- Cristina L Cotarelo
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Arno Schad
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Arnd Hönig
- Breast Center, Women's Hospital, Marienhaus Hospital Mainz, 55131 Mainz, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Thaler
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
214
|
Khalil R, Diab-Assaf M, Lemaitre JM. Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells 2023; 12:915. [PMID: 36980256 PMCID: PMC10047596 DOI: 10.3390/cells12060915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Life expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity. One of the most important aging hallmarks is cellular senescence, which is a stable state of cell cycle arrest that occurs in response to cumulated cell stresses and damages. Cellular senescence is a physiological mechanism that has both beneficial and detrimental consequences. Senescence limits tumorigenesis, lifelong tissue damage, and is involved in different biological processes, such as morphogenesis, regeneration, and wound healing. However, in the elderly, senescent cells increasingly accumulate in several organs and secrete a combination of senescence associated factors, contributing to the development of various age-related diseases, including cancer. Several studies have revealed major molecular pathways controlling the senescent phenotype, as well as the ones regulating its interactions with the immune system. Attenuating the senescence-associated secretory phenotype (SASP) or eliminating senescent cells have emerged as attractive strategies aiming to reverse or delay the onset of aging diseases. Here, we review current senotherapies designed to suppress the deleterious effect of SASP by senomorphics or to selectively kill senescent cells by "senolytics" or by immune system-based approaches. These recent investigations are promising as radical new controls of aging pathologies and associated multimorbidities.
Collapse
Affiliation(s)
- Roula Khalil
- IRMB, University Montpellier, INSERM, 34090 Montpellier, France;
| | - Mona Diab-Assaf
- Fanar Faculty of Sciences II, Lebanese University, Beirut P.O. Box 90656, Lebanon;
| | | |
Collapse
|
215
|
Resnick-Silverman L, Zhou R, Campbell MJ, Leibling I, Parsons R, Manfredi JJ. In vivo RNA-seq and ChIP-seq analyses show an obligatory role for the C terminus of p53 in conferring tissue-specific radiation sensitivity. Cell Rep 2023; 42:112216. [PMID: 36924496 DOI: 10.1016/j.celrep.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Thymus and spleen, in contrast to liver, are radiosensitive tissues in which p53-dependent apoptosis is triggered after whole-body radiation in vivo. Combined RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses of radiation-treated mouse organs identifies both shared and tissue-specific p53 transcriptional responses. As expected, the p53 targets shared among thymus and spleen are enriched in apoptotic targets. The inability to upregulate these genes in the liver is not due to reduced gene occupancy. Use of an engineered mouse model shows that deletion of the C terminus of p53 can confer radiation-induced expression of p53 apoptotic targets in the liver with concomitant increased cell death. Global RNA-seq analysis reveals that an additional role of the C terminus is also needed for transcriptional activation of liver-specific p53 targets. It is hypothesized that both suppression of apoptotic gene expression combined with enhanced activation of liver-specific targets confers tissue-specific radio-resistance.
Collapse
Affiliation(s)
- Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Royce Zhou
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Moray J Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA
| | - Ian Leibling
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
216
|
Rodríguez-Agustín A, Casanova V, Grau-Expósito J, Sánchez-Palomino S, Alcamí J, Climent N. Immunomodulatory Activity of the Tyrosine Kinase Inhibitor Dasatinib to Elicit NK Cytotoxicity against Cancer, HIV Infection and Aging. Pharmaceutics 2023; 15:pharmaceutics15030917. [PMID: 36986778 PMCID: PMC10055786 DOI: 10.3390/pharmaceutics15030917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been extensively used as a treatment for chronic myeloid leukemia (CML). Dasatinib is a broad-spectrum TKI with off-target effects that give it an immunomodulatory capacity resulting in increased innate immune responses against cancerous cells and viral infected cells. Several studies reported that dasatinib expanded memory-like natural killer (NK) cells and γδ T cells that have been related with increased control of CML after treatment withdrawal. In the HIV infection setting, these innate cells are associated with virus control and protection, suggesting that dasatinib could have a potential role in improving both the CML and HIV outcomes. Moreover, dasatinib could also directly induce apoptosis of senescence cells, being a new potential senolytic drug. Here, we review in depth the current knowledge of virological and immunogenetic factors associated with the development of powerful cytotoxic responses associated with this drug. Besides, we will discuss the potential therapeutic role against CML, HIV infection and aging.
Collapse
Affiliation(s)
| | - Víctor Casanova
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Judith Grau-Expósito
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - José Alcamí
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Climent
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2275400 (ext. 3144); Fax: +34-93-2271775
| |
Collapse
|
217
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
218
|
DeLuca VJ, Saleh T. Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 2023; 42:19-35. [PMID: 36681750 DOI: 10.1007/s10555-023-10082-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023]
Abstract
One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.
Collapse
Affiliation(s)
- Valerie J DeLuca
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
219
|
He X, Zhao J, Adilijiang A, Hong P, Chen P, Lin X, Xie J, Du Y, Liu Y, Lin L, Jin HY, Hong Y, Liu WH, Xiao C. Dhx33 promotes B-cell growth and proliferation by controlling activation-induced rRNA upregulation. Cell Mol Immunol 2023; 20:277-291. [PMID: 36631557 PMCID: PMC9970960 DOI: 10.1038/s41423-022-00972-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Upon recognition of foreign antigens, naïve B cells undergo rapid activation, growth, and proliferation. How B-cell growth and proliferation are coupled with activation remains poorly understood. Combining CRISPR/Cas9-mediated functional analysis and mouse genetics approaches, we found that Dhx33, an activation-induced RNA helicase, plays a critical role in coupling B-cell activation with growth and proliferation. Mutant mice with B-cell-specific deletion of Dhx33 exhibited impaired B-cell development, germinal center reactions, plasma cell differentiation, and antibody production. Dhx33-deficient B cells appeared normal in the steady state and early stage of activation but were retarded in growth and proliferation. Mechanistically, Dhx33 played an indispensable role in activation-induced upregulation of ribosomal DNA (rDNA) transcription. In the absence of Dhx33, activated B cells were compromised in their ability to ramp up 47S ribosomal RNA (rRNA) production and ribosome biogenesis, resulting in nucleolar stress, p53 accumulation, and cellular death. Our findings demonstrate an essential role for Dhx33 in coupling B-cell activation with growth and proliferation and suggest that Dhx33 inhibition is a potential therapy for lymphoma and antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiayi Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abidan Adilijiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Peicheng Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Pengda Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xinyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ying Du
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lianghua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hyun Yong Jin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
220
|
Moiseeva V, Cisneros A, Cobos AC, Tarrega AB, Oñate CS, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Context-dependent roles of cellular senescence in normal, aged, and disease states. FEBS J 2023; 290:1161-1185. [PMID: 35811491 DOI: 10.1111/febs.16573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 07/07/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that often emerges after tissue damage and in age-related diseases. Through the production of a multicomponent secretory phenotype (SASP), senescent cells can impact the regeneration and function of tissues. However, the effects of senescent cells and their SASP are very heterogeneous and depend on the tissue environment and type as well as the duration of injury, the degree of persistence of senescent cells and the organism's age. While the transient presence of senescent cells is widely believed to be beneficial, recent data suggest that it is detrimental for tissue regeneration after acute damage. Furthermore, although senescent cell persistence is typically associated with the progression of age-related chronic degenerative diseases, it now appears to be also necessary for correct tissue function in the elderly. Here, we discuss what is currently known about the roles of senescent cells and their SASP in tissue regeneration in ageing and age-related diseases, highlighting their (negative and/or positive) contributions. We provide insight for future research, including the possibility of senolytic-based therapies and cellular reprogramming, with aims ranging from enhancing tissue repair to extending a healthy lifespan.
Collapse
Affiliation(s)
- Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Andrés Cisneros
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aina Calls Cobos
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Aida Beà Tarrega
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Claudia Santos Oñate
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| |
Collapse
|
221
|
Yasuda T, Baba H, Ishimoto T. Cellular senescence in the tumor microenvironment and context-specific cancer treatment strategies. FEBS J 2023; 290:1290-1302. [PMID: 34653317 DOI: 10.1111/febs.16231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Cellular senescence in cancer development is known to have tumor-suppressive and tumor-promoting roles. Recent studies have revealed numerous molecular mechanisms of senescence followed by senescence-associated secretory phenotype induction and showed the significance of senescence on both sides. Cellular senescence in stromal cells is one of the reasons for therapeutic resistance in advanced cancer; thus, it is an inevitable phenomenon to address while seeking an effective cancer treatment strategy. This review summarizes the molecular mechanisms regarding cellular senescence, focusing on the dual roles played by senescence, and offers some direction toward successful treatments targeting harmful senescent cells.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| |
Collapse
|
222
|
Tran AP, Tralie CJ, Reyes J, Moosmüller C, Belkhatir Z, Kevrekidis IG, Levine AJ, Deasy JO, Tannenbaum AR. Long-term p21 and p53 dynamics regulate the frequency of mitosis events and cell cycle arrest following radiation damage. Cell Death Differ 2023; 30:660-672. [PMID: 36182991 PMCID: PMC9984379 DOI: 10.1038/s41418-022-01069-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
Radiation exposure of healthy cells can halt cell cycle temporarily or permanently. In this work, we analyze the time evolution of p21 and p53 from two single cell datasets of retinal pigment epithelial cells exposed to several levels of radiation, and in particular, the effect of radiation on cell cycle arrest. Employing various quantification methods from signal processing, we show how p21 levels, and to a lesser extent p53 levels, dictate whether the cells are arrested in their cell cycle and how frequently these mitosis events are likely to occur. We observed that single cells exposed to the same dose of DNA damage exhibit heterogeneity in cellular outcomes and that the frequency of cell division is a more accurate monitor of cell damage rather than just radiation level. Finally, we show how heterogeneity in DNA damage signaling is manifested early in the response to radiation exposure level and has potential to predict long-term fate.
Collapse
Affiliation(s)
- Anh Phong Tran
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher J Tralie
- Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA, USA
| | - José Reyes
- Cancer Biology and Genetics Program and Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Caroline Moosmüller
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
| | - Zehor Belkhatir
- School of Engineering and Sustainable Development, De Montfort University, Leicester, UK
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allen R Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
223
|
Lv C, Lan A, Fan X, Huang C, Yang G. Asperolide A induces apoptosis and cell cycle arrest of human hepatoma cells with p53-Y220C mutant through p38 mediating phosphorylation of p53 (S33). Heliyon 2023; 9:e13843. [PMID: 36923828 PMCID: PMC10009462 DOI: 10.1016/j.heliyon.2023.e13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Asperolides A (AA), one of the new tetranorlabdane diterpenoids, is proved to inhibit the proliferation of lung cancer cells and bone metastasis of breast cancer cells. Herein, we report that AA induces apoptosis and cell cycle arrest of hepatoma cells. It intensely inhibits proliferation of Huh-7 cell, compared with HepG-2 and L02 cells. AA elevates the activity of mitogen-activated protein kinases (MAPKs), in which the activation of ERK and JNK improves cell survival. However, phosphorylation of p53 at S33 by p38 activation could be a principal factor in the AA-induced apoptosis and G2/M cell cycle arrest of Huh-7 cells. The S33 site of p53-Y220C mutant, as the specific activation site of p38, reactivates the wild-type function of mutant p53 protein, which leads to a higher sensitivity of Huh-7 cells to AA. These results provide new insights into the molecular mechanisms of AA as a developing mutant p53 rescue drug.
Collapse
Affiliation(s)
- Cuiting Lv
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Aihua Lan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiao Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 201900, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Naval Medical University, Shanghai, 200433, China
| | - Gong Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China
| |
Collapse
|
224
|
Klein A, Rhinn M, Keyes WM. Cellular senescence and developmental defects. FEBS J 2023; 290:1303-1313. [PMID: 36856681 DOI: 10.1111/febs.16731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 03/02/2023]
Abstract
Cellular senescence is a distinct state that is frequently induced in response to ageing and stress. Yet studies have also uncovered beneficial functions in development, repair and regeneration. Current opinion therefore suggests that timely and controlled induction of senescence can be beneficial, while misregulation of the senescence program, either through mis-timed activation, or chronic accumulation of senescent cells, contributes to many disease states and the ageing process. Whether atypical activation of senescence plays a role in the pathogenesis of developmental defects has been relatively underexplored. Here, we discuss three recent studies that implicate ectopic senescence in neurodevelopmental defects, with possible causative roles for senescence in these birth defects. In addition, we highlight how the examination of senescence in other birth defects is warranted, and speculate that aberrantly activated senescence may play a much broader role in developmental defects than currently appreciated.
Collapse
Affiliation(s)
- Annabelle Klein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - William M Keyes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
225
|
Sheekey E, Narita M. p53 in senescence - it's a marathon, not a sprint. FEBS J 2023; 290:1212-1220. [PMID: 34921507 DOI: 10.1111/febs.16325] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
The tumour suppressor p53, a stress-responsive transcription factor, plays a central role in cellular senescence. The role of p53 in senescence-associated stable proliferative arrest has been extensively studied. However, increasing evidence indicates that p53 also modulates the ability of senescent cells to produce and secrete diverse bioactive factors (collectively called the senescence-associated secretory phenotype, SASP). Senescence has been linked with both physiological and pathological conditions, the latter including ageing, cancer and other age-related disorders, in part through the SASP. Cellular functions are generally dictated by the expression profile of lineage-specific genes. Indeed, expression of SASP factors and their regulators are often biased by cell type. In addition, emerging evidence suggests that p53 contributes to deregulation of more stringent lineage-specific genes during senescence. P53 itself is also tightly regulated at the protein level. In contrast to the rapid and transient activity of p53 upon stress ('acute-p53'), during senescence and other prolonged pathological conditions, p53 activities are sustained and fine-tuned through a combination of different inputs and outputs ('chronic-p53').
Collapse
Affiliation(s)
- Eleanor Sheekey
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
226
|
Zhao Y, Li H, Guo Q, Hui H. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ Sci B 2023; 24:101-114. [PMID: 36751697 PMCID: PMC9936135 DOI: 10.1631/jzus.b2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
227
|
Identification and Characterization of an Ageing-Associated 13-lncRNA Signature That Predicts Prognosis and Immunotherapy in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4615297. [PMID: 36844873 PMCID: PMC9957638 DOI: 10.1155/2023/4615297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 02/19/2023]
Abstract
Background In cancer pathology, cell senescence not only alters cell function but also reshapes the immune microenvironments in tumours. However, the association between cell senescence, tumour microenvironment, and disease progression of hepatocellular carcinoma (HCC) is yet to be fully understood. Therefore, the role of cell senescence-related genes and long noncoding RNAs (lncRNAs) in evaluating the clinical prognosis and immune cell infiltration (ICI) of HCC patients requires further investigation. Methods The limma R package was utilised to investigate differentially expressed genes according to the multiomics data. The CIBERSORT R package was utilised to assess ICI, and unsupervised cluster analysis was conducted using the R software's ConsensusClusterPlus package. A polygenic prognostic model of lncRNAs was constructed by conducting univariate and least absolute shrinkage and selection operator (Lasso) cox proportional-hazards regression analyses. The time-dependent receiver operating characteristic (ROC) curves were used for validation. We utilised the survminer R package to evaluate the tumour mutational burden (TMB). Moreover, the gene set enrichment analysis (GSEA) helped in pathway enrichment analysis, and the immune infiltration level of the model was evaluated using the IMvigor210 cohort. Results The identification of 36 prognosis-related genes was achieved based on their differential expression between healthy and liver cancer tissues. Liver cancer individuals were categorised into 3 independent senescence subtypes using the gene list, revealing considerable survival differences (variations). We observed that the prognosis of patients in the ARG-ST2 subtype was substantially better as compared to that in the ARG-ST3 subtype. Differences were observed in gene expression profiles among the three subtypes, with the differentially expressed genes predominantly associated with cell cycle control. The enrichment of upregulated genes in the ARG-ST3 subtype was observed in pathways related to biological processes, for instance, organelle fission, nuclear division, and chromosome recombination. ICI in the ARG-ST1 and ARG-ST2 subtypes, with relatively better prognosis, was substantially higher as compared to the ARG-ST3 subtype. Furthermore, a risk-score model, which can be employed as a reliable prognostic factor in an independent manner for individuals suffering from liver cancer, was constructed based on 13 cell senescence-related lncRNAs (MIR99AHG, LINC01224, LINC01138, SLC25A30AS1, AC006369.2, SOCS2AS1, LINC01063, AC006037.2, USP2AS1, FGF14AS2, LINC01116, KIF25AS1, and AC002511.2). The individuals with higher risk scores had noticeably poor prognoses in contrast with those having low-risk scores. Moreover, increased levels of TMB and ICI were observed in individuals with low-risk scores and gaining more benefit from immune checkpoint therapy. Conclusion Cell senescence is an essential factor in HCC onset and progression. We identified 13 senescence-related lncRNAs as HCC prognostic markers, which can help understand their function in the onset and progression of HCC and guide clinical diagnosis and treatment.
Collapse
|
228
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
229
|
Ju G, Zeng K, Lu L, Diao H, Wang H, Li X, Zhou T. Identification and validation of the cellular senescence-related molecular subtypes of triple negative breast cancer via integrating bulk and single-cell RNA sequencing data. Am J Cancer Res 2023; 13:569-588. [PMID: 36895975 PMCID: PMC9989623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
Patients with triple-negative breast cancer (TNBC) reportedly benefit from immune checkpoint blockade (ICB) therapy. However, the subtype-specific vulnerabilities of ICB in TNBC remain unclear. As the complex interplay between cellular senescence and anti-tumor immunity has been previously discussed, we aimed to identify markers related to cellular senescence that may serve as potential predictors of response to ICB in TNBC. We used three transcriptomic datasets derived from ICB-treated breast cancer samples at both scRNA-seq and bulk-RNA-seq levels to define the subtype-specific vulnerabilities of ICB in TNBC. Differences in the molecular features and immune cell infiltration among the different TNBC subtypes were further explored using two scRNA-seq, three bulk-RNA-seq, and two proteomic datasets. 18 TNBC samples were collected and utilized to verify the association between gene expression and immune cell infiltration by multiplex immunohistochemistry (mIHC). A specific type of cellular senescence was found to be significantly associated with response to ICB in TNBC. We employed the expression of four senescence-related genes, namely CDKN2A, CXCL10, CCND1, and IGF1R, to define a distinct senescence-related classifier using the non-negative matrix factorization approach. Two clusters were identified, namely the senescence-enriching cluster (C1; CDKN2A high CXCL10 high CCND1 low IGF1R low) and proliferating-enriching cluster (C2; CDKN2A low CXCL10 low CCND1 high IGF1R high). Our results indicated that the C1 cluster responds better to ICB and behaves with higher CD8+ T cell infiltration than the C2 cluster. Altogether, in this study, we developed a robust cellular senescence-related classifier of TNBC based on the expression of CDKN2A, CXCL10, CCND1, and IGF1R. This classifier act as a potential predictor of clinical outcomes and response to ICB.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and InstituteBeijing 100142, China
| | - Kai Zeng
- Department of Thyroid Surgery, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhen 518000, Guangdong, China
| | - Linlin Lu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Soochow UniversitySuzhou 215000, Jiangsu, China
| | - Han Diao
- Department of Pathology, Affiliated Hospital of Jining Medical UniversityJining 272000, Shandong, China
| | - Hao Wang
- Yancheng TCM Hospital, Nanjing University of Chinese MedicineYancheng 224002, Jiangsu, China
| | - Xiaomin Li
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Tianhao Zhou
- Department of Medical Oncology, Shanghai First People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200080, China
| |
Collapse
|
230
|
Chen HA, Ho YJ, Mezzadra R, Adrover JM, Smolkin R, Zhu C, Woess K, Bernstein N, Schmitt G, Fong L, Luan W, Wuest A, Tian S, Li X, Broderick C, Hendrickson RC, Egeblad M, Chen Z, Alonso-Curbelo D, Lowe SW. Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity. Cancer Discov 2023; 13:432-453. [PMID: 36302222 PMCID: PMC9901536 DOI: 10.1158/2159-8290.cd-22-0528] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
Cellular senescence involves a stable cell-cycle arrest coupled to a secretory program that, in some instances, stimulates the immune clearance of senescent cells. Using an immune-competent liver cancer model in which senescence triggers CD8 T cell-mediated tumor rejection, we show that senescence also remodels the cell-surface proteome to alter how tumor cells sense environmental factors, as exemplified by type II interferon (IFNγ). Compared with proliferating cells, senescent cells upregulate the IFNγ receptor, become hypersensitized to microenvironmental IFNγ, and more robustly induce the antigen-presenting machinery-effects also recapitulated in human tumor cells undergoing therapy-induced senescence. Disruption of IFNγ sensing in senescent cells blunts their immune-mediated clearance without disabling the senescence state or its characteristic secretory program. Our results demonstrate that senescent cells have an enhanced ability to both send and receive environmental signals and imply that each process is required for their effective immune surveillance. SIGNIFICANCE Our work uncovers an interplay between tissue remodeling and tissue-sensing programs that can be engaged by senescence in advanced cancers to render tumor cells more visible to the adaptive immune system. This new facet of senescence establishes reciprocal heterotypic signaling interactions that can be induced therapeutically to enhance antitumor immunity. See related article by Marin et al., p. 410. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Hsuan-An Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ryan Smolkin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Changyu Zhu
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katharina Woess
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | | | - Linda Fong
- Calico Life Sciences, South San Francisco, California
| | - Wei Luan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Wuest
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sha Tian
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiang Li
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caroline Broderick
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhenghao Chen
- Calico Life Sciences, South San Francisco, California
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
231
|
Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, Ruano I, Attolini CSO, Prats N, López-Domínguez JA, Kovatcheva M, Garralda E, Muñoz J, Caron E, Abad M, Gros A, Pietrocola F, Serrano M. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov 2023. [PMID: 36302218 DOI: 10.1101/2022.06.05.494912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
UNLABELLED Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Ines Marin
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga Boix
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Adrià Caballe
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Irene Ruano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Neus Prats
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José A López-Domínguez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Javier Muñoz
- Spanish National Cancer Research Center, Madrid, Spain
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - María Abad
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
232
|
Akama-Garren EH, Miller P, Carroll TM, Tellier M, Sutendra G, Buti L, Zaborowska J, Goldin RD, Slee E, Szele FG, Murphy S, Lu X. Regulation of immunological tolerance by the p53-inhibitor iASPP. Cell Death Dis 2023; 14:84. [PMID: 36746936 PMCID: PMC9902554 DOI: 10.1038/s41419-023-05567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Charles River Laboratories, Leiden, Netherlands
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
233
|
Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, Ruano I, Attolini CSO, Prats N, López-Domínguez JA, Kovatcheva M, Garralda E, Muñoz J, Caron E, Abad M, Gros A, Pietrocola F, Serrano M. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov 2023; 13:410-431. [PMID: 36302218 PMCID: PMC7614152 DOI: 10.1158/2159-8290.cd-22-0523] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Ines Marin
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga Boix
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Adrià Caballe
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Irene Ruano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Neus Prats
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José A López-Domínguez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Javier Muñoz
- Spanish National Cancer Research Center, Madrid, Spain
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - María Abad
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
234
|
The anti-cancer agent APR-246 can activate several programmed cell death processes to kill malignant cells. Cell Death Differ 2023; 30:1033-1046. [PMID: 36739334 PMCID: PMC10070280 DOI: 10.1038/s41418-023-01122-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
Mutant TP53 proteins are thought to drive the development and sustained expansion of cancers at least in part through the loss of the wild-type (wt) TP53 tumour suppressive functions. Therefore, compounds that can restore wt TP53 functions in mutant TP53 proteins are expected to inhibit the expansion of tumours expressing mutant TP53. APR-246 has been reported to exert such effects in malignant cells and is currently undergoing clinical trials in several cancer types. However, there is evidence that APR-246 may also kill malignant cells that do not express mutant TP53. To support the clinical development of APR-246 it is important to understand its mechanism(s) of action. By establishing isogenic background tumour cell lines with different TP53/TRP53 states, we found that APR-246 can kill malignant cells irrespective of their TP53/TRP53 status. Accordingly, RNAseq analysis revealed that treatment with APR-246 induces expression of the same gene set in Eμ-Myc mouse lymphoma cells of all four possible TRP53 states, wt, wt alongside mutant, knockout and knockout alongside mutant. We found that depending on the type of cancer cell and the concentration of APR-246 used, this compound can kill malignant cells through induction of various programmed cell death pathways, including apoptosis, necroptosis and ferroptosis. The sensitivity of non-transformed cells to APR-246 also depended on the cell type. These findings reveal that the clinical testing of APR-246 should not be limited to cancers expressing mutant TP53 but expanded to cancers that express wt TP53 or are TP53-deficient.
Collapse
|
235
|
Falchi L, Vardhana SA, Salles GA. Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities. Blood 2023; 141:467-480. [PMID: 36322929 PMCID: PMC9936308 DOI: 10.1182/blood.2021011994] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
Treatment paradigms for B-cell non-Hodgkin lymphomas (B-NHL) have shifted dramatically in the last 2 decades following the introduction of highly active immunotherapies such as rituximab. Since then, the field has continued to witness tremendous progress with the introduction of newer, more potent immunotherapeutics, including chimeric antigen receptor T-cell therapy, which have received regulatory approval for and currently play a significant role in the treatment of these diseases. Bispecific antibodies (BsAb) are a novel class of off-the-shelf T-cell redirecting drugs and are among the most promising immunotherapeutics for lymphoma today. BsAb may target various cell-surface antigens and exist in different formats. Anti-CD20xCD3 BsAb have demonstrated remarkable single-agent activity in patients with heavily pretreated B-NHL with a manageable toxicity profile dominated by T-cell overactivation syndromes. Much work remains to be done to define the optimal setting in which to deploy these drugs for B-NHL treatment, their ideal combination partners, strategies to minimize toxicity, and, perhaps most importantly, pharmacodynamic biomarkers of response and resistance. In this review, we provide an update on BsAb development in B-NHL, from discovery to clinical applications, highlighting the achievements, limitations, and future directions of the field.
Collapse
Affiliation(s)
- Lorenzo Falchi
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Santosha A. Vardhana
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gilles A. Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
236
|
Liu Y, Pagacz J, Wolfgeher DJ, Bromerg KD, Gorman JV, Kron SJ. Senescent cancer cell vaccines induce cytotoxic T cell responses targeting primary tumors and disseminated tumor cells. J Immunother Cancer 2023; 11:e005862. [PMID: 36792123 PMCID: PMC9933761 DOI: 10.1136/jitc-2022-005862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Immune tolerance contributes to resistance to conventional cancer therapies such as radiation. Radiotherapy induces immunogenic cell death, releasing a burst of tumor antigens, but this appears insufficient to stimulate an effective antitumor immune response. Radiation also increases infiltration of cytotoxic T lymphocytes (CTLs), but their effector function is short lived. Although CTL exhaustion may be at fault, combining immune checkpoint blockade with radiation is insufficient to restore CTL function in most patients. An alternative model is that antigen presentation is the limiting factor, suggesting a defect in dendritic cell (DC) function. METHODS Building on our prior work showing that cancer cells treated with radiation in the presence of the poly(ADP-ribose) polymerase-1 inhibitor veliparib undergo immunogenic senescence, we reexamined senescent cells (SnCs) as preventative or therapeutic cancer vaccines. SnCs formed in vitro were cocultured with splenocytes and evaluated by scRNA-seq to examine immunogenicity. Immature bone-marrow-derived DCs cocultured with SnCs were examined for maturation and activation by flow cytometry and T cell proliferation assays. Viable SnCs or SnC-activated DCs were injected subcutaneously, and vaccine effects were evaluated by analysis of immune response, prevention of tumor engraftment, regression of established tumors and/or potentiation of immunotherapy or radiotherapy. RESULTS Murine CT26 colon carcinoma or 4T1 mammary carcinoma cells treated with radiation and veliparib form SnCs that promote DC maturation and activation in vitro, leading to efficient, STING-dependent CTL priming. Injecting mice with SnCs induces antigen-specific CTLs and confers protection from tumor engraftment. Injecting immunogenic SnCs into tumor-bearing mice increases inflammation with activated CTLs, suppresses tumor growth, potentiates checkpoint blockade, enhances radiotherapy and blocks colonization by disseminated tumor cells. Addressing the concern that reinjecting tumor cells into patients may be impractical, DCs activated with SnCs in vitro were similarly effective to SnCs in suppressing established tumors and blocking metastases. CONCLUSIONS Therapeutic vaccines based on senescent tumor cells and/or SnC-activated DCs have the potential to improve genotoxic and immune therapies and limit recurrence or metastasis.
Collapse
Affiliation(s)
- Yue Liu
- Department of Molecular Genetics and Cell Biology and Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | - Joanna Pagacz
- Department of Molecular Genetics and Cell Biology and Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology and Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | | | - Jacob V Gorman
- Oncology Discovery, AbbVie, North Chicago, Illinois, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
237
|
Klapp V, Bloy N, Petroni G, De Martino M. Quantification of beta-galactosidase activity as a marker of radiation-driven cellular senescence. Methods Cell Biol 2023; 174:113-126. [PMID: 36710045 DOI: 10.1016/bs.mcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that can be triggered by different stressors, including cancer treatments (the so-called "therapy-induced senescence"), such as radiation therapy (RT). Although senescent cells do not proliferate, they remain metabolically active and play a critical role in tumor progression, metastasis, and response to therapy. Therefore, investigating the induction of cellular senescence upon RT treatment is a critical read out for investigating RT efficacy or combinatorial strategies in cancer research. Senescent cells are characterized by a plethora of markers, including an increased content and activity of lysosomes, which can be detected by the activity of the lysosomal enzyme senescence-associated β-galactosidase. In this chapter, we present a protocol for the gold standard cytochemical method for quantification of the activity of the senescence-associated β-galactosidase in irradiated murine breast cancer cells in vitro.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
238
|
Liu T, Ruan J, Rong J, Hao W, Li W, Li R, Zhan Y, Lu H. Cone-beam X-ray luminescence computed tomography based on MLEM with adaptive FISTA initial image. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107265. [PMID: 36455470 DOI: 10.1016/j.cmpb.2022.107265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE As an emerging dual-mode optical molecular imaging, cone-beam X-ray luminescence computed tomography (CB-XLCT) has shown potential in early tumor diagnosis and other applications with increased depth and little autofluorescence. However, due to the low transfer efficiency of PNPs to convert X-ray energy to visible or near-infrared (NIR) light and X-ray dose limitation, the signal to noise ratio of projections is quite low, making the quality of CB-XLCT relatively poor. METHODS To improve the reconstruction quality of low-counts CB-XLCT imaging, an adaptive reconstruction algorithm (named ADFISTA-MLEM) based on the maximum likelihood expectation estimation (MLEM) framework is proposed for CB-XLCT reconstruction from Poisson distributed projections. In the proposed framework, the image reconstructed by fast iterative shrinkage-thresholding algorithm (FISTA) is used as the initial image for MLEM iterations to improve reconstruction accuracy, in which both the projection noise model and the sparsity constraint of the image could be considered. For relative quantitative imaging, a specific normalization is applied to the projection data and system matrix. To determine the hyperparameter of FISTA, which may be different for different projections, an adaptive strategy (ADFISTA) is then designed for adaptive update of the hyperparameter with reconstructed image in each iteration. RESULTS AND CONCLUSIONS Results from numerical simulations and phantom experiments indicate that the proposed framework can obtain superior reconstruction accuracy in terms of contrast to noise ratio and shape similarity. In addition, high intensity-concentration linearity between different probe targets indicates its potential for quantitative CB-XLCT imaging.
Collapse
Affiliation(s)
- Tianshuai Liu
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Jiabin Ruan
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Junyan Rong
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
| | - Wenqing Hao
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Wangyang Li
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Ruijing Li
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
| | - Yonghua Zhan
- School of Life Science & Technology, Xidian University, Xi'an, China.
| | - Hongbing Lu
- Biomedical Engineering Department, Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
| |
Collapse
|
239
|
Zhao S, Pan T, Deng J, Cao L, Vicencio JM, Liu J, Zhou G, Ng T, Zhang J. Exosomal transfer of miR-181b-5p confers senescence-mediated doxorubicin resistance via modulating BCLAF1 in breast cancer. Br J Cancer 2023; 128:665-677. [PMID: 36522479 PMCID: PMC9938221 DOI: 10.1038/s41416-022-02077-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Doxorubicin resistance represents a major clinical challenge for treating patients with advanced breast cancer (BC). Exosomes, exchanging genetic cargo between heterogeneous populations of tumour cells, have been proposed to mediate drug resistance and cancer progression in other cancer types. However, their specific role in mediating doxorubicin resistance in BC remains unclear. Here, we demonstrate the important role of exosomal miR-181b-5p (exo-miR-181b-5p) in mediating doxorubicin resistance. METHODS Small-RNA sequencing and bioinformatic analyses were used to screen miRNAs mediating doxorubicin resistance in BC, which were further verified by RT-qPCR. SA-β-gal staining assays allowed us to measure cellular senescence. Exosomes from patients' serum before and after neoadjuvant chemotherapy were isolated for exo-miR-181b-5p quantification. RESULTS Doxorubicin-resistant BC cell lines exhibited upregulated exosomal miR-181b-5p. Addition of exo-miR-181b-5p actively fused with recipient cells and transferred a drug-resistant phenotype. Overexpression of miR-181b-5p downregulated p53/p21 levels and inhibited doxorubicin-induced G1 arrest and senescence by suppressing BCLAF1 expression in vitro. Further, in vivo experiments showed treatment of exo-miR-181b-5p inhibitors exhibited superior tumour control and reversed the doxorubicin-resistance phenotype, accompanied with increased tumoral BCLAF1. CONCLUSION Our data suggests exo-miR-181b-5p as a prognostic biomarker and a therapeutic potential for exo-miR-181b-5p inhibitors in the treatment of doxorubicin-resistant BC patients.
Collapse
Affiliation(s)
- Shaorong Zhao
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Teng Pan
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lixia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Jingjing Liu
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Guanglin Zhou
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Cancer Institute, Paul O'Gorman Building, University College London, London, UK
- Cancer Research UK City of London Centre, London, England
| | - Jin Zhang
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| |
Collapse
|
240
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
241
|
Zheng W, Feng D, Xiong X, Liao X, Wang S, Xu H, Le W, Wei Q, Yang L. The Role of cGAS-STING in Age-Related Diseases from Mechanisms to Therapies. Aging Dis 2023:AD.2023.0117. [PMID: 37163421 PMCID: PMC10389832 DOI: 10.14336/ad.2023.0117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/17/2023] [Indexed: 05/12/2023] Open
Abstract
With aging, the incidence of age-related diseases increases. Hence, age-related diseases are inevitable. However, the mechanisms by which aging leads to the onset and progression of age-related diseases remain unclear. It has been reported that inflammation is closely associated with age-related diseases and that the cGAS-STING signaling pathway, which can sense the aberrant presence of cytosolic DNA during aging and induce an inflammatory response, is an important mediator of inflammation in age-related diseases. With a better understanding of the structure and molecular biology of the cGAS-STING signaling axis, numerous selective inhibitors and agonists targeting the cGAS-STING pathway in human age-related diseases have been developed to modulate inflammatory responses. Here, we provide a narrative review of the activity of the cGAS- STING pathway in age-related diseases and discuss its general mechanisms in the onset and progression of age-related diseases. In addition, we outline treatments targeting the cGAS-STING pathway, which may constitute a potential therapeutic alternative for age-related diseases.
Collapse
Affiliation(s)
- Weitao Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyang Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weizhen Le
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
242
|
Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat Commun 2023; 14:441. [PMID: 36707509 PMCID: PMC9883514 DOI: 10.1038/s41467-023-36124-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, yet it remains refractory to systemic therapy. Elimination of senescent cells has emerged as a promising new treatment approach against cancer. Here, we investigated the contribution of senescent cells to GBM progression. Senescent cells are identified in patient and mouse GBMs. Partial removal of p16Ink4a-expressing malignant senescent cells, which make up less than 7 % of the tumor, modifies the tumor ecosystem and improves the survival of GBM-bearing female mice. By combining single cell and bulk RNA sequencing, immunohistochemistry and genetic knockdowns, we identify the NRF2 transcription factor as a determinant of the senescent phenotype. Remarkably, our mouse senescent transcriptional signature and underlying mechanisms of senescence are conserved in patient GBMs, in whom higher senescence scores correlate with shorter survival times. These findings suggest that senolytic drug therapy may be a beneficial adjuvant therapy for patients with GBM.
Collapse
|
243
|
Pandey P, Khan F, Upadhyay TK, Sharangi AB. Deciphering the Immunomodulatory Role of Cyclin-Dependent Kinase 4/6 Inhibitors in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032236. [PMID: 36768557 PMCID: PMC9916547 DOI: 10.3390/ijms24032236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is characterized by persistent cell proliferation driven by aberrant cell cycle regulation and stimulation of cyclin-dependent kinases (CDKs). A very intriguing and potential approach for the development of antitumor medicines is the suppression of CDKs that lead to induction of apoptosis and cell cycle arrest. The shift of the cell cycle from the G0/G1 phase to the S phase, which is characterized by active transcription and synthesis, depends on the development of the cyclin D-CDK4/6 complex. A precise balance between anticancer activity and general toxicity is demonstrated by CDK inhibitors, which can specifically block CDK4/6 and control the cell cycle by reducing the G1 to S phase transition. CDK4/6 inhibitors have recently been reported to exhibit significant cell growth inhibition via modulating the tumour microenvironment in cancerous cells. One significant new understanding is that these inhibitors serve important functions in the interaction among tumour cells and the host immune system in addition to being cytostatic. Herein, we discuss the biological significance of CDK4/6 inhibitors in cancer therapeutics, as well as their biological impact on T cells and other important immune cells. Furthermore, we explore the integration of preclinical findings of these pharmaceuticals' ability to enhance antitumor immunity.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
- Correspondence:
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| |
Collapse
|
244
|
Ghosh M, Saha S, Li J, Montrose DC, Martinez LA. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol Cell 2023; 83:266-280.e6. [PMID: 36638783 PMCID: PMC9993620 DOI: 10.1016/j.molcel.2022.12.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Tumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation. We demonstrate that p53 requires the ubiquitin ligase TRIM24 to induce TREX1 degradation. The cytosolic DNA accumulation resulting from TREX1 degradation activates the cytosolic DNA-sensing cGAS/STING pathway, resulting in induction of type I interferons. TREX1 overexpression sufficed to block p53 activation of the cGAS/STING pathway. p53-mediated induction of type I interferon (IFNB1) is suppressed by cGAS/STING knockout, and p53's tumor suppressor activities are compromised by the loss of signaling through the cGAS/STING pathway. Thus, our study reveals that p53 utilizes the cGAS/STING innate immune system pathway for both cell-intrinsic and cell-extrinsic tumor suppressor activities.
Collapse
Affiliation(s)
- Monisankar Ghosh
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Suchandrima Saha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Luis A Martinez
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA.
| |
Collapse
|
245
|
Lozano A, Souche FR, Chavey C, Dardalhon V, Ramirez C, Vegna S, Desandre G, Riviere A, Zine El Aabidine A, Fort P, Akkari L, Hibner U, Grégoire D. Ras/MAPK signalling intensity defines subclonal fitness in a mouse model of hepatocellular carcinoma. eLife 2023; 12:76294. [PMID: 36656749 PMCID: PMC9891719 DOI: 10.7554/elife.76294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK (natural killer) cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.
Collapse
Affiliation(s)
- Anthony Lozano
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Francois-Régis Souche
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
- Department of surgery and liver transplantation, Hopital Saint Eloi Hopitaux universitaires de MontpelierMontpellierFrance
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Christel Ramirez
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Oncode InstituteAmsterdamNetherlands
| | - Serena Vegna
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Oncode InstituteAmsterdamNetherlands
| | - Guillaume Desandre
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Anaïs Riviere
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRSMontpellierFrance
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Oncode InstituteAmsterdamNetherlands
| | - Urszula Hibner
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Damien Grégoire
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| |
Collapse
|
246
|
Guiley KZ, Shokat KM. A Small Molecule Reacts with the p53 Somatic Mutant Y220C to Rescue Wild-type Thermal Stability. Cancer Discov 2023; 13:56-69. [PMID: 36197521 PMCID: PMC9827106 DOI: 10.1158/2159-8290.cd-22-0381] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 01/16/2023]
Abstract
The transcription factor and tumor suppressor protein p53 is the most frequently mutated and inactivated gene in cancer. Mutations in p53 result in deregulated cell proliferation and genomic instability, both hallmarks of cancer. There are currently no therapies available that directly target mutant p53 to rescue wild-type function. In this study, we identify covalent compsounds that selectively react with the p53 somatic mutant cysteine Y220C and restore wild-type thermal stability. SIGNIFICANCE The tumor suppressor p53 is the most mutated gene in cancer, and yet no therapeutics to date directly target the mutated protein to rescue wild-type function. In this study, we identify the first allele-specific compound that selectively reacts with the cysteine p53 Y220C to rescue wild-type thermal stability and gene activation. See related commentary by Lane and Verma, p. 14. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Keelan Z. Guiley
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California.,Corresponding Author: Kevan M. Shokat, Department of Cellular Molecular Pharmacology, University of California, San Francisco, 600 16th Street, MC 2280, San Francisco, CA 94158-2280. Phone: 415-514-0472; E-mail:
| |
Collapse
|
247
|
Yaeger R, Mezzadra R, Sinopoli J, Bian Y, Marasco M, Kaplun E, Gao Y, Zhao H, Paula ADC, Zhu Y, Perez AC, Chadalavada K, Tse E, Chowdhry S, Bowker S, Chang Q, Qeriqi B, Weigelt B, Nanjangud GJ, Berger MF, Der-Torossian H, Anderes K, Socci ND, Shia J, Riely GJ, Murciano-Goroff YR, Li BT, Christensen JG, Reis-Filho JS, Solit DB, de Stanchina E, Lowe SW, Rosen N, Misale S. Molecular Characterization of Acquired Resistance to KRASG12C-EGFR Inhibition in Colorectal Cancer. Cancer Discov 2023; 13:41-55. [PMID: 36355783 PMCID: PMC9827113 DOI: 10.1158/2159-8290.cd-22-0405] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
With the combination of KRASG12C and EGFR inhibitors, KRAS is becoming a druggable target in colorectal cancer. However, secondary resistance limits its efficacy. Using cell lines, patient-derived xenografts, and patient samples, we detected a heterogeneous pattern of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at progression. Serial analysis of patient blood samples on treatment demonstrates that most of these alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffective as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, whereby therapies that target the senescence response may overcome acquired resistance. SIGNIFICANCE Clinical resistance to KRASG12C-EGFR inhibition primarily prevents suppression of ERK signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenna Sinopoli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Bian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esther Kaplun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yijun Gao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - HuiYong Zhao
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arnaud Da Cruz Paula
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingjie Zhu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Almudena Chaves Perez
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edison Tse
- Boundless Bio, Inc., San Diego, California
| | | | - Sydney Bowker
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qing Chang
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Besnik Qeriqi
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gouri J. Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F. Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Nicholas D. Socci
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory J. Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Bob T. Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | | | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B. Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Molecular-Based Therapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
248
|
Obesity triggers tumoral senescence and renders poorly immunogenic malignancies amenable to senolysis. Proc Natl Acad Sci U S A 2023; 120:e2209973120. [PMID: 36574648 PMCID: PMC9910606 DOI: 10.1073/pnas.2209973120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Obesity is a major risk factor for cancer. Conventional thought suggests that elevated adiposity predisposes to heightened inflammatory stress and potentiates tumor growth, yet underlying mechanisms remain ill-defined. Here, we show that tumors from patients with a body mass index >35 carry a high burden of senescent cells. In mouse syngeneic tumor models, we correlated a pronounced accretion of senescent cancer cells with poorly immunogenic tumors when mice were subjected to diet-induced obesity (DIO). Highly immunogenic tumors showed lesser senescence burden suggesting immune-mediated elimination of senescent cancer cells, likely targeted as a consequence of their senescence-associated secretory phenotype. Treatment with the senolytic BH3 mimetic small molecule inhibitor ABT-263 selectively stalled tumor growth in mice with DIO to rates comparable to regular diet-fed mice. Thus, consideration of body adiposity in the selection of cancer therapy may be a critical determinant for disease outcome in poorly immunogenic malignancies.
Collapse
|
249
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
250
|
Zhao K, Fu W, Huang Z, Chen R, Lin W, Lin Z. Target recognition assisted-primer exchange reaction (Ta-PER) for sensitive analysis of p53 gene and its application in analyzing amatoxin-treated samples. Anal Bioanal Chem 2023; 415:405-410. [PMID: 36370202 DOI: 10.1007/s00216-022-04420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Sensitive and reliable detection of the p53 gene plays a significant role in precise cancer targeting and in fundamental research. However, the sensitivity of existing p53 gene detection approaches remains to be improved. Herein, we develop a target recognition assisted-primer exchange reaction (Ta-PER) for sensitive analysis of the p53 gene. Ta-PER was initiated by the recognition of a designed dumbbell structure probe by the p53 gene. In Ta-PER, the primer exchange reaction (PER) was combined with molecular beacon-based chain recycling to construct the signal amplification process. Through integrating target recognition with PER-based signal amplification, Ta-PER was established and exhibited a high detection sensitivity, with a limit of detection as low as 56 fM. In addition, the approach was also used to detect the p53 gene in normal HeLa cells and amatoxin-treated HeLa cells. The high level of the p53 gene in amatoxin-treated HeLa cells, which was approximately 1.67 times higher than that in HeLa cell extract, indicated the apoptosis of cells and suggested the promising prospect of the approach.
Collapse
Affiliation(s)
- Kangtao Zhao
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China.
| | - Wusheng Fu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Zongxiu Huang
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Run Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Wei Lin
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| | - Zhong Lin
- Fujian Provincial Center for Disease Control and Prevention, Fujian Academy of Preventive Medicine, Fuzhou City, 350012, Fujian Province, China
| |
Collapse
|