201
|
Godínez-Chaparro B, Rodríguez-Ramos MC, Martínez-Lorenzana MG, González-Morales E, Pérez-Ruíz KP, Espinosa de Los Monteros-Zuñiga A, Mendoza-Pérez F, Condes-Lara M. Pramipexole decreases allodynia and hyperalgesia via NF-κB in astrocytes in rats with Parkinson's disease. Pharmacol Biochem Behav 2025; 247:173945. [PMID: 39675389 DOI: 10.1016/j.pbb.2024.173945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/30/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Pain is one of the principal non-motor symptoms of Parkinson's disease (PD), negatively impacting the patient's quality of life. This study aimed to demonstrate whether an effective dose of pramipexole (PPX) can modulate the NF-κB/p-p65 activation in glial cells (astrocytes and microglia) and diminish the hypersensitivity (allodynia and hyperalgesia) in male Wistar rats with PD. For this, 2 μl of 6-hydroxydopamine (6-OHDA, 8 μg/μL/0.2 μl/min) was administered unilaterally in the Substantia Nigra of the Pars Compacta (SNpc) to establish a PD model rat. Motor behavioral tests were used to validate the PD model, and von Frey filaments were used to evaluate allodynia and hyperalgesia. Immunohistochemical and immunofluorescence were used to analyze the level of tyrosine hydroxylase in SNpc and striatum as well as the expression of GFAP, Iba-1, NF-κB/p-65 in the L4-L6 spinal cord dorsal horn. Unilateral 6-OHDA-lesion reduces motor capacity and produces long-term allodynia and hyperalgesia in both hind paws. L4-L6 spinal cord dorsal horn astrocytes and microglia were active in these 6-OHDA-lesioned rats. Moreover, PPX (1 and 3 mg/Kg, i.p./10 days, n = 10 per group) inhibited the bilateral mechanical hypersensitivity, and PPX (3 mg/Kg/i.p./10 days) reduced 6-OHDA-induced astrocyte and microglia activation, as well as reduced NF-κB/p-p65 expression only in astrocytes of dorsal horn spinal cord in the L5-L6. These findings suggest that PPX could alleviate pain by decreasing the activation of microglia and astrocytes through the NF-κB/p-p65 pathway in the dorsal horn spinal cord. Therefore, PPX could be considered an optional tool for improving pain hypersensitivity in PD patients.
Collapse
Affiliation(s)
- Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico City, Mexico.
| | - Maria Cristina Rodríguez-Ramos
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico City, Mexico
| | - María Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla, No. 3001, C.P. 76230, Querétaro, Mexico
| | - Estefanía González-Morales
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico City, Mexico
| | - Karen Pamela Pérez-Ruíz
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico City, Mexico
| | - Antonio Espinosa de Los Monteros-Zuñiga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla, No. 3001, C.P. 76230, Querétaro, Mexico
| | - Felipe Mendoza-Pérez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico City, Mexico
| | - Miguel Condes-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla, No. 3001, C.P. 76230, Querétaro, Mexico
| |
Collapse
|
202
|
Liu Y, Wu L, Peng W, Mao X. Glial polarization in neurological diseases: Molecular mechanisms and therapeutic opportunities. Ageing Res Rev 2025; 104:102638. [PMID: 39672208 DOI: 10.1016/j.arr.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Glial cell polarization plays a pivotal role in various neurological disorders. In response to distinct stimuli, glial cells undergo polarization to either mitigate neurotoxicity or facilitate neural repair following injury, underscoring the importance of glial phenotypic polarization in modulating central nervous system function. This review presents an overview of glial cell polarization, focusing on astrocytes and microglia. It explores the involvement of glial polarization in neurological diseases such as Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis and meningoencephalitis. Specifically, it emphasizes the role of glial cell polarization in disease pathogenesis through mechanisms including neuroinflammation, neurodegeneration, calcium signaling dysregulation, synaptic dysfunction and immune response. Additionally, it summarizes various therapeutic strategies including pharmacological treatments, dietary supplements and cell-based therapies, aimed at modulating glial cell polarization to ameliorate brain dysfunction. Future research focused on the spatio-temporal manipulation of glial polarization holds promise for advancing precision diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Wu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
203
|
Hashemi P, Mardani P, Eghbali Raz Z, Saedi A, Fatahi E, Izapanah E, Ahmadi S. Alpha-Pinene Decreases the Elevated Levels of Astrogliosis, Pyroptosis, and Autophagy Markers in the Hippocampus Triggered by Kainate in a Rat Model of Temporal Lobe Epilepsy. Mol Neurobiol 2025; 62:2264-2276. [PMID: 39096444 DOI: 10.1007/s12035-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
The development and progression of temporal lobe epilepsy (TLE) are heavily influenced by inflammation, excessive activation of glial cells, and neuronal cell death. This study aimed to investigate the effects of treatment with alpha-pinene (APN) on pro-and anti-inflammatory cytokine levels, astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE induced by kainic acid (KA). Male Wistar rats were employed, and TLE was induced by intracerebroventricular injection of KA. APN (50 mg/kg) was intraperitoneally administered for 19 days, including two weeks before and five days after the administration of KA. After full recovery from anesthesia and KA injection, the seizure-related behavioral expressions were evaluated. On day 19, the hippocampal levels of IL-1β, TNF-α, progranulin, IL-10, ERK1/2, phospho-ERK1/2, NF-κB, GFAP, S100-B, NLRP1, NLRP3, caspase-1, and becline-1 were examined. The results revealed that treatment with APN significantly diminished the heightened levels of IL-1β, TNF-α, progranulin, ERK1/2, and NF-κB and reversed the reduced levels of the anti-inflammatory cytokine, IL-10, in the hippocampus caused by KA. Furthermore, administration of APN significantly reduced the levels of astrogliosis, pyroptosis, and autophagy markers in the hippocampus that were elevated by KA. It can be concluded that treatment with APN for 19 days alleviated neuroinflammation by inhibiting ERK1/2 and NF-κB signaling pathways and prevented increases in astrogliosis, pyroptosis, and autophagy markers in the hippocampus in a rat model of TLE.
Collapse
Affiliation(s)
- Paria Hashemi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | | | - Zabihollah Eghbali Raz
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ali Saedi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Ehsan Fatahi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Esmael Izapanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| |
Collapse
|
204
|
Wang S, Guo Y, Cao RQ, Zhu YM, Qiao SG, Du HP, Liu Y, Xu Y, Zhou XY, Sun L, Lu QX, Schoen I, Zhang HL. VEGFD/VEGFR3 signaling contributes to the dysfunction of the astrocyte IL-3/microglia IL-3Rα cross-talk and drives neuroinflammation in mouse ischemic stroke. Acta Pharmacol Sin 2025; 46:292-307. [PMID: 39478160 PMCID: PMC11747567 DOI: 10.1038/s41401-024-01405-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
Astrocyte-derived IL-3 activates the corresponding receptor IL-3Rα in microglia. This cross-talk between astrocytes and microglia ameliorates the pathology of Alzheimer's disease in mice. In this study we investigated the role of IL-3/IL-3Rα cross-talk and its regulatory mechanisms in ischemic stroke. Ischemic stroke was induced in mice by intraluminal occlusion of the right middle cerebral artery (MCA) for 60 min followed by reperfusion (I/R). Human astrocytes or microglia subjected to oxygen-glucose deprivation and reoxygenation (OGD/Re) were used as in vitro models of brain ischemia. We showed that both I/R and OGD/Re significantly induced decreases in astrocytic IL-3 and microglial IL-3Rα protein levels, accompanied by pro-inflammatory activation of A1-type astrocytes and M1-type microglia. Importantly, astrocyte-derived VEGFD acting on VEGFR3 of astrocytes and microglia contributed to the cross-talk dysfunction and pro-inflammatory activation of the two glial cells, thereby mediating neuronal cell damage. By using metabolomics and multiple biochemical approaches, we demonstrated that IL-3 supplementation to microglia reversed OGD/Re-induced lipid metabolic reprogramming evidenced by upregulated expression of CPT1A, a rate-limiting enzyme for the mitochondrial β-oxidation, and increased levels of glycerophospholipids, the major components of cellular membranes, causing reduced accumulation of lipid droplets, thus reduced pro-inflammatory activation and necrosis, as well as increased phagocytosis of microglia. Notably, exogenous IL-3 and the VEGFR antagonist axitinib reestablished the cross-talk of IL-3/IL-3Rα, improving microglial lipid metabolic levels via upregulation of CPT1A, restoring microglial phagocytotic function and attenuating microglial pro-inflammatory activation, ultimately contributing to brain recovery from I/R insult. Our results demonstrate that VEGFD/VEGFR3 signaling contributes to the dysfunction of the astrocyte IL-3/microglia IL-3Rα cross-talk and drives pro-inflammatory activation, causing lipid metabolic reprogramming of microglia. These insights suggest VEGFR3 antagonism or restoring IL-3 levels as a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Shuai Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Yi Guo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rui-Qi Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Shi-Gang Qiao
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, 215000, China
| | - Hua-Ping Du
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215200, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215200, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Soochow University, Suzhou, 215200, China
| | - Xian-Yong Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Lei Sun
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, 215000, China
| | - Qi-Xia Lu
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, 215000, China
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
205
|
Pierson SR, Fiock KL, Wang R, Balasubramanian N, Reinhardt J, Khan KM, James TD, Hunter ML, Cooper BJ, Williamsen HR, Betters R, Deniz K, Lee G, Aldridge G, Hefti MM, Marcinkiewcz CA. Tau pathology in the dorsal raphe may be a prodromal indicator of Alzheimer's disease. Mol Psychiatry 2025; 30:532-546. [PMID: 39143322 PMCID: PMC12010729 DOI: 10.1038/s41380-024-02664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Protein aggregation in brainstem nuclei is thought to occur in the early stages of Alzheimer's disease (AD), but its specific role in driving prodromal symptoms and disease progression is largely unknown. The dorsal raphe nucleus (DRN) contains a large population of serotonin (5-hydroxytryptamine; 5-HT) neurons that regulate mood, reward-related behavior, and sleep, which are all disrupted in AD. We report here that tau pathology is present in the DRN of individuals 25-80 years old without a known history of dementia, and its prevalence was comparable to the locus coeruleus (LC). By comparison, fewer cases were positive for other pathological proteins including α-synuclein, β-amyloid, and TDP-43. To evaluate how early tau pathology impacts behavior, we overexpressed human P301L-tau in the DRN of mice and observed depressive-like behaviors and hyperactivity without deficits in spatial memory. Tau pathology was predominantly found in neurons relative to glia and colocalized with a significant proportion of Tph2-expressing neurons in the DRN. 5-HT neurons were also hyperexcitable in P301L-tauDRN mice, and there was an increase in the amplitude of excitatory post-synaptic currents (EPSCs). Moreover, astrocytic density was elevated in the DRN and accompanied by an increase in IL-1α and Frk expression, which suggests increased inflammatory signaling. Additionally, tau pathology was detected in axonal processes in the thalamus, hypothalamus, amygdala, and caudate putamen. A significant proportion of this tau pathology colocalized with the serotonin reuptake transporter (SERT), suggesting that tau may spread in an anterograde manner to regions outside the DRN. Together these results indicate that tau pathology accumulates in the DRN in a subset of individuals over 50 years and may lead to behavioral dysregulation, 5-HT neuronal dysfunction, and activation of local astrocytes which may be prodromal indicators of AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kimberly L Fiock
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Jessica Reinhardt
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kanza M Khan
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikayla L Hunter
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin J Cooper
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Ryan Betters
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaancan Deniz
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Georgina Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
206
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
207
|
Novakovic MM, Prakriya M. Calcium signaling at the interface between astrocytes and brain inflammation. Curr Opin Neurobiol 2025; 90:102940. [PMID: 39673911 PMCID: PMC11839377 DOI: 10.1016/j.conb.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/16/2024]
Abstract
Astrocytes are the most prevalent glial cells of the brain and mediate vital roles in the development and function of the nervous system. Astrocytes, along with microglia, also play key roles in initiating inflammatory immune responses following brain injury, stress, or disease-related triggers. While these glial immune responses help contain and resolve cellular damage to the brain, dysregulation of astrocyte activity can in some cases amplify inflammation and worsen impact on neural tissue. As nonexcitable cells, astrocytes excitability is regulated primarily by Ca2+ signals that control key functions such as gene expression, release of inflammatory mediators, and cell metabolism. In this review, we examine the molecular and functional architecture of Ca2+ signaling networks in astrocytes and their impact on astrocyte effector functions involved in inflammation and immunity.
Collapse
Affiliation(s)
- Michaela M Novakovic
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern Feinberg School of Medicine, Chicago, IL 60607, USA.
| |
Collapse
|
208
|
Chen P, Lin WL, Liu XY, Li SJ, Chen RF, Hu ZH, Lin PT, Lin MH, Shi MY, Wu W, Wang Y, Lin QS, Ye ZC. D30 Alleviates β2-Microglobulin-Facilitated Neurotoxic Microglial Responses in Isoflurane/Surgery-Induced Cognitive Dysfunction in Aged Mice. J Transl Med 2025; 105:102190. [PMID: 39581349 DOI: 10.1016/j.labinv.2024.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication with no effective treatment in elderly patients. POCD, Alzheimer disease (AD), and many other cognitive diseases mostly involve neurotoxic microglia response, and recently, β2-microglobulin (B2M) has been suggested to play a pivotal role. A novel pyromeconic acid-styrene hybrid compound D30 was synthesized by our team and shown to be safe and effective in some neurodegenerative mouse models. In this study, we evaluated D30 on POCD and its potential mechanism. Fourteen- to 18-month-old male C57BL/6 mice were used to establish POCD through isoflurane anesthesia and surgery. The plasma of elderly patients was collected pre- and postoperatively. Primary mouse microglia were subjected to various stimulations in multiple experimental designs to imitate in vivo POCD-like conditions. Morris water maze, fear conditioning, western blot, immunofluorescent staining, and blood-brain barrier (BBB) permeability tests were conducted in this study. D30 administration significantly improved learning and memory in aged mice following POCD. Neurotoxic M1 microglia cells were dramatically increased following POCD, manifested as morphologically changing into fewer and shorter branches, enlarged somatic areas, and upregulated expression of iNOS and C1q. Notably, following POCD, B2M was significantly upregulated in the plasma and the brain. D30 treatment significantly suppressed these pathologic changes, by inhibiting the POCD-induced BBB breakdown while suppressing the surge of plasma B2M levels. D30 treatment suppressed POCD-induced surge of B2M and Aβ plaques in the brain and preserved adult hippocampal neurogenesis vulnerable to POCD. Furthermore, postoperative levels of B2M were significantly elevated over the preoperative levels in patients aged 80 years and over. In parallel with mouse plasma after POCD, the postoperative patient plasma was also much more effective at activating M1 microglia. Of note, this POCD plasma-induced activation of M1 microglia was largely prevented by D30 treatment. Taken together, by inhibiting the surge of plasma B2M, protecting BBB integrity, and reducing inflammatory response, D30 protected aged mice from B2M-facilitated POCD.
Collapse
Affiliation(s)
- Ping Chen
- Department of Anesthesiology, Anesthesiology research institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Wan-Lan Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xue-Yan Liu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Si-Jun Li
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruo-Fan Chen
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi-Hui Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Peng-Tao Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mou-Hui Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meng-Yu Shi
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Anesthesiology, Anesthesiology research institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qing-Song Lin
- Department of Neurosurgery, Neurosurgery Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Zu-Cheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
209
|
Amatruda M, Turati J, Weiss J, Villavicencio J, Chen Z, Britton G, Horng S. Aldh1l1-Cre/ERT2 Drives Flox-Mediated Recombination in Peripheral and CNS Infiltrating Immune Cells in Addition to Astrocytes During CNS Autoimmune Disease. Brain Behav 2025; 15:e70239. [PMID: 39910805 PMCID: PMC11799068 DOI: 10.1002/brb3.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/26/2024] [Accepted: 12/14/2024] [Indexed: 02/07/2025] Open
Abstract
INTRODUCTION The transgenic murine Cre/loxP system is deployed to investigate the role of central nervous system (CNS) cell-specific gene alterations in both healthy conditions and models of neurologic disease. The Aldh1l1-Cre/ERT2 line is widely used to target astrocytes with high coverage and specificity within the CNS. Specificity outside the CNS, however, has not been well-characterized, and Aldh1l1-Cre/ERT2-mediated recombination within the spleen has been reported. In many CNS diseases, infiltrating immune cells from the periphery drive or regulate pathogenesis. We tested whether flox-mediated recombination from Aldh1l1-Cre/ERT2 occurs in immune cells in addition to astrocytes and whether these cells traffic from the spleen into the spinal cord during experimental autoimmune encephalomyelitis (EAE), a model of CNS autoimmune disease. METHODS Two astrocyte-targeted mouse lines were generated with the red fluorescent reporter, tdTomato, by crossing the Cre-recombinase lines, Tg(Aldh1l1-Cre/ERT2)1Khakh and Tg(Gfap-Cre)73.12Mvs, with the reporter line, Gt(ROSA)26Sor. Aldh1l1-Cre/ERT2 was activated with 5 days of intraperitoneal tamoxifen, whereas Gfap-Cre was constitutively active. EAE was induced 2 weeks after tamoxifen, and then spleens and spinal cords were harvested and processed for flow cytometry at various time points after disease onset in EAE versus healthy controls. RESULTS In EAE, Aldh1l1-Cre/ERT2, but not Gfap-Cre, induced multiple tdTomato+ immune cell subpopulations in the spleen and spinal cord, including macrophages, monocytes, neutrophils, eosinophils, B cells, CD4+, and CD8+ T cells. CONCLUSION Use of Aldh1l1-Cre/ERT2 should therefore account for recombination in both astrocytes and immune cells in disease models involving peripheral immune cell infiltration into the CNS.
Collapse
Affiliation(s)
- Mario Amatruda
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Juan Turati
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Josh Weiss
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jorge Villavicencio
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Zhihong Chen
- Department of Immunology and ImmunotherapyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Graham Britton
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sam Horng
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
210
|
Jiang X, Yang W, Liu G, Tang H, Zhang R, Zhang L, Li C, Li S. VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway. Neurochem Int 2025; 183:105918. [PMID: 39681141 DOI: 10.1016/j.neuint.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP + VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the "VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Wendi Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Renzi Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lina Zhang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
211
|
Chen J, Zeng X, Wang L, Zhang W, Li G, Cheng X, Su P, Wan Y, Li X. Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury. Neural Regen Res 2025; 20:557-573. [PMID: 38819067 PMCID: PMC11317951 DOI: 10.4103/nrr.nrr-d-23-01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
Collapse
Affiliation(s)
- Jiewen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiaolin Zeng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Wenwu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Gang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| |
Collapse
|
212
|
Ishiyama M, Gotoh H, Oe S, Nomura T, Kitada M, Ono K. Glycogenolysis-Induced Astrocytic Serping1 Expression Regulates Neuroinflammatory Effects on Hippocampal neuron. Mol Neurobiol 2025; 62:1373-1387. [PMID: 38985256 DOI: 10.1007/s12035-024-04345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The bacterial pathogen, lipopolysaccharide (LPS), elicits microglial response and induces cytokine secretion that subsequently activates astrocytes. Recent findings have indicated that LPS-induced activation of postnatal glial cells has led to alterations in synapse formation in hippocampal and cortical neurons, thereby resulting in a prolonged increased risk for seizure or depression. Nevertheless, its mechanisms remain to be fully elucidated. Cellular metabolism has recently gained recognition as a critical regulatory mechanism for the activation of peripheral immune cells, as it supplies the requisite energy and metabolite for their activation. In the present study, we report that LPS did not change the expression of reported astrocyte-derived synaptogenic genes in the postnatal hippocampus; however, it induced upregulation of astrocytic complement component regulator Serping1 within the postnatal hippocampus. As a regulatory mechanism, activation of glycogen degradation (glycogenolysis) governs the expression of a subset of inflammatory-responsive genes including Serping1 through reactive oxygen species (ROS)-NF-κB axis. Our study further demonstrated that glycogenolysis is implicated in neurotoxic phenotypes of astrocytes, such as impaired neuronal synaptogenesis or cellular toxicity. These findings suggested that activation of glycogenolysis in postnatal astrocytes is an essential metabolic pathway for inducing responses in inflammatory astrocytes.
Collapse
Affiliation(s)
- Masahito Ishiyama
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Building, 1-5 Shimogamo Hanki-Cho, Sakyo-Ku, Kyoto City, 606-0823, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Building, 1-5 Shimogamo Hanki-Cho, Sakyo-Ku, Kyoto City, 606-0823, Japan.
| | - Souichi Oe
- Department of Anatomy, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Tadashi Nomura
- Applied Biology, Kyoto Institute of Technology, 1-5 Matsugasaki Hashikami-Cho, Sakyo-Ku, Kyoto City, 606-8585, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Building, 1-5 Shimogamo Hanki-Cho, Sakyo-Ku, Kyoto City, 606-0823, Japan
| |
Collapse
|
213
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
214
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
215
|
Hernandez-Espinosa DR, Medina-Ruiz GI, Scrabis MG, Thathiah A, Aizenman E. Proinflammatory microglial activation impairs in vitro cortical tissue repair via zinc-dependent ADAM17 cleavage of the CSF-1 receptor. J Neurochem 2025; 169:e16239. [PMID: 39387604 PMCID: PMC11810582 DOI: 10.1111/jnc.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Infection and subsequent inflammatory processes negatively impact prognosis in individuals with traumatic brain injury (TBI). Tissue repair following TBI is tightly regulated by microglia, promoting or, importantly, preventing astrocyte-mediated repair processes, depending on the activation state of the neuroimmune cells. This study investigated the poorly understood mechanism linking proinflammatory microglia activation and astrocyte-mediated tissue repair using an in vitro mechanical injury model in mixed cortical cultures of rat neurons and glia. We hypothesized that proinflammatory activation disrupts the microglial response to colony-stimulating factor 1 (CSF-1), which stimulates microglia migration and proliferation, both essential for astrocyte-mediated tissue repair. Following mechanical damage, cultures were treated with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) to induce a proinflammatory state. Immunocytochemical and biochemical analyses were used to evaluate glial repair. Proinflammatory activation dramatically impeded wound closure, reducing microglial levels via upregulation of the zinc-dependent disintegrin and metalloprotease 17 (ADAM17), leading to the cleavage of the CSF-1 receptor (CSF-1R). Indeed, pharmacological inhibition of ADAM17 effectively promoted wound closure during inflammation. Moreover, zinc chelation prevented ADAM17-mediated cleavage of CSF-1R and induced the release of trophic factors, dramatically improving tissue recovery. Our findings strongly identify ADAM17 as a primary regulator of CSF-1R-mediated signaling and establish a mechanism defining the association between pro-inflammatory microglial activation and tissue repair following injury.
Collapse
Affiliation(s)
- Diego R. Hernandez-Espinosa
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gabriela I. Medina-Ruiz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Mia G. Scrabis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Present Address: Molecular Imaging Branch (MIB), National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA. Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
216
|
Wang HT, Lu ST, Xia ZH, Xu T, Zou WY, Sun MQ. Ciliary neurotrophic factor activation of astrocytes mediates neuronal damage via the IL‑6/IL‑6R pathway. Mol Med Rep 2025; 31:32. [PMID: 39575470 PMCID: PMC11600100 DOI: 10.3892/mmr.2024.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
The occurrence of epilepsy is a spontaneous and recurring process due to abnormal neuronal firing in the brain. Epilepsy is understood to be caused by an imbalance between excitatory and inhibitory neurotransmitters in the neural network. The close association between astrocytes and synapses can regulate the excitability of neurons through the clearance of neurotransmitters. Therefore, the abnormal function of astrocytes can lead to the onset and development of epilepsy. The onset of epilepsy can produce a large number of inflammatory mediators, which can aggravate epileptic seizures, leading to a vicious cycle. Neurons and glial cells interact to promote the onset and maintenance of epilepsy, but the specific underlying molecular mechanisms need to be further studied. Ciliary neurotrophic factor (CNTF) belongs to the IL‑6 cytokine family and is mainly secreted by astrocytes and Schwann cells. In the normal physiological state, CNTF levels are low, but in an epileptic state, CNTF levels in the serum and tears of patients are elevated. Astrocyte activation plays an important role in epileptic seizures. CNTF activates astrocytes to produce a variety of secreted proteins, which are secreted into the astrocyte culture medium (ACM), thus forming a distinct culture medium (CNTF‑ACM) that can be used to study the effect of astrocytes on neurons in vitro. CNTF‑activated astrocytes increase the secretion of the pro‑inflammatory factor IL‑6. In the present study, CNTF‑ACM was applied to primary cerebral cortical neurons to observe the specific effects of IL‑6 in CNTF‑ACM on neuronal activity and excitability. The results suggested that CNTF‑ACM can reduce neuronal activity via the IL‑6/IL‑6R pathway, promote neuronal apoptosis, increase Ca2+ inflow, activate the large conductance calcium‑activated potassium channel and enhance neuronal excitability. The results of the present study further revealed the functional changes of astrocytes after CNTF activated astrocytes and the effects on neuronal activity and excitability, thereby providing new experimental evidence for the role of communication between astrocytes and neurons in the mechanism of epileptic seizures.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| | - Si-Tong Lu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Stomatology, Wuhan College of Arts and Science, Wuhan, Hubei 430101, P.R. China
| | - Zhi-Hui Xia
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| | - Tao Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Clinical Laboratory and Diagnostics, Laboratory Medicine College, Bengbu Medical University, Bengbu, Anhui, 233030, P.R. China
| | - Wei-Yan Zou
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| | - Mei-Qun Sun
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
- Department of Histology and Embryology, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
217
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
218
|
Feng S, Li J, Liu T, Huang S, Chen X, Liu S, Zhou J, Zhao H, Hong Y. Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke. Neural Regen Res 2025; 20:491-502. [PMID: 38819062 PMCID: PMC11317962 DOI: 10.4103/nrr.nrr-d-23-01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/26/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00027/figure1/v/2024-05-28T214302Z/r/image-tiff Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury. Low-density lipoprotein receptor, a classic cholesterol regulatory receptor, has been found to inhibit NLR family pyrin domain containing protein 3 (NLRP3) inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer's disease. However, little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke. To address this issue in the present study, we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models. First, we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis. We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation. Second, we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus. Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype. Finally, we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin, an NLRP3 agonist, restored the neurotoxic astrocyte phenotype. These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Shuai Feng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanji Li
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiqi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shen Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
219
|
Lv J, Jiao Y, Zhao X, Kong X, Chen Y, Li L, Chen X, Tao X, Dong D. Examining the Impact of Microglia on Ischemic Stroke With an Emphasis on the Metabolism of Immune Cells. CNS Neurosci Ther 2025; 31:e70229. [PMID: 39945118 PMCID: PMC11822359 DOI: 10.1111/cns.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 01/11/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Ischemic stroke, a major cause of disability and the second leading cause of death, poses a significant public health challenge. Post-stroke inflammation can harm the blood-brain barrier and worsen neurological deficits, which are key factors in neuronal damage in patients with ischemic stroke. Microglia are crucial in the central nervous system, involved in inflammation, neuronal damage, and repair after cerebral ischemia. While cellular immune metabolism has been widely studied, its role in ischamic stroke remains unclear. AIM This review aims to examine how inflammation affects the phenotypic characteristics of immune cells after ischemic stroke and to explore the effects of the immune metabolic microenvironment on the phenotypic profiles and functions of microglia in ischemic stroke. METHOD The review refers to the available literature in PubMed, searching for critical terms related to Ischemic stroke, neuroinflammation, microglia, and immunometabolism. RESULT In this review, we found that during stroke progression, microglia can dynamically switch between pro-inflammatory and anti-inflammatory phenotypes. Microglial glycometabolism includes oxidative phosphorylation and glycolysis, and lipid metabolism involves lipid synthesis and breakdown. Modulating the production of inflammatory mediator precursors can induce an anti-inflammatory phenotype in microglia. CONCLUSION Thus, studying microglial metabolic pathways and their products may offer new insights for ischemic stroke treatment.
Collapse
Affiliation(s)
- Jing Lv
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yang Jiao
- Department of NeurologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianChina
| | - Xinya Zhao
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xin Kong
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianChina
| | - Yanwei Chen
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lu Li
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuyang Chen
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xufeng Tao
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Deshi Dong
- Department of PharmacyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
220
|
Ronchetti S, Labombarda F, Del Core J, Roig P, De Nicola AF, Pietranera L. The phytoestrogen genistein improves hippocampal neurogenesis and cognitive impairment and decreases neuroinflammation in an animal model of metabolic syndrome. J Neuroendocrinol 2025; 37:e13480. [PMID: 39676329 DOI: 10.1111/jne.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Metabolic syndrome (MS) is the medical term for the combination of at least three of the following factors: obesity, hyperlipidemia, hyperglycemia, insulin resistance, and hypertension. The spontaneously hypertensive rat (SHR) is an accepted animal model for the study of human MS that reveals all the features of the syndrome when fed high-fat, high-carbohydrate diets. The intake of high-fat diets in rats has been shown to produce brain neuropathology. In humans, MS increases the risk of cognitive impairment, dementia, and Alzheimer's disease. Genistein (GEN) is a phytoestrogen found in soy that lacks feminizing and carcinogenic effects and was found to have neuroprotective and anti-inflammatory effects in many pathological conditions. Considering that multiple data support that natural phytoestrogens may be therapeutic options for CNS maladies, we aim to elucidate if these properties also apply to a rat model of MS. Thus, GEN effects on neuroinflammation, neurogenesis, and cognition were evaluated in SHR eating a fat/carbohydrate-enriched diet. To characterize the neuropathology and cognitive dysfunction of MS we fed SHR with a high-fat diet (4520 kcal/kg) along with a 20% sucrose solution to drink. MS rats displayed a significant increase in body weight, BMI and obesity indexes along with an increased in fasting glucose levels, glucose intolerance, high blood pressure, and high blood triglyceride levels. MS rats were injected with GEN during 2 weeks a dose of 10 mg/kg. We found that MS rats showed a decreased number of DCX+ neural progenitors in the dentate gyrus and treatment with GEN increased this parameter. Expression of GFAP was increased in the DG and CA1 areas of the hippocampus and treatment decreased astrogliosis in all of them. We measured the expression of IBA1+ microglia in the same regions and classified microglia according to their morphology: we found that MS rats presented an increased proportion of the hypertrophied phenotype and GEN produced a shift in microglial phenotypes toward a ramified type. Furthermore, colocalization of IBA1 with the proinflammatory marker TNFα showed increased proportion of proinflammatory microglia in MS and a reduction with GEN treatment. On the other hand, colocalization with the anti-inflammatory marker Arg1 showed that MS has decreased proportion of anti-inflammatory microglia and GEN treatment increased this parameter. Cognitive dysfunction was evaluated in rats with MS using a battery of behavioral tests that assessed hippocampus-dependent spatial and working memory, such as the novel object recognition test (NOR), the novel object location test (NOL), and the free-movement pattern Y-maze (FMP-YMAZE) and the d-YMAZE. In all of them, MS performed poorly and GEN was able to improve cognitive impairments. These results indicate that GEN was able to exert neuroprotective actions increasing neurogenesis and improving cognitive impairments while decreasing astrogliosis, microgliosis, and neuroinflammatory environment in MS rats. Together, these results open an interesting possibility for proposing this phytoestrogen as a neuroprotective therapy for MS.
Collapse
Affiliation(s)
- Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julian Del Core
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
221
|
Li D, Hu Q, Zhan Z, Zhang X, Zeng W, Liu L, Wu K, Yu M. Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice. Exp Eye Res 2025; 251:110235. [PMID: 39798846 DOI: 10.1016/j.exer.2025.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury. After unilateral ONC, visual acuity in the injured eye declined, along with thinning of the retinal nerve fiber layer, and the latency and amplitude of FVEPs decreased. Furthermore, neuronal loss and degeneration were observed in the contralateral SC and V1 region, accompanied by astrocytic activation. Additionally, protein markers C3, and Serping1 for A1 astrocytes, which had neurotoxic effects and S100A10, and PTX3 for A2 astrocytes, which promoted tissue repair, were increased in the two regions. A1 astrocytes were mainly present in the early stages of observation, while A2 astrocytes were mainly increased later. Notably, NLRC4, GSDMD-N, cleaved caspase-1 expression, and IL-1β, IL-18 secretion increased in the contralateral SC and V1 region. Collectively, our findings reveal that A1 (neurotoxic) and A2 astrocytes (neuroprotective), NLRC4-mediated neuronal pyroptosis are enhanced in SC and V1 region contralateral to the ONC eye. The primary visual cortex responds to injury later than the superior colliculus after ONC, with less pronounced damage changes. Reactive astrocytes and NLRC4 inflammasome may act as promising targets for the prevention and treatment of optic nerve injury.
Collapse
Affiliation(s)
- Deling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Qinyuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Xinyi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Weiting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Liling Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
222
|
Palazzo C, Nutarelli S, Mastrantonio R, Tamagnone L, Viscomi MT. Glia-glia crosstalk via semaphorins: Emerging implications in neurodegeneration. Ageing Res Rev 2025; 104:102618. [PMID: 39638095 DOI: 10.1016/j.arr.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The central nervous system (CNS) is wired by a complex network of integrated glial and neuronal signals, which is critical for its development and homeostasis. In this context, glia-glia communication is a complex and dynamic process that is essential for ensuring optimal CNS function. Semaphorins, which include secreted and transmembrane molecules, and their receptors, mainly found in the plexin and neuropilin families, are expressed in a wide range of cell types, including glia. In the CNS, semaphorin signalling is involved in a spectrum of processes, including neurogenesis, neuronal migration and wiring, and glial cell recruitment. Recently, semaphorins and plexins have attracted intense research aimed at elucidating their roles in instructing glial cell behavior during development or in response to inflammatory stimuli. In this review, we provide an overview of the multifaceted role of semaphorins in glia-glia communication, highlighting recent discoveries about semaphoring-dependent regulation of glia functions in healthy conditions. We also discuss the mechanisms of gliaglia crosstalk mediated by semaphorins under pathological conditions, and how these interactions may provide potential avenues for therapeutic intervention in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- Claudia Palazzo
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sofia Nutarelli
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Mastrantonio
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| |
Collapse
|
223
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
224
|
Qiu Y, Zhao Y, He G, Yang D. Porphyromonas gingivalis and Its Outer Membrane Vesicles Induce Neuroinflammation in Mice Through Distinct Mechanisms. Immun Inflamm Dis 2025; 13:e70135. [PMID: 39932228 PMCID: PMC11811961 DOI: 10.1002/iid3.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common chronic neurodegenerative disorder, with neuroinflammation playing an important role in its progression to become a major research focus. The role of Porphyromonas gingivalis (Pg) and its outer membrane vesicles (Pg OMVs) in AD development is uncertain, particularly regarding their effects on neuroinflammation. METHODS The cognition of mice injected with Pg, Pg OMVs, or PBS via the tail vein was assessed by the Morris water maze test. Pathological changes in the mouse brain were analyzed via immunohistochemistry, immunofluorescence and hematoxylin‒eosin (H&E) staining, and the ultrastructure of the hippocampus was observed via transmission electron microscopy (TEM). Plasma levels of inflammatory factors were assessed by enzyme-linked immunosorbent assay (ELISA). Protein levels of brain inflammatory factor, occludin, and NLRP3 inflammasome-related proteins were assessed by western blotting. RESULTS Memory impairment; notable neuroinflammation, including astrocyte and microglial activation; and elevated protein levels of IL-1β, TNF-α, and IL-6 in the hippocampus were detected in the Pg and Pg OMV groups. However, Pg induced weight loss and systemic inflammation, such as splenomegaly and increased IL-1β and TNF-α levels in plasma, whereas Pg OMVs had minimal impact. In addition, Pg induced more pronounced activation of the NLRP3 inflammasome compared to Pg OMVs. In contrast, only the Pg OMV group exhibited blood-brain barrier (BBB) disruption characterized by reduced integrity of tight junctions and lower levels of occludin protein. CONCLUSIONS Pg is associated with a significant immune response and systemic inflammation, which in turn exacerbates neuroinflammation via activating NLRP3 inflammasome. However, Pg OMVs might elude the systemic immune response and disrupt tight junctions, thereby entering the brain and directly triggering neuroinflammation.
Collapse
Affiliation(s)
- Yu Qiu
- Chongqing Key Laboratory of Oral DiseasesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Department of Conservative Dentistry and EndodonticsShanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghaiChina
- Center for Neuroscience ResearchChongqing Medical UniversityChongqingChina
| | - Yueyang Zhao
- Center for Neuroscience ResearchChongqing Medical UniversityChongqingChina
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guiqiong He
- Center for Neuroscience ResearchChongqing Medical UniversityChongqingChina
| | - Deqin Yang
- Chongqing Key Laboratory of Oral DiseasesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Department of Conservative Dentistry and EndodonticsShanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghaiChina
| |
Collapse
|
225
|
Noel RL, Kugelman T, Karakatsani ME, Shahriar S, Willner MJ, Choi CS, Nimi Y, Ji R, Agalliu D, Konofagou EE. Safe focused ultrasound-mediated blood-brain barrier opening is driven primarily by transient reorganization of tight junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635258. [PMID: 39975117 PMCID: PMC11838333 DOI: 10.1101/2025.01.28.635258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Focused ultrasound (FUS) with microbubbles opens the blood-brain barrier (BBB) to allow targeted drug delivery into the brain. The mechanisms by which endothelial cells (ECs) respond to either low acoustic pressures known to open the BBB transiently, or high acoustic pressures that cause brain damage, remain incompletely characterized. Here, we use a mouse strain where tight junctions between ECs are labelled with eGFP and apply FUS at low (450 kPa) and high (750 kPa) acoustic pressures, after which mice are sacrificed at 1 or 72 hours. We find that the EC response leading to FUS-mediated BBB opening at low pressures is localized primarily in arterioles and capillaries, and characterized by a transient loss and reorganization of tight junctions. BBB opening still occurs at low safe pressures in mice lacking caveolae, suggesting that it is driven primarily by transient dismantlement and reorganization of tight junctions. In contrast, BBB opening at high pressures is associated with obliteration of EC tight junctions that remain unrepaired even after 72 hours, allowing continuous fibrinogen passage and persistent microglial activation. Single-cell RNA-sequencing of arteriole, capillary and venule ECs from FUS mice reveals that the transcriptomic responses of ECs exposed to high pressure are dominated by genes belonging to the stress response and cell junction disassembly at both 1 and 72 hours, while lower pressures induce primarily genes responsible for intracellular repair responses in ECs. Our findings suggest that at low pressures transient reorganization of tight junctions and repair responses mediate safe BBB opening for therapeutic delivery. Significance Statement Focused ultrasound with microbubbles is used as a noninvasive method to safely open the BBB at low acoustic pressures for therapeutic delivery into the CNS, but the mechanisms mediating this process remain unclear. Kugelman et al., demonstrate that FUS-mediated BBB opening at low pressures occurs primarily in arterioles and capillaries due to transient reorganization of tight junctions. BBB opening still occurs at low safe pressures in mice lacking caveolae, suggesting a transcellular route-independent mechanism. At high unsafe pressures, cell junctions are obliterated and remain unrepaired even after 72 hours, allowing fibrinogen passage and persistent microglial activation. Single-cell RNA-sequencing supports cell biological findings that safe, FUS-mediated BBB opening may be driven by transient reorganization and repair of EC tight junctions.
Collapse
|
226
|
Zhu D, Wang P, Chen X, Wang K, Wu Y, Zhang M, Qin J. Astrocyte-Derived Interleukin 11 Modulates Astrocyte-Microglia Crosstalk via Nuclear Factor-κB Signaling Pathway in Sepsis-Associated Encephalopathy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0598. [PMID: 39886603 PMCID: PMC11780073 DOI: 10.34133/research.0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined. In this study, we aim to investigate the molecular basis of the astrocyte-microglia crosstalk underlying SAE pathogenesis and also to explore the new therapeutic strategies targeting this crosstalk in this devastating disease. We established a human astrocyte/microglia coculture system on a microfluidic device, which allows real-time and high-resolution recording of glial responses to inflammatory stimuli. Based on this microfluidic system, we can test the responses of astrocytes and microglia to lipopolysaccharide (LPS) treatment, and identify the molecular cues that mediate the astrocyte-microglia crosstalk underlying the pathological condition. In addition, the SAE mouse model was utilized to determine the state of glial cells and evaluate the therapeutic effect of drugs targeting the astrocyte-microglia crosstalk in vivo. Here, we found that activated astrocytes and microglia exhibited close spatial interaction in the SAE mouse model. Upon LPS exposure for astrocytes, we detected that more microglia migrated to the central astrocyte culture compartment on the microfluidic device, accompanied by M1 polarization and increased cell motility in microglia. Cytokine array analysis revealed that less interleukin 11 (IL11) was secreted by astrocytes following LPS treatment, which further promoted reprogramming of microglia to pro-inflammatory M1 phenotype via the nuclear factor-κB (NF-κB) signaling pathway. Intriguingly, we found that IL11 addition markedly rescued LPS-induced neuronal injuries on the microfluidic system and brain injury in the SAE mouse model. This study defines an unknown crosstalk of astrocyte-microglia mediated by IL11, which contributed to the neuropathogenesis of SAE, and suggested a potential therapeutic value of IL11 in the devastating disease.
Collapse
Affiliation(s)
- Dandan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- Department of Critical Care Medicine,
The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Peng Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Kaituo Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine,
Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
227
|
van Hijfte L, Geurts M, de Heer I, Ghisai SA, Balcioglu HE, Hoogstrate Y, Vallentgoed WR, Head R, Luning R, van den Bosch T, Westerman B, Wesseling P, Joyce JA, French P, Debets R. Gemistocytic tumor cells programmed for glial scarring characterize T cell confinement in IDH-mutant astrocytoma. Nat Commun 2025; 16:1156. [PMID: 39880824 PMCID: PMC11779865 DOI: 10.1038/s41467-025-56441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma. Integrative analysis shows that GTC-high tumors are enriched for lymphocytes and tumor associated macrophages (TAM) and express immune cell migration and activation programs. Specifically, GTCs constitute a distinct sub-cluster of the astrocyte-like tumor cell state that co-localizes with immune reactive TAMs. Neighboring GTCs and TAMs express receptor-ligand pairs characteristic of reactive astrogliosis and glial scarring, such as SPP1/CD44 and IL-1β/IL1R1. Collectively, we reveal that T cell confinement in IDHmt astrocytomas associates with GTC-TAM networks that mimic glial scarring mechanisms.
Collapse
Affiliation(s)
- Levi van Hijfte
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Iris de Heer
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Santoesha A Ghisai
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rania Head
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rosa Luning
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Bart Westerman
- Department of Neurosurgery, Amsterdam UMC/VUMC, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam UMC/VUMC and Brain Tumour Center, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Agora Cancer Center Lausanne and Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pim French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Reno Debets
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
228
|
Li A, Zheng X, Liu D, Huang R, Ge H, Cheng L, Zhang M, Cheng H. Physical Activity and Depression in Breast Cancer Patients: Mechanisms and Therapeutic Potential. Curr Oncol 2025; 32:77. [PMID: 39996878 PMCID: PMC11854877 DOI: 10.3390/curroncol32020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a significant traumatic experience that often leads to chronic stress and mental health challenges. Research has consistently shown that physical activity-especially exercise-can alleviate depressive symptoms; however, the specific biological mechanisms underlying these antidepressant effects remain unclear. In this review, we comprehensively summarize the biological mechanisms of depression and the antidepressant mechanisms of physical activity and explore the biological processes through which exercise exerts its antidepressant effects in breast cancer patients. We focus on the impact of physical activity on inflammation, the endocrine system, glutamate, and other aspects, all of which play crucial roles in the pathophysiology of depression. Moreover, we discuss the heterogeneity of depression in breast cancer patients and the complex interactions between its underlying mechanisms. Additionally, we propose that a deeper understanding of these mechanisms in the breast cancer population can guide the design and implementation of exercise-based interventions that maximize the antidepressant benefits of physical activity. Finally, we summarize the current research and propose future research directions.
Collapse
Affiliation(s)
- Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xinyi Zheng
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Dajie Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Ling Cheng
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China;
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| |
Collapse
|
229
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2025; 36:91-117. [PMID: 39240134 PMCID: PMC11717358 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B. Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C. Y. Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J. Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L. Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
230
|
Fremuth LE, Hu H, van de Vlekkert D, Annunziata I, Weesner JA, Alessandra d'Azzo. Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation. Cell Rep 2025; 44:115204. [PMID: 39817909 PMCID: PMC11874873 DOI: 10.1016/j.celrep.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production. When Neu1 is deficient/downregulated, Trem2-FL remains sialylated, accumulates intracellularly, and is excessively cleaved into a C-terminal fragment (Trem2-CTF) and an extracellular soluble domain (sTrem2), enhancing their signaling capacities. Sialylated Trem2-FL (Sia-Trem2-FL) does not hinder Trem2-FL-DAP12-Syk complex assembly but impairs signal transduction through Syk, ultimately abolishing Trem2-dependent phagocytosis. Concurrently, Trem2-CTF-DAP12 complexes dampen NF-κB signaling, while sTrem2 propagates Akt-dependent cell survival and NFAT1-mediated production of TNF-α and CCL3. Because NEU1 and Trem2 are implicated in neurodegenerative/neuroinflammatory diseases, including Alzheimer disease and sialidosis, modulating NEU1 activity represents a therapeutic approach to broadly regulate microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Leigh Ellen Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Ida Annunziata
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Compliance Office, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jason Andrew Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
231
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025:10.1007/s12035-025-04718-7. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
232
|
Sebo DJ, Ali I, Fetsko AR, Trimbach AA, Taylor MR. Activation of Wnt/β-catenin in neural progenitor cells regulates blood-brain barrier development and promotes neuroinflammation. Sci Rep 2025; 15:3496. [PMID: 39875426 PMCID: PMC11775206 DOI: 10.1038/s41598-025-85784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature. Using transgenic reporters of Wnt/β-catenin transcriptional activity, we found an inverse correlation between activated Wnt/β-catenin signaling in endothelial cells (ECs) versus non-ECs within these distinct microenvironments. Our results indicated that the level of Wnt/β-catenin signaling in non-ECs may regulate Wnt/β-catenin activity in adjacent ECs. To further test this concept, we generated a transgenic Tet-On inducible system to drive constitutively active β-catenin expression in neural progenitor cells (NPCs). We found that dose-dependent activation of Wnt/β-catenin in NPCs caused severe deficiency in CNS angiogenesis and BBB development. Additionally, we discovered a significant increase in the proliferation of microglia and infiltration of peripheral neutrophils indicative of a stereotypical neuroinflammatory response. In conclusion, our results demonstrate the importance of proper Wnt/β-catenin signaling within specific CNS microenvironments and highlights the potentially deleterious consequences of aberrant Wnt activation.
Collapse
Affiliation(s)
- Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Irshad Ali
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aubrey A Trimbach
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
233
|
Qiao CM, Tan LL, Ma XY, Xia YM, Li T, Li MA, Wu J, Nie X, Cui C, Zhao WJ, Shen YQ. Mechanism of S100A9-mediated astrocyte activation via TLR4/NF-κB in Parkinson's disease. Int Immunopharmacol 2025; 146:113938. [PMID: 39724736 DOI: 10.1016/j.intimp.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Astrocyte-mediated neuroinflammation plays a key role in Parkinson's disease (PD) progression. The proinflammatory protein S100A9 is linked to various neurodegenerative diseases, but its involvement in astrocyte activation in PD remains unclear. Here, we investigate the role of S100A9 in astrocyte-mediated neuroinflammation in PD. C57BL/6J mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 15 mg/kg four times daily) and subsequently treated with Paquinimod, a S100A9 inhibitor (7 mg/kg, once daily for 7 days, totaling 8 doses). We observed an abnormal increase in S100A9 protein expression and a rise in S100A9-positive cells in the striatum of PD mice. Paquinimod treatment significantly improved behavioral deficits (pole test, rotarod test, traction test, and open field tests), prevented the reduction in striatal tyrosine hydroxylase (TH) protein and the loss of dopaminergic neurons (TH+) in the substantia nigra (SN) in PD mice. Interestingly, S100A9 was predominantly expressed in astrocytes (GFAP+S100A9+ cells) rather than in neurons or microglia, and its inhibition significantly reduced astrocyte activation (GFAP+ cells), reversed A1 astrocyte gene upregulation (H2-D1, C3, Serping1), and increased A2 astrocyte gene expression (Emp1, Ptx3, S100a10). Moreover, S100A9 inhibition also reduced the expression of inflammatory markers (IL-6, IL-1β, TNF-α) and suppressed the TLR4/NF-κB signaling pathway. In vitro, TLR4/NF-κB inhibitors mitigated inflammation and A1/A2 polarization of astrocytic MA cells induced by recombinant S100A9 (rS100A9). These findings suggest that S100A9 mediates astrocyte neuroinflammation and A1/A2 polarization via TLR4/NF-κB signaling, highlighting its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Lu Tan
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi-Meng Xia
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming-An Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Nie
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
234
|
Santos-García I, Bascuñana P, Brackhan M, Villa M, Eiriz I, Brüning T, Pahnke J. The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice. Alzheimers Res Ther 2025; 17:30. [PMID: 39871385 PMCID: PMC11773842 DOI: 10.1186/s13195-025-01673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved. Therefore, we wanted to investigate the specific role of ABCA7 in microglial activation via the NLRP3 inflammasome. METHODS We developed the first humanized, Cre-inducible ABCA7flx knock-in mouse model, crossbred it with the APPPS1-21 β-amyloidosis model, and generated constitutive ABCA7ko and microglia Cx3cr1-specific conditional ABCA7ko AD mice. The role of ABCA7 was analyzed using histological, biochemical, molecular and mass spectrometry methods. RESULTS Constitutive knockout of the Abca7 gene in APPPS1 mice increased the levels of Aβ42 and the number of IBA1+ (microglia) and GFAP+ (astrocytes) cells. Changes in the levels of astrocytes and microglia are associated with the activation of the NLRP3 inflammasome and increased levels of proinflammatory cytokines, such as IL1β and TNFα. Interestingly, microglia-specific ABCA7ko restored Aβ42 peptide levels and IBA1+ and GFAP+ and NLRP3-related gene expression to the original APPPS1 mouse levels. In primary glial cell cultures of APPPS1-hA7ko microglia and APPPS1 astrocytes from newborn pups, we observed that conditioned media from LPS-stimulated microglia was able to induce NLRP3 inflammasome expression and proinflammatory cytokine release in astrocytes. CONCLUSIONS Our data suggest that ABCA7 transporters regulate the communication between microglia and astrocytes through the NLRP3 inflammasome and the release of proinflammatory cytokines. This regulation implicates ABCA7 as a key driver ultimately involved in the persistence of the inflammatory response observed in AD.
Collapse
Affiliation(s)
- Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway
| | - Pablo Bascuñana
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Mirjam Brackhan
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway
- Brain Mapping Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - María Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.
- Institute of Nutritional Medicine (INUM), Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, DE-23538, Lübeck, Germany.
- Department of Neuromedicine and Neuroscience, The Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, Rīga, LV-1004, Latvia.
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv, IL-6997801, Israel.
| |
Collapse
|
235
|
Li S, Li M, Li G, Li L, Yang X, Zuo Z, Zhang L, Hu X, He X. Physical Exercise Decreases Complement-Mediated Synaptic Loss and Protects Against Cognitive Impairment by Inhibiting Microglial Tmem9-ATP6V0D1 in Alzheimer's Disease. Aging Cell 2025:e14496. [PMID: 39871402 DOI: 10.1111/acel.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025] Open
Abstract
Physical exercise is known to slow synaptic neurodegeneration and cognitive aging in Alzheimer's disease (AD). The benefits of physical exercise are related to reduced amyloid beta (Aβ) deposition and increased synaptic plasticity. Yet little is known about the mechanisms that mediate these effects. Here, we show that physical exercise down-regulated the microglial Tmem9 protein, inhibited C1q activation, and decreased C1q-dependent microglial synapse engulfment, eventually ameliorating cognitive impairment in 5xFAD mice. Furthermore, using oAβ cultured-BV2 in vitro, we show that downregulation of microglial Tmem9 was sufficient to restrain complement activity and decrease microglia-mediated synaptic loss, whereas overexpression of microglial Tmem9 tended to promote complement activation and induced synaptic loss, abolishing exercise-associated protection. Finally, we show that microglial Tmem9 contributed to complement activation by regulating ATP6V0D1, a vesicular (H+) ATP-dependent proton pump (V-ATPase) subunit that regulates V-ATPase assembly. Together, our results demonstrate that exercise is a potential treatment for AD patients. In an AD mouse model, it decreased the levels of microglial Tmem9 to inhibit the activation of complement, alleviated complement-dependent synaptic loss, and eventually ameliorated emotional and cognitive disorders.
Collapse
Affiliation(s)
- Shiyin Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaofeng Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
236
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
237
|
Absalyamova M, Traktirov D, Burdinskaya V, Artemova V, Muruzheva Z, Karpenko M. Molecular basis of the development of Parkinson's disease. Neuroscience 2025; 565:292-300. [PMID: 39653246 DOI: 10.1016/j.neuroscience.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease is one of the most prevalent neurodegenerative motor disorders worldwide with postural instability, bradykinesia, resting tremor and rigidity being the most common symptoms of the disease. Despite the fact that the molecular mechanisms of Parkinson's disease pathogenesis have already been well described, there is still no coherent picture of the etiopathogenesis of this disease. According to modern concepts, neurodegeneration is induced mainly by oxidative stress, neuroinflammation, dysregulation of cerebral proteostasis, apoptotic dysregulation, and impaired autophagy. This review describes how various factors contribute to neurodegeneration in Parkinson's disease. Understanding the factors affecting fundamental cellular processes and responsible for disease progression may help develop therapeutic strategies to improve the quality of life of patients suffering from the disease. The review also discusses the role of calpains in the development of Parkinson's disease. It is known that α-synuclein is a substrate of calcium-dependent proteases of the calpain family. Truncated forms of α-synuclein are not only involved in the process of formation of the aggregates, but also increase their toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Karpenko
- Peter the Great St Petersburg Polytechnic University, Russia
| |
Collapse
|
238
|
Liu Q, Tan Y, Zhang ZW, Tang W, Han L, Peng KP, Liu MH, Tian GX. The role of NLRP3 inflammasome-mediated pyroptosis in astrocytes during hyperoxia-induced brain injury. Inflamm Res 2025; 74:25. [PMID: 39862240 DOI: 10.1007/s00011-024-01984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury. Additionally, astrocytes actively participate in neuroinflammatory responses. However, there is currently no comprehensive overview summarizing the role of astrocytes in hyperoxia-induced brain injury and the NLRP3 signaling pathways in astrocytes. OBJECTIVE This article aims to provide an overview of studies reported in the literature investigating the pathological role of astrocyte involvement during the inflammatory response in hyperoxia-induced brain injury, the mechanisms of hyperoxia activateing the NLRP3 inflammasome to mediate pyroptosis in astrocytes, and the potential therapeutic effects of drugs targeting the NLRP3 inflammasome to alleviate hyperoxia-induced brain injury. METHOD We searched major databases (including PubMed, Web of Science, and Google Scholar, etc.) for literature encompassing astrocytes, NLRP3 inflammasome, and pyroptosis during hyperoxia-induced brain injury up to Oct 2024. We combined with studies found in the reference lists of the included studies. CONCLUSION In this study, we elucidated the transition of function in astrocytes and activation mechanisms under hyperoxic conditions, and we summarized the potential upstream of the trigger involved in NLRP3 inflammasome activation during hyperoxia-induced brain injury, such as ROS and potassium efflux. Furthermore, we described the signaling pathways of the NLRP3 inflammasome and pyroptosis executed by GSDMD and GSDME in astrocytes under hyperoxic conditions. Finally, we summarized the inhibitors targeting the NLRP3 inflammasome in astrocytes to provide new insights for treating hyperoxia-induced brain injury.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yan Tan
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhan-Wei Zhang
- Department of Neurosurgery, The First Hospital of Hunan University of Chinese Medicine, 40007, Changsha, China
| | - Wang Tang
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lei Han
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ke-Ping Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of Hunan University of Chinese Medicine, 40007, Changsha, China
| | - Ming-Hui Liu
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Gui-Xiang Tian
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
239
|
Jiang D, Ding Y, Hu S, Wei G, Trujillo C, Yang Z, Wei Z, Li W, Liu D, Li C, Gan W, Santos HA, Yin G, Fan J. Broad-spectrum downregulation of inflammatory cytokines by polydopamine nanoparticles to protect the injured spinal cord. Acta Biomater 2025; 193:559-570. [PMID: 39674244 DOI: 10.1016/j.actbio.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Acute neuroinflammation, which is notably characterized by a significant elevation in pro-inflammatory cytokines and chemokines, often rapidly develops following a traumatic spinal cord injury and exacerbates damage in the lesion area. This study addresses the limitations inherent in strategies that regulate only a single or a few cytokines, which are often insufficient to counteract the progression of secondary injuries. We explore the use of polydopamine nanoparticles as a broad-spectrum immunomodulator, capable of capturing by adsorption a wide range of cytokines and thereby effectively suppressing neuroinflammation. Leveraging their adhesive properties, these nanoparticles promptly reduce levels of various excessive cytokines, including IL-1α, IL-1β, IL-6, IL-10, IL-17A, IL-18, TNF-α, MCP-1, GRO/KC, M-CSF, MIP-3α, and IFN-γ, primarily through physical adsorption. This reduction in cytokine levels contributes to the subsequent inhibition of pro-inflammatory M1 microglia and A1 astrocyte activation, aiding in the recovery of motor functions in vivo. In summary, polydopamine nanoparticles represent a versatile and effective approach for modulating acute neuroinflammation in spinal cord injuries. By broadly down-regulating cytokines, polydopamine nanoparticles propose an innovative approach for treating spinal cord injuries. STATEMENT OF SIGNIFICANCE: The current study demonstrated the immunomodulatory potential of polydopamine nanoparticles in mitigating neuroinflammation following spinal cord injury. Both in vitro and in vivo analyses revealed significant downregulation of several key cytokines among a panel of 23 cytokines and chemokines. The potential underlying mechanisms governing these interactions were elucidated through comprehensive molecular dynamics simulations for the first time. Consequently, the downregulation of these cytokines and chemokines led to the inhibition of pro-inflammatory M1 microglia and A1 astrocyte activation in both in vitro and in vivo models. This inhibition protected neurons within the microenvironment, resulting in improved locomotor functions. Overall, this study underscores the prominent therapeutic efficacy of polydopamine nanoparticles in alleviating neuroinflammation, highlighting their potential as broad-spectrum regulators in intricate microenvironments.
Collapse
Affiliation(s)
- Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yaping Ding
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 China; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Guangfei Wei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Claudia Trujillo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Zhiyuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenyang Wei
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Cong Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenwu Gan
- Department of Orthopedics, Xuyi People's Hospital Xuyi 211700, Jiangsu, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, AV 9713, the Netherlands.
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
240
|
Ma B, Ren J, Qian X. Study on the Polarization of Astrocytes in the Optic Nerve Head of Rats Under High Intraocular Pressure: In Vitro. Bioengineering (Basel) 2025; 12:104. [PMID: 40001624 PMCID: PMC11852053 DOI: 10.3390/bioengineering12020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Astrocytes, the most common glial cells in the optic nerve head (ONH), provide support and nutrition to retinal ganglion cells. This study aims to investigate the polarization types of astrocytes in the ONH of rats under high intraocular pressure (IOP) and explore signaling pathways potentially associated with different types of polarized astrocytes. The rat models with chronic high IOP were established. High IOP lasted for 2, 4, 6, and 8 weeks. Astrocytes were extracted from the ONH of rats using the tissue block cultivation method. Western blot was used to detect the expression of proteins associated with astrocyte polarization. Proteomics was employed to identify differential proteins associated with astrocyte polarization. Astrocytes polarized into A2 astrocytes after 2, 4, 6, and 8 weeks of high IOP, while polarization into A1 astrocytes began only after 8 weeks of high IOP. The differential proteins associated with A1 astrocyte polarization are primarily enriched in pathways of neurodegeneration with respect to multiple diseases, while the differential proteins associated with A2 astrocyte polarization are primarily enriched in pathways of spliceosome in amyotrophic lateral sclerosis. Our findings could provide a better understanding of the role of ONH astrocytes in the pathogenesis of glaucoma and offer new perspectives for glaucoma treatment.
Collapse
Affiliation(s)
| | | | - Xiuqing Qian
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China; (B.M.)
| |
Collapse
|
241
|
Tran KM, Kwang NE, Butler CA, Gomez-Arboledas A, Kawauchi S, Mar C, Chao D, Barahona RA, Da Cunha C, Tsourmas KI, Shi Z, Wang S, Collins S, Walker A, Shi KX, Alcantara JA, Neumann J, Duong DM, Seyfried NT, Tenner AJ, LaFerla FM, Hohsfield LA, Swarup V, MacGregor GR, Green KN. APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology. Mol Neurodegener 2025; 20:9. [PMID: 39844286 PMCID: PMC11752804 DOI: 10.1186/s13024-024-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects. METHODS We introduced the R136S variant into mouse Apoe (ApoeCh) and investigated its effect on the development of AD-related pathology using the 5xFAD model of amyloidosis and the PS19 model of tauopathy. We used immunohistochemical and biochemical analysis along with single-cell spatial omics and bulk proteomics to explore the impact of the ApoeCh variant on AD pathological development and the brain's response to plaques and tau. RESULTS In 5xFAD mice, ApoeCh enhances a Disease-Associated Microglia (DAM) phenotype in microglia surrounding plaques, and reduces plaque load, dystrophic neurites, and plasma neurofilament light chain. By contrast, in PS19 mice, ApoeCh suppresses the microglial and astrocytic responses to tau-laden neurons and does not reduce tau accumulation or phosphorylation, but partially rescues tau-induced synaptic and myelin loss. We compared how microglia responses differ between the two mouse models to elucidate the distinct DAM signatures induced by ApoeCh. We identified upregulation of antigen presentation-related genes in the DAM response in a PS19 compared to a 5xFAD background, suggesting a differential response to amyloid versus tau pathology that is modulated by the presence of ApoeCh. Bulk proteomics show upregulated mitochondrial protein abundance with ApoeCh in 5xFAD mice, but reductions in mitochondrial and translation associated proteins in PS19 mice. CONCLUSIONS These findings highlight the ability of the ApoeCh variant to modulate microglial responses based on the type of pathology, enhancing DAM reactivity in amyloid models and dampening neuroinflammation to promote protection in tau models. This suggests that the Christchurch variant's protective effects likely involve multiple mechanisms, including changes in receptor binding and microglial programming.
Collapse
Affiliation(s)
- Kristine M Tran
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Nellie E Kwang
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Claire A Butler
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Angela Gomez-Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Cassandra Mar
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Donna Chao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Rocio A Barahona
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Kate I Tsourmas
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Joshua A Alcantara
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrea J Tenner
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Grant R MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA.
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| | - Kim N Green
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
242
|
Lee E, Chang Y. Modulating Neuroinflammation as a Prospective Therapeutic Target in Alzheimer's Disease. Cells 2025; 14:168. [PMID: 39936960 PMCID: PMC11817173 DOI: 10.3390/cells14030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The recent approval of lecanemab highlights that the amyloid beta (Aβ) protein is an important pathological target in Alzheimer's disease (AD) and further emphasizes the significance of neuroinflammatory pathways in regulating Aβ accumulation. Indeed, Aβ accumulation triggers microglia activation, which are key mediators in neuroinflammation. The inflammatory responses in this process can lead to neuronal damage and functional decline. Microglia secrete proinflammatory cytokines that accelerate neuronal death and release anti-inflammatory cytokines and growth factors contributing to neuronal recovery and protection. Thus, microglia play a dual role in neurodegeneration and neuroprotection, complicating their function in AD. Therefore, elucidating the complex interactions between Aβ protein, microglia, and neuroinflammation is essential for developing new strategies for treating AD. This review investigates the receptors and pathways involved in activating microglia and aims to enhance understanding of how these processes impact neuroinflammation in AD, as well as how they can be regulated. This review also analyzed studies reported in the existing literature and ongoing clinical trials. Overall, these studies will contribute to understanding the regulatory mechanisms of neuroinflammation and developing new therapies that can slow the pathological progression of AD.
Collapse
Affiliation(s)
- Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
243
|
Gongwer MW, Etienne F, Moca EN, Chappell MS, Blagburn-Blanco SV, Riley JP, Enos AS, Haratian M, Qi A, Rojo R, Wilke SA, Pridans C, DeNardo LA, De Biase LM. Microglia regulate nucleus accumbens synaptic development and circuit function underlying threat avoidance behaviors. RESEARCH SQUARE 2025:rs.3.rs-5837701. [PMID: 39975894 PMCID: PMC11838711 DOI: 10.21203/rs.3.rs-5837701/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life. Using a genetically modified mouse that lacks microglia (Csf1r ΔFIRE/ΔFIRE), we found blunted excitatory synapse formation in the NAc. This effect was most prominent during the second and third postnatal weeks, when we previously found microglia to be overproduced, and was accompanied by an increase in presynaptic release probability and alterations in postsynaptic kinetics. Tissue-level NAc proteomics confirmed that microglial absence impacted numerous proteins involved in synapse structure, trans-synaptic signaling, and pre-synaptic function. However, microglial absence did not perturb levels of astrocyte-derived cues and adhesive proteins that promote synaptogenesis, suggesting that reduced synapse number may be caused by absence of a microglial-derived synaptogenic cue. Although observed electrophysiological synaptic changes were largely normalized by adulthood, we identified lasting effects of microglial absence on threat avoidance behavior, and these behavioral effects were directly associated with alterations of NAc neuronal activity. Together, these results indicate a critical role for microglia in regulating the synaptic landscape of the developing NAc and in establishing functional circuits underlying adult behavioral repertoires.
Collapse
Affiliation(s)
- Michael W Gongwer
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Fanny Etienne
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Eric N Moca
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Megan S Chappell
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
| | - Sara V Blagburn-Blanco
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Jack P Riley
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alexander S Enos
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Melody Haratian
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alex Qi
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Rocio Rojo
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Scott A Wilke
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Clare Pridans
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Laura A DeNardo
- Department of Physiology, University of California Los Angeles, CA, USA
| | | |
Collapse
|
244
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
245
|
Li LJ, Liang SY, Sun XY, Zhu J, Niu XY, Du XY, Huang YR, Liu RT. Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration. J Neuroinflammation 2025; 22:11. [PMID: 39833906 PMCID: PMC11745000 DOI: 10.1186/s12974-025-03333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al., Transl Neurodegener 13:39, 2024). Although it has been verified that DNase II participates in type I interferons (IFN-I) mediated autoinflammation and senescence in peripheral systems, the role of microglial DNase II in neuroinflammation and neurodegenerative diseases such as Alzheimer's disease (AD) is still unknown. METHODS The levels of microglial DNase II in triple transgenic AD mice (3xTg-AD) were measured by immunohistochemistry. The cognitive performance of microglial DNase II deficient WT and AD mice was determined using the Morris water maze test, Y-maze test, novel object recognition test and open filed test. To investigate the impact of microglial DNase II deficiency on microglial morphology, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and IFN-I pathway, neuroinflammation, synapses loss, amyloid pathology and tauopathy, the levels of cGAS-STING and IFN-I pathway related protein, gliosis and proinflammatory cytokines, synaptic protein, complement protein, Aβ levels, phosphorylated tau in the brains of the microglial DNase II deficient WT and AD mice were evaluated by immunolabeling, immunoblotting, q-PCR or ELISA. RESULTS We found that the levels of DNase II were significantly decreased in the microglia of 3xTg-AD mice. Microglial DNase II deficiency altered microglial morphology and transcriptional signatures, activated the cGAS-STING and IFN-I pathway, initiated neuroinflammation, led to synapse loss via complement-dependent pathway, increased Aβ levels and tauopathy, and induced cognitive decline. CONCLUSIONS Our study shows the effect of microglial DNase II deficiency and cytoplasmic accumulated dsDNA on neuroinflammation, and reveals the initiatory mechanism of AD pathology, suggesting that DNase II is a potential target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Liang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Xiao-Yu Du
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Ru Huang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
246
|
Milligan C, Cowley DO, Stewart W, Curry AM, Forbes E, Rector B, Hastie A, Liu L, Hawkins GA. Enhanced Interleukin 6 Trans-Signaling Modulates Disease Process in Amyotrophic Lateral Sclerosis Mouse Models. Brain Sci 2025; 15:84. [PMID: 39851451 PMCID: PMC11764401 DOI: 10.3390/brainsci15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Charcot first described ALS in 1869, but the specific mechanisms that mediate the disease pathology are still not clear. Intense research efforts have provided insight into unique neuroanatomical regions, specific neuronal populations and genetic associations for ALS and other neurodegenerative diseases; however, the experimental results also suggest a convergence of these events to common toxic pathways. We propose that common toxic pathways can be therapeutically targeted, and this intervention will be effective in slowing progression and improving patient quality of life. Here, we focus on understanding the role of IL6 trans-signaling in ALS disease processes. Methods: We leveraged unique mouse models of IL6 trans-signaling that we developed that recapitulate the production of active sIL6R in a genotypic and quantitative fashion observed in humans. Given that the SOD1 transgenic mouse is one of the most highly studied and characterized models of ALS, we bred SOD1G93A mice with IL6R trans-signaling mice to determine how enhanced trans-signaling influenced symptom onset and pathological processes, including neuromuscular junction (NMJ) denervation, glial activation and motoneuron (MN) survival. Results: The results indicate that in animals with enhanced trans-signaling, symptom onset and pathological processes were accelerated, suggesting a role in disease modification. Administration of an IL6R functional blocking antibody failed to alter accelerated symptom onset and disease progression. Conclusions: Future work to investigate the site-specific influence of enhanced IL6 trans-signaling and the tissue-specific bioavailability of potential therapeutics will be necessary to identify targets for precise therapeutic interventions that may limit disease progression in the 60% of ALS patients who inherit the common Il6R Asp358Ala variant.
Collapse
Affiliation(s)
- Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dale O. Cowley
- Department of Genetics and Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - William Stewart
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alyson M. Curry
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Elizabeth Forbes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Rector
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Annette Hastie
- Department of Internal Medicine Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gregory A. Hawkins
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
247
|
Peters JJ, Teng C, Peng K, Li X. Deciphering the Blood-Brain Barrier Paradox in Brain Metastasis Development and Therapy. Cancers (Basel) 2025; 17:298. [PMID: 39858080 PMCID: PMC11764143 DOI: 10.3390/cancers17020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue. This dual role of the BBB-as both a protective system and a potential facilitator of metastatic cells-highlights its complexity. Even with metastasis therapy such as chemotherapy, BM usually recurs due to the BBB limiting the crossing of drugs via the efflux transporters; therefore, treatment efficacy is limited. The pathophysiology is also complex, and our understanding of the paradoxical interplay between the BBB components and metastatic cells still needs to be improved. However, advancements in clinical research are helping to bridge the knowledge gap, which is essential for developing effective metastasis therapy. By targeting the BBB neurovascular unit components such as the polarization of microglia, astrocytes, and pericytes, or by utilizing technological tools like focused ultrasound to transiently disrupt the BBB and therapeutic nanoparticles to improve drug delivery efficiency to BM tissue, we can better address this pathology. This narrative review delves into the latest literature to analyze the paradoxical role of the BBB components in the manifestation of BM and explores potential therapeutic avenues targeting the BBB-tumor cell interaction.
Collapse
Affiliation(s)
- Jens Jeshu Peters
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| |
Collapse
|
248
|
Gongwer MW, Etienne F, Moca EN, Chappell MS, Blagburn-Blanco SV, Riley JP, Enos AS, Haratian M, Qi A, Rojo R, Wilke SA, Pridans C, DeNardo LA, De Biase LM. Microglia regulate nucleus accumbens synaptic development and circuit function underlying threat avoidance behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633068. [PMID: 39868334 PMCID: PMC11761117 DOI: 10.1101/2025.01.15.633068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life. Using a genetically modified mouse that lacks microglia (Csf1r ΔFIRE/ΔFIRE), we found blunted excitatory synapse formation in the NAc. This effect was most prominent during the second and third postnatal weeks, when we previously found microglia to be overproduced, and was accompanied by an increase in presynaptic release probability and alterations in postsynaptic kinetics. Tissue-level NAc proteomics confirmed that microglial absence impacted numerous proteins involved in synapse structure, trans-synaptic signaling, and pre-synaptic function. However, microglial absence did not perturb levels of astrocyte-derived cues and adhesive proteins that promote synaptogenesis, suggesting that reduced synapse number may be caused by absence of a microglial-derived synaptogenic cue. Although observed electrophysiological synaptic changes were largely normalized by adulthood, we identified lasting effects of microglial absence on threat avoidance behavior, and these behavioral effects were directly associated with alterations of NAc neuronal activity. Together, these results indicate a critical role for microglia in regulating the synaptic landscape of the developing NAc and in establishing functional circuits underlying adult behavioral repertoires.
Collapse
Affiliation(s)
- Michael W Gongwer
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Fanny Etienne
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Eric N Moca
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Megan S Chappell
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
| | - Sara V Blagburn-Blanco
- Department of Physiology, University of California Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA, USA
- UCLA Medical Scientist Training Program, University of California Los Angeles, CA, USA
| | - Jack P Riley
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alexander S Enos
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Melody Haratian
- Department of Physiology, University of California Los Angeles, CA, USA
| | - Alex Qi
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Rocio Rojo
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Scott A Wilke
- Department of Psychiatry, University of California Los Angeles, CA, USA
| | - Clare Pridans
- Institution for Regeneration and Repair, University of Edinburgh, Scotland
| | - Laura A DeNardo
- Department of Physiology, University of California Los Angeles, CA, USA
| | | |
Collapse
|
249
|
Poongodi R, Hsu YW, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Stem Cell-Derived Extracellular Vesicle-Mediated Therapeutic Signaling in Spinal Cord Injury. Int J Mol Sci 2025; 26:723. [PMID: 39859437 PMCID: PMC11765593 DOI: 10.3390/ijms26020723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration. Recent studies have delved into the molecular mechanisms underlying MSC-EV-mediated therapeutic effects. Exosomal microRNAs (miRNAs) have been identified as key regulators of various cellular processes involved in SCI pathogenesis and repair. These miRNAs can influence inflammation, oxidative stress, and apoptosis by modulating gene expression. This review summarized the current state of MSC-EV-based therapies for SCI, highlighting the underlying mechanisms and potential clinical applications. We discussed the challenges and limitations of translating these therapies into clinical practice, such as inconsistent EV production, complex cargo composition, and the need for targeted delivery strategies. Future research should focus on optimizing EV production and characterization, identifying key therapeutic miRNAs, and developing innovative delivery systems to maximize the therapeutic potential of MSC-EVs in SCI.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Yung-Wei Hsu
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Long-Term Care, MacKay Medical College, New Taipei City 25245, Taiwan;
- MacKay Children’s Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (Y.-H.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
250
|
Ju JJ, Hang LH. Neuroinflammation and iron metabolism after intracerebral hemorrhage: a glial cell perspective. Front Neurol 2025; 15:1510039. [PMID: 39882361 PMCID: PMC11774705 DOI: 10.3389/fneur.2024.1510039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke causing significant morbidity and mortality. Previously clinical treatments for ICH have largely been based on a single pathophysiological perspective, and there remains a lack of curative interventions. Following the rupture of cerebral blood vessels, blood metabolites activate resident immune cells such as microglia and astrocytes, and infiltrate peripheral immune cells, leading to the release of a series of inflammatory mediators. Degradation of hemoglobin produces large amounts of iron ions, leading to an imbalance of iron homeostasis and the production of large quantities of harmful hydroxyl radicals. Neuroinflammation and dysregulation of brain iron metabolism are both important pathophysiological changes in ICH, and both can exacerbate secondary brain injury. There is an inseparable relationship between brain iron metabolism disorder and activated glial cells after ICH. Glial cells participate in brain iron metabolism through various mechanisms; meanwhile, iron accumulation exacerbates neuroinflammation by activating inflammatory signaling pathways modulating the functions of inflammatory cells, and so on. This review aims to explore neuroinflammation from the perspective of iron metabolism, linking the complex pathophysiological changes, delving into the exploration of treatment approaches for ICH, and offering insights that could enhance clinical management strategies.
Collapse
Affiliation(s)
- Jia-Jun Ju
- Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, China
| | - Li-Hua Hang
- Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, China
- Kunshan Cancer Pain Prevention and Treatment Key Laboratory, Kunshan, China
| |
Collapse
|