201
|
Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS, Waisman A, Cunha FQ, Cunha TM, Alves-Filho JC. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med 2021; 217:151965. [PMID: 32697823 PMCID: PMC7537396 DOI: 10.1084/jem.20190613] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Th17 cell differentiation and pathogenicity depend on metabolic reprogramming inducing shifts toward glycolysis. Here, we show that the pyruvate kinase M2 (PKM2), a glycolytic enzyme required for cancer cell proliferation and tumor progression, is a key factor mediating Th17 cell differentiation and autoimmune inflammation. We found that PKM2 is highly expressed throughout the differentiation of Th17 cells in vitro and during experimental autoimmune encephalomyelitis (EAE) development. Strikingly, PKM2 is not required for the metabolic reprogramming and proliferative capacity of Th17 cells. However, T cell-specific PKM2 deletion impairs Th17 cell differentiation and ameliorates symptoms of EAE by decreasing Th17 cell-mediated inflammation and demyelination. Mechanistically, PKM2 translocates into the nucleus and interacts with STAT3, enhancing its activation and thereby increasing Th17 cell differentiation. Thus, PKM2 acts as a critical nonmetabolic regulator that fine-tunes Th17 cell differentiation and function in autoimmune-mediated inflammation.
Collapse
Affiliation(s)
- Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Douglas Silva Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Flavio Protasio Veras
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Miriam M Fonseca
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana E Toller-Kawahisa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcos Henrique Rosa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gabriel Azevedo Públio
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Timna Varela Martins
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando S Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
202
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
203
|
Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett 2021; 500:75-86. [PMID: 33347908 DOI: 10.1016/j.canlet.2020.12.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment is of critical importance in cancer development and progression and includes the surrounding stromal and immune cells, extracellular matrix, and the milieu of metabolites and signalling molecules in the intercellular space. To support sustained mitotic activity cancer cells must reconfigure their metabolic phenotype. Lactate is the major by-product of such metabolic alterations and consequently, accumulates in the tumour. Lactate actively contributes to immune evasion, a hallmark of cancer, by directly inhibiting immune cell cytotoxicity and proliferation. Furthermore, lactate can recruit and induce immunosuppressive cell types, such as regulatory T cells, tumour-associated macrophages, and myeloid-derived suppressor cells which further suppress anti-tumour immune responses. Given its roles in oncogenesis, measuring intratumoural and systemic lactate levels has shown promise as a both predictive and prognostic biomarker in several cancer types. The efficacies of many anti-cancer therapies are limited by an immunosuppressive TME in which lactate is a major contributor, therefore, targeting lactate metabolism is a priority. Developing inhibitors of key proteins in lactate metabolism such as GLUT1, hexokinase, LDH, MCT and HIF have shown promise in preclinical studies, however there is a corresponding lack of success in human trials so far. This may be explained by a weakness of preclinical models that fail to reproduce the complexities of metabolic interactions in natura. The future of these therapies may be as an adjunct to more conventional treatments.
Collapse
Affiliation(s)
- Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Claire L Donohoe
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland.
| |
Collapse
|
204
|
Anderson S, Grist JT, Lewis A, Tyler DJ. Hyperpolarized 13 C magnetic resonance imaging for noninvasive assessment of tissue inflammation. NMR IN BIOMEDICINE 2021; 34:e4460. [PMID: 33291188 PMCID: PMC7900961 DOI: 10.1002/nbm.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Inflammation is a central mechanism underlying numerous diseases and incorporates multiple known and potential future therapeutic targets. However, progress in developing novel immunomodulatory therapies has been slowed by a need for improvement in noninvasive biomarkers to accurately monitor the initiation, development and resolution of immune responses as well as their response to therapies. Hyperpolarized magnetic resonance imaging (MRI) is an emerging molecular imaging technique with the potential to assess immune cell responses by exploiting characteristic metabolic reprogramming in activated immune cells to support their function. Using specific metabolic tracers, hyperpolarized MRI can be used to produce detailed images of tissues producing lactate, a key metabolic signature in activated immune cells. This method has the potential to further our understanding of inflammatory processes across different diseases in human subjects as well as in preclinical models. This review discusses the application of hyperpolarized MRI to the imaging of inflammation, as well as the progress made towards the clinical translation of this emerging technique.
Collapse
Affiliation(s)
- Stephanie Anderson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - James T. Grist
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Radiology, The Churchill HospitalOxford University Hospitals TrustHeadingtonUK
| | - Andrew Lewis
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
205
|
Ying ZH, Li HM, Yu WY, Yu CH. Iridin Prevented Against Lipopolysaccharide-Induced Inflammatory Responses of Macrophages via Inactivation of PKM2-Mediated Glycolytic Pathways. J Inflamm Res 2021; 14:341-354. [PMID: 33574693 PMCID: PMC7872898 DOI: 10.2147/jir.s292244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose Abnormal glycolysis of immune cells contributed to the development of inflammatory response. Inhibition of this Warburg phenotype could be a promising strategy for preventing various inflammatory diseases. Iridin (IRD) is a natural isoflavone, and exerts anticancer, antioxidant, and anti-inflammatory effects. However, the underlying mechanism of IRD on acute inflammation remains unknown. In this study, the protective effects of IRD against lipopolysaccharide (LPS)-induced inflammation were investigated in murine macrophage RAW264.7 cells and in mice. Methods The inhibition of IRD on NO production in culture medium was detected by Griess assay while the levels of TNF-α, IL-1β, and MCP-1 were detected by ELISA assay. The effects of IRD on OCR and ECAR levels in LPS-treated macrophages were monitored by using Seahorse Analyzer. The apoptosis rate as well as the release of ROS and NO of RAW264.7 cells were analyzed by flow cytometric assay. The protective effects of IRD were investigated on LPS-induced inflammation in mice. The expressions of PKM2 and its downstream (p-JAK1, p-STAT1, p-STAT3, p-p65, iNOS, and COX2) in cells and in lung tissues were detected by Western blotting analysis. Results IRD treatment at the concentrations of 12.5-50 μM significantly inhibited the productions of TNF-α, IL-1β, MCP-1, and ROS, and suppressed the levels of glucose uptake and lactic acid in LPS-treated RAW264.7 cells. Oral administration with IRD (20-80 mg/kg) inhibited LPS-induced acute lung injury as well as inflammatory cytokine production in mice. Moreover, IRD targeted pyruvate kinase isozyme type M2 (PKM2) and suppressed its downstream p-JAK1, p-STAT1, p-STAT3, p-p65, iNOS, and COX2, which could be abolished by PKM2 agonist DASA-58 and antioxidant N-acetyl-L-cysteine, but partly be reversed by NF-κB activator CUT129 and JAK1 activator RO8191. Conclusion IRD alleviated LPS-induced inflammation through suppressing PKM2-mediated pathways, and could be a potential candidate for the prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Zhen-Hua Ying
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310006, People's Republic of China
| | - Hui-Min Li
- Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310006, People's Republic of China
| | - Wen-Ying Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, People's Republic of China
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, People's Republic of China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310018, People's Republic of China.,Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, People's Republic of China
| |
Collapse
|
206
|
Wei (魏彤) T, Gao (高晶) J, Huang (黄程淋) C, Song (宋蓓) B, Sun (孙孟炜) M, Shen (沈伟利) W. SIRT3 (Sirtuin-3) Prevents Ang II (Angiotensin II)-Induced Macrophage Metabolic Switch Improving Perivascular Adipose Tissue Function. Arterioscler Thromb Vasc Biol 2021; 41:714-730. [PMID: 33327751 DOI: 10.1161/atvbaha.120.315337] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infiltrated macrophages actively promote perivascular adipose tissue remodeling and represent a dominant population in the perivascular adipose tissue microenvironment of hypertensive mice. However, the role of macrophages in initiating metabolic inflammation remains uncertain. SIRT3 (sirtuin-3), a NAD-dependent deacetylase, is sensitive to metabolic status and mediates adaptation responses. In this study, we investigated the role of SIRT3-mediated metabolic shift in regulating NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome activation. Approach and Results: Here, we report that Ang II (angiotensin II) accelerates perivascular adipose tissue inflammation and fibrosis, accompanied by NLRP3 inflammasome activation and IL (interleukin)-1β secretion in myeloid SIRT3 knockout (SIRT3-/-) mice. This effect is associated with adipose tissue mitochondrial dysfunction. In vitro studies indicate that the deletion of SIRT3 in bone marrow-derived macrophages induces IL-1β production by shifting the metabolic phenotype from oxidative phosphorylation to glycolysis. Mechanistically, SIRT3 deacetylates and activates PDHA1 (pyruvate dehydrogenase E1 alpha) at lysine 83, and the loss of SIRT3 leads to PDH activity decrease and lactate accumulation. Knocking down LDHA (lactate dehydrogenase A) or using carnosine, a buffer against lactic acid, attenuates IL-1β secretion. Furthermore, the blockade of IL-1β from macrophages into brown adipocytes restores thermogenic markers and mitochondrial oxygen consumption. Moreover, NLRP3 knockout (NLRP3-/-) mice exhibited reduced IL-1β production while rescuing the mitochondrial function of brown adipocytes and alleviating perivascular adipose tissue fibrosis. CONCLUSIONS SIRT3 represents a potential therapeutic target to attenuate NLRP3-related inflammation. Pharmacological targeting of glycolytic metabolism may represent an effective therapeutic approach.
Collapse
Affiliation(s)
- Tong Wei (魏彤)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Jing Gao (高晶)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Chenglin Huang (黄程淋)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Bei Song (宋蓓)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Mengwei Sun (孙孟炜)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Weili Shen (沈伟利)
- Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports
Science, China (M.S.)
| |
Collapse
|
207
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
208
|
Behl T, Sharma E, Sehgal A, Kaur I, Kumar A, Arora R, Pal G, Kakkar M, Kumar R, Bungau S. Expatiating the molecular approaches of HMGB1 in diabetes mellitus: Highlighting signalling pathways via RAGE and TLRs. Mol Biol Rep 2021; 48:1869-1881. [PMID: 33479829 DOI: 10.1007/s11033-020-06130-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) has become one of the major healthcare challenges worldwide in the recent times and inflammation being one of its key pathogenic process/mechanism affect several body parts including the peripheral and central nervous system. High-mobility group box 1 (HMGB1) is one of the major non-histone proteins that plays a key role in triggering the inflammatory response. Upon its release into the extracellular milieu, HMGB1 acts as an "alarmin" for the immune system to initiate tissue repair as a component of the host defense system. Furthermore, HMGB1 along with its downstream receptors like Toll-like receptors (TLRs) and receptors for advanced glycation end products (RAGE) serve as the suitable target for DM. The forthcoming research in the field of diabetes would potentially focus on the development of alternative approaches to target the centre of inflammation that is primarily mediated by HMGB1 to improve diabetic-related complications. This review covers the therapeutic actions of HMGB1 protein, which acts by activating the RAGE and TLR molecules to constitute a functional tripod system, in turn activating NF-κB pathway that contributes to the production of mediators for pro-inflammatory cytokines associated with DM. The interaction between TLR2 and TLR4 with ligands present in the host and the activation of RAGE stimulates various immune and metabolic responses that contribute to diabetes. This review emphasizes to elucidate the role of HMGB1 in the initiation and progression of DM and control over the inflammatory tripod as a promising therapeutic approach in the management of DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Eshita Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Giridhari Pal
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Munish Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravinder Kumar
- Cardiovascular Research Institute, Icahn School of Medicine, New York, USA
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
209
|
Yi Z, Wu Y, Zhang W, Wang T, Gong J, Cheng Y, Miao C. Activator-Mediated Pyruvate Kinase M2 Activation Contributes to Endotoxin Tolerance by Promoting Mitochondrial Biogenesis. Front Immunol 2021; 11:595316. [PMID: 33542713 PMCID: PMC7851049 DOI: 10.3389/fimmu.2020.595316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is a key glycolysis enzyme, and its effect on macrophages has not been entirely elucidated. Here, we identified that the PKM2 small-molecule agonist TEPP-46 mediated PKM2 activation by inducing the formation of PKM2 tetramer and promoted macrophage endotoxin tolerance. Lipopolysaccharide (LPS)-tolerant mice had higher expression of the PKM2 tetramer, which was associated with a reduced in vivo immune response to LPS. Pretreatment of macrophages with TEPP-46 resulted in tolerance to LPS stimulation, as demonstrated by a significant reduction in the production of TNF-α and IL-6. We found that TEPP-46 induced mitochondrial biogenesis in macrophages. Inhibition of mitochondrial biogenesis by mtTFA knockdown effectively inhibited TEPP-46-mediated macrophage tolerance to endotoxins. We discovered that TEPP-46 promoted the expression of PGC-1α and that PGC-1α was the key regulator of mitochondrial biogenesis in macrophages induced by TEPP-46. PGC-1α was negatively regulated by the PI3K/Akt signaling pathway. Knockdown of PKM2 or PGC-1α uniformly inhibited TEPP-46-mediated endotoxin tolerance by inhibiting mitochondrial biogenesis. In addition, TEPP-46 protected mice from lethal endotoxemia and sepsis. Collectively, these findings reveal novel mechanisms for the metabolic control of inflammation and for the induction of endotoxin tolerance by promoting mitochondrial biogenesis. Targeting PKM2 appears to be a new therapeutic option for the treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
210
|
Discovery of Functional Alternatively Spliced PKM Transcripts in Human Cancers. Cancers (Basel) 2021; 13:cancers13020348. [PMID: 33478099 PMCID: PMC7835739 DOI: 10.3390/cancers13020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pyruvate kinase muscle type (PKM) is a key enzyme in glycolysis and is a mediator of the Warburg effect in tumors. The association of PKM with survival of cancer patients is controversial. In this study, we investigated the associations of the alternatively spliced transcripts of PKM with cancer patients’ survival outcomes and explained the conflicts in previous studies. We discovered three poorly studied alternatively spliced PKM transcripts that exhibited opposite prognostic indications in different human cancers based on integrative systems analysis. We also detected their protein products and explored their potential biological functions based on in-vitro experiments. Our analysis demonstrated that alternatively spliced transcripts of not only PKM but also other genes should be considered in cancer studies, since it may enable the discovery and targeting of the right protein product for development of the efficient treatment strategies. Abstract Pyruvate kinase muscle type (PKM) is a key enzyme in glycolysis and plays an important oncological role in cancer. However, the association of PKM expression and the survival outcome of patients with different cancers is controversial. We employed systems biology methods to reveal prognostic value and potential biological functions of PKM transcripts in different human cancers. Protein products of transcripts were shown and detected by western blot and mass spectrometry analysis. We focused on different transcripts of PKM and investigated the associations between their mRNA expression and the clinical survival of the patients in 25 different cancers. We find that the transcripts encoding PKM2 and three previously unstudied transcripts, namely ENST00000389093, ENST00000568883, and ENST00000561609, exhibited opposite prognostic indications in different cancers. Moreover, we validated the prognostic effect of these transcripts in an independent kidney cancer cohort. Finally, we revealed that ENST00000389093 and ENST00000568883 possess pyruvate kinase enzymatic activity and may have functional roles in metabolism, cell invasion, and hypoxia response in cancer cells. Our study provided a potential explanation to the controversial prognostic indication of PKM, and could invoke future studies focusing on revealing the biological and oncological roles of these alternative spliced variants of PKM.
Collapse
|
211
|
Sepsis and Autoimmune Disease: Pathology, Systems Medicine, and Artificial Intelligence. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
212
|
Zhang B, Shen J, Zhong Z, Zhang L. PKM2 Aggravates Cerebral Ischemia Reperfusion-Induced Neuroinflammation via TLR4/MyD88/TRAF6 Signaling Pathway. Neuroimmunomodulation 2021; 28:29-37. [PMID: 33744886 DOI: 10.1159/000509710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Cerebral ischemia-reperfusion (I/R) injury is the leading cause of ischemic stroke. Pyruvate Kinase isozymes M2 (PKM2), as a critical glycolytic enzyme during glycolysis, is involved in neuronal apoptosis in rats with hypoxic-ischemic encephalopathy. This study focused on functional investigation and potential molecular mechanism toward PKM2 in cerebral I/R injury. METHODS Cerebral I/R injury model was established by middle cerebral artery occlusion (MCAO) in vivo or oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. qRT-PCR and Western blot were used to detect the expression of PKM2 in I/R injury models. The effects of PKM2 on I/R injury were determined via triphenyl tetrazolium chloride staining and evaluation of neurological deficits. Cell Counting Kit-8 was employed to detect cell viability, and ELISA was conducted to detect pro-inflammatory cytokines. The underlying mechanism involved in regulation of PKM2 on I/R injury was investigated via ELISA and Western blot. RESULTS PKM2 was upregulated after cerebral I/R injury. Knockdown of PKM2 alleviated MCAO-induced infarction and neurological dysfunction. Moreover, PKM2 knockdown also alleviated OGD/R-induced neuronal cell injury and inflammatory response. Mechanistically, PKM2 knockdown-induced neuroprotection was accompanied by inhibition of high-mobility group box 1 (HMGB1), reflected by inactivation of TLR4/MyD88 (myeloid differentiation factor 88)/TRAF6 (TNF receptor-associated factor 6) signaling pathway. CONCLUSIONS Knockdown of PKM2 attenuated cerebral I/R injury through HMGB1-mediated TLR4/MyD88/TRAF6 expression change, providing a potential target for cerebral I/R injury treatment.
Collapse
Affiliation(s)
- Baocheng Zhang
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Shen
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China,
| | - Zhiyue Zhong
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Intensive Care Unit, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
213
|
Ren Q, Cheng L, Yi J, Ma L, Pan J, Gou SJ, Fu P. Toll-like Receptors as Potential Therapeutic Targets in Kidney Diseases. Curr Med Chem 2020; 27:5829-5854. [PMID: 31161985 DOI: 10.2174/0929867325666190603110907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Toll-like Receptors (TLRs) are members of pattern recognition receptors and serve a pivotal role in host immunity. TLRs response to pathogen-associated molecular patterns encoded by pathogens or damage-associated molecular patterns released by dying cells, initiating an inflammatory cascade, where both beneficial and detrimental effects can be exerted. Accumulated evidence has revealed that TLRs are closely associated with various kidney diseases but their roles are still not well understood. This review updated evidence on the roles of TLRs in the pathogenesis of kidney diseases including urinary tract infection, glomerulonephritis, acute kidney injury, transplant allograft dysfunction and chronic kidney diseases.
Collapse
Affiliation(s)
- Qian Ren
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lu Cheng
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Yi
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Pan
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shen-Ju Gou
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
214
|
Wang Q, Wang P, Qin Z, Yang X, Pan B, Nie F, Bi H. Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia. Redox Biol 2020; 38:101815. [PMID: 33278780 PMCID: PMC7718484 DOI: 10.1016/j.redox.2020.101815] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Keloids exhibit metabolic reprogramming including enhanced glycolysis and attenuated oxidative phosphorylation. Hypoxia induces a series of protective responses in mammalian cells. However, the metabolic phenotype of keloid fibroblasts under hypoxic conditions remains to be elucidated. The present study aimed to investigate glycolytic activity, mitochondrial function and morphology, and the HIF1α and PI3K/AKT signaling pathways in keloid fibroblasts (KFB) under hypoxic conditions. Our results showed that hypoxia promoted proliferation, migration invasion and collagen synthesis and inhibited apoptosis in KFB. The mRNA levels, protein expressions and enzyme activities of glycolytic enzymes in KFB were higher than those in normal skin fibroblasts (NFB) under normoxia. Moreover, hypoxia remarkedly upregulated glycolysis in KFB. Decreased activities of mitochondrial complexes and abnormal mitochondria were detected in KFB under normoxic conditions and the damage was aggravated by hypoxia. An intracellular metabolic profile assay suggested hypoxia increased glycolytic parameters except glycolytic reserve but inhibited the key parameters of mitochondrial function apart from H+ leak. Protein levels of HIF1α and phosphorylation levels of the PI3K/AKT signaling pathway were upregulated in the context of 3% oxygen. Enhanced total reactive oxygen species (ROS), mitochondrial ROS (mitoROS) and antioxidant activities of KFB were observed in response to hypoxia. Additionally, autophagy was induced by hypoxia. Our data collectively demonstrated potentiated glycolysis and attenuated mitochondrial function under hypoxia, indicating that altered glucose metabolism regulated by hypoxia could be a therapeutic target for keloids.
Collapse
Affiliation(s)
- Qifei Wang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Pu Wang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Zelian Qin
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China.
| | - Xin Yang
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Bailin Pan
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, China.
| |
Collapse
|
215
|
Guo S, Li Y, Wei B, Liu W, Li R, Cheng W, Zhang X, He X, Li X, Duan C. Tim-3 deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats. Aging (Albany NY) 2020; 12:21161-21185. [PMID: 33168786 PMCID: PMC7695377 DOI: 10.18632/aging.103796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague–Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.
Collapse
Affiliation(s)
- Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Boyang Wei
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenping Cheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
216
|
Poudel N, Zheng S, Schinderle CM, Sun N, Hu S, Okusa MD. Peritubular Capillary Oxygen Consumption in Sepsis-Induced AKI: Multi-Parametric Photoacoustic Microscopy. Nephron Clin Pract 2020; 144:621-625. [PMID: 33147592 DOI: 10.1159/000511167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Understanding and measuring parameters responsible for the pathogenesis of sepsis-induced AKI (SI-AKI) is critical in developing therapies. Blood flow to the kidney is heterogeneous, partly due to the existence of dynamic networks of capillaries in various regions, responding differentially to oxygen demand in cortex versus medulla. High energy demand regions, especially the outer medulla, are susceptible to hypoxia and subject to damage during SI-AKI. Proximal tubule epithelial cells in the cortex and the outer medulla can also undergo metabolic reprogramming during SI-AKI to maintain basal physiological status and to avoid potential damage. Current data on the assessment of renal hemodynamics and oxygen metabolism during sepsis is limited. Preclinical and clinical studies show changes in renal hemodynamics associated with SI-AKI, and in clinical settings, interventions to manage renal hemodynamics seem to help improve disease outcomes in some cases. Lack of proper tools to assess temporospatial changes in peritubular blood flow and tissue oxygen metabolism is a barrier to our ability to understand microcirculatory dynamics and oxygen consumption and their role in the pathogenesis of SI-AKI. Current tools to assess renal oxygenation are limited in their usability as these cannot perform continuous simultaneous measurement of renal hemodynamics and oxygen metabolism. Multi-parametric photo-acoustic microscopy (PAM) is a new tool that can measure real-time changes in microhemodynamics and oxygen metabolism. Use of multi-parametric PAM in combination with advanced intravital imaging techniques has the potential to understand the contribution of microhemodynamic and tissue oxygenation alterations to SI-AKI.
Collapse
Affiliation(s)
- Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shuqiu Zheng
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Colleen M Schinderle
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Naidi Sun
- Department of Biomedical Engineering, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
217
|
Bakalov V, Reyes-Uribe L, Deshpande R, Maloy AL, Shapiro SD, Angus DC, Chang CCH, Le Moyec L, Wendell SG, Kaynar AM. Dichloroacetate-induced metabolic reprogramming improves lifespan in a Drosophila model of surviving sepsis. PLoS One 2020; 15:e0241122. [PMID: 33151963 PMCID: PMC7643993 DOI: 10.1371/journal.pone.0241122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Sepsis is the leading cause of death in hospitalized patients and beyond the hospital stay and these long-term sequelae are due in part to unresolved inflammation. Metabolic shift from oxidative phosphorylation to aerobic glycolysis links metabolism to inflammation and such a shift is commonly observed in sepsis under normoxic conditions. By shifting the metabolic state from aerobic glycolysis to oxidative phosphorylation, we hypothesized it would reverse unresolved inflammation and subsequently improve outcome. We propose a shift from aerobic glycolysis to oxidative phosphorylation as a sepsis therapy by targeting the pathways involved in the conversion of pyruvate into acetyl-CoA via pyruvate dehydrogenase (PDH). Chemical manipulation of PDH using dichloroacetic acid (DCA) will promote oxidative phosphorylation over glycolysis and decrease inflammation. We tested our hypothesis in a Drosophila melanogaster model of surviving sepsis infected with Staphylococcus aureus. Drosophila were divided into 3 groups: unmanipulated, sham and sepsis survivors, all treated with linezolid; each group was either treated or not with DCA for one week following sepsis. We followed lifespan, measured gene expression of Toll, defensin, cecropin A, and drosomycin, and levels of lactate, pyruvate, acetyl-CoA as well as TCA metabolites. In our model, metabolic effects of sepsis are modified by DCA with normalized lactate, TCA metabolites, and was associated with improved lifespan of sepsis survivors, yet had no lifespan effects on unmanipulated and sham flies. While Drosomycin and cecropin A expression increased in sepsis survivors, DCA treatment decreased both and selectively increased defensin.
Collapse
Affiliation(s)
- Veli Bakalov
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Medicine Institute, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Laura Reyes-Uribe
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Rahul Deshpande
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Abigail L. Maloy
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Steven D. Shapiro
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Derek C. Angus
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Chung-Chou H. Chang
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Laurence Le Moyec
- Université d'Evry Val d'Essonne—Université Paris-Saclay, Evry, France
- Muséum National d'Histoire Naturelle, Unité MCAM, UMR7245 CNRS, Paris, France
| | - Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ata Murat Kaynar
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
218
|
Wei X, Jin XH, Meng XW, Hua J, Ji FH, Wang LN, Yang JP. Platelet-rich plasma improves chronic inflammatory pain by inhibiting PKM2-mediated aerobic glycolysis in astrocytes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1456. [PMID: 33313201 PMCID: PMC7723564 DOI: 10.21037/atm-20-6502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Astrocytes are highly glycolytic cells that play a crucial role in chronic pain. Recently it has been found that inflammation and metabolism are related to the inflammatory stimuli closely that cause cellular metabolic changes. Pyruvate kinase M2 (PKM2) is a critical metabolic kinase in aerobic glycolysis or the Warburg effect. Besides, it also plays a crucial role in cell proliferation and signal transduction, but its role in astrocytes is still unclear. Methods The chronic inflammatory pain model was set up by intraplantar injection of complete Freund’s adjuvant (CFA) in Sprague Dawley (SD) rats as well as the cell model was constructed by lipopolysaccharide-treated primary astrocytes. Von Frey filament stimulation was used to continuously observe the changes of pain behavior in rats after modeling. Then, immunofluorescence staining and Western blot tests were used to observe the expression levels of glial fibrillary acidic protein (GFAP), pyruvate kinase (PKM2), signal transducers and activators of transcription 3 (STAT3) and high mobility group box-1 protein (HMGB1). After that, specific kits measured lactate contents. Finally, we observed the platelet-rich plasma’s (PRP) effect on mechanical hyperalgesia in rats with inflammatory pain induced by CFA and its effect on related signal molecules. Results We found that in the CFA-induced inflammatory pain model, astrocytes were significantly activated, GFAP was increased, PKM2 was significantly up-regulated, and the glycolytic product lactate was increased. Also, intrathecal injection of PRP increased the pain threshold, inhibited the activation of astrocytes, and decreased the expression of PKM2 and aerobic glycolysis; in LPS-activated primary astrocytes as an in vitro model, we found PKM2 translocation activationSTAT3 signaling resulted in sustained activation of astrocyte marker GFAP, and the expression level and localization of p-STAT3 were correlated with PKM2. PRP could inhibit the activation of astrocytes, reduce the expression of PKM2 and the expression levels of glycolysis and GFAP, GLUT1, and p-STAT3 in astrocytes. Conclusions Our findings suggest PKM2 not only plays a glycolytic role in astrocytes, but also plays a crucial role in astrocyte-activated signaling pathways, and PRP attenuates CFA induced inflammatory pain by inhibiting aerobic glycolysis in astrocytes, providing a new therapeutic target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hong Jin
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Wen Meng
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Hua
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fu-Hai Ji
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Na Wang
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Yang
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
219
|
Zheng D, Jiang Y, Qu C, Yuan H, Hu K, He L, Chen P, Li J, Tu M, Lin L, Chen H, Lin Z, Lin W, Fan J, Cheng G, Hong J. Pyruvate Kinase M2 Tetramerization Protects against Hepatic Stellate Cell Activation and Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2267-2281. [PMID: 32805235 PMCID: PMC7786052 DOI: 10.1016/j.ajpath.2020.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is an increasing health problem worldwide, for which no effective antifibrosis drugs are available. Although the involvement of aerobic glycolysis in hepatic stellate cell (HSC) activation has been reported, the role of pyruvate kinase M2 (PKM2) in liver fibrogenesis still remains unknown. We examined PKM2 expression and location in liver tissues and primary hepatic cells. The in vitro and in vivo effects of a PKM2 antagonist (shikonin) and its allosteric agent (TEPP-46) on liver fibrosis were investigated in HSCs and liver fibrosis mouse model. Chromatin immunoprecipitation sequencing and immunoprecipitation were performed to identify the relevant molecular mechanisms. PKM2 expression was significantly up-regulated in both mouse and human fibrotic livers compared with normal livers, and mainly detected in activated, rather than quiescent, HSCs. PKM2 knockdown markedly inhibited the activation and proliferation of HSCs in vitro. Interestingly, the PKM2 dimer, rather than the tetramer, induced HSC activation. PKM2 tetramerization induced by TEPP-46 effectively inhibited HSC activation, reduced aerobic glycolysis, and decreased MYC and CCND1 expression via regulating histone H3K9 acetylation in activated HSCs. TEPP-46 and shikonin dramatically attenuated liver fibrosis in vivo. Our findings demonstrate a nonmetabolic role of PKM2 in liver fibrosis. PKM2 tetramerization or suppression could prevent HSC activation and protects against liver fibrosis.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuchuan Jiang
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chen Qu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Yuan
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lu He
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengxian Tu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zelong Lin
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Fan
- Departments of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Guohua Cheng
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
220
|
Palmieri EM, McGinity C, Wink DA, McVicar DW. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020; 10:metabo10110429. [PMID: 33114647 PMCID: PMC7693038 DOI: 10.3390/metabo10110429] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric Oxide (NO) is a soluble endogenous gas with various biological functions like signaling, and working as an effector molecule or metabolic regulator. In response to inflammatory signals, immune myeloid cells, like macrophages, increase production of cytokines and NO, which is important for pathogen killing. Under these proinflammatory circumstances, called “M1”, macrophages undergo a series of metabolic changes including rewiring of their tricarboxylic acid (TCA) cycle. Here, we review findings indicating that NO, through its interaction with heme and non-heme metal containing proteins, together with components of the electron transport chain, functions not only as a regulator of cell respiration, but also a modulator of intracellular cell metabolism. Moreover, diverse effects of NO and NO-derived reactive nitrogen species (RNS) involve precise interactions with different targets depending on concentration, temporal, and spatial restrictions. Although the role of NO in macrophage reprogramming has been in evidence for some time, current models have largely minimized its importance. It has, therefore, been hiding in plain sight. A review of the chemical properties of NO, past biochemical studies, and recent publications, necessitates that mechanisms of macrophage TCA reprogramming during stimulation must be re-imagined and re-interpreted as mechanistic results of NO exposure. The revised model of metabolic rewiring we describe here incorporates many early findings regarding NO biochemistry and brings NO out of hiding and to the forefront of macrophages immunometabolism.
Collapse
|
221
|
Zhou B, Liu J, Zeng L, Zhu S, Wang H, Billiar TR, Kroemer G, Klionsky DJ, Zeh HJ, Jiang J, Tang D, Kang R. Extracellular SQSTM1 mediates bacterial septic death in mice through insulin receptor signalling. Nat Microbiol 2020; 5:1576-1587. [PMID: 33077977 DOI: 10.1038/s41564-020-00795-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Sepsis is the most common cause of death for patients in intensive care worldwide due to a dysregulated host response to infection. Here, we investigate the role of sequestosome-1 (SQSTM1/p62), an autophagy receptor that functions as a regulator of innate immunity, in sepsis. We find that lipopolysaccharide elicits gasdermin D-dependent pyroptosis to enable passive SQSTM1 release from macrophages and monocytes, whereas transmembrane protein 173-dependent TANK-binding kinase 1 activation results in the phosphorylation of SQSTM1 at Ser403 and subsequent SQSTM1 secretion from macrophages and monocytes. Moreover, extracellular SQSTM1 binds to insulin receptor, which in turn activates a nuclear factor kappa B-dependent metabolic pathway, leading to aerobic glycolysis and polarization of macrophages. Intraperitoneal injection of anti-SQSTM1-neutralizing monoclonal antibodies or conditional depletion of Insr in myeloid cells using the Cre-loxP system protects mice from lethal sepsis (caecal ligation and puncture or infection by Escherichia coli or Streptococcus pneumoniae) and endotoxaemia. We also report that circulating SQSTM1 and the messenger RNA expression levels of SQSTM1 and INSR in peripheral blood mononuclear cells are related to the severity of sepsis in 40 patients. Thus, extracellular SQSTM1 has a pathological role in sepsis and could be targeted to develop therapies for sepsis.
Collapse
Affiliation(s)
- Borong Zhou
- The Third Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Jiao Liu
- The Third Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China.
| | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
222
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP, Xiao XZ. Shikonin Ameliorates LPS-Induced Cardiac Dysfunction by SIRT1-Dependent Inhibition of NLRP3 Inflammasome. Front Physiol 2020; 11:570441. [PMID: 33178042 PMCID: PMC7596688 DOI: 10.3389/fphys.2020.570441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Shikonin (SHI) is an anti-inflammatory agent extracted from natural herbs. It is still unknown whether SHI ameliorates lipopolysaccharide (LPS)-induced cardiac dysfunction. This study aims to explore the protective effects of SHI on LPS-induced myocardial injury and its mechanism. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of SHI. In the present study, we found that SHI treatment improved the survival rate and cardiac function and remarkably ameliorated the release of inflammatory cytokines and macrophage infiltration in heart tissue of LPS-treated mice. SHI also reduced lactate dehydrogenase (LDH) and cardiac troponin (cTn) release, cell inflammation, and apoptosis in LPS plus adenosine triphosphate (ATP)-treated H9c2 cells. In addition, SHI significantly upregulated silent information regulator 1 (SIRT1) expression and suppressed the upregulation of NOD-like receptor protein 3 (NLRP3), cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Meanwhile, we got the same results in LPS plus ATP-treated H9c2 cells in vitro. Further, SIRT1 inhibitor or siRNA partially blocked SHI-mediated upregulation of SIRT1 expression and downregulation of NLRP3, cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Therefore, we conclude that SHI ameliorates LPS-induced cardiac dysfunction by inhibiting SIRT1-dependent activation of NLRP3 inflammasomes and might be a promising therapeutic strategy for the treatment of LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhong-Biao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Yi Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xiang-Ping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xian-Zhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
223
|
Wang C, Xiao Y, Lao M, Wang J, Xu S, Li R, Xu X, Kuang Y, Shi M, Zou Y, Wang Q, Liang L, Zheng SG, Xu H. Increased SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes. JCI Insight 2020; 5:135935. [PMID: 32938830 PMCID: PMC7526534 DOI: 10.1172/jci.insight.135935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to joint inflammation and destruction in rheumatoid arthritis (RA). Increased glycolysis in RA FLSs contributes to persistent joint damage. SUMOylation, a posttranslational modification of proteins, plays an important role in initiation and development of many diseases. However, the role of small ubiquitin-like modifier–activating (SUMO-activating) enzyme 1 (SAE1)/ubiquitin like modifier activating enzyme 2 (UBA2) in regulating the pathogenic FLS behaviors is unknown. Here, we found an increased expression of SAE1 and UBA2 in FLSs and synovial tissues from patients with RA. SAE1 or UBA2 knockdown by siRNA and treatment with GA, an inhibitor of SAE1/UBA2-mediated SUMOylation, resulted in reduced glycolysis, aggressive phenotype, and inflammation. SAE1/UBA2-mediated SUMOylation of pyruvate kinase M2 (PKM2) promoted its phosphorylation and nuclear translocation and decreased PK activity. Moreover, inhibition of PKM2 phosphorylation increased PK activity and suppressed glycolysis, aggressive phenotype, and inflammation. We further demonstrated that STAT5A mediated SUMOylated PKM2-induced glycolysis and biological behaviors. Interestingly, GA treatment attenuated the severity of arthritis in mice with collagen-induced arthritis and human TNF-α transgenic mice. These findings suggest that an increase in synovial SAE1/UBA2 may contribute to synovial glycolysis and joint inflammation in RA and that targeting SAE1/UBA2 may have therapeutic potential in patients with RA. SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes through SUMOylation of pyruvate kinase M2.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Rheumatology and Immunology and
| | - Youjun Xiao
- Department of Rheumatology and Immunology and
| | - Minxi Lao
- Department of Rheumatology and Immunology and
| | | | - Siqi Xu
- Department of Rheumatology and Immunology and
| | - Ruiru Li
- Department of Rheumatology and Immunology and
| | - Xuanxian Xu
- Department of Anesthesia, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology and
| | - Maohua Shi
- Department of Rheumatology and Immunology and
| | - Yaoyao Zou
- Department of Rheumatology and Immunology and
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University People's Hospital, Shenzhen, China
| | | | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine and The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hanshi Xu
- Department of Rheumatology and Immunology and
| |
Collapse
|
224
|
Lu S, Tian Y, Luo Y, Xu X, Ge W, Sun G, Sun X. Iminostilbene, a novel small-molecule modulator of PKM2, suppresses macrophage inflammation in myocardial ischemia-reperfusion injury. J Adv Res 2020; 29:83-94. [PMID: 33842007 PMCID: PMC8020153 DOI: 10.1016/j.jare.2020.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Inflammation is a key factor in myocardial ischemia/reperfusion (MI/R) injury. Targeting leucocyte-mediated inflammation is an important strategy for MI/R therapy. Iminostilbene (ISB), a simple dibenzoazepine small molecule compound, has a strong anti-neurodegenerative effect. However, no study has shown the cardioprotective effect of ISB. Objectives This study aimed to investigate the role of ISB against MI/R injury and identify its molecular target. Methods To verify the cardiac protection of ISB in vivo and in vitro, we performed rat MI/R surgery and subjected inflammatory modeling of macrophages. In terms of molecular mechanisms, we designed and synthesized a small molecular probe of ISB and employed it on the click chemistry-activity-based protein profiling technique to fish for ISB targets in macrophages. To identify the target, we applied the competitive inhibition assay, surface-plasmon resonance (SPR), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. Results In vivo, ISB showed robust anti-myocardial injury activity by improving cardiac function, reducing myocardial infarction, and inhibiting macrophage-mediated inflammation. In vitro, ISB strongly inhibited the transcription and the expression levels of inflammatory cytokines in macrophages. The pyruvate kinase isozyme type M2 (PKM2) was identified as the potential target of ISB through proteomic analysis and the competitive assay was performed for specific binding verification. Further thermodynamic and kinetic experiments showed that ISB was bound to PKM2 in a dose-dependent manner. Moreover, in terms of the biological function of ISB on PKM2, ISB reduced the expression of PKM2, thereby reducing the expression of HIF1α and the phosphorylation of STAT3. Conclusion This study for the first time demonstrated that ISB targeted PKM2 to reduce macrophage inflammation thereby significantly alleviating MI/R injury.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Wenxiu Ge
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China
- Key Laboratory of efficacy evaluation of Chinese Medicine against glyeolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China
| |
Collapse
|
225
|
Souza ALTD, Batalhão ME, Cárnio EC. Study of thermo-regulation as a worsening marker of experimental sepsis in an animal model. Rev Lat Am Enfermagem 2020; 28:e3290. [PMID: 32901764 PMCID: PMC7478883 DOI: 10.1590/1518-8345.3364.3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/12/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: to analyze variations in body temperature and in plasma nitrate and lactate concentrations in rats submitted to the experimental sepsis model. Method: a total of 40 rats divided equally into five groups. The induction of endotoxemia was performed with intravenous administration of lipopolysaccharide, 0.5 mg/Kg, 1.5 mg/Kg, 3.0 mg/Kg, and 10 mg/Kg, respectively. The control group received 0.5 mL of saline solution. The experiment lasted six hours, with evaluations performed at 0 (baseline data), 2nd, 4th, and 6thhours. Results: The animals that received doses up to 3.0 mg/kg showed a significant increase in body temperature compared to the group with 10 mg/kg, which showed a decrease in these values. The increase in plasma nitrate and lactate concentrations in the groups with lipopolysaccharide was significantly higher than in the group that received the saline solution and was correlated with the increase in body temperature. Conclusion: the variations in body temperature observed in this study showed the dose-dependent effect of lipopolysaccharide and were correlated with the increase in the concentrations of nitrate and plasma lactate biomarkers. The implications of this study are the importance of monitoring body temperature, together with the assessment of these pathophysiological markers, which suggest worsening in the prognosis of sepsis.
Collapse
Affiliation(s)
- André Luiz Thomaz de Souza
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Centre at the Nursing Research Development, Ribeirão Preto, SP, Brazil.,Faculdades Integradas do Vale do Ribeira, Faculdade de Enfermagem, Registro, SP, Brazil
| | - Marcelo Eduardo Batalhão
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Centre at the Nursing Research Development, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, PAHO/WHO Collaborating Centre at the Nursing Research Development, Ribeirão Preto, SP, Brazil
| |
Collapse
|
226
|
Deutschman CS, Hellman J, Roca RF, De Backer D, Coopersmith CM. The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Med Exp 2020; 8:31. [PMID: 32676795 PMCID: PMC7365694 DOI: 10.1186/s40635-020-00312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data sources Original paper, search of the literature. Study selection This study is selected by several members of the original task force with specific expertise in basic/translational science. Data extraction and data synthesis are not available. Conclusions In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Pediatrics, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Ricard Ferrer Roca
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Daniel De Backer
- Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
227
|
Lu J, Zhang L, Cheng L, He S, Zhang Y, Yan J, Zhou J. Xijiao Dihuang decoction improves prognosis of sepsis via inhibition of aerobic glycolysis. Biomed Pharmacother 2020; 129:110501. [PMID: 32768976 DOI: 10.1016/j.biopha.2020.110501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Aerobic glycolysis is a key factor to aggravate progression of sepsis. Xijiao Dihuang decoction (XJDHT) has been proven to have favorable therapeutic effects on sepsis. Our previous study has shown that XJDHT is capable of improving survival from sepsis. In this study we investigated the effects of XJDHT on aerobic glycolysis. The rats were randomly divided into five groups, which included control group, model group, TAK-242 group, XJDHT (25 g/kg) group and XJDHT (12.5 g/kg) group. The contents of cytokines increased in the model group compared with control group, while XJDHT reduced expressions of cytokines. Furthermore, the expressions of TLR4, HIF-1α and PKM2 were reduced significantly in the XJDHT group compared with the model group. There were five groups, including control group, LPS group, siTLR4 group, XJDHT (4 mg/mL) group and XJDHT (2 mg/mL) group in vitro experiments. The IL-1β and IL-6 were elevated significantly after LPS stimulation in the model group, while XJDHT reduced the expression of cytokines. Protein expressions of TLR4, HIF-1α and PKM2 were increased significantly by stimulation of LPS, while XJDHT down-regulated the expressions of key molecules in the signaling pathway. To conclude, our study implies that XJDHT is capable of improving the prognosis of sepsis by inhibiting aerobic glycolysis via down-regulation of TLR4/HIF-1α/PKM2 signaling pathway.
Collapse
Affiliation(s)
- Jun Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Luyao Zhang
- Department of Pathology, Nanjing University of Chinese Medicine, Nanjing 210013, China
| | - Lu Cheng
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Shuyin He
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yan Zhang
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210013, China.
| | - Jiang Zhou
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
228
|
Geng Y, Munirathinam G, Palani S, Ross JE, Wang B, Chen A, Zheng G. HMGB1-Neutralizing IgM Antibody Is a Normal Component of Blood Plasma. THE JOURNAL OF IMMUNOLOGY 2020; 205:407-413. [PMID: 32522835 DOI: 10.4049/jimmunol.2000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023]
Abstract
Extracellular high-mobility group box 1 (HMGB1) is a prototypic damage-associated molecular pattern. Although a homeostatic level of extracellular HMGB1 may be beneficial for immune defense, tissue repair, and tissue regeneration, excessive HMGB1 is linked to inflammatory diseases. This prompts an intriguing question: how does a healthy body control the level of extracellular HMGB1? In this study, in the plasma of both healthy humans and healthy mice, we have identified an anti-HMGB1 IgM autoantibody that neutralizes extracellular HMGB1 via binding specifically to a 100% conserved epitope, namely HMW4 (HMGB198-112). In mice, this anti-HMW4 IgM is produced by peritoneal B-1 cells, and concomitant triggering of their BCR and TLR4 by extracellular HMGB1 stimulates the production of anti-HMW4 IgM. The ability of extracellular HMGB1 to induce its own neutralizing Ab suggests a feedback loop limiting the level of this damage-associated molecular pattern in a healthy body.
Collapse
Affiliation(s)
- Yajun Geng
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107
| | - Sunil Palani
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107
| | - Joseph E Ross
- Department of Family and Community Medicine, University of Illinois College of Medicine Rockford, Rockford, IL 61107; and
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and the Ministry of Education, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aoshuang Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107;
| | - Guoxing Zheng
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107;
| |
Collapse
|
229
|
Cytokine-like Roles for Metabolites in Immunity. Mol Cell 2020; 78:814-823. [DOI: 10.1016/j.molcel.2020.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
|
230
|
Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y, He Z. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. J Transl Med 2020; 100:801-811. [PMID: 32051533 DOI: 10.1038/s41374-020-0404-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming plays a critical role in many diseases. A recent study revealed that aerobic glycolysis in lung tissue is closely related to pulmonary fibrosis, and also occurs during lipopolysaccharide (LPS)-induced sepsis. However, whether LPS induces aerobic glycolysis in lung fibroblasts remains unknown. The present study demonstrated that LPS promotes collagen synthesis in the lung fibroblasts through aerobic glycolysis via the activation of the PI3K-Akt-mTOR/PFKFB3 pathway. Challenging the human lung fibroblast MRC-5 cell line with LPS activated the PI3K-Akt-mTOR pathway, significantly upregulated the expression of 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), enhanced the aerobic glycolysis, and promoted collagen synthesis. These phenomena could be reversed by the PI3K-Akt inhibitor LY294002, mTOR inhibitor rapamycin, PFKFB3 inhibitor 3PO, or PFKFB3 silencing by specific shRNA, or aerobic glycolysis inhibitor 2-DG. In addition, PFKFB3 expression and aerobic glycolysis were also detected in the mouse model of LPS-induced pulmonary fibrosis, which could be reversed by the intraperitoneal injection of PFKFB3 inhibitor 3PO. Taken together, this study revealed that in LPS-induced pulmonary fibrosis, LPS might mediate lung fibroblast aerobic glycolysis through the activation of the PI3K-Akt-mTOR/PFKFB3 pathway.
Collapse
Affiliation(s)
- Xiaoting Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hanxi Wan
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yue Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
231
|
Le S, Zhang H, Huang X, Chen S, Wu J, Chen S, Ding X, Chen S, Zhao J, Xu H, Cui J, Zou Y, Yu J, Jiang L, Wu J, Ye P, Xia J. PKM2 Activator TEPP-46 Attenuates Thoracic Aortic Aneurysm and Dissection by Inhibiting NLRP3 Inflammasome-Mediated IL-1β Secretion. J Cardiovasc Pharmacol Ther 2020; 25:364-376. [PMID: 32323562 DOI: 10.1177/1074248420919966] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The development of thoracic aortic aneurysm and dissection (TAAD) is mediated by inflammasome activation, which exacerbates the secretion of pro-inflammatory cytokines, chemokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). The glycolytic enzyme pyruvate kinase M2 (PKM2) has shown a protective role against various disorders with an inflammatory basis, such as sepsis, tumorigenesis, and diabetic nephropathy. However, its potential role in TAAD has not been investigated so far. APPROACH AND RESULTS We analyzed aortic tissues from TAAD patients and the β-aminopropionitrile fumarate (BAPN)-induced mouse model of TAAD and observed elevated levels of PKM2 in the aortic lesions of both. Treatment with the PKM2 activator TEPP-46 markedly attenuated the progression of TAAD in the mouse model as demonstrated by decreased morbidity and luminal diameter of the aorta. In addition, the thoracic aortas of the BAPN-induced mice showed reduced monocytes and macrophages infiltration and lower levels of IL-1β, MMPs, and ROS when treated with TEPP-46. Furthermore, TEPP-46 treatment also suppressed the activation of the NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome by downregulating p-STAT3 and HIF1-α. CONCLUSION Pyruvate kinase M2 plays a protective role in TAAD development, and its activation is a promising therapeutic strategy against the progression of TAAD.
Collapse
Affiliation(s)
- Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The authers Sheng Le and Hao Zhang contributed equally to this article as first authors
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The authers Sheng Le and Hao Zhang contributed equally to this article as first authors
| | - Xiaofan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wu
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiangChao Ding
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
232
|
Vasanthakumar N, Bhakta-Guha D, Guha G, Arunachalam J. Friend turned foe: A curious case of disrupted endosymbiotic homeostasis promoting the Warburg effect in sepsis. Med Hypotheses 2020; 141:109702. [PMID: 32289643 DOI: 10.1016/j.mehy.2020.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Sepsis is a grievous health concern with limited understanding of its precise etiology. Although studies on sepsis have implicated the Warburg effect (mitigation of mitochondrial oxidative phosphorylation, as evident from aerobic glycolysis), we propose that an evolutionary perspective might further unravel its etiology. The endosymbiotic theory suggests that evolution of a eukaryotic cell is a consequence of the fruitful association between an archaea (Asgard) and an alphaproteobacterium (Rickettsia). We hypothesize that, during pathological conditions like sepsis, such endosymbiotic homeostasis between the two systems is perturbed. We underscore the fact (supported by in silico homology analyses) that during sepsis, the Asgard component of a cell is promoted to trigger aerobic glycolysis as well as the innate immune response (spearheaded by the TLR pathway), while suppressing the Rickettsia counterpart, thereby promoting the Warburg effect. It might be this discord between the two endosymbiotic partners (Asgard and Rickettsia-derived cellular components) that promotes sepsis.
Collapse
Affiliation(s)
- Natesan Vasanthakumar
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Jothi Arunachalam
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu 613401, India
| |
Collapse
|
233
|
Troha K, Ayres JS. Metabolic Adaptations to Infections at the Organismal Level. Trends Immunol 2020; 41:113-125. [PMID: 31959515 DOI: 10.1016/j.it.2019.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Metabolic processes occurring during host-microbiota-pathogen interactions can favorably or negatively influence host survival during infection. Defining the metabolic needs of the three players, the mechanisms through which they acquire nutrients, and whether each participant cooperates or competes with each other to meet their own metabolic demands during infection has the potential to reveal new approaches to treat disease. Here, we review topical findings in organismal metabolism and infection and highlight four emerging lines of investigation: how host-microbiota metabolic partnerships protect against infection; competition for glucose between host and pathogen; significance of infection-induced anorexia; and redefinition of the role of iron during infection. We also discuss how these discoveries shape our understanding of infection biology and their likely therapeutic value.
Collapse
Affiliation(s)
- Katia Troha
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
234
|
Liu Y, Liang S, Ding R, Hou Y, Deng F, Ma X, Song T, Yan D. BCG-induced trained immunity in macrophage: reprograming of glucose metabolism. Int Rev Immunol 2020; 39:83-96. [DOI: 10.1080/08830185.2020.1712379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuntong Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Shu Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Ru Ding
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Feier Deng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Xiaohui Ma
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiantian Song
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
235
|
Smokelin IS, Mizzoni C, Erndt-Marino J, Kaplan DL, Georgakoudi I. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-14. [PMID: 31953928 PMCID: PMC7008597 DOI: 10.1117/1.jbo.25.1.014512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/23/2019] [Indexed: 06/01/2023]
Abstract
Temporal changes in macrophage metabolism are likely crucial to their role in inflammatory diseases. Label-free two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy are well suited to track dynamic changes in macrophage metabolism. We performed TPEF imaging of human macrophages following either pro- or an anti-inflammatory stimulation. Two endogenous fluorophores, NAD(P)H and FAD, coenzymes involved in key metabolic pathways, provided contrast. We used the corresponding intensity images to determine the optical redox ratio of FAD to FAD + NAD(P)H. We also analyzed the intensity fluctuation patterns within NAD(P)H TPEF images to determine mitochondrial clustering patterns. Finally, we acquired NAD(P)H TPEF lifetime images to assess the relative levels of bound NAD(P)H. Our studies indicate that the redox ratio increases, whereas mitochondrial clustering decreases in response to both pro- and anti-inflammatory stimuli; however, these changes are enhanced in pro-inflammatory macrophages. Interestingly, we did not detect any significant changes in the corresponding NAD(P)H bound fraction. A combination of optical metabolic metrics could be used to classify pro- and anti-inflammatory macrophages with high accuracy. Contributions from alterations in different metabolic pathways may explain our findings, which highlight the potential of label-free two-photon imaging to assess nondestructively macrophage functional state.
Collapse
Affiliation(s)
- Isabel S. Smokelin
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Craig Mizzoni
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Josh Erndt-Marino
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David L. Kaplan
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Irene Georgakoudi
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
- Tufts University, Sackler School of Graduate Biomedical Sciences, Cell, Molecular, and Developmental Biology Program, Boston, Massachusetts, United States
| |
Collapse
|
236
|
Le Y, Wang Y, Zhou L, Xiong J, Tian J, Yang X, Gai X, Sun Y. Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages. J Cell Mol Med 2020; 24:1319-1331. [PMID: 31769590 PMCID: PMC6991703 DOI: 10.1111/jcmm.14789] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1) shows pro-inflammatory activity in various inflammatory diseases and has been found up-regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)-induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS-exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)-treated lung macrophages (MH-S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS-exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti-HMGB1 polyclonal antibody (anti-HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B-II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF-κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B-II but not Beclin1 in CSE or rHMGB1-treated MH-S cells, and inhibition of autophagy by CQ and 3-methyladenine (3-MA) abrogated the migration and p65 phosphorylation of CSE-treated cells. These results indicate that CS-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.
Collapse
Affiliation(s)
- Yanqing Le
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yanhong Wang
- Department of Respiratory MedicineZhongshan City People's HospitalZhongshanChina
| | - Lu Zhou
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Jing Xiong
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Jieyu Tian
- Hematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Xia Yang
- Department of Respiratory MedicineTianjin Medical University General HospitalTianjingChina
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yongchang Sun
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
237
|
Lü SL, Dang GH, Deng JC, Liu HY, Liu B, Yang J, Ma XL, Miao YT, Jiang CT, Xu QB, Wang X, Feng J. Shikonin attenuates hyperhomocysteinemia-induced CD4 + T cell inflammatory activation and atherosclerosis in ApoE -/- mice by metabolic suppression. Acta Pharmacol Sin 2020; 41:47-55. [PMID: 31607752 PMCID: PMC7468273 DOI: 10.1038/s41401-019-0308-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022]
Abstract
T cell metabolic activation plays a crucial role in inflammation of atherosclerosis. Shikonin (SKN), a natural naphthoquinone with anti-inflammatory activity, has shown to exert cardioprotective effects, but the effect of SKN on atherosclerosis is unclear. In addition, SKN was found to inhibit glycolysis via targeting pyruvate kinase muscle isozyme 2 (PKM2). In the present study, we investigated the effects of SKN on hyperhomocysteinemia (HHcy)-accelerated atherosclerosis and T cell inflammatory activation in ApoE-/- mice and the metabolic mechanisms in this process. Drinking water supplemented with Hcy (1.8 g/L) was administered to ApoE-/- mice for 2 weeks and the mice were injected with SKN (1.2 mg/kg, i.p.) or vehicle every 3 days. We showed that SKN treatment markedly attenuated HHcy-accelerated atherosclerosis in ApoE-/- mice and significantly decreased inflammatory activated CD4+ T cells and proinflammatory macrophages in plaques. In splenic CD4+ T cells isolated from HHcy-ApoE-/- mice, SKN treatment significantly inhibited HHcy-stimulated PKM2 activity, interferon-γ secretion and the capacity of these T cells to promote macrophage proinflammatory polarization. SKN treatment significantly inhibited HHcy-stimulated CD4+ T cell glycolysis and oxidative phosphorylation. Metabolic profiling analysis of CD4+ T cells revealed that Hcy administration significantly increased various glucose metabolites as well as lipids and acetyl-CoA carboxylase 1, which were reversed by SKN treatment. In conclusion, our results suggest that SKN is effective to ameliorate atherosclerosis in HHcy-ApoE-/- mice and this is at least partly associated with the inhibition of SKN on CD4+ T cell inflammatory activation via PKM2-dependent metabolic suppression.
Collapse
|
238
|
Lu J, Yan J, Yan J, Zhang L, Chen M, Chen Q, Cheng L, Li P. Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis. Biomed Pharmacother 2019; 122:109777. [PMID: 31918261 DOI: 10.1016/j.biopha.2019.109777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Sepsis is a critical illness that contributes a high mortality, while Xijiao Dihuang decoction (XJDHT) has been used in treatment against sepsis for many years by clinical doctors. Clinical studies confirmed a good efficacy of XJDHT against sepsis. The aim of this study is to observe the efficacy of XJDHT in sepsis model rats and macrophages activated by LPS, and to verify the underlying mechanisms. The key components of XJDHT and its targets against sepsis were analyzed and selected by network pharmacology. The potential mechanisms that XJDHT regulates the progress of sepsis were verified in sepsis rats and NR8383 cell lines. XJDHT at a dose of 25 mg/kg was administrated to rats which endured cecal ligation and perforation (CLP). After MTT assay, XJDHT at a dose of 4 mg/mL was selected to treat NR8383 cell lines activated by LPS. In vivo experiment, the survival of the rats was assessed. The content of cytokine in serum were assessed by Enzyme-linked immunosorbent assays (ELISA). Contents of cytokine and key molecules in relative signaling pathway were assessed by immunohistochemical method. The pathway protein expressions were detected by Western blotting. In vitro experiment, immunofluorescence was used to assess the content of cytokine and signaling pathway. A total of 42 targets of XJDHT against sepsis were identified by network pharmacology. After eliminating overlapping compounds and proteins, there were 8 compounds in XJDHT that associating with the 42 sepsis-related targets. NF-κB and HIF-1α signaling pathway were recognized to play important role for XJDHT against sepsis. XJDHT improved survival rate in the XJDHT group compared with the model group. The contents of IL-6 increased in the model group compared with the control group with ELISA and immunohistochemistry, while XJDHT reduced the content of IL-6. The expressions of p65 and HIF-1α reduced significantly in the XJDHT group compared with the model group. In vitro study, the content of IL-6 elevated significantly after LPS stimulation, while XJDHT reduced this increase. Furthermore, expressions of protein of p65 and HIF-1α decreased significantly compared with the LPS group. To conclude, our study demonstrated that XJDHT at a dose of 25 g/kg is capable of improving the survival of sepsis via regulating the NF-κB and HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Jun Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jianan Yan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Luyao Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Mingqi Chen
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qiuhua Chen
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lu Cheng
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.
| | - Pengfei Li
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
239
|
Gao CL, Hou GG, Liu J, Ru T, Xu YZ, Zhao SY, Ye H, Zhang LY, Chen KX, Guo YW, Pang T, Li XW. Synthesis and Target Identification of Benzoxepane Derivatives as Potential Anti-Neuroinflammatory Agents for Ischemic Stroke. Angew Chem Int Ed Engl 2019; 59:2429-2439. [PMID: 31782597 DOI: 10.1002/anie.201912489] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Benzoxepane derivatives were designed and synthesized, and one hit compound emerged as being effective in vitro with low toxicity. In vivo, this hit compound ameliorated both sickness behavior through anti-inflammation in LPS-induced neuroinflammatory mice model and cerebral ischemic injury through anti-neuroinflammation in rats subjected to transient middle cerebral artery occlusion. Target fishing for the hit compound using photoaffinity probes led to identification of PKM2 as the target protein responsible for anti-inflammatory effect of the hit compound. Furthermore, the hit exhibited an anti-neuroinflammatory effect in vitro and in vivo by inhibiting PKM2-mediated glycolysis and NLRP3 activation, indicating PKM2 as a novel target for neuroinflammation and its related brain disorders. This hit compound has a better safety profile compared to shikonin, a reported PKM2 inhibitor, identifying it as a lead compound in targeting PKM2 for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Cheng-Long Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Gui-Ge Hou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Jin Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Tong Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Ya-Zhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Shun-Yi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Hui Ye
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Lu-Yong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| |
Collapse
|
240
|
Synthesis and Target Identification of Benzoxepane Derivatives as Potential Anti‐Neuroinflammatory Agents for Ischemic Stroke. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
241
|
Pan L, Hu L, Zhang L, Xu H, Chen Y, Bian Q, Zhu A, Wu H. Deoxyelephantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2. Int Immunopharmacol 2019; 79:106048. [PMID: 31863924 DOI: 10.1016/j.intimp.2019.106048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Growing evidence suggests that activated immune cells undergo metabolic reprogramming in the regulation of the innate inflammatory response. Remarkably, macrophages activated by lipopolysaccharide (LPS) induce a switch from oxidative phosphorylation to aerobic glycolysis, and consequently results in release of proinflammatory cytokines. Pyruvate Kinase M2 (PKM2) plays a vital role in the process of macrophage activation, promoting the inflammatory response in sepsis and septic shock. Deoxyelephantopin (DET), a naturally occurring sesquiterpene lactone from Elephantopus scaber, has been shown to counteracts inflammation during fulminant hepatitis progression, but the underlying mechanism remains unclear. Here, we studied the function of the DET on macrophage activation and investigated the anti-inflammatory effects of DET associated with interfering with glycolysis in macrophage. Our results first demonstrated that DET attenuates LPS-induced interleukin-1β (IL-1β) and high-mobility group box 1 (HMGB1) release in vitro and in vivo and protected mice against lethal endotoxemia. Furthermore, DET decreased the expression of pyruvate dehydrogenase kinase 1 (PDK1), glucose transporter 1(GLUT1), lactate dehydrogenase A (LDHA), and reduced lactate production dose-dependently in macrophages. Moreover, we further revealed that DET attenuates aerobic glycolysis in macrophages associated with regulating the nuclear localization of PKM2. Our results provided a novel mechanism for DET suppression of macrophages activation implicated in anti-inflammatory therapy.
Collapse
Affiliation(s)
- Lanlan Pan
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liangyu Hu
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Lihu Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hongtao Xu
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yuping Chen
- Jiangsu Vocational College of Medicine, Yancheng, China; Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qingya Bian
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anhong Zhu
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Hongyan Wu
- Jiangsu Vocational College of Medicine, Yancheng, China; Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China.
| |
Collapse
|
242
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|
243
|
Dang J, Ye H, Li Y, Liang Q, Li X, Yin L. Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism. Biomaterials 2019; 223:119463. [PMID: 31521887 DOI: 10.1016/j.biomaterials.2019.119463] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
The success of photothermal therapy (PTT) is often hampered by the thermo-resistance of tumor cells mediated by over-expressed heat shock proteins (HSPs). Herein, we developed a guanidine-rich, spherical helical polypeptide (DPP) with multivalency-assisted strong membrane penetrating capability, which mediated effective RNAi against tumor glycolysis metabolism to sensitize PTT. ICG was loaded into the internal cavity of DPP, and siRNA against pyruvate kinase M2 (siPKM2) was condensed by DPP to form positively charged nanocomplexes (NCs). The NCs were further coated with human serum albumin to enhance serum stability, prolong blood circulation, and improve tumor targeting. Due to its multivalent topology, DPP exhibited stronger membrane activity yet lower cytotoxicity than its linear analogue (LPP), thus enabling efficient PKM2 silencing in MCF-7 cells in vitro (~75%) and in vivo (~70%). The PKM2 silencing inhibited tumor glycolysis metabolism and further depleted the energy supply for HSPs production, thus overcoming the heat endurance of tumor cells to strengthen ICG-mediated photothermal ablation. Additionally, siPKM2-mediated energy depletion led to tumor cell starvation, which imparted synergistic anti-cancer effect with PTT. This study therefore provides a promising strategy for designing membrane-penetrating siRNA delivery materials, and it renders a unique RNAi-mediated anti-metabolic mechanism in sensitizing PTT and enabling starvation therapy.
Collapse
Affiliation(s)
- Juanjuan Dang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Huan Ye
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Yongjuan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Qiujun Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Xudong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
244
|
Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M. Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165542. [PMID: 31473341 DOI: 10.1016/j.bbadis.2019.165542] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
|
245
|
Liao ST, Han C, Xu DQ, Fu XW, Wang JS, Kong LY. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun 2019; 10:5091. [PMID: 31704924 PMCID: PMC6841710 DOI: 10.1038/s41467-019-13078-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U13C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.
Collapse
Affiliation(s)
- Shan-Ting Liao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, China
| | - Ding-Qiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, China
| | - Xiao-Wei Fu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, China
| | - Jun-Song Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei, 210014, Nanjing, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, 210009, Nanjing, China.
| |
Collapse
|
246
|
Ni W, Xia Y, Luo L, Wen F, Hu D, Bi Y, Qi J. High expression of ALDH1A3 might independently influence poor progression-free and overall survival in patients with glioma via maintaining glucose uptake and lactate production. Cell Biol Int 2019; 44:569-582. [PMID: 31642564 DOI: 10.1002/cbin.11257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/19/2019] [Indexed: 12/29/2022]
Abstract
Recent studies have found that the acetaldehyde dehydrogenase 1A3 (ALDH1A3) gene is a marker of glioma stem cells. A total of 115 brain glioma specimens were collected and classified into grade I-IV, while non-tumor brain tissue specimens, taken from 12 patients of vascular malformation surgery, were used as control. ALDH1A3 gene promoter methylation in glioma tissues was detected by pyrosequencing, while immunohistochemistry and western blot were used to detect ALDH1A3 protein expressions in different grades of glioma tissues and normal brain tissues. The expression of ALDH1A3 in the glioma cell line U87 was detected by quantitative real-time polymerase chain reaction and RNA-Seq technology was applied to investigate differentially expressed genes before and after silencing the ALDH1A3 gene. Among the 115 glioma tissue specimens, 50 (43.48%) showed low and 65 (56.52%) high expression of ALDH1A3, but no expression was detected in the control. Univariate and multivariate COX regression analyses showed that the patient's tumor pathological grade, the methylation status of ALDH1A3 promoter, and the expression of ALDH1A3 protein were risk factors for progression-free survival (PFS) and overall survival (OS) (all P < 0.05) and the OS of mice with silenced ALDH1A3 in a glioma nude mouse model was prolonged. U87 experiments revealed that ALDH1A3 expression had significant effects on apoptosis, proliferation, cell cycle, mitochondrial membrane potential, glucose consumption, lactate production, invasion ability, and expression of the pyruvate kinase M2 (PKM2) and hexokinase 2 (HK2) in glioma cells. ALDH1A3 protein expression is a marker for poor PFS and OS in glioma patients.
Collapse
Affiliation(s)
- Wei Ni
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Lin Luo
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Fan Wen
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Dong Hu
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yuxu Bi
- Department of Neurosurgery, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Junhui Qi
- Department of Neurosurgery, Second People's Hospital of Yunnan Province, Kunming, 650021, China
| |
Collapse
|
247
|
Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W, Zhou L, Sun Y. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med 2019; 23:7349-7359. [PMID: 31507082 PMCID: PMC6815844 DOI: 10.1111/jcmm.14594] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Sigma-1 receptor (S1R) regulates reactive oxygen species (ROS) accumulation via nuclear factor erythroid 2-related factor 2 (NRF2), which plays a vital role in ferroptosis. Sorafenib is a strong inducer of ferroptosis but not of apoptosis. However, the mechanism of sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC) remains unclear. In this study, we found for the first time that sorafenib induced most of S1Rs away from nucleus compared to control groups in Huh-7 cells, and ferrostatin-1 completely blocked the translocation. S1R protein expression, but not mRNA expression, in HCC cells was significantly up-regulated by sorafenib. Knockdown of NRF2, but not of p53 or hypoxia-inducible factor 1-alpha (HIF1α), markedly induced S1R mRNA expression in HCC cells. Inhibition of S1R (by RNAi or antagonists) increased sorafenib-induced HCC cell death in vitro and in vivo. Knockdown of S1R blocked the expression of glutathione peroxidase 4 (GPX4), one of the core targets of ferroptosis, in vitro and in vivo. Iron metabolism and lipid peroxidation increased in the S1R knockdown groups treated with sorafenib compared to the control counterpart. Ferritin heavy chain 1 (FTH1) and transferrin receotor protein 1 (TFR1), both of which are critical for iron metabolism, were markedly up-regulated in HCC cells treated with erastin and sorafenib, whereas knockdown of S1R inhibited these increases. In conclusion, we demonstrate that S1R protects HCC cells against sorafenib and subsequent ferroptosis. A better understanding of the role of S1R in ferroptosis may provide novel insight into this biological process.
Collapse
Affiliation(s)
- Tao Bai
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| | - Pengxu Lei
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| | - Hao Zhou
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| | - Lin Zhou
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, School of Medicine, The First Affiliated Hospital of Zhengzhou University, Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
248
|
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J, Bettaieb A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med 2019; 143:176-192. [PMID: 31401304 PMCID: PMC6848794 DOI: 10.1016/j.freeradbiomed.2019.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dina S Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Amal S Humidat
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Victoria D Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
249
|
Choi Y, Keam B, Kim M, Yoon S, Kim D, Choi JG, Seo JY, Park I, Lee JL. Bevacizumab Plus Erlotinib Combination Therapy for Advanced Hereditary Leiomyomatosis and Renal Cell Carcinoma-Associated Renal Cell Carcinoma: A Multicenter Retrospective Analysis in Korean Patients. Cancer Res Treat 2019; 51:1549-1556. [PMID: 30913859 PMCID: PMC6790829 DOI: 10.4143/crt.2019.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/23/2019] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a rare genetic syndrome resulting from germline mutations in fumarate hydratase. The combination of bevacizumab plus erlotinib showed promising interim results for HLRCC-associated RCC. Based on these results, we analyzed the outcome of bevacizumab plus erlotinib in Korean patients with HLRCC-associated RCC. MATERIALS AND METHODS We retrospectively reviewed the efficacy and safety of bevacizumab plus erlotinib in patients with HLRCC-associated RCC who were confirmed to have germline mutations in fumarate hydratase. The primary endpoint was the objective response rate (ORR), while the secondary endpoints were progression-free survival (PFS) and overall survival (OS). RESULT We identified 10 patients with advanced HLRCC-associated RCC who received bevacizumab plus erlotinib. Median age at diagnosis was 41 years, and five of the patients had received the combination as first- or second-line treatments. The ORR was 50% and the median PFS and OS were 13.3 and 14.1 months, respectively. Most adverse events were predictable and manageable by conventional measures, except for one instance where a patient died of gastrointestinal bleeding. CONCLUSION This is the first real-world outcome of the treatment of advanced HLRCC-associated RCC. Bevacizumab plus erlotinib therapy showed promising activity with moderate toxicity. We should be increasingly aware of HLRCC-associated RCC and bevacizumab plus erlotinib should be a first-line treatment for this condition, unless other promising data are published.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Bhumsuk Keam
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Miso Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dalyong Kim
- Division of Hematology and Medical Oncology, Dongguk University Ilsan Hospital, Ilsan, Korea
| | - Jong Gwon Choi
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Korea
| | - Ja Young Seo
- Department of Laboratory Medicine, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Inkeun Park
- Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
250
|
The Role of ALDH2 in Sepsis and the To-Be-Discovered Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:175-194. [PMID: 31368104 DOI: 10.1007/978-981-13-6260-6_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis, defined as life-threatening tissue damage and organ dysfunction caused by a dysregulated host response to infection, is a critical disease which imposes global health burden. Sepsis-induced organ dysfunction, including circulatory and cardiac dysfunction, hepatic dysfunction, renal dysfunction, etc., contributes to high mortality and long-term disability of sepsis patients. Altered inflammatory response, ROS and reactive aldehyde stress, mitochondrial dysfunction, and programmed cell death pathways (necrosis, apoptosis, and autophagy) have been demonstrated to play crucial roles in septic organ dysfunction. Unfortunately, except for infection control and supportive therapies, no specific therapy exists for sepsis. New specific therapeutic targets are highly warranted. Emerging studies suggested a role of potential therapeutic target of ALDH2, a tetrameric enzyme located in mitochondria to detoxify aldehydes, in septic organ dysfunction. In this article, we will review the presentations and pathophysiology of septic organ dysfunction, as well as summarize and discuss the recent insights regarding ALDH2 in sepsis.
Collapse
|