201
|
Galindo CL, Khan S, Zhang X, Yeh YS, Liu Z, Razani B. Lipid-laden foam cells in the pathology of atherosclerosis: shedding light on new therapeutic targets. Expert Opin Ther Targets 2023; 27:1231-1245. [PMID: 38009300 PMCID: PMC10843715 DOI: 10.1080/14728222.2023.2288272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Saifur Khan
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yu-Sheng Yeh
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ziyang Liu
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
| |
Collapse
|
202
|
Cai C, Weng Y, Wang X, Wu Y, Li Y, Wang P, Zeng C, Yang Z, Jia B, Tang L, Chen L. Single-cell RNA landscape of cell heterogeneity and immune microenvironment in ligation-induced vascular remodeling in rat. Atherosclerosis 2023; 377:1-11. [PMID: 37343431 DOI: 10.1016/j.atherosclerosis.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Vascular remodeling is a common pathological basis for cardiovascular diseases. Although both immune and non-immune cells have been suggested to contribute to this process, the complex cellular heterogeneity and intercellular interactions remain largely uncharacterized. METHODS AND RESULTS In this study, we simulated early and late vascular remodeling by ligating the rat carotid artery for 1 week and 4 weeks, respectively. Using single-cell RNA-sequencing, we characterized gene expression signatures and driver signals of major cell types involved in vascular remodeling. Focused analysis revealed a novel sub-population of Selenbp1hi smooth muscle cells (SMCs) associated with vascular remodeling. Results of intercellular communication analyses predicted several ligand-receptor pairs between immune cells with SMCs and endothelial cells (ECs), implicating SMCs apoptosis and repair, ECs aging and inflammatory responses. CONCLUSIONS We present a comprehensive single-cell atlas of vascular cells in early and late stages of ligated rat carotid artery, providing valuable insights into the understanding of the initiation and progression of vascular remodeling.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China; Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Xihao Wang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Ya Li
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Peipei Wang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Bingbing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
203
|
Peng Z, Wang K, Wang S, Wu R, Yao C. Identification of necroptosis-related gene TRAF5 as potential target of diagnosing atherosclerosis and assessing its stability. BMC Med Genomics 2023; 16:139. [PMID: 37330462 PMCID: PMC10276484 DOI: 10.1186/s12920-023-01573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a leading cause of morbidity and mortality in older patients and features progressive formation of plaques in vascular tissues. With the progression of atherosclerosis, plaque rupture may occur and cause stroke, myocardial infarction, etc. Different forms of cell death promote the formation of a necrotic core of the plaque, leading to rupture. Necroptosis is a type of programmed cell death that contributes to the development of cardiovascular disease. However, the role of necroptosis in AS has not yet been investigated. METHODS The Gene Expression Omnibus (GEO) database was used to obtain gene expression profiles. Differentially expressed genes (DEGs) and necroptosis gene sets were used to identify necroptosis-related differentially expressed genes (NRDEGs). The NRDEGs were used to construct a diagnostic model and were further screened using least absolute shrinkage selection operator (LASSO) regression and random forest (RF) analysis. The discriminatory capacity of the NRDEGs was evaluated using receiver operating characteristic (ROC) curves. Immune infiltration levels were estimated based on CIBERSORTx analysis. The GSE21545 dataset, containing survival information, was used to determine prognosis-associated genes. Univariate and multivariate Cox regression analyses combined with survival analysis determined gene prognostic values. RNA and protein levels were detected by RT-qPCR and western blotting in arteriosclerosis obliterans(ASO) and normal vascular tissues. Vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to develop cell models of advanced AS. The effects of protein knockdown on necroptosis were assessed by western blotting and flow cytometry. EdU and Cell Counting Kit-8 assays were used to examine cell proliferation. RESULTS TNF Receptor Associated Factor 5 (TRAF5) was identified as a diagnostic marker for AS based on the AUC value in both the GSE20129 and GSE43292 datasets. According to differential expression analysis, LASSO regression analysis, RF analysis, univariate analysis, multivariate analysis, and gene-level survival analysis, TRAF5 was markedly associated with necroptosis in AS. Silencing TRAF5 promotes necroptosis and attenuates the proliferation of ox-LDL-induced cell models of advanced AS. CONCLUSIONS This study identified a diagnostic marker of necroptosis-related atherosclerosis, TRAF5, which can also be used to diagnose and assess atherosclerotic plaque stability. This novel finding has important implications in the diagnosis and assessment of plaque stability in atherosclerosis.
Collapse
Affiliation(s)
- Zhanli Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
204
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
205
|
Worssam MD, Lambert J, Oc S, Taylor JCK, Taylor AL, Dobnikar L, Chappell J, Harman JL, Figg NL, Finigan A, Foote K, Uryga AK, Bennett MR, Spivakov M, Jørgensen HF. Cellular mechanisms of oligoclonal vascular smooth muscle cell expansion in cardiovascular disease. Cardiovasc Res 2023; 119:1279-1294. [PMID: 35994249 PMCID: PMC10202649 DOI: 10.1093/cvr/cvac138] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.
Collapse
Affiliation(s)
- Matt D Worssam
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Jordi Lambert
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Sebnem Oc
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - James C K Taylor
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Annabel L Taylor
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Lina Dobnikar
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
- Babraham Institute, Cambridge, UK
| | - Joel Chappell
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Jennifer L Harman
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Nichola L Figg
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alison Finigan
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Kirsty Foote
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Anna K Uryga
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Martin R Bennett
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Mikhail Spivakov
- Functional Gene Control Group, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| |
Collapse
|
206
|
Cao G, Xuan X, Li Y, Hu J, Zhang R, Jin H, Dong H. Single-cell RNA sequencing reveals the vascular smooth muscle cell phenotypic landscape in aortic aneurysm. Cell Commun Signal 2023; 21:113. [PMID: 37189183 DOI: 10.1186/s12964-023-01120-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Phenotypic switching in vascular smooth muscle cells (VSMCs) has been linked to aortic aneurysm, but the phenotypic landscape in aortic aneurysm is poorly understood. The present study aimed to analyse the phenotypic landscape, phenotypic differentiation trajectory, and potential functions of various VSMCs phenotypes in aortic aneurysm. METHODS Single-cell sequencing data of 12 aortic aneurysm samples and 5 normal aorta samples (obtained from GSE166676 and GSE155468) were integrated by the R package Harmony. VSMCs were identified according to the expression levels of ACTA2 and MYH11. VSMCs clustering was determined by the R package 'Seurat'. Cell annotation was determined by the R package 'singleR' and background knowledge of VSMCs phenotypic switching. The secretion of collagen, proteinases, and chemokines by each VSMCs phenotype was assessed. Cell‒cell junctions and cell-matrix junctions were also scored by examining the expression of adhesion genes. Trajectory analysis was performed by the R package 'Monocle2'. qPCR was used to quantify VSMCs markers. RNA fluorescence in situ hybridization (RNA FISH) was performed to determine the spatial localization of vital VSMCs phenotypes in aortic aneurysms. RESULTS A total of 7150 VSMCs were categorize into 6 phenotypes: contractile VSMCs, fibroblast-like VSMCs, T-cell-like VSMCs, adipocyte-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs. The proportions of T-cell-like VSMCs, adipocyte-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs were significantly increased in aortic aneurysm. Fibroblast-like VSMCs secreted abundant amounts of collagens. T-cell-like VSMCs and macrophage-like VSMCs were characterized by high chemokine levels and proinflammatory effects. Adipocyte-like VSMCs and mesenchymal-like VSMCs were associated with high proteinase levels. RNA FISH validated the presence of T-cell-like VSMCs and macrophage-like VSMCs in the tunica media and the presence of mesenchymal-like VSMCs in the tunica media and tunica adventitia. CONCLUSION A variety of VSMCs phenotypes are involved in the formation of aortic aneurysm. T-cell-like VSMCs, macrophage-like VSMCs, and mesenchymal-like VSMCs play pivotal roles in this process. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Yaling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China.
| |
Collapse
|
207
|
Woo SH, Kim DY, Choi JH. Roles of Vascular Smooth Muscle Cells in Atherosclerotic Calcification. J Lipid Atheroscler 2023; 12:106-118. [PMID: 37265849 PMCID: PMC10232217 DOI: 10.12997/jla.2023.12.2.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/03/2023] Open
Abstract
The accumulation of calcium in atherosclerotic plaques is a prominent feature of advanced atherosclerosis, and it has a strong positive correlation with the total burden of atherosclerosis. Atherosclerotic calcification usually appears first at the necrotic core, indicating that cell death and inflammatory processes are involved in calcification. During atherosclerotic inflammation, various cell types, such as vascular smooth muscle cells, nascent resident pericytes, circulating stem cells, or adventitial cells, have been assumed to differentiate into osteoblastic cells, which lead to vascular calcification. Among these cell types, vascular smooth muscle cells are considered a major contributor to osteochondrogenic cells in the atherosclerotic milieu. In this review, we summarize the molecular mechanisms underlying the osteochondrogenic switch of vascular smooth muscle cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| |
Collapse
|
208
|
Yang X, Yang C, Friesel RE, Liaw L. Sprouty1 has a protective role in atherogenesis and modifies the migratory and inflammatory phenotype of vascular smooth muscle cells. Atherosclerosis 2023; 373:17-28. [PMID: 37121163 PMCID: PMC10225353 DOI: 10.1016/j.atherosclerosis.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Sprouty1 (Spry1) regulates the differentiation of vascular smooth muscle cells (VSMC), and our aim was to determine its role in atherogenesis. A significant proportion of cells within atherosclerotic lesions are derived from migration and pathological adaptation of medial VSMC. METHODS We used global Spry1 null mouse, and Myh11-CreERT2, ROSA26-STOPfl/fl-tdTomato-Spry1fl/fl mice to allow for lineage tracing and conditional Spry1 deletion in VSMC. Atherosclerosis was induced by injection of a mutant form of mPCSK9D377Y-AAV followed by Western diet. Human aortic VSMC (hVSMC) with shRNA targeting of Spry1 were also analyzed. RESULTS Global loss of Spry1 increased inflammatory markers ICAM1 and Cox2 in VSMC. Conditional deletion of Spry1 in VSMC had no effect on early lesion development, despite increased Sca1high cells. After 26 weeks of Western diet, mice with VSMC deletion of Spry1 had increased plaque burden, with reduced collagen content and smooth muscle alpha actin (SMA) in the fibrous cap. Lineage tracing via tdTomato marking Cre-recombined cells indicated that VSMC with loss of Spry1 had decreased migration into the lesion, noted by decreased proportions of tdTomato+ and tdTomato+/SMA + cells. Loss-of-function of Spry1 in hVSMC increased mesenchymal and activation markers, including KLF4, PDGFRb, ICAM1, and Cox2. Loss of Spry1 enhanced the effects of PDGFBB and TNFa on hVSMC. CONCLUSIONS Loss of Spry1 in VSMC aggravated plaque formation at later stages, and increased markers of instability. Our results indicate that Spry1 suppresses the mesenchymal and inflammatory phenotype of VSMC, and its expression in VSMC is protective against chronic atherosclerotic disease.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA
| | - Chenhao Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, USA
| | - Robert E Friesel
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, USA.
| |
Collapse
|
209
|
Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S, Ebrahimzade M. Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol 2023; 212:115572. [PMID: 37127247 DOI: 10.1016/j.bcp.2023.115572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Atherosclerosis is an LDL-driven and inflammatory disorder of the sub-endothelial space. Available data have proposed that various factors could affect atherosclerosis pathogenesis, including inflammation, oxidation of LDL particles, endothelial dysfunction, foam cell formation, proliferation, and migration of vascular smooth muscle cells (VSMCs). In addition, other research indicated that the crosstalk among atherosclerosis-induced cells is a crucial factor in modulating atherosclerosis. Extracellular vesicles arenanoparticleswith sizes ranging from 30-150 nm, playing an important role in various pathophysiological situations. Exosomes, asa form of extracellular vesicles, could affect the crosstalk between sub-endothelial cells. They can transport bioactive components like proteins, lipids, RNA, and DNA. As an important cargo in exosomes, noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs could modulate cellular functions by regulating the transcription, epigenetic alteration, and translation. The current work aimed to investigate the underlying molecular mechanisms of exosomal ncRNA as well as their potential as a diagnostic biomarker and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mahdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sarrafha
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
210
|
Wong D, Auguste G, Cardenas CLL, Turner AW, Chen Y, Song Y, Ma L, Perry RN, Aherrahrou R, Kuppusamy M, Yang C, Mosquera JV, Dube CJ, Khan MD, Palmore M, Kalra JK, Kavousi M, Peyser PA, Matic L, Hedin U, Manichaikul A, Sonkusare SK, Civelek M, Kovacic JC, Björkegren JL, Malhotra R, Miller CL. FHL5 Controls Vascular Disease-Associated Gene Programs in Smooth Muscle Cells. Circ Res 2023; 132:1144-1161. [PMID: 37017084 PMCID: PMC10147587 DOI: 10.1161/circresaha.122.321692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.
Collapse
Affiliation(s)
- Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yixuan Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - R. Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Chaojie Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Collin J. Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Meredith Palmore
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jaspreet K. Kalra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, The Netherlands
| | | | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ani Manichaikul
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
211
|
de Winther MPJ, Bäck M, Evans P, Gomez D, Goncalves I, Jørgensen HF, Koenen RR, Lutgens E, Norata GD, Osto E, Dib L, Simons M, Stellos K, Ylä-Herttuala S, Winkels H, Bochaton-Piallat ML, Monaco C. Translational opportunities of single-cell biology in atherosclerosis. Eur Heart J 2023; 44:1216-1230. [PMID: 36478058 PMCID: PMC10120164 DOI: 10.1093/eurheartj/ehac686] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.
Collapse
Affiliation(s)
- Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Magnus Bäck
- Translational Cardiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- University of Lorraine, INSERM U1116, Nancy University Hospital, Nancy, France
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Delphine Gomez
- Department of Medicine, Division of Cardiology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabel Goncalves
- Cardiovascular Research Translational Studies, Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Helle F Jørgensen
- Cardiorespiratory Medicine Section, Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilian’s Universität, Munich, Germany
- German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Medicine, Experimental CardioVascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Center for the Study of Atherosclerosis, SISA, Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Lea Dib
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, OX37FY Oxford, UK
| | - Michael Simons
- Departments of Internal Medicine and Cell Biology, Yale University and Yale Cardiovascular Research Center, 300 George St, New Haven, CT 06511, USA
| | - Konstantinos Stellos
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland and Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Holger Winkels
- Department of Internal Medicine III, Division of Cardiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | - Claudia Monaco
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, OX37FY Oxford, UK
| |
Collapse
|
212
|
Lyu L, Li Z, Wen Z, He Y, Wang X, Jiang L, Zhou X, Huang C, Wu Y, Chen T, Guo X. Fate mapping RNA-sequencing reveal Malat1 regulates Sca1 + progenitor cells to vascular smooth muscle cells transition in vascular remodeling. Cell Mol Life Sci 2023; 80:118. [PMID: 37022488 PMCID: PMC10079726 DOI: 10.1007/s00018-023-04762-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
Regeneration of smooth muscle cells (SMCs) is vital in vascular remodeling. Sca1+ stem/progenitor cells (SPCs) can generate de novo smooth muscle cells after severe vascular injury during vessel repair and regeneration. However, the underlying mechanisms have not been conclusively determined. Here, we reported that lncRNA Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was down-regulated in various vascular diseases including arteriovenous fistula, artery injury and atherosclerosis. Using genetic lineage tracing mice and veingraft mice surgery model, we found that suppression of lncRNA Malat1 promoted Sca1+ cells to differentiate into SMCs in vivo, resulting in excess SMC accumulation in neointima and vessel stenosis. Genetic ablation of Sca1+ cells attenuated venous arterialization and impaired vascular structure normalization, and thus, resulting in less Malat1 down-regulation. Single cell sequencing further revealed a fibroblast-like phenotype of Sca1+ SPCs-derived SMCs. Protein array sequencing and in vitro assays revealed that SMC regeneration from Sca1+ SPCs was regulated by Malat1 through miR125a-5p/Stat3 signaling pathway. These findings delineate the critical role of Sca1+ SPCs in vascular remodeling and reveal that lncRNA Malat1 is a key regulator and might serve as a novel biomarker or potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Lingxia Lyu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhoubin Li
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuoshi Wen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchun He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuliang Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengchen Huang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yutao Wu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
213
|
Ghai S, Young A, Su KH. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1. Front Cardiovasc Med 2023; 10:1155444. [PMID: 37077734 PMCID: PMC10106699 DOI: 10.3389/fcvm.2023.1155444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis is a major risk factor for cardiovascular diseases. Hypercholesterolemia has been both clinically and experimentally linked to cardiovascular disease and is involved in the initiation of atherosclerosis. Heat shock factor 1 (HSF1) is involved in the control of atherosclerosis. HSF1 is a critical transcriptional factor of the proteotoxic stress response that regulates the production of heat shock proteins (HSPs) and other important activities such as lipid metabolism. Recently, HSF1 is reported to directly interact with and inhibit AMP-activated protein kinase (AMPK) to promote lipogenesis and cholesterol synthesis. This review highlights roles of HSF1 and HSPs in critical metabolic pathways of atherosclerosis, including lipogenesis and proteome homeostasis.
Collapse
|
214
|
Liu L, Jouve C, Henry J, Berrandou TE, Hulot JS, Georges A, Bouatia-Naji N. Genomic, Transcriptomic, and Proteomic Depiction of Induced Pluripotent Stem Cells-Derived Smooth Muscle Cells As Emerging Cellular Models for Arterial Diseases. Hypertension 2023; 80:740-753. [PMID: 36655574 DOI: 10.1161/hypertensionaha.122.19733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) plasticity is a central mechanism in cardiovascular health and disease. We aimed at providing cellular phenotyping, epigenomic and proteomic depiction of SMCs derived from induced pluripotent stem cells and evaluating their potential as cellular models in the context of complex diseases. METHODS Human induced pluripotent stem cell lines were differentiated using RepSox (R-SMCs) or PDGF-BB (platelet-derived growth factor-BB) and TGF-β (transforming growth factor beta; TP-SMCs), during a 24-day long protocol. RNA-Seq and assay for transposase accessible chromatin-Seq were performed at 6 time points of differentiation, and mass spectrometry was used to quantify proteins. RESULTS Both induced pluripotent stem cell differentiation protocols generated SMCs with positive expression of SMC markers. TP-SMCs exhibited greater proliferation capacity, migration and lower calcium release in response to contractile stimuli, compared with R-SMCs. Genes involved in the contractile function of arteries were highly expressed in R-SMCs compared with TP-SMCs or primary SMCs. R-SMCs and coronary artery transcriptomic profiles were highly similar, characterized by high expression of genes involved in blood pressure regulation and coronary artery disease. We identified FOXF1 and HAND1 as key drivers of RepSox specific program. Extracellular matrix content contained more proteins involved in wound repair in TP-SMCs and higher secretion of basal membrane constituents in R-SMCs. Open chromatin regions of R-SMCs and TP-SMCs were significantly enriched for variants associated with blood pressure and coronary artery disease. CONCLUSIONS Both induced pluripotent stem cell-derived SMCs models present complementary cellular phenotypes of high relevance to SMC plasticity. These cellular models present high potential to study functional regulation at genetic risk loci of main arterial diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Charlène Jouve
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Joséphine Henry
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Jean-Sébastien Hulot
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Adrien Georges
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Nabila Bouatia-Naji
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| |
Collapse
|
215
|
Bonacina F, Di Costanzo A, Genkel V, Kong XY, Kroon J, Stimjanin E, Tsiantoulas D, Grootaert MO. The heterogeneous cellular landscape of atherosclerosis: Implications for future research and therapies. A collaborative review from the EAS young fellows. Atherosclerosis 2023; 372:48-56. [PMID: 37030081 DOI: 10.1016/j.atherosclerosis.2023.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Single cell technologies, lineage tracing mouse models and advanced imaging techniques unequivocally improved the resolution of the cellular landscape of atherosclerosis. Although the discovery of the heterogeneous nature of the cellular plaque architecture has undoubtedly improved our understanding of the specific cellular states in atherosclerosis progression, it also adds more complexity to current and future research and will change how we approach future drug development. In this review, we will discuss how the revolution of new single cell technologies allowed us to map the cellular networks in the plaque, but we will also address current (technological) limitations that confine us to identify the cellular drivers of the disease and to pinpoint a specific cell state, cell subset or cell surface antigen as new candidate drug target for atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Vadim Genkel
- Department of Internal Medicine, South-Ural State Medical University, Chelyabinsk, Russia
| | - Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jeffrey Kroon
- Amsterdam UMC Location University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Belgium
| | - Ena Stimjanin
- Department of Internal Medicine, Cantonal Hospital Zenical, Zenica, Bosnia and Herzegovina
| | | | - Mandy Oj Grootaert
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
216
|
Jafarkhani S, Khakbiz M, Amoabediny G, Mohammadi J, Tahmasebipour M, Rabbani H, Salimi A, Lee KB. A novel co-culture assay to evaluate the effects of sympathetic innervation on vascular smooth muscle differentiation. Bioorg Chem 2023; 133:106233. [PMID: 36731293 DOI: 10.1016/j.bioorg.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022]
Abstract
Dedifferentiation of vascular smooth muscle cells (VSMCs) from a functional phenotype to an inverse synthetic phenotype is a symptom of cardiovascular disorders, such as atherosclerosis and hypertension. The sympathetic nervous system (SNS) is an essential regulator of the differentiation of vascular smooth muscle cells (VSMCs). In addition, numerous studies suggest that SNS also stimulates VSMCs to retain their contractile phenotype. However, the molecular mechanisms for this stimulation have not been thoroughly studied. In this study, we used a novel in vitro co-culture method to evaluate the effective cellular interactions and stimulatory effects of sympathetic neurons on the differentiation of VSMCs. We co-cultured rat neural-like pheochromocytoma cells (PC12) and rat aortic VSMCs with this method. Expression of VSMCs contractile genes, including smooth muscle actin (acta2), myosin heavy chain (myh11), elastin (eln), and smoothelin (smtn), were determined by quantitative real-time-PCR analysis as an indicator of VSMCs differentiation. Fold changes for specific contractile genes in VSMCs grown in vitro for seven days in the presence (innervated) and absence (non-innervated) of sympathetic neurons were 3.5 for acta2, 6.5 for myh11, 4.19 for eln, and 4 for smtn (normalized to Tata Binding Protein (TBP)). As a result, these data suggest that sympathetic innervation promotes VSMCs' contractile gene expression and also maintains VSMCs' functional phenotype.
Collapse
Affiliation(s)
- Saeed Jafarkhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Ghasem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Faculty of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mohammad Tahmasebipour
- Department of Interdisciplinary Technology, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
217
|
Cao K, Zhang T, Li Z, Song M, Li A, Yan J, Guo S, Wang L, Huang S, Li Z, Hou W, Dai X, Wang Y, Feng D, He J, Fu X, Xu Y. Glycolysis and de novo fatty acid synthesis cooperatively regulate pathological vascular smooth muscle cell phenotypic switching and neointimal hyperplasia. J Pathol 2023; 259:388-401. [PMID: 36640260 DOI: 10.1002/path.6052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to a dedifferentiated (proliferative) phenotype contributes to neointima formation, which has been demonstrated to possess a tumor-like nature. Dysregulated glucose and lipid metabolism is recognized as a hallmark of tumors but has not thoroughly been elucidated in neointima formation. Here, we investigated the cooperative role of glycolysis and fatty acid synthesis in vascular injury-induced VSMC dedifferentiation and neointima formation. We found that the expression of hypoxia-inducible factor-1α (HIF-1α) and its target 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), a critical glycolytic enzyme, were induced in the neointimal VSMCs of human stenotic carotid arteries and wire-injured mouse carotid arteries. HIF-1α overexpression led to elevated glycolysis and resulted in a decreased contractile phenotype while promoting VSMC proliferation and activation of the mechanistic target of rapamycin complex 1 (mTORC1). Conversely, silencing Pfkfb3 had the opposite effects. Mechanistic studies demonstrated that glycolysis generates acetyl coenzyme A to fuel de novo fatty acid synthesis and mTORC1 activation. Whole-transcriptome sequencing analysis confirmed the increased expression of PFKFB3 and fatty acid synthetase (FASN) in dedifferentiated VSMCs. More importantly, FASN upregulation was observed in neointimal VSMCs of human stenotic carotid arteries. Finally, interfering with PFKFB3 or FASN suppressed vascular injury-induced mTORC1 activation, VSMC dedifferentiation, and neointima formation. Together, this study demonstrated that PFKFB3-mediated glycolytic reprogramming and FASN-mediated lipid metabolic reprogramming are distinctive features of VSMC phenotypic switching and could be potential therapeutic targets for treating vascular diseases with neointima formation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kaixiang Cao
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, PR China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, PR China
| | - Zou Li
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Mingchuan Song
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Anqi Li
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Jingwei Yan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Shuai Guo
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Litao Wang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Shuqi Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Ziling Li
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Wenzhong Hou
- Department of Cerebrovascular Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, PR China
| | - Xiaoyan Dai
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, PR China
| | - Du Feng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Jun He
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaodong Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, PR China
| | - Yiming Xu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, PR China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
218
|
Shi H, Nguyen T, Zhao Q, Cheng P, Sharma D, Kim HJ, Kim JB, Wirka R, Weldy CS, Monteiro JP, Quertermous T. Discovery of Transacting Long Noncoding RNAs That Regulate Smooth Muscle Cell Phenotype. Circ Res 2023; 132:795-811. [PMID: 36852690 PMCID: PMC11056793 DOI: 10.1161/circresaha.122.321960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Smooth muscle cells (SMC), the major cell type in atherosclerotic plaques, are vital in coronary artery diseases (CADs). SMC phenotypic transition, which leads to the formation of various cell types in atherosclerotic plaques, is regulated by a network of genetic and epigenetic mechanisms and governs the risk of disease. The involvement of long noncoding RNAs (lncRNAs) has been increasingly identified in cardiovascular disease. However, SMC lncRNAs have not been comprehensively characterized, and their regulatory role in SMC state transition remains unknown. METHODS A discovery pipeline was constructed and applied to deeply strand-specific RNA sequencing from perturbed human coronary artery SMC with different disease-related stimuli, to allow for the detection of novel lncRNAs. The functional relevance of a select few novel lncRNAs were verified in vitro. RESULTS We identified 4579 known and 13 655 de novo lncRNAs in human coronary artery SMC. Consistent with previous long noncoding RNA studies, these lncRNAs overall have fewer exons, are shorter in length than protein-coding genes (pcGenes), and have relatively low expression level. Genomic location of these long noncoding RNA is disproportionately enriched near CAD-related TFs (transcription factors), genetic loci, and gene regulators of SMC identity, suggesting the importance of their function in disease. Two de novo lncRNAs, ZIPPOR (ZEB-interacting suppressor) and TNS1-AS2 (TNS1-antisense 2), were identified by our screen. Combining transcriptional data and in silico modeling along with in vitro validation, we identified CAD gene ZEB2 as a target through which these lncRNAs exert their function in SMC phenotypic transition. CONCLUSIONS Expression of a large and diverse set of lncRNAs in human coronary artery SMC are highly dynamic in response to CAD-related stimuli. The dynamic changes in expression of these lncRNAs correspond to alterations in transcriptional programs that are relevant to CAD, suggesting a critical role for lncRNAs in SMC phenotypic transition and human atherosclerotic disease.
Collapse
Affiliation(s)
- Huitong Shi
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Paul Cheng
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Disha Sharma
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Robert Wirka
- Departments of Medicine and Cell Biology and Physiology, and McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Chad S Weldy
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - João P. Monteiro
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University
| |
Collapse
|
219
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
220
|
Ma B, Cao Y, Qin J, Chen Z, Hu G, Li Q. Pulmonary artery smooth muscle cell phenotypic switching: A key event in the early stage of pulmonary artery hypertension. Drug Discov Today 2023; 28:103559. [PMID: 36958640 DOI: 10.1016/j.drudis.2023.103559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a currently incurable pulmonary vascular disease. Since current research on PAH is mainly aimed at the middle and late stages of disease progression, no satisfactory results have been achieved. This has led researchers to focus on the early stages of PAH. This review highlights for the first time a key event in the early stages of PAH progression, namely, the occurrence of pulmonary arterial smooth muscle cell (PASMC) phenotypic switching. Summarizing the related reports of performance conversion provides new perspectives and directions for the early pathological progression and treatment strategies for PAH.
Collapse
Affiliation(s)
- Binghao Ma
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Yuanyuan Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Jia Qin
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Hunan Key Laboratory of Small Molecules for Diagnosis and Treatment of Chronic Disease, Changsha 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha 410013, Hunan, China.
| |
Collapse
|
221
|
Neels JG, Leftheriotis G, Chinetti G. Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites 2023; 13:metabo13030457. [PMID: 36984897 PMCID: PMC10056669 DOI: 10.3390/metabo13030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids in the vessel wall, leading to the formation of an atheroma and eventually to the development of vascular calcification (VC). Lipoproteins play a central role in the development of atherosclerosis and VC. Both low- and very low-density lipoproteins (LDL and VLDL) and lipoprotein (a) (Lp(a)) stimulate, while high-density lipoproteins (HDL) reduce VC. Apolipoproteins, the protein component of lipoproteins, influence the development of VC in multiple ways. Apolipoprotein AI (apoAI), the main protein component of HDL, has anti-calcific properties, while apoB and apoCIII, the main protein components of LDL and VLDL, respectively, promote VC. The role of lipoproteins in VC is also related to their metabolism and modifications. Oxidized LDL (OxLDL) are more pro-calcific than native LDL. Oxidation also converts HDL from anti- to pro-calcific. Additionally, enzymes such as autotaxin (ATX) and proprotein convertase subtilisin/kexin type 9 (PCSK9), involved in lipoprotein metabolism, have a stimulatory role in VC. In summary, a better understanding of the mechanisms by which lipoproteins and apolipoproteins contribute to VC will be crucial in the development of effective preventive and therapeutic strategies for VC and its associated cardiovascular disease.
Collapse
Affiliation(s)
- Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, CHU, INSERM, C3M, 06200 Nice, France
| |
Collapse
|
222
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
223
|
Wang X, Gonzalez-Rodriguez D, Vourc'h T, Silberzan P, Barakat AI. Contractility-induced self-organization of smooth muscle cells: from multilayer cell sheets to dynamic three-dimensional clusters. Commun Biol 2023; 6:262. [PMID: 36906689 PMCID: PMC10008632 DOI: 10.1038/s42003-023-04578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
Smooth muscle cells (SMCs) are mural cells that play a vital contractile function in many tissues. Abnormalities in SMC organization are associated with many diseases including atherosclerosis, asthma, and uterine fibroids. Various studies have reported that SMCs cultured on flat surfaces can spontaneously form three-dimensional clusters whose organization resembles that encountered in some of these pathological settings. Remarkably, how these structures form remains unknown. Here we combine in vitro experiments and physical modeling to show that three-dimensional clusters initiate when cellular contractile forces induce a hole in a flat SMC sheet, a process that can be modeled as the brittle fracture of a viscoelastic material. The subsequent evolution of the nascent cluster can be modeled as an active dewetting process with cluster shape evolution driven by a balance between cluster surface tension, arising from both cell contractility and adhesion, and cluster viscous dissipation. The description of the physical mechanisms governing the spontaneous emergence of these intriguing three-dimensional clusters may offer insight into SMC-related disorders.
Collapse
Affiliation(s)
- Xiuyu Wang
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université de Paris, 75013, Paris, France.
| | | | - Thomas Vourc'h
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University, Paris, France
- Université Clermont Auvergne, SIGMA Clermont, Institut Pascal, BP 10448, F-63000, Clermont-Ferrand, France
| | - Pascal Silberzan
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University, Paris, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
224
|
Sun Y, Xu H, Li J, Peng M, Jia Z, Kong L, Zhang X, Shao S, Zhang W, Wang W. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194899. [PMID: 36410687 DOI: 10.1016/j.bbagrm.2022.194899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Krüppel-like factor 7 (KLF7) negatively regulates adipocyte differentiation; however, the mechanism underlying its activity in mammals and birds remains poorly understood. To identify genome-wide KLF7-binding motifs in preadipocytes, we conducted a chromatin immunoprecipitation-sequencing analysis of immortalized chicken preadipocytes (ICP2), which revealed 11,063 specific binding sites. Intergenic binding site analysis showed that KLF7 regulates several novel factors whose functions in chicken and mammal adipogenesis are underexplored. We identified a novel regulator, troponin I2 (TNNI2), which is positively regulated by KLF7. TNNI2 is downregulated during preadipocyte differentiation and acts as an adipogenic repressor at least in part by repressing FABP4 promoter activity. In conclusion, we demonstrated that KLF7 functions through cis-regulation of TNNI2, which inhibits adipogenesis. Our findings not only provide the first genome-wide picture of KLF7 associations in preadipocytes but also identify a novel function of TNNI2.
Collapse
Affiliation(s)
- Yingning Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China.
| | - Hu Xu
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Jinwei Li
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Min Peng
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Ziqiu Jia
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Lingzhe Kong
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Xin Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Shuli Shao
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiwei Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiyu Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| |
Collapse
|
225
|
Xie X, Shirasu T, Li J, Guo LW, Kent KC. miR579-3p is an inhibitory modulator of neointimal hyperplasia and transcription factors c-MYB and KLF4. Cell Death Discov 2023; 9:73. [PMID: 36813774 PMCID: PMC9946956 DOI: 10.1038/s41420-023-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Neointimal hyperplasia (IH) is a common vascular pathology that typically manifests in in-stent restenosis and bypass vein graft failure. Smooth muscle cell (SMC) phenotypic switching is central to IH, both regulated by some microRNAs, yet the role of miR579-3p, a scarcely studied microRNA, is not known. Unbiased bioinformatic analysis suggested that miR579-3p was repressed in human primary SMCs treated with different pro-IH cytokines. Moreover, miR579-3p was software-predicted to target both c-MYB and KLF4 - two master transcription factors known to promote SMC phenotypic switching. Interestingly, treating injured rat carotid arteries via local infusion of miR579-3p-expressing lentivirus reduced IH 14 days after injury. In cultured human SMCs, transfection with miR579-3p inhibited SMC phenotypic switching, as indicated by decreased proliferation/migration and increased SMC contractile proteins. miR579-3p transfection downregulated c-MYB and KLF4, and luciferase assays indicated miR579-3p's targeting of the 3'UTRs of the c-MYB and KLF4 mRNAs. In vivo, immunohistochemistry showed that treatment of injured rat arteries with the miR579-3p lentivirus reduced c-MYB and KLF4 and increased SMC contractile proteins. Thus, this study identifies miR579-3p as a previously unrecognized small-RNA inhibitor of IH and SMC phenotypic switch involving its targeting of c-MYB and KLF4. Further studies on miR579-3p may provide an opportunity for translation to develop IH-mitigating new therapeutics.
Collapse
Affiliation(s)
- Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Takuro Shirasu
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Jing Li
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA. .,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| | - K. Craig Kent
- grid.27755.320000 0000 9136 933XDepartment of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
226
|
The KLF7/PFKL/ACADL axis modulates cardiac metabolic remodelling during cardiac hypertrophy in male mice. Nat Commun 2023; 14:959. [PMID: 36810848 PMCID: PMC9944323 DOI: 10.1038/s41467-023-36712-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
The main hallmark of myocardial substrate metabolism in cardiac hypertrophy or heart failure is a shift from fatty acid oxidation to greater reliance on glycolysis. However, the close correlation between glycolysis and fatty acid oxidation and underlying mechanism by which causes cardiac pathological remodelling remain unclear. We confirm that KLF7 simultaneously targets the rate-limiting enzyme of glycolysis, phosphofructokinase-1, liver, and long-chain acyl-CoA dehydrogenase, a key enzyme for fatty acid oxidation. Cardiac-specific knockout and overexpression KLF7 induce adult concentric hypertrophy and infant eccentric hypertrophy by regulating glycolysis and fatty acid oxidation fluxes in male mice, respectively. Furthermore, cardiac-specific knockdown phosphofructokinase-1, liver or overexpression long-chain acyl-CoA dehydrogenase partially rescues the cardiac hypertrophy in adult male KLF7 deficient mice. Here we show that the KLF7/PFKL/ACADL axis is a critical regulatory mechanism and may provide insight into viable therapeutic concepts aimed at the modulation of cardiac metabolic balance in hypertrophied and failing heart.
Collapse
|
227
|
Xia Y, Zhang X, An P, Luo J, Luo Y. Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling. Int J Mol Sci 2023; 24:3483. [PMID: 36834896 PMCID: PMC9961025 DOI: 10.3390/ijms24043483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
228
|
Warwick T, Buchmann GK, Pflüger-Müller B, Spaeth M, Schürmann C, Abplanalp W, Tombor L, John D, Weigert A, Leo-Hansmann M, Dimmeler S, Brandes RP. Acute injury to the mouse carotid artery provokes a distinct healing response. Front Physiol 2023; 14:1125864. [PMID: 36824462 PMCID: PMC9941170 DOI: 10.3389/fphys.2023.1125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Treatment of vascular stenosis with angioplasty results in acute vascular damage, which may lead to restenosis. Owing to the highly complex cellularity of blood vessels, the healing response following this damage is incompletely understood. To gain further insight into this process, scRNA-seq of mouse carotid tissue after wire injury was performed. Stages of acute inflammation, resolution and remodeling were recapitulated in these data. To identify cell types which give rise to neointima, analyses focused on smooth muscle cell and fibroblast populations, and included data integration with scRNA-seq data from myocardial infarction and atherosclerosis datasets. Following carotid injury, a subpopulation of smooth muscle cells which also arises during atherosclerosis and myocardial infarction was identified. So-called stem cell/endothelial cell/monocyte (SEM) cells are candidates for repopulating injured vessels, and were amongst the most proliferative cell clusters following wire-injury of the carotid artery. Importantly, SEM cells exhibit specific transcriptional profiles which could be therapeutically targeted. SEM cell gene expression patterns could also be detected in bulk RNA-sequencing of neointimal tissue isolated from injured carotid vessels by laser capture microdissection. These data indicate that phenotypic plasticity of smooth muscle cells is highly important to the progression of lumen loss following acute carotid injury. Interference with SEM cell formation could be an innovative approach to combat development of restenosis.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Giulia Karolin Buchmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Wesley Abplanalp
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas Tombor
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - David John
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Leo-Hansmann
- Department of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt am Main, Germany,German Center for Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany,*Correspondence: Ralf P. Brandes,
| |
Collapse
|
229
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
230
|
Aherrahrou R, Lue D, Perry RN, Aberra YT, Khan MD, Soh JY, Örd T, Singha P, Yang Q, Gilani H, Benavente ED, Wong D, Hinkle J, Ma L, Sheynkman GM, den Ruijter HM, Miller CL, Björkegren JLM, Kaikkonen MU, Civelek M. Genetic Regulation of SMC Gene Expression and Splicing Predict Causal CAD Genes. Circ Res 2023; 132:323-338. [PMID: 36597873 PMCID: PMC9898186 DOI: 10.1161/circresaha.122.321586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. METHODS We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. RESULTS We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL (TERF2IP), and another locus colocalized with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. CONCLUSIONS Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dillon Lue
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - R Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yonathan Tamrat Aberra
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joon Yuhl Soh
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Prosanta Singha
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Qianyi Yang
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Huda Gilani
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jameson Hinkle
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Gloria M Sheynkman
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Johan LM Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
231
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
232
|
Deaton RA, Bulut G, Serbulea V, Salamon A, Shankman LS, Nguyen AT, Owens GK. A New Autosomal Myh11-CreERT2 Smooth Muscle Cell Lineage Tracing and Gene Knockout Mouse Model-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:203-211. [PMID: 36519470 PMCID: PMC9877184 DOI: 10.1161/atvbaha.122.318160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The Myh11 promoter is extensively used as a smooth muscle cell (SMC) Cre-driver and is regarded as the most restrictive and specific promoter available to study SMCs. Unfortunately, in the existing Myh11-CreERT2 mouse, the transgene was inserted on the Y chromosome precluding the study of female mice. Given the importance of including sex as a biological variable and that numerous SMC-based diseases have a sex-dependent bias, the field has been tremendously limited by the lack of a model to study both sexes. Here, we describe a new autosomal Myh11-CreERT2 mouse (referred to as Myh11-CreERT2-RAD), which allows for SMC-specific lineage tracing and gene knockout studies in vivo using both male and female mice. METHODS A Myh11-CreERT2-RAD transgenic C57BL/6 mouse line was generated using bacterial artificial chromosome clone RP23-151J22 modified to contain a Cre-ERT2 after the Myh11 start codon. Myh11-CreERT2-RAD mice were crossed with 2 different fluorescent reporter mice and tested for SMC-specific labeling by flow cytometric and immunofluorescence analyses. RESULTS Myh11-CreERT2-RAD transgene insertion was determined to be on mouse chromosome 2. Myh11-CreERT2-RAD fluorescent reporter mice showed Cre-dependent, tamoxifen-inducible labeling of SMCs equivalent to the widely used Myh11-CreERT2 mice. Labeling was equivalent in both male and female Cre+ mice and was limited to vascular and visceral SMCs and pericytes in various tissues as assessed by immunofluorescence. CONCLUSIONS We generated and validated the function of an autosomal Myh11-CreERT2-RAD mouse that can be used to assess sex as a biological variable with respect to the normal and pathophysiological functions of SMCs.
Collapse
Affiliation(s)
- Rebecca A. Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908
| | - Gamze Bulut
- College of William and Mary, Williamsburg, Virginia 23185
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908
| | - Anita Salamon
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908
| | - Laura S. Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908
| | | | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, 415 Lane Road, Suite 1010, Charlottesville, VA, 22908
| |
Collapse
|
233
|
Munshaw S, Redpath AN, Pike BT, Smart N. Thymosin β4 preserves vascular smooth muscle phenotype in atherosclerosis via regulation of low density lipoprotein related protein 1 (LRP1). Int Immunopharmacol 2023; 115:109702. [PMID: 37724952 PMCID: PMC10666903 DOI: 10.1016/j.intimp.2023.109702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023]
Abstract
Atherosclerosis is a progressive, degenerative vascular disease and a leading cause of morbidity and mortality. In response to endothelial damage, platelet derived growth factor (PDGF)-BB induced phenotypic modulation of medial smooth muscle cells (VSMCs) promotes atherosclerotic lesion formation and destabilisation of the vessel wall. VSMC sensitivity to PDGF-BB is determined by endocytosis of Low density lipoprotein receptor related protein 1 (LRP1)-PDGFR β complexes to balance receptor recycling with lysosomal degradation. Consequently, LRP1 is implicated in various arterial diseases. Having identified Tβ4 as a regulator of LRP1-mediated endocytosis to protect against aortic aneurysm, we sought to determine whether Tβ4 may additionally function to protect against atherosclerosis, by regulating LRP1-mediated growth factor signalling. By single cell transcriptomic analysis, Tmsb4x, encoding Tβ4, strongly correlated with contractile gene expression and was significantly down-regulated in cells that adopted a modulated phenotype in atherosclerosis. We assessed susceptibility to atherosclerosis of global Tβ4 knockout mice using the ApoE-/- hypercholesterolaemia model. Inflammation, elastin integrity, VSMC phenotype and signalling were analysed in the aortic root and descending aorta. Tβ4KO; ApoE-/- mice develop larger atherosclerotic plaques than control mice, with medial layer degeneration characterised by accelerated VSMC phenotypic modulation. Defects in Tβ4KO; ApoE-/- mice phenocopied those in VSMC-specific LRP1 nulls and, moreover, were underpinned by hyperactivated LRP1-PDGFRβ signalling. We identify an atheroprotective role for endogenous Tβ4 in maintaining differentiated VSMC phenotype via LRP1-mediated PDGFRβ signalling.
Collapse
Affiliation(s)
- Sonali Munshaw
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Andia N Redpath
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK; Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Oxford OX3 7TY, UK
| | - Benjamin T Pike
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Nicola Smart
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK; Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Oxford OX3 7TY, UK.
| |
Collapse
|
234
|
O’Brien BJ, Martin KA, Offermanns S. "Cre"ating New Tools for Smooth Muscle Analysis. Arterioscler Thromb Vasc Biol 2023; 43:212-214. [PMID: 36601960 PMCID: PMC10112502 DOI: 10.1161/atvbaha.122.318855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Brendan J. O’Brien
- Departments of Medicine (Cardiovascular Medicine) and Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Kathleen A. Martin
- Departments of Medicine (Cardiovascular Medicine) and Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Bad Nauheim and Center for Molecular Medicine, Goethe University, Frankfurt
| |
Collapse
|
235
|
ANGPTL4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation. Exp Mol Med 2023; 55:426-442. [PMID: 36782020 PMCID: PMC9981608 DOI: 10.1038/s12276-023-00937-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2023] Open
Abstract
Atherosclerosis, the leading cause of death, is a vascular disease of chronic inflammation. We recently showed that angiopoietin-like 4 (ANGPTL4) promotes cardiac repair by suppressing pathological inflammation. Given the fundamental contribution of inflammation to atherosclerosis, we assessed the role of ANGPTL4 in the development of atherosclerosis and determined whether ANGPTL4 regulates atherosclerotic plaque stability. We injected ANGPTL4 protein twice a week into atherosclerotic Apoe-/- mice and analyzed the atherosclerotic lesion size, inflammation, and plaque stability. In atherosclerotic mice, ANGPTL4 reduced atherosclerotic plaque size and vascular inflammation. In the atherosclerotic lesions and fibrous caps, the number of α-SMA(+), SM22α(+), and SM-MHC(+) cells was higher, while the number of CD68(+) and Mac2(+) cells was lower in the ANGPTL4 group. Most importantly, the fibrous cap was significantly thicker in the ANGPTL4 group than in the control group. Smooth muscle cells (SMCs) isolated from atherosclerotic aortas showed significantly increased expression of CD68 and Krüppel-like factor 4 (KLF4), a modulator of the vascular SMC phenotype, along with downregulation of α-SMA, and these changes were attenuated by ANGPTL4 treatment. Furthermore, ANGPTL4 reduced TNFα-induced NADPH oxidase 1 (NOX1), a major source of reactive oxygen species, resulting in the attenuation of KLF4-mediated SMC phenotypic changes. We showed that acute myocardial infarction (AMI) patients with higher levels of ANGPTL4 had fewer vascular events than AMI patients with lower levels of ANGPTL4 (p < 0.05). Our results reveal that ANGPTL4 treatment inhibits atherogenesis and suggest that targeting vascular stability and inflammation may serve as a novel therapeutic strategy to prevent and treat atherosclerosis. Even more importantly, ANGPTL4 treatment inhibited the phenotypic changes of SMCs into macrophage-like cells by downregulating NOX1 activation of KLF4, leading to the formation of more stable plaques.
Collapse
|
236
|
Canfrán-Duque A, Rotllan N, Zhang X, Andrés-Blasco I, Thompson BM, Sun J, Price NL, Fernández-Fuertes M, Fowler JW, Gómez-Coronado D, Sessa WC, Giannarelli C, Schneider RJ, Tellides G, McDonald JG, Fernández-Hernando C, Suárez Y. Macrophage-Derived 25-Hydroxycholesterol Promotes Vascular Inflammation, Atherogenesis, and Lesion Remodeling. Circulation 2023; 147:388-408. [PMID: 36416142 PMCID: PMC9892282 DOI: 10.1161/circulationaha.122.059062] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cross-talk between sterol metabolism and inflammatory pathways has been demonstrated to significantly affect the development of atherosclerosis. Cholesterol biosynthetic intermediates and derivatives are increasingly recognized as key immune regulators of macrophages in response to innate immune activation and lipid overloading. 25-Hydroxycholesterol (25-HC) is produced as an oxidation product of cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) and belongs to a family of bioactive cholesterol derivatives produced by cells in response to fluctuating cholesterol levels and immune activation. Despite the major role of 25-HC as a mediator of innate and adaptive immune responses, its contribution during the progression of atherosclerosis remains unclear. METHODS The levels of 25-HC were analyzed by liquid chromatography-mass spectrometry, and the expression of CH25H in different macrophage populations of human or mouse atherosclerotic plaques, respectively. The effect of CH25H on atherosclerosis progression was analyzed by bone marrow adoptive transfer of cells from wild-type or Ch25h-/- mice to lethally irradiated Ldlr-/- mice, followed by a Western diet feeding for 12 weeks. Lipidomic, transcriptomic analysis and effects on macrophage function and signaling were analyzed in vitro from lipid-loaded macrophage isolated from Ldlr-/- or Ch25h-/-;Ldlr-/- mice. The contribution of secreted 25-HC to fibrous cap formation was analyzed using a smooth muscle cell lineage-tracing mouse model, Myh11ERT2CREmT/mG;Ldlr-/-, adoptively transferred with wild-type or Ch25h-/- mice bone marrow followed by 12 weeks of Western diet feeding. RESULTS We found that 25-HC accumulated in human coronary atherosclerotic lesions and that macrophage-derived 25-HC accelerated atherosclerosis progression, promoting plaque instability through autocrine and paracrine actions. 25-HC amplified the inflammatory response of lipid-loaded macrophages and inhibited the migration of smooth muscle cells within the plaque. 25-HC intensified inflammatory responses of lipid-laden macrophages by modifying the pool of accessible cholesterol in the plasma membrane, which altered Toll-like receptor 4 signaling, promoted nuclear factor-κB-mediated proinflammatory gene expression, and increased apoptosis susceptibility. These effects were independent of 25-HC-mediated modulation of liver X receptor or SREBP (sterol regulatory element-binding protein) transcriptional activity. CONCLUSIONS Production of 25-HC by activated macrophages amplifies their inflammatory phenotype, thus promoting atherogenesis.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Irene Andrés-Blasco
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Genomics and Diabetes Unit, Health Research Institute Clinic Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Bonne M Thompson
- Center for Human Nutrition. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marta Fernández-Fuertes
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph W. Fowler
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diego Gómez-Coronado
- Servicio Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, and CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - William C. Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiara Giannarelli
- Department of Medicine, Cardiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Robert J Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - George Tellides
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, 06520 USA
| | - Jeffrey G McDonald
- Center for Human Nutrition. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Comparative Medicine. Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology. Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
237
|
DeRoo E, Zhou T, Yang H, Stranz A, Henke P, Liu B. A vein wall cell atlas of murine venous thrombosis determined by single-cell RNA sequencing. Commun Biol 2023; 6:130. [PMID: 36721040 PMCID: PMC9889765 DOI: 10.1038/s42003-023-04492-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Deep vein thrombosis (DVT) is a common clinical problem, but its cellular and molecular mechanisms remain incompletely understood. In this study, we performed single-cell RNA sequencing on mouse inferior vena cava (IVC) 24 h after thrombus-inducing IVC ligation or sham operation. 9 cell types composed of multiple subpopulations were identified. Notable transcriptomic changes induced by DVT included a marked inflammatory response, elevated hypoxia, and globally reduced myogenesis. Analysis of individual cell populations revealed increased inflammation and reduced extracellular matrix production across smooth muscle cells and fibroblasts, juxtaposed against an early phenotypic shift in smooth muscle cell populations away from a contractile state. By characterizing the transcriptomic changes in the vein wall during acute venous thrombosis at the single-cell level, this work provides novel insights into early pathological events in the vein wall that may potentiate thrombus formation and result in long term adverse venous remodeling.
Collapse
Affiliation(s)
- Elise DeRoo
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ting Zhou
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Huan Yang
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amelia Stranz
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Peter Henke
- Department of Surgery, Division of Vascular Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
238
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
239
|
Dolmaci OB, Ayyildiz T, Poelmann RE, Driessen AHG, Koolbergen DR, Klautz RJM, Lindeman JHN, Grewal N. Risk for acquired coronary artery disease in genetic vs. congenital thoracic aortopathy. Front Cardiovasc Med 2023; 9:1036522. [PMID: 36712236 PMCID: PMC9877288 DOI: 10.3389/fcvm.2022.1036522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Patients with Marfan syndrome (MFS) and patients with a bicuspid aortic valve (BAV) have a significantly increased risk to develop thoracic aortopathy. Both conditions share many pathophysiological mechanisms leading to aortic complications. Bicuspidy is known to have a low risk for acquired coronary artery sclerosis. The aim of this study is to determine the risk of coronary sclerosis in MFS patients. Methods Marfan syndrome patients with an aortic root dilatation, which were surgically treated between 1999 and 2017, were included and matched with BAV and tricuspid aortic valves (TAV) patients based on sex and age. Cardiovascular risk profiles were determined in all three groups. Coronary sclerosis was graded in all patients on coronary imaging (coronary angiography or computed tomography) using a coronary artery scoring method, which divides the coronaries in 28 segments and scores non-obstructive (20-49% sclerosis) and obstructive coronary sclerosis (>49% sclerosis) in each segment. Results A total of 90 matched patients (30 within each group) were included. MFS patients showed less cardiovascular risk factors compared to BAV and TAV patients. TAV patients had higher amounts of obstructive coronary sclerosis as compared to BAV patients (p = 0.039) and MFS patients (p = 0.032). No difference in non- and obstructive coronary artery disease (CAD) was found between the MFS and BAV population. Conclusion Marfan syndrome and bicuspid aortic valve patients have a significantly lower risk for, and prevalence of CAD as compared to TAV individuals.
Collapse
Affiliation(s)
- Onur B. Dolmaci
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tugay Ayyildiz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert E. Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Antoine H. G. Driessen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Dave R. Koolbergen
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert J. M. Klautz
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Jan H. N. Lindeman
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
240
|
Wang Y, Liu X, Xu Q, Xu W, Zhou X, Lin Z. CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development. JCI Insight 2023; 8:162987. [PMID: 36625347 PMCID: PMC9870081 DOI: 10.1172/jci.insight.162987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic switching is widely recognized as a key mechanism responsible for the pathogenesis of several aortic diseases, such as aortic aneurysm. Cellular communication network factor 2 (CCN2), often upregulated in human pathologies and animal disease models, exerts myriad context-dependent biological functions. However, current understanding of the role of SMC-CCN2 in SMC phenotypic switching and its function in the pathology of abdominal aortic aneurysm (AAA) is lacking. Here, we show that SMC-restricted CCN2 deficiency causes AAA in the infrarenal aorta of angiotensin II-infused (Ang II-infused) hypercholesterolemic mice at a similar anatomic location to human AAA. Notably, the resistance of naive C57BL/6 WT mice to Ang II-induced AAA formation is lost upon silencing of CCN2 in SMC. Furthermore, the pro-AAA phenotype of SMC-CCN2-KO mice is recapitulated in a different model that involves the application of elastase-β-aminopropionitrile. Mechanistically, our findings reveal that CCN2 intersects with TGF-β signaling and regulates SMC marker expression. Deficiency of CCN2 triggers SMC reprograming associated with alterations in Krüppel-like factor 4 and contractile marker expression, and this reprograming likely contributes to the development of AAA in mice. These results identify SMC-CCN2 as potentially a novel regulator of SMC phenotypic switching and AA biology.
Collapse
Affiliation(s)
- Yu Wang
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xuesong Liu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Xu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wei Xu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xianming Zhou
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
241
|
Woo SH, Kyung D, Lee SH, Park KS, Kim M, Kim K, Kwon HJ, Won YS, Choi I, Park YJ, Go DM, Oh JS, Yoon WK, Paik SS, Kim JH, Kim YH, Choi JH, Kim DY. TXNIP Suppresses the Osteochondrogenic Switch of Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res 2023; 132:52-71. [PMID: 36448450 PMCID: PMC9829043 DOI: 10.1161/circresaha.122.321538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.
Collapse
Affiliation(s)
- Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| | - Dongsoo Kyung
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea (D.K.)
| | - Seung Hyun Lee
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Kyu Seong Park
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Minkyu Kim
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Kibyeong Kim
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea (H.-J.K.)
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea (Y.-S.W., W.K.Y.)
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea (I.C.)
| | - Young-Jun Park
- Enviornmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea (Y.-J.P.)
| | - Du-Min Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| | - Jeong-Seop Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea (Y.-S.W., W.K.Y.)
| | - Seung Sam Paik
- Department of Pathology, Hanyang University Medical College, Seoul, Korea (S.S.P., J.H.K.)
| | - Ji Hyeon Kim
- Department of Pathology, Hanyang University Medical College, Seoul, Korea (S.S.P., J.H.K.)
| | - Yong-Hwan Kim
- Department of Biological Sciences, Research Institute of Women’s Health, College of Natural Sciences, Sookmyung Women’s University, Seoul, Korea (Y.-H.K.)
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute of Natural Sciences, Research Institute for Convergence of Basic Sciences, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea (S.H.L., K.S.P., M.K., K.K., J.-H.C.)
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Korea (S.-H.W., D.-M.G., J.-S.O., D.-Y.K.)
| |
Collapse
|
242
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
243
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
244
|
Wang 王大新 D, Xu M, Wang T, Luo X. Letter by Wang et al Regarding Article, "Dichotomous Roles of Smooth Muscle Cell-Derived MCP1 (Monocyte Chemoattractant Protein 1) in Development of Atherosclerosis". Arterioscler Thromb Vasc Biol 2023; 43:e62-e63. [PMID: 36542725 DOI: 10.1161/atvbaha.122.318632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daxin Wang 王大新
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou people's Hospital), Jiangsu, China (D.W., T.W.)
| | - Minmin Xu
- Clinical Medical College, Dalian Medical University, Liaoning, China (M.X., X.L.)
| | - Ti Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou people's Hospital), Jiangsu, China (D.W., T.W.)
| | - Xiaoyan Luo
- Clinical Medical College, Dalian Medical University, Liaoning, China (M.X., X.L.)
| |
Collapse
|
245
|
Kabir I, Zhang X, Dave JM, Chakraborty R, Qu R, Chandran RR, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin KA, Fernández-Hernando C, Greif DM. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. NATURE AGING 2023; 3:64-81. [PMID: 36743663 PMCID: PMC9894379 DOI: 10.1038/s43587-022-00342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin β3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin β3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| | - Xinbo Zhang
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Rihao Qu
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Rachana R. Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Binod Aryal
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Noemi Rotllan
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Department of Bioinformatics Support Program, Yale University, New Haven, CT 06511, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| |
Collapse
|
246
|
Ouyang Z, Zhong J, Shen J, Zeng Y. The cell origins of foam cell and lipid metabolism regulated by mechanical stress in atherosclerosis. Front Physiol 2023; 14:1179828. [PMID: 37123258 PMCID: PMC10133704 DOI: 10.3389/fphys.2023.1179828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is an inflammatory disease initiated by endothelial activation, in which lipoprotein, cholesterol, extracellular matrix, and various types of immune and non-immune cells are accumulated and formed into plaques on the arterial wall suffering from disturbed flow, characterized by low and oscillating shear stress. Foam cells are a major cellular component in atherosclerotic plaques, which play an indispensable role in the occurrence, development and rupture of atherosclerotic plaques. It was previously believed that foam cells were derived from macrophages or smooth muscle cells, but recent studies have suggested that there are other sources of foam cells. Many studies have found that the distribution of atherosclerotic plaques is not random but distributed at the bend and bifurcation of the arterial tree. The development and rupture of atherosclerotic plaque are affected by mechanical stress. In this review, we reviewed the advances in foam cell formation in atherosclerosis and the regulation of atherosclerotic plaque and lipid metabolism by mechanical forces. These findings provide new clues for investigating the mechanisms of atherosclerotic plaque formation and progression.
Collapse
|
247
|
Xiao M, Xian C, Wang Y, Qi X, Zhang R, Liu Z, Cheng Y. Nuciferine attenuates atherosclerosis by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT pathway in ApoE (-/-) mice fed with High-Fat-Diet. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154536. [PMID: 36395561 DOI: 10.1016/j.phymed.2022.154536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is the pathological basis of multiple cardiovascular diseases. The pathogenesis of AS is closely related to the abnormal proliferation and migration of vascular smooth muscle cells (VSMCs). Nuciferine, an aporphine alkaloid from lotus leaf, has various pharmacological activities. However, the effect and mechanism of nuciferine on regulating proliferation and migration of VSMCs against AS is still unclear. PURPOSE To elucidate the pharmacological effect and molecular mechanism of nuciferine on AS in ApoE(-/-) mice fed with High-Fat-Diet (HFD). STUDY DESIGN HFD-fed ApoE(-/-) mice and 3% fetal bovine serum (FBS) induced mouse aortic vascular smooth muscle cells (MOVAS) were used to investigate the protective effect and mechanism of nuciferine on AS. METHODS Oil red O staining was used to detect the atherosclerotic lesions. Western blotting and immunofluorescence were used to determine calmodulin 4 (Calm4) expression and localization. CCK-8 assay, transwell and wound-healing assays were used to measure the migration and proliferation of MOVAS cells. RESULTS Nuciferine at 40 mg/kg significantly ameliorated the aortic lesion and vascular plaque in AS model, which was equal to the effect of the positive control drug (atorvastatin). In addition, nuciferine attenuated the migration and proliferation of VSMCs in vivo and in vitro. Importantly, nuciferine down-regulated the increase of Calm4 induced by HFD-fed in ApoE(-/-) mice or 3% FBS induced MOVAS cells. However, the inhibitory effect of nuciferine on the migration and proliferation of MOVAS cells was blocked when Calm4 was overexpressed. Furthermore, we found that nuciferine suppressed MMP12 and PI3K/Akt signaling pathway via Calm4. CONCLUSION Our results illustrated that Calm4 promoted the proliferation and motility of MOVAS by activating MMP12/Akt signaling pathway in AS. Nuciferine has a significant anti-atherogenic effect by regulating the proliferation and migration of VSMCs through the Calm4/MMP12/AKT signaling pathway. Thus, Calm4 could potentially be a new target for AS therapy, and nuciferine could be a potential drug against AS.
Collapse
Affiliation(s)
- Mingzhu Xiao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Cuiling Xian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, China.
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou Univ Chinese Med, Guangzhou, Guangdong, 510006, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, 528333, China.
| |
Collapse
|
248
|
Ni Z, Lyu L, Gong H, Du L, Wen Z, Jiang H, Yang H, Hu Y, Zhang B, Xu Q, Guo X, Chen T. Multilineage commitment of Sca-1 + cells in reshaping vein grafts. Theranostics 2023; 13:2154-2175. [PMID: 37153747 PMCID: PMC10157743 DOI: 10.7150/thno.77735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Vein graft failure remains a significant clinical problem. Similar to other vascular diseases, stenosis of vein grafts is caused by several cell lines; however, the sources of these cells remain unclear. The objective of this study was to investigate the cellular sources that reshape vein grafts. By analyzing transcriptomics data and constructing inducible lineage-tracing mouse models, we investigated the cellular components of vein grafts and their fates. The sc-RNAseq data suggested that Sca-1+ cells were vital players in vein grafts and might serve as progenitors for multilineage commitment. By generating a vein graft model in which the venae cavae from C57BL/6J wild-type mice were transplanted adjacent to the carotid arteries of Sca-1(Ly6a)-CreERT2; Rosa26-tdTomato mice, we demonstrated that the recipient Sca-1+ cells dominated reendothelialization and the formation of adventitial microvessels, especially at the perianastomotic regions. In turn, using chimeric mouse models, we confirmed that the Sca-1+ cells that participated in reendothelialization and the formation of adventitial microvessels all had a non-bone-marrow origin, whereas bone-marrow-derived Sca-1+ cells differentiated into inflammatory cells in vein grafts. Furthermore, using a parabiosis mouse model, we confirmed that non-bone-marrow-derived circulatory Sca-1+ cells were vital for the formation of adventitial microvessels, whereas Sca-1+ cells derived from local carotid arteries were the source of endothelium restoration. Using another mouse model in which venae cavae from Sca-1 (Ly6a)-CreERT2; Rosa26-tdTomato mice were transplanted adjacent to the carotid arteries of C57BL/6J wild-type mice, we confirmed that the donor Sca-1+ cells were mainly responsible for smooth muscle cells commitment in the neointima, particularly at the middle bodies of vein grafts. In addition, we provided evidence that knockdown/knockout of Pdgfrα in Sca-1+ cells decreased the cell potential to generate SMCs in vitro and decreased number of intimal SMCs in vein grafts. Our findings provided cell atlases of vein grafts, which demonstrated that recipient carotid arteries, donor veins, non-bone-marrow circulation, and the bone marrow provided diverse Sca-1+ cells/progenitors that participated in the reshaping of vein grafts.
Collapse
Affiliation(s)
- Zhichao Ni
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingxia Lyu
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuoshi Wen
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Jiang
- Department of kidney disease center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Hao Yang
- Department of kidney disease center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Yanhua Hu
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bohuan Zhang
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- ✉ Corresponding authors: Qingbo Xu, MD. PhD. , Tel: +86 571-87236500, Fax: +86 571 4008306430 Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China. Or Xiaogang Guo, MD. PhD. , Tel: +86 571-87236500 Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China. Or Ting Chen, MD. PhD. , Tel: +86 15067127900 Mailing Address: Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- ✉ Corresponding authors: Qingbo Xu, MD. PhD. , Tel: +86 571-87236500, Fax: +86 571 4008306430 Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China. Or Xiaogang Guo, MD. PhD. , Tel: +86 571-87236500 Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China. Or Ting Chen, MD. PhD. , Tel: +86 15067127900 Mailing Address: Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
- ✉ Corresponding authors: Qingbo Xu, MD. PhD. , Tel: +86 571-87236500, Fax: +86 571 4008306430 Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China. Or Xiaogang Guo, MD. PhD. , Tel: +86 571-87236500 Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China. Or Ting Chen, MD. PhD. , Tel: +86 15067127900 Mailing Address: Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, Hangzhou, China
| |
Collapse
|
249
|
Martín-Vañó S, Miralles-Abella A, Castaño P, Hurtado-Genovés G, Aguilar-Ballester M, Herrero-Cervera A, Vinué A, Martínez-Hervás S, González-Navarro H. Vascular smooth muscle cell phenotype is modulated by ligands of the lymphotoxin β receptor and the tumor necrosis factor receptor. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:1-11. [PMID: 35738949 DOI: 10.1016/j.arteri.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMCs) undergo a phenotypic-switching process during the generation of unstable atheroma plaques. In this investigation, the potential implication of the tumor necrosis factor superfamily (TNFSF) ligands, in the gene expression signature associated with VSMC plasticity was studied. MATERIAL AND METHODS Human aortic (ha)VSMCs were obtained commercially and treated with the cytokine TNFSF14, also called LIGHT, the lymphotoxin alpha (LTα), the heterotrimer LTα1β2 or with vehicle for 72h. The effect of the different treatments on gene expression was analyzed by quantitative PCR and included the study of genes associated with myofibroblast-like cell function, osteochondrogenesis, pluripotency, lymphorganogenesis and macrophage-like cell function. RESULTS HaVSMCs displayed a change in myofibroblast-like cell genes which consisted in reduced COL1A1 and TGFB1 mRNA levels when treated with LTα or LIGHT and with augmented MMP9 expression levels when treated with LTα. LTα and LIGHT treatments also diminished the expression of genes associated with osteochondrogenesis and pluripotency SOX9, CKIT, and KLF4. By contrary, all the above genes were no affected by the treatment with the trimer LTα1β2. In addition, haVSMC treatment with LTα, LTα1β2 and LIGHT altered lymphorganogenic cytokine gene expression which consisted of augmented CCL20 and CCL21 mRNA levels by LTα and a reduction in the gene expression of CCL21 and CXCL13 by LIGHT and LTα1β2 respectively. Neither, LTα or LIGHT or LTα1β2 treatments affected the expression of macrophage-like cell markers in haVSMC. CONCLUSIONS Altogether, indicates that the TNFSF ligands through their interconnected network of signaling, are important in the preservation of VSMC identity against the acquisition of a genetic expression signature compatible with functional cellular plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela Vinué
- Institute of Health Research-INCLIVA, Valencia, Spain
| | - Sergio Martínez-Hervás
- Institute of Health Research-INCLIVA, Valencia, Spain; Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, Valencia, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Biochemistry and Molecular Biology Department, Faculty of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
250
|
Wu T, Li N, Zhang Q, Liu R, Zhao H, Fan Z, Zhuo L, Yang Y, Xu Y. MKL1 fuels ROS-induced proliferation of vascular smooth muscle cells by modulating FOXM1 transcription. Redox Biol 2022; 59:102586. [PMID: 36587486 PMCID: PMC9823229 DOI: 10.1016/j.redox.2022.102586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) promotes vascular injury and neointima formation in part by stimulating proliferation of vascular smooth muscle cells (VSMC). The underlying transcriptional mechanism, however, is not completely understood. Here we report that VSMC-specific deletion of MKL1 in mice suppressed neointima formation in a classic model of vascular injury. Likewise, pharmaceutical inhibition of MKL1 activity by CCG-1423 similarly mollified neointima formation in mice. Over-expression of a constitutively active MKL1 in vascular smooth muscle cells enhanced proliferation in a ROS-dependent manner. On the contrary, MKL1 depletion or inhibition attenuated VSMC proliferation. PCR array based screening identified forkhead box protein M1 (FOXM1) as a direct target for MKL1. MKL1 interacted with E2F1 to activate FOXM1 expression. Concordantly, FOXM1 depletion ameliorated MKL1-dependent VSMC proliferation. Of interest, ROS-induced MKL1 phosphorylation through MK2 was essential for its interaction with E2F1 and consequently FOXM1 trans-activation. Importantly, a positive correlation between FOXM1 expression and VSMC proliferation was identified in arterial specimens from patients with restenosis. Taken together, our data suggest that a redox-sensitive phosphorylation-switch of MKL1 activates FOXM1 transcription and mediates ROS fueled vascular smooth muscle proliferation. Targeting the MK-2/MKL1/FOXM1 axis may be considered as a reasonable approach for treatment of restenosis.
Collapse
Affiliation(s)
- Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Nan Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Qiumei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruiqi Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research and College of Life Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|