201
|
Ertao Z, Jianhui C, Chuangqi C, Changjiang Q, Sile C, Yulong H, Hui W, Shirong C. Autocrine Sonic hedgehog signaling promotes gastric cancer proliferation through induction of phospholipase Cγ1 and the ERK1/2 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:63. [PMID: 27039174 PMCID: PMC4818860 DOI: 10.1186/s13046-016-0336-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
Abstract
Background Sonic hedgehog (SHH) plays critical roles in cell growth and development. Tumor cells express SHH, which can promote cell proliferation and epithelial-to-mesenchymal transition. However, the autocrine SHH pathway has not been described in gastric cancer. The aim of this study was to explore molecular mechanisms underlying autocrine SHH signaling in gastric cancer cells. Methods SHH expression was assessed using immunohistochemistry and the results were compared with clinicopathologic parameters, including survival. Using gastric cancer cell lines, we measured SHH mRNA and protein expression, and studied the effects of SHH signaling on cell proliferation and SHH secretion. We also studied the effects of an inhibitor of PLC-γ1 on phosphorylation of phospholipase Cγ1 and extracellular signal-regulated kinases (ERK)1/2. Results SHH protein expression in gastric cancer tissue was significantly higher compared with that in normal gastric tissue (P < 0.001), and the increased expression was significantly associated with pT staging (P = 0.004), pN staging (P = 0.018), pM staging (P = 0.006), and pTNM staging (P < 0.001). In multivariate analyses, overall survival in gastric cancer was significantly shorter in cases with high SHH expression (HR = 1.734, 95 % CI: 1.109–2.713, P = 0.016). The AGS and SGC-7901 gastric cancer cell lines expressed SHH mRNA and protein. In these cell lines, SHH promoted carcinogenesis through activation of the PLCγ1-ERK1/2 pathway, resulting in increased cell proliferation and survival. Conclusions Increased SHH expression is associated with shorter survival in gastric cancer patients, and SHH could represent a useful biomarker or therapeutic target for this disease.
Collapse
Affiliation(s)
- Zhai Ertao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Chen Jianhui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Chen Chuangqi
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Qin Changjiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Chen Sile
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - He Yulong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Wu Hui
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Cai Shirong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
202
|
BAI YONGHENG, LU HONG, LIN CHENGCHENG, XU YAYA, HU DANNÜ, LIANG YONG, HONG WEILONG, CHEN BICHENG. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int J Mol Med 2016; 37:1317-27. [DOI: 10.3892/ijmm.2016.2546] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/28/2016] [Indexed: 11/06/2022] Open
|
203
|
Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. Onco Targets Ther 2016; 9:1899-920. [PMID: 27099521 PMCID: PMC4821380 DOI: 10.2147/ott.s95101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeted therapies require information on specific defective signaling pathways or mutations. Advances in genomic technologies and cell biology have led to identification of new therapeutic targets associated with signal-transduction pathways. Survival times of patients with colorectal cancer (CRC) can be extended with combinations of conventional cytotoxic agents and targeted therapies. Targeting EGFR- and VEGFR-signaling systems has been the major focus for treatment of metastatic CRC. However, there are still limitations in their clinical application, and new and better drug combinations are needed. This review provides information on EGFR and VEGF inhibitors, new therapeutic agents in the pipeline targeting EGFR and VEGFR pathways, and those targeting other signal-transduction pathways, such as MET, IGF1R, MEK, PI3K, Wnt, Notch, Hedgehog, and death-receptor signaling pathways for treatment of metastatic CRC. Additionally, multitargeted approaches in combination therapies targeting negative-feedback loops, compensatory networks, and cross talk between pathways are highlighted. Then, immunobased strategies to enhance antitumor immunity using specific monoclonal antibodies, such as the immune-checkpoint inhibitors anti-CTLA4 and anti-PD1, as well as the challenges that need to be overcome for increased efficacy of targeted therapies, including drug resistance, predictive markers of response, tumor subtypes, and cancer stem cells, are covered. The review concludes with a brief insight into the applications of next-generation sequencing, expression profiling for tumor subtyping, and the exciting progress made in in silico predictive analysis in the development of a prescription strategy for cancer therapy.
Collapse
Affiliation(s)
- Heng Fong Seow
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
204
|
Jung B, Messias AC, Schorpp K, Geerlof A, Schneider G, Saur D, Hadian K, Sattler M, Wanker EE, Hasenöder S, Lickert H. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation. Sci Rep 2016; 6:22540. [PMID: 26931153 PMCID: PMC4773810 DOI: 10.1038/srep22540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 01/04/2023] Open
Abstract
Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics.
Collapse
Affiliation(s)
- Bomi Jung
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Ana C Messias
- Institute of Structural Biology, Helmholtz Zentrum München, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Helmholtz Zentrum München, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Germany
| | - Günter Schneider
- Department of Internal Medicine II, Klinikum rechts der Isar, München, Germany.,Technische Universität München, München, Germany
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, München, Germany.,Technische Universität München, München, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum München, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stefan Hasenöder
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,Technische Universität München, München, Germany.,German Center for Diabetes Research (DZD), Germany
| |
Collapse
|
205
|
Abstract
The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Yongyu Bai
- From the Wenzhou Medical University (Yongyu Bai, JD, QL, YJ, MZ); and Wenzhou Key Laboratory of Surgery (Yongheng Bai, BC), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | |
Collapse
|
206
|
Goel V, Hurh E, Stein A, Nedelman J, Zhou J, Chiparus O, Huang PH, Gogov S, Sellami D. Population pharmacokinetics of sonidegib (LDE225), an oral inhibitor of hedgehog pathway signaling, in healthy subjects and in patients with advanced solid tumors. Cancer Chemother Pharmacol 2016; 77:745-55. [PMID: 26898300 DOI: 10.1007/s00280-016-2982-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/02/2016] [Indexed: 01/14/2023]
Abstract
PURPOSE Sonidegib (Odomzo) selectively inhibits smoothened and suppresses the growth of hedgehog pathway-dependent tumors. A population pharmacokinetic (PK) analysis of sonidegib in healthy subjects and patients with advanced solid tumors was conducted to characterize PK, determine variability, and estimate covariate effects. METHODS PK data from five phase 1 or 2 studies (N = 436) in the dose range from 100 to 3000 mg were analyzed using NONMEM. A two-compartment base model with first-order absorption, lag time, linear elimination, and bioavailability that decreased with dose was updated to describe the PK of sonidegib. Covariate analyses were performed and were incorporated into the population PK full model. RESULTS The base and full models were robust with a good fit to the study data. Population-predicted geometric means (inter-individual variability, CV%) of apparent oral clearance, apparent volume of distribution at steady state, accumulation ratio, and elimination half-life were 9.5 L/h (71.4 %), 9163 L (74.9 %), 21 (131 %) and 29.6 days (109 %). Clinically relevant covariate effects were: A high-fat meal increased sonidegib bioavailability fivefold, healthy volunteers had threefold higher clearance, sonidegib bioavailability decreased with increasing dose levels, and PPI coadministration reduced sonidegib bioavailability by 30 %. Sonidegib PK was not significantly impacted by baseline age, weight, total bilirubin, alanine aminotransferase, albumin, creatinine clearance, gender, and ethnicity (Western countries versus Japanese). CONCLUSION No dose adjustment is needed for mild hepatic impairment, mild and moderate renal impairment, age, weight, gender, or ethnicity. This population PK model adequately characterizes sonidegib PK characteristics and can be used for various simulations and applications.
Collapse
Affiliation(s)
- Varun Goel
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Eunju Hurh
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA.,Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Andrew Stein
- Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Jerry Nedelman
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Jocelyn Zhou
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Ovidiu Chiparus
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Pai-Hsi Huang
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | | | - Dalila Sellami
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA.
| |
Collapse
|
207
|
Cheng J, Gao J, Tao K. Prognostic role of Gli1 expression in solid malignancies: a meta-analysis. Sci Rep 2016; 6:22184. [PMID: 26899488 PMCID: PMC4762019 DOI: 10.1038/srep22184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Gli1 is a downstream transcriptional factor of Sonic hedgehog pathway in mammalians, and has been recognized as a proliferative indicator of carcinogenesis. However, its actual role in prognosis among solid malignancies remains unclear. Therefore we performed this meta-analysis aiming to discover the correlation between Gli1 positivity and clinical prognosis in patients suffering from diverse carcinomas. A total of 39 studies containing 4496 cases were selected into our quantitative analysis via electronic database search. Original data of 3-year, 5-year, 10-year overall survival and disease-free survival were extracted and calculated using odds ratio and Mantel-Haenszel model. Subgroup analysis was also conducted to clarify the possible confounding factors. P < 0.05 was considered significant in statistics. Gli1 redundancy was associated with worse 3-year, 5-year, 10-year overall survival and disease-free survival in solid malignancies. Different source regions, sample-size, mean-age and detection approaches had no impact on the negative prognostic effect of Gli1 over-expression. Nevertheless, stratified by cancer type and subcellular localization, cytoplasmic Gli1 expression and Gli1 positivity in intracranial tumors was not correlated to poorer 3-year and 5-year prognosis. The over-expression of Gli1 is a credible indicator of poorer prognosis in most of solid malignancies, irrespective of intracranial tumors.
Collapse
Affiliation(s)
- Ji Cheng
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
208
|
Papadopoulos V, Tsapakidis K, Riobo Del Galdo NA, Papandreou CN, Del Galdo F, Anthoney A, Sakellaridis N, Dimas K, Kamposioras K. The Prognostic Significance of the Hedgehog Signaling Pathway in Colorectal Cancer. Clin Colorectal Cancer 2016; 15:116-27. [PMID: 27032873 DOI: 10.1016/j.clcc.2016.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
Despite significant advances in the management of colorectal cancer (CRC) the identification of new prognostic biomarkers continues to be a challenge. Since its initial discovery, the role of the Hedgehog (Hh) signaling pathway in carcinogenesis has been extensively studied. We herein review and comment on the prognostic significance of the Hh signaling pathway in CRC. The differential expression of Hh pathway components between malignant and nonmalignant conditions as well as correlation of Hh activation markers with various clinicopathological parameters and the effect on disease-free survival, overall survival, and disease recurrence in patients with CRC is summarized and discussed. According to the studies reviewed herein the activation of the Hh pathway seems to be correlated with adverse clinicopathological features and worse survival. However, to date study results show significant variability with regard to the effect on outcomes. Such results need to be interpreted carefully and emphasize the need for further well designed studies to characterize the actual influence of the Hh pathway in CRC prognosis.
Collapse
Affiliation(s)
| | | | - Natalia A Riobo Del Galdo
- Department of Biochemistry and Molecular Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Francesco Del Galdo
- Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine, LMBRU, University of Leeds, Leeds, United Kingdom
| | - Alan Anthoney
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Nikos Sakellaridis
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| | - Konstantinos Kamposioras
- Department of Medical Oncology, The Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Department of Medical Oncology, The Mid Yorkshire Hospitals NHS Trust, Wakefield, United Kingdom.
| |
Collapse
|
209
|
WNT signaling in glioblastoma and therapeutic opportunities. J Transl Med 2016; 96:137-50. [PMID: 26641068 DOI: 10.1038/labinvest.2015.140] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/19/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
WNTs and their downstream effectors regulate proliferation, death, and migration and cell fate decision. Deregulation of WNT signaling is associated with various cancers including GBM, which is the most malignant primary brain cancer. In this review, we will summarize the experimental evidence supporting oncogenic roles of WNT signaling in GBM and discuss current progress in the targeting of WNT signaling as an anti-cancer approach. In particular, we will focus on (1) genetic and epigenetic alterations that lead to aberrant WNT pathway activation in GBM, (2) WNT-mediated control of GBM stem cell maintenance and invasion, and (3) cross-talk between WNT and other signaling pathways in GBM. We will then review the discovery of agents that can inhibit WNT signaling in preclinical models and the current status of human clinical trials.
Collapse
|
210
|
Jones GE, Robertson L, Maniyar A, Shammas C, Phelan MM, Vasudevan PC, Tanteles GA. Microform holoprosencephaly with bilateral congenital elbow dislocation; increasing the phenotypic spectrum of Steinfeld syndrome. Am J Med Genet A 2016; 170:754-9. [PMID: 26728615 DOI: 10.1002/ajmg.a.37511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/29/2015] [Indexed: 11/12/2022]
Abstract
Steinfeld syndrome (MIM #184705) was first reported in 1982. It is characterised by holoprosencephaly and limb defects, however other anomalies may also be present. Following the initial description, three further cases have been reported in the literature. We report on a 23-year-old girl, with features of microform holoprosencephaly and bilateral congenital elbow dislocation in association with hypoplastic radial heads. She was identified to have a variant in the CDON gene inherited from her father who had ocular hypotelorism, but no other clinical features. We discuss the clinical features of Steinfeld syndrome, and broaden the phenotypic spectrum of this condition. Structural analysis suggests that this variant could lead to destabilisation of binding of CDON with hedgehog proteins. Further work needs to be done to confirm whether mutations in the CDON gene are the cause of Steinfeld syndrome.
Collapse
Affiliation(s)
- Gabriela E Jones
- Department of Clinical Genetics, University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Lisa Robertson
- North of Scotland Clinical Genetics Service, Aberdeen, United Kingdom
| | - Amit Maniyar
- Department of Radiology, University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - Christos Shammas
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marie M Phelan
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Pradeep C Vasudevan
- Department of Clinical Genetics, University Hospitals Leicester NHS Trust, Leicester, United Kingdom
| | - George A Tanteles
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
211
|
Abstract
Accumulating evidence has shown the presence of cancer stem cells in a wide spectrum of human cancers, which have the ability to self-renew and differentiate, thus leading to tumorigenesis, proliferation, cancer dissemination, drug resistance, and tumor relapse. Cancer cell plasticity allows tumor to invade and grow at primary or distant sites. Epithelial-mesenchymal transition (EMT) is the most important mechanism of cancer cell plasticity and cancer stem cells. Substantial evidence has supported a noncoding RNA network, especially miRNA, in regulating cancer cell plasticity and cancer stem cell biology. Besides, lncRNA is also found to participate in cancer development. Understanding the mechanisms of these processes might be valuable for developing accurate targeted therapies to tackle cancer progression and cancer stem cells.
Collapse
|
212
|
Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome. Hum Pathol 2015; 50:153-61. [PMID: 26997450 DOI: 10.1016/j.humpath.2015.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
Abstract
The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps.
Collapse
|
213
|
Inhibition of Hedgehog-Signaling Driven Genes in Prostate Cancer Cells by Sutherlandia frutescens Extract. PLoS One 2015; 10:e0145507. [PMID: 26710108 PMCID: PMC4694108 DOI: 10.1371/journal.pone.0145507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Sutherlandia frutescens (L) R. Br. (Sutherlandia) is a South African botanical that is traditionally used to treat a variety of health conditions, infections and diseases, including cancer. We hypothesized Sutherlandia might act through Gli/ Hedgehog (Hh)-signaling in prostate cancer cells and used RNA-Seq transcription profiling to profile gene expression in TRAMPC2 murine prostate cancer cells with or without Sutherlandia extracts. We found 50% of Hh-responsive genes can be repressed by Sutherlandia ethanol extract, including the canonical Hh-responsive genes Gli1 and Ptch1 as well as newly distinguished Hh-responsive genes Hsd11b1 and Penk.
Collapse
|
214
|
Feng X, Yao J, Gao X, Jing Y, Kang T, Jiang D, Jiang T, Feng J, Zhu Q, Jiang X, Chen J. Multi-targeting Peptide-Functionalized Nanoparticles Recognized Vasculogenic Mimicry, Tumor Neovasculature, and Glioma Cells for Enhanced Anti-glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27885-27899. [PMID: 26619329 DOI: 10.1021/acsami.5b09934] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemotherapy failure of glioma, the most aggressive and devastating cancer, might be ascribed to the physiologic barriers of the tumor mainly including heterogeneous tumor perfusion and vascular permeability, which result in a limited penetration of chemotherapeutics. Besides, the vasculogenic mimicry (VM) channels, which are highly resistant to anti-angiogenic therapy and serve as a complement of angiogenesis, were abound in glioma and always associated with tumor recurrence. In order to enhance the therapy effect of anti-glioma, we developed a PEG-PLA-based nanodrug delivery system (nanoparticles, NP) in this study and modified its surface with CK peptide, which was composed of a human sonic hedgehog (SHH) targeting peptide (CVNHPAFAC) and a KDR targeting peptide (K237) through a GYG linker, for facilitating efficient VM channels, tumor neovasculature, and glioma cells multi-targeting delivery of paclitaxel. In vitro cellular assay showed that CK-NP-PTX not only exhibited the strongest antiproliferation effect on U87MG cells and HUVEC cells but also resulted in the most efficient destruction of VM channels when compared with CVNHPAFAC-NP, K237-NP, and the unmodified ones. Besides, CK-NP accumulated more selectively at the glioma site as demonstrated by in vivo and ex vivo imaging. As expected, the glioma-bearing mice treated with CK-NP-PTX achieved the longest median survival time compared to those treated with CVNHPAFAC-NP-PTX and K237-NP-PTX. These findings indicated that the multi-targeting therapy mediated by CK peptide might provide a promising way for glioblastoma therapy.
Collapse
Affiliation(s)
- Xingye Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jianhui Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine , 280 South Chongqing Road, Shanghai 200025, People's Republic of China
| | - Yixian Jing
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Di Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Tianze Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jingxian Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Qianqian Zhu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
215
|
Yong W, Jiao C, Jianhui W, Yan Z, Qi P, Xiu W, Zuyue S, Yunhui Z. Mono-2-ethyhexyl phthalate advancing the progression of prostate cancer through activating the hedgehog pathway in LNCaP cells. Toxicol In Vitro 2015; 32:86-91. [PMID: 26710974 DOI: 10.1016/j.tiv.2015.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/29/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023]
Abstract
Hedgehog (Hh) pathway plays a critical role in the progression of prostate cancer (PCa), the most commonly diagnosed non-cutaneous cancer in male adults. Studies showed that di-n-butyl phthalate (DBP) could interference with the Hh pathway. Di-2-ethylhexyl phthalate (DEHP), the congener of DBP, is the major plasticizer used in plastic materials that are inevitably exposed by patients with PCa. The aim of this in vitro study was to investigate whether mono-2-ethyhexyl phthalate (MEHP, the active metabolite of DEHP) could activate the Hh pathway of LNCaP cells. Results showed that the expression of the critical gene of Hh pathway PTCH and androgen-regulated gene KLK3 was significantly decreased on 3, 6 and 9 days with Hh pathway inhibitor cyclopamine's treatment. MEHP notably up-regulated the expression of PTCH with a dose-response relationship in the presence of cyclopamine, which indicate that MEHP might target on the downstream components of Hh pathway and advance the progression of PCa through activating the Hh pathway.
Collapse
Affiliation(s)
- Wang Yong
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China
| | - Chen Jiao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wu Jianhui
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China
| | - Zhao Yan
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pan Qi
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China
| | - Wang Xiu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Sun Zuyue
- WHO Collaborating Center for Research in Human Reproduction, Shanghai Institute of Planned Parenthood Research, Shanghai 200030, China.
| | - Zhang Yunhui
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
216
|
Zhang N, Liu S, Wang N, Deng S, Song L, Wu Q, Liu L, Su W, Wei Y, Xie Y, Gong C. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway. NANOSCALE 2015; 7:2609-24. [PMID: 25581613 DOI: 10.1039/c4nr06300g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Petrovic I, Milivojevic M, Popovic J, Schwirtlich M, Rankovic B, Stevanovic M. SOX18 Is a Novel Target Gene of Hedgehog Signaling in Cervical Carcinoma Cell Lines. PLoS One 2015; 10:e0143591. [PMID: 26588701 PMCID: PMC4654472 DOI: 10.1371/journal.pone.0143591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
Although there is much evidence showing functional relationship between Hedgehog pathway, in particular Sonic hedgehog, and SOX transcription factors during embryonic development, scarce data are available regarding their crosstalk in cancer cells. SOX18 protein plays an important role in promoting tumor angiogenesis and therefore emerged as a promising potential target in antiangiogenic tumor therapy. Recently it became evident that expression of SOX18 gene in tumors is not restricted to endothelium of accompanying blood and lymphatic vessels, but in tumor cells as well.In this paper we have identified human SOX18 gene as a novel target gene of Hedgehog signaling in cervical carcinoma cell lines. We have presented data showing that expression of SOX18 gene is regulated by GLI1 and GLI2 transcription factors, final effectors of Hedgehog signaling, and that modulation of Hedgehog signaling activity in considerably influence SOX18 expression. We consider important that Hedgehog pathway inhibitors reduced SOX18 expression, thus showing, for the first time, possibility for manipulationwith SOX18 gene expression. In addition, we analyzed the role of SOX18 in malignant potential of cervical carcinoma cell line, and showed that its overexpression has no influence on cells proliferation and viability, but substantially promotes migration and invasion of cells in vitro. Pro-migratory effect of SOX18 suggests its role in promoting malignant spreading, possibly in response to Hedgehog activation.
Collapse
Affiliation(s)
- Isidora Petrovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
- * E-mail:
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| |
Collapse
|
218
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
219
|
Lin H, Jackson GA, Lu Y, Drenkhahn SK, Brownstein KJ, Starkey NJ, Lamberson WR, Fritsche KL, Mossine VV, Besch-Williford CL, Folk WR, Zhang Y, Lubahn DB. Inhibition of Gli/hedgehog signaling in prostate cancer cells by "cancer bush" Sutherlandia frutescens extract. Cell Biol Int 2015; 40:131-42. [PMID: 26377232 DOI: 10.1002/cbin.10544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022]
Abstract
Sutherlandia frutescens is a medicinal plant, traditionally used to treat various types of human diseases, including cancer. Previous studies of several botanicals link suppression of prostate cancer growth with inhibition of the Gli/hedgehog (Gli/Hh) signaling pathway. Here we hypothesized the anti-cancer effect of S. frutescens was linked to its inhibition of the Gli/Hh signaling in prostate cancer. We found a dose- and time-dependent growth inhibition in human prostate cancer cells, PC3 and LNCaP, and mouse prostate cancer cell, TRAMP-C2, treated with S. frutescens methanol extract (SLE). We also observed a dose-dependent inhibition of the Gli-reporter activity in Shh Light II and TRAMP-C2QGli cells treated with SLE. In addition, SLE can inhibit Gli/Hh signaling by blocking Gli1 and Ptched1 gene expression in the presence of a Gli/Hh signaling agonist (SAG). A diet supplemented with S. frutescens suppressed the formation of poorly differentiated carcinoma in prostates of TRAMP mice. Finally, we found Sutherlandioside D was the most potent compound in the crude extract that could suppress Gli-reporter in Shh Light II cells. Together, this suggests that the S. frutescens extract may exert anti-cancer effect by targeting Gli/Hh signaling, and Sutherlandioside D is one of the active compounds.
Collapse
Affiliation(s)
- Hui Lin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.,Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Glenn A Jackson
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Veterinary Technology, Nebraska College of Technical Agriculture, Curtis, Nebraska, 69025, USA
| | - Yuan Lu
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Sara K Drenkhahn
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Korey J Brownstein
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164, USA
| | - Nicholas J Starkey
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - William R Lamberson
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kevin L Fritsche
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Animal Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Cynthia L Besch-Williford
- MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - William R Folk
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,MU Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
220
|
Khan S, Jaggi M, Chauhan SC. Revisiting stroma in pancreatic cancer. Oncoscience 2015; 2:819-20. [PMID: 26682261 PMCID: PMC4671936 DOI: 10.18632/oncoscience.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
221
|
Arai MA, Uchida K, Sadhu SK, Ahmed F, Koyano T, Kowithayakorn T, Ishibashi M. Hedgehog inhibitors from Artocarpus communis and Hyptis suaveolens. Bioorg Med Chem 2015; 23:4150-4154. [DOI: 10.1016/j.bmc.2015.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
|
222
|
Sasaki K, Gotlib JR, Mesa RA, Newberry KJ, Ravandi F, Cortes JE, Kelly P, Kutok JL, Kantarjian HM, Verstovsek S. Phase II evaluation of IPI-926, an oral Hedgehog inhibitor, in patients with myelofibrosis. Leuk Lymphoma 2015; 56:2092-7. [PMID: 25641433 PMCID: PMC4919663 DOI: 10.3109/10428194.2014.984703] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The clinical safety and efficacy of IPI-926 was evaluated in 14 patients with myelofibrosis in a phase II study. Patients received 160 mg IPI-926 orally in continuous 28-day cycles. The median treatment duration was 5.1 months, and all patients had discontinued treatment by 7.5 months. Nine patients discontinued due to lack of response as determined by the treating physician, two after developing acute leukemia and one due to disease progression/loss of response. Twelve patients had slight reductions in spleen size (less than 50% from baseline), but symptoms did not improve consistently. One patient achieved transfusion independence lasting 5 months. Reductions in GLI1 mRNA and protein levels, JAK2V617F allele burden, degree of fibrosis or cytokine levels were observed in some patients, but were not significant when evaluated for the cohort. Low-grade gastrointestinal/liver abnormalities were the most common toxicities. The results did not support continued evaluation of IPI-926 as a monotherapy in myelofibrosis.
Collapse
Affiliation(s)
- Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason R. Gotlib
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA
| | - Ruben A. Mesa
- Department of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ
| | - Kate J. Newberry
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jorge E. Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
223
|
Yoneyama T, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Hedgehog inhibitors from Withania somnifera. Bioorg Med Chem Lett 2015; 25:3541-4. [PMID: 26169123 DOI: 10.1016/j.bmcl.2015.06.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022]
Abstract
The hedgehog (Hh) signaling pathway performs an important role in embryonic development and in cellular proliferation and differentiation. However, aberrant activation of the Hh signaling pathway is associated with tumorigenesis. Hh signal inhibition was evaluated using a cell-based assay system that targets GLI1-mediated transcription. Activity-guided isolation of the Withania somnifera MeOH extract led to the isolation of six compounds: withaferin A (1) and its derivatives (2-6). Compounds 1 and 2 showed strong inhibition of Hh/GLI1-mediated transcriptional activity with IC50 values of 0.5 and 0.6 μM, respectively. Compounds 1, 2, 3, and 6 were cytotoxic toward human pancreatic (PANC-1), prostate (DU145) and breast (MCF7) cancer cells. Furthermore, 1 also inhibited GLI1-DNA complex formation in EMSA.
Collapse
Affiliation(s)
- Tatsuro Yoneyama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Samir K Sadhu
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
224
|
Deubiquitination of Ci/Gli by Usp7/HAUSP Regulates Hedgehog Signaling. Dev Cell 2015; 34:58-72. [PMID: 26120032 DOI: 10.1016/j.devcel.2015.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) signaling plays essential roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and cancers. Regulation of the ubiquitin/proteasome-mediated proteolysis of Ci/Gli transcription factors is central to Hh signaling, but whether deubiquitinase is involved in this process remains unknown. Here, we show that Hh stimulates the binding of a ubiquitin-specific protease Usp7 to Ci, which positively regulates Hh signaling activity through inhibiting Ci ubiquitination and degradation mediated by both Slimb-Cul1 and Hib-Cul3 E3 ligases. Furthermore, we find that Usp7 forms a complex with GMP-synthetase (GMPS) to promote Hh pathway activity. Finally, we show that the mammalian counterpart of Usp7, HAUSP, positively regulates Hh signaling by modulating Gli ubiquitination and stability. Our findings reveal a conserved mechanism by which Ci/Gli is stabilized by a deubiquitination enzyme and identify Usp7/HUASP as a critical regulator of Hh signaling and potential therapeutic target for Hh-related cancers.
Collapse
|
225
|
Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 2015; 15:2385-401. [PMID: 25914051 PMCID: PMC4692089 DOI: 10.1002/pmic.201400619] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
226
|
Abstract
The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.
Collapse
|
227
|
Khan S, Ebeling MC, Chauhan N, Thompson PA, Gara RK, Ganju A, Yallapu MM, Behrman SW, Zhao H, Zafar N, Singh MM, Jaggi M, Chauhan SC. Ormeloxifene suppresses desmoplasia and enhances sensitivity of gemcitabine in pancreatic cancer. Cancer Res 2015; 75:2292-304. [PMID: 25840985 PMCID: PMC4452412 DOI: 10.1158/0008-5472.can-14-2397] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/21/2015] [Indexed: 12/29/2022]
Abstract
The management of pancreatic ductal adenocarcinoma (PDAC) is extremely poor due to lack of an efficient therapy and development of chemoresistance to the current standard therapy, gemcitabine. Recent studies implicate the intimate reciprocal interactions between epithelia and underlying stroma due to paracrine Sonic hedgehog (SHH) signaling in producing desmoplasia and chemoresistance in PDAC. Herein, we report for the first time that a nonsteroidal drug, ormeloxifene, has potent anticancer properties and depletes tumor-associated stromal tissue by inhibiting the SHH signaling pathway in PDAC. We found that ormeloxifene inhibited cell proliferation and induced death in PDAC cells, which provoked us to investigate the combinatorial effects of ormeloxifene with gemcitabine at the molecular level. Ormeloxifene caused potent inhibition of the SHH signaling pathway via downregulation of SHH and its related important downstream targets such as Gli-1, SMO, PTCH1/2, NF-κB, p-AKT, and cyclin D1. Ormeloxifene potentiated the antitumorigenic effect of gemcitabine by 75% in PDAC xenograft mice. Furthermore, ormeloxifene depleted tumor-associated stroma in xenograft tumor tissues by inhibiting the SHH cellular signaling pathway and mouse/human collagen I expression. Xenograft tumors treated with ormeloxifene in combination with gemcitabine restored the tumor-suppressor miR-132 and inhibited stromal cell infiltration into the tumor tissues. In addition, invasiveness of tumor cells cocultivated with TGFβ-stimulated human pancreatic stromal cells was effectively inhibited by ormeloxifene treatment alone or in combination with gemcitabine. We propose that ormeloxifene has high therapeutic index and in a combination therapy with gemcitabine, it possesses great promise as a treatment of choice for PDAC/pancreatic cancer.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mara C Ebeling
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, South Dakota
| | - Rishi K Gara
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Haotian Zhao
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, Tennessee
| | | | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
228
|
Kim W, Kim E, Yang HJ, Kwon T, Han S, Lee S, Youn H, Jung Y, Kang C, Youn B. Inhibition of hedgehog signalling attenuates UVB-induced skin photoageing. Exp Dermatol 2015; 24:611-7. [DOI: 10.1111/exd.12735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences; Pusan National University; Busan South Korea
- Nuclear Science Research Institute; Pusan National University; Busan South Korea
| | - EunGi Kim
- Department of Integrated Biological Science; Pusan National University; Busan South Korea
| | - Hee Jung Yang
- Department of Biological Sciences; Pusan National University; Busan South Korea
| | - TaeWoo Kwon
- Department of Integrated Biological Science; Pusan National University; Busan South Korea
| | - SeoYoung Han
- Department of Integrated Biological Science; Pusan National University; Busan South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science; Pusan National University; Busan South Korea
| | - HyeSook Youn
- Department of Biological Sciences; Pusan National University; Busan South Korea
- Nuclear Science Research Institute; Pusan National University; Busan South Korea
| | - Youngmi Jung
- Department of Biological Sciences; Pusan National University; Busan South Korea
- Department of Integrated Biological Science; Pusan National University; Busan South Korea
| | - ChulHee Kang
- Department of Chemistry; Washington State University; Pullman Washington USA
| | - BuHyun Youn
- Department of Biological Sciences; Pusan National University; Busan South Korea
- Nuclear Science Research Institute; Pusan National University; Busan South Korea
- Department of Integrated Biological Science; Pusan National University; Busan South Korea
| |
Collapse
|
229
|
Spann AL, Yuan K, Goliwas KF, Steg AD, Kaushik DD, Kwon YJ, Frost AR. The presence of primary cilia in cancer cells does not predict responsiveness to modulation of smoothened activity. Int J Oncol 2015; 47:269-79. [PMID: 25997440 DOI: 10.3892/ijo.2015.3006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Primary cilia are microtubule-based organelles that regulate smoothened-dependent activation of the GLI transcription factors in canonical hedgehog signaling. In many cancers, primary cilia are markedly decreased or absent. The lack of primary cilia may inhibit or alter canonical hedgehog signaling and, thereby, interfere in the cellular responsiveness to modulators of smoothened activity. Clinical trials of smoothened antagonists for cancer treatment have shown the best response in basal cell carcinomas, with limited response in other solid tumors. To determine whether the presence or absence of primary cilia in cancer cells will predict their responsiveness to modulation of smoothened activity, we compared the ability of an agonist and/or inhibitor of smoothened (SAG and SANT1, respectively) to modulate GLI-mediated transcription, as measured by GLI1 mRNA level or GLI-luciferase reporter activity, in non-cancer cells with primary cilia (ovarian surface epithelial cells and breast fibroblasts), in cancer cells that cannot assemble primary cilia (MCF7, MDA-MB-231 cell lines), and in cancer cells with primary cilia (SKOV3, PANC1 cell lines). As expected, SAG and SANT1 resulted in appropriate modulation of GLI transcriptional activity in ciliated non-cancer cells, and failed to modulate GLI transcriptional activity in cancer cells without primary cilia. However, there was also no modulation of GLI transcriptional activity in either ciliated cancer cell line. SAG treatment of SKOV3 induced localization of smoothened to primary cilia, as assessed by immunofluorescence, even though there was no increase in GLI transcriptional activity, suggesting a defect in activation of SMO in the primary cilia or in steps later in the hedgehog pathway. In contrast to SKOV3, SAG treatment of PANC1 did not cause the localization of smoothened to primary cilia. Our data demonstrate that the presence of primary cilia in the cancer epithelial cells lines tested does not indicate their responsiveness to smoothened activation or inhibition.
Collapse
Affiliation(s)
- Ashley L Spann
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kun Yuan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kayla F Goliwas
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam D Steg
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Devanshu D Kaushik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yeon-Jin Kwon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andra R Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
230
|
Zhao J, Wu C, Abbruzzese J, Hwang RF, Li C. Cyclopamine-loaded core-cross-linked polymeric micelles enhance radiation response in pancreatic cancer and pancreatic stellate cells. Mol Pharm 2015; 12:2093-100. [PMID: 25936695 DOI: 10.1021/mp500875f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Cyclopamine (CPA), a potent inhibitor for sonic hedgehog pathway (SHH), shows great promises in PDAC treatment, including the disruption of tumor-associated stroma, and enhancement of radiation therapy. However, CPA is insoluble in water and therefore requires a nanometric delivery platform to achieve satisfactory performance. We herein encapsulated CPA in a core-cross-linked polymeric micelle system (M-CPA). M-CPA was combined with Cs-137 radiation and evaluated in vitro in PDAC cell lines and a human pancreatic stellate cell line. The results showed that M-CPA had higher cytotoxicity than CPA, abolished Gli-1 expression (a key component of SHH), and enhanced the radiation therapy of Cs-137. M-CPA radiosensitization correlated with its ability to disrupt the repair of radiation-induced DNA damage. These findings indicate that the combination therapy of M-CPA and radiation is an effective strategy to simultaneously treat pancreatic tumors and tumor-associated stroma.
Collapse
Affiliation(s)
| | - Chunhui Wu
- ‡Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - James Abbruzzese
- ∥Division of Medical Oncology, Duke School of Medicine, Durham, North Carolina 27710, United States
| | | | | |
Collapse
|
231
|
Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, Chen M, Weinstein LS, Taylor SS, Molinolo AA, Gutkind JS. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol 2015; 17:793-803. [PMID: 25961504 PMCID: PMC4449815 DOI: 10.1038/ncb3164] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Genomic alterations in GNAS, the gene coding for the Gαs heterotrimeric G-protein, are associated with a large number human of diseases. Here, we explored the role of Gαs on stem cell fate decisions by using the mouse epidermis as a model system. Conditional epidermal deletion of Gnas or repression of PKA signaling caused a remarkable expansion of the stem cell compartment, resulting in rapid basal cell carcinoma formation. In contrast, inducible expression of active Gαs in the epidermis caused hair follicle stem cell exhaustion and hair loss. Mechanistically, we found that Gαs-PKA disruption promotes the cell autonomous Sonic Hedgehog pathway stimulation and Hippo signaling inhibition, resulting in the non-canonical activation of GLI and YAP1. Our study highlights an important tumor suppressive function of Gαs-PKA, limiting the proliferation of epithelial stem cells and maintaining proper hair follicle homeostasis. These findings can have broad implications in multiple pathophysiological conditions, including cancer.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniela Torres
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Romina Marone
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaodong Feng
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - May Simaan
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Min Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lee S Weinstein
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Susan S Taylor
- 1] Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA [2] Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
232
|
Iwamoto H, Matsuhisa K, Saito A, Kanemoto S, Asada R, Hino K, Takai T, Cui M, Cui X, Kaneko M, Arihiro K, Sugiyama K, Kurisu K, Matsubara A, Imaizumi K. Promotion of Cancer Cell Proliferation by Cleaved and Secreted Luminal Domains of ER Stress Transducer BBF2H7. PLoS One 2015; 10:e0125982. [PMID: 25955804 PMCID: PMC4425607 DOI: 10.1371/journal.pone.0125982] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/27/2015] [Indexed: 01/16/2023] Open
Abstract
BBF2H7 is an endoplasmic reticulum (ER)-resident transmembrane basic leucine zipper (bZIP) transcription factor that is cleaved at the transmembrane domain by regulated intramembrane proteolysis in response to ER stress. The cleaved cytoplasmic N-terminus containing transcription activation and bZIP domains translocates into the nucleus to promote the expression of target genes. In chondrocytes, the cleaved luminal C-terminus is extracellularly secreted and facilitates proliferation of neighboring cells through activation of Hedgehog signaling. In the present study, we found that Bbf2h7 expression levels significantly increased by 1.070-2.567-fold in several tumor types including glioblastoma compared with those in respective normal tissues, using the ONCOMINE Cancer Profiling Database. In some Hedgehog ligand-dependent cancer cell lines including glioblastoma U251MG cells, the BBF2H7 C-terminus was secreted from cells into the culture media and promoted cancer cell proliferation through activation of Hedgehog signaling. Knockdown of Bbf2h7 expression suppressed the proliferation of U251MG cells by downregulating Hedgehog signaling. The impaired cell proliferation and Hedgehog signaling were recovered by addition of BBF2H7 C-terminus to the culture medium of Bbf2h7-knockdown U251MG cells. These data suggest that the secreted luminal BBF2H7 C-terminus is involved in Hedgehog ligand-dependent cancer cell proliferation through activation of Hedgehog signaling. Thus, the BBF2H7 C-terminus may be a novel target for the development of anticancer drugs.
Collapse
Affiliation(s)
- Hideo Iwamoto
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rie Asada
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenta Hino
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Takai
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Min Cui
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xiang Cui
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neuro-oncology Program, Cancer Treatment Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
233
|
Vaz AP, Ponnusamy MP, Batra SK. Cancer stem cells and therapeutic targets: an emerging field for cancer treatment. Drug Deliv Transl Res 2015; 3:113-20. [PMID: 24077517 DOI: 10.1007/s13346-012-0095-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent paradigm in the field of cancer defines its origin from a small population of fast growing cells known as cancer stem cells (CSCs), and they are mainly responsible for disease aggressiveness, drug resistance and tumor relapse. The existence of CSCs has been proven in different types of cancer and possesses characteristic expression of a wide array of cell surface markers specific to the type of cancer. CSCs have been isolated and enriched using several surface markers in different cancer types. Self-renewal, drug resistance and the ability to transition from epithelial to mesenchymal phenotype are the major features attributed to this fraction of mutated stem cells. The CSC hypothesis proposes that these CSCs mimic stem cells by sharing similar pathways, such as Wnt, SHH, Notch and others. Further, the niche, which in this case is the tumor microenvironment, plays a very important role in the maintenance of CSCs. Altogether, this emerging field of research on CSCs is expected to unveil answers to the most difficult issues of one of the most dreadful diseases called cancer.
Collapse
Affiliation(s)
- Arokia Priyanka Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, U.S.A
| | | | | |
Collapse
|
234
|
Li R, Cai L, Hu CM, Wu TN, Li J. Expression of hedgehog signal pathway in articular cartilage is associated with the severity of cartilage damage in rats with adjuvant-induced arthritis. JOURNAL OF INFLAMMATION-LONDON 2015; 12:24. [PMID: 25821409 PMCID: PMC4377216 DOI: 10.1186/s12950-015-0072-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cartilage damage is a crucial step in rheumatoid arthritis (RA) disease progress while its molecular mechanisms are not fully understood. Here we investigated the expression of hedgehog (Hh) signal pathway in articular cartilage of adjuvant-induced arthritis (AIA) rats and its possible pathological role in cartilage damage. METHODS 30 rats were divided into sham and AIA group (n = 15). Complete Freund's adjuvant was used to induce AIA. Secondary paw swelling was measured on day 10, 14, 18, 22 and 26 after induction. Rats were sacrificed on day 26 and knee joints and cartilage tissues were collected. Paw swelling, cartilage histopathologic changes and OARSI scores were used to evaluate AIA in rats. The protein expression of Hh signal related genes (Shh, Ptch1, Smo and Gli1) in cartilage were assayed by immunohistochemistry. The mRNA levels of Shh, Ptch1, Smo, Gli1, type-II collagen (COII) and aggrecan in cartilage were assayed by real-time PCR. In vitro study, cultured AIA chondrocytes were treated with cyclopamine (a specific inhibitor of Hh signal) and the mRNA levels of Hh signal and ECM components (COII and aggrecan) were measured by real-time PCR. RESULTS Immunohistochemical results revealed that Shh, Ptch1, Smo and Gli1 proteins showed higher expression in the articular cartilage of AIA rats than those of sham rats. Real-time PCR results confirmed that Shh, Ptch1, Smo and Gli1 mRNA levels in cartilage tissues of AIA rats were significantly increased compared with those of sham rats (1.6, 1.4, 1.6, 2.0 fold, respectively). The mRNA levels of Shh, Ptch1, Smo, and Gli1 were associated with the severity of cartilage damage (indicated by OARSI scores, COII and aggrecan mRNA levels in cartilage). In vitro, cyclopamine effectively decreased the mRNA levels of Shh, Ptch1, Smo and Gli1, and increased the mRNA levels of COII and aggrecan in AIA chondrocytes, suggesting Hh signal inhibition might directly promote ECM production. CONCLUSIONS Our findings present certain experimental evidence that Hh signal pathway is involved in the pathogenesis of cartilage damage in RA.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China ; Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, 230032 Anhui China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China
| | - Cheng-Mu Hu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China ; Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, 230032 Anhui China
| | - Ting-Ni Wu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China ; Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, 230032 Anhui China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui China ; Key Laboratory for Bioactivity of Natural Medicine of Anhui Province, Hefei, 230032 Anhui China
| |
Collapse
|
235
|
Jiang QW, Chen MW, Cheng KJ, Yu PZ, Wei X, Shi Z. Therapeutic Potential of Steroidal Alkaloids in Cancer and Other Diseases. Med Res Rev 2015; 36:119-43. [PMID: 25820039 DOI: 10.1002/med.21346] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/15/2015] [Indexed: 02/06/2023]
Abstract
Steroidal alkaloids are a class of secondary metabolites isolated from plants, amphibians, and marine invertebrates. Evidence accumulated in the recent two decades demonstrates that steroidal alkaloids have a wide range of bioactivities including anticancer, antimicrobial, anti-inflammatory, antinociceptive, etc., suggesting their great potential for application. It is therefore necessary to comprehensively summarize the bioactivities, especially anticancer activities and mechanisms of steroidal alkaloids. Here we systematically highlight the anticancer profiles both in vitro and in vivo of steroidal alkaloids such as dendrogenin, solanidine, solasodine, tomatidine, cyclopamine, and their derivatives. Furthermore, other bioactivities of steroidal alkaloids are also discussed. The integrated molecular mechanisms in this review can increase our understanding on the utilization of steroidal alkaloids and contribute to the development of new drug candidates. Although the therapeutic potentials of steroidal alkaloids look promising in the preclinical and clinical studies, further pharmacokinetic and clinical studies are mandated to define their efficacy and safety in cancer and other diseases.
Collapse
Affiliation(s)
- Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 519000, China
| | - Ke-Jun Cheng
- Chemical Biology Center, Lishui Institute of Agricultural Sciences, Lishui, 323000, Zhejiang, China
| | - Pei-Zhong Yu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xing Wei
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| |
Collapse
|
236
|
Mohan SV, Chang ALS. Management of Cutaneous and Extracutaneous Side Effects of Smoothened Inhibitor Therapy for Advanced Basal Cell Carcinoma. Clin Cancer Res 2015; 21:2677-83. [DOI: 10.1158/1078-0432.ccr-14-3180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/03/2015] [Indexed: 11/16/2022]
|
237
|
Gu H, Li XU, Zhou C, Wen Y, Shen Y, Zhou L, Li J. Effects and mechanisms of blocking the hedgehog signaling pathway in human gastric cancer cells. Oncol Lett 2015; 9:1997-2002. [PMID: 26137001 DOI: 10.3892/ol.2015.3032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/09/2014] [Indexed: 11/05/2022] Open
Abstract
Excessive activation of the hedgehog (Hh) signaling pathway is important in a variety of human cancer cell types, including gastric cancer. However, the underlying mechanisms of the Hh signaling pathway in inducing gastric tumorigenesis and its downstream target genes are largely unknown. In the present study, the inhibitory effect of cyclopamine on the Hh signaling pathway was investigated in the human gastric cancer AGS cell line. It was identified that cyclopamine treatment inhibited the proliferation, migration and invasion of the AGS cells in a dose- and time-dependent manner, and resulted in the downregulation of a number of key Hh signaling pathway-associated factors [glioma-associated oncogene homolog 1, C-X-C chemokine receptor type 4 and transforming growth factor (TGF)-β1] at the RNA and protein levels. Furthermore, the secretion of TGF-β1 was significantly reduced following the administration of cyclopamine to the AGS cells. The results of the present study provided insight into the mechanisms by which the Hh signaling pathway regulates gastric cancer formation and identified the Hh signaling pathway as a potential novel therapeutic target in human gastric cancer.
Collapse
Affiliation(s)
- Hongbing Gu
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - X U Li
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Congzhi Zhou
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yugang Wen
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yang Shen
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Lisheng Zhou
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Jikun Li
- Department of Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
238
|
Gao Q, Yuan Y, Gan HZ, Peng Q. Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncol Lett 2015; 9:2381-2387. [PMID: 26137075 DOI: 10.3892/ol.2015.2988] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022] Open
Abstract
The hedgehog (Hh) signaling pathway is vital to vertebrate development, the homeostatic process and tumorigenesis. Epithelial-mesenchymal transition (EMT) is a cellular process during which epithelial cells become mesenchymal-appearing cells, which in turn promotes cancer metastasis and invasion. Resveratrol is a natural polyphenolic compound found in grapes, a variety of berries, peanuts and other plants. Numerous studies have demonstrated that the Hh signaling pathway is able to regulate the EMT, and that resveratrol can suppress carcinoma invasion and metastasis. In addition, certain studies have indicated that resveratrol can inhibit the Hh signaling pathway and EMT in cancers other than gastric cancer. The purpose of the present study was to investigate the inhibitory effect of resveratrol on the Hh signaling pathway and EMT in gastric cancer in vitro. Gastric cancer SGC-7901 cells were treated with resveratrol or cyclopamine at different concentrations. The viability of the cells was assessed using an MTT assay. The expression of Gli-1, a key component of the Hh signaling pathway, and Snail, E-cadherin and N-cadherin, key components of EMT, was detected by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. The invasion and metastasis of the cells were observed by performing a cell scratch test. The RT-PCR and western blotting showed a decrease in Gli-1, Snail and N-cadherin expression, and an increase in E-cadherin expression in the resveratrol and cyclopamine group compared with the control group, suggesting that resveratrol inhibited the Hh pathway and EMT, as did cyclopamine. The MTT assay indicated that the viability of the SGC-7901 cells was significantly decreased in a concentration-dependent manner following resveratrol and cyclopamine treatment. The cell scratch test showed slower cell invasion and metastasis in the resveratrol and cyclopamine groups. These findings indicated that resveratrol was able to inhibit the Hh signaling pathway and EMT, and suppress invasion and metastasis in gastric cancer in vitro.
Collapse
Affiliation(s)
- Qian Gao
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Yuan Yuan
- Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hui-Zhong Gan
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Qiong Peng
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| |
Collapse
|
239
|
Abdel-Rahman O. Hedgehog pathway aberrations and gastric cancer; evaluation of prognostic impact and exploration of therapeutic potentials. Tumour Biol 2015; 36:1367-74. [PMID: 25680409 DOI: 10.1007/s13277-015-3216-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is an important cause for mortality and morbidity worldwide; it lies in the fourt rank as a cause of cancer-related death in males and in the fifth rank of cancer-related death in women. The prognosis of advanced/metastatic gastric cancer cases looks poor with the majority of available therapeutics. Thus, novel therapeutic strategies in this setting have been considered a priority for leading cooperative oncology groups. Hedgehog(Hh) pathway aberrations have sparked particular interest as prognostic markers with data from multiple studies showing consistent evidence of a poor prognostic value of Gli over expression in gastric cancer while on the other hand the prognostic significance of Hh protein over expression (particularly SHH) was not consistent among different studies. This review article revises the prognostic and potential therapeutic opportunities in the targeting of hedgehog pathway in gastric cancer.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain shams University, Cairo, Egypt,
| |
Collapse
|
240
|
Liu W, Wacker D, Wang C, Abola E, Cherezov V. Femtosecond crystallography of membrane proteins in the lipidic cubic phase. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130314. [PMID: 24914147 DOI: 10.1098/rstb.2013.0314] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite recent technological advances in heterologous expression, stabilization and crystallization of membrane proteins (MPs), their structural studies remain difficult and require new transformative approaches. During the past two years, crystallization in lipidic cubic phase (LCP) has started gaining a widespread acceptance, owing to the spectacular success in high-resolution structure determination of G protein-coupled receptors (GPCRs) and to the introduction of commercial instrumentation, tools and protocols. The recent appearance of X-ray free-electron lasers (XFELs) has enabled structure determination from substantially smaller crystals than previously possible with minimal effects of radiation damage, offering new exciting opportunities in structural biology. The unique properties of LCP material have been exploited to develop special protocols and devices that have established a new method of serial femtosecond crystallography of MPs in LCP (LCP-SFX). In this method, microcrystals are generated in LCP and streamed continuously inside the same media across the intersection with a pulsed XFEL beam at a flow rate that can be adjusted to minimize sample consumption. Pioneering studies that yielded the first room temperature GPCR structures, using a few hundred micrograms of purified protein, validate the LCP-SFX approach and make it attractive for structure determination of difficult-to-crystallize MPs and their complexes with interacting partners. Together with the potential of femtosecond data acquisition to interrogate unstable intermediate functional states of MPs, LCP-SFX holds promise to advance our understanding of this biomedically important class of proteins.
Collapse
Affiliation(s)
- Wei Liu
- Marine Drug Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China Department of Integrated Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Wacker
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chong Wang
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Enrique Abola
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vadim Cherezov
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
241
|
You J, Zhao J, Wen X, Wu C, Huang Q, Guan F, Wu R, Liang D, Li C. Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J Control Release 2015; 202:40-8. [PMID: 25637565 DOI: 10.1016/j.jconrel.2015.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 12/12/2022]
Abstract
Cyclopamine (CPA), a potent inhibitor of the Hedgehog pathway, has produced promising anticancer results in a number of preclinical studies. CPA has also been found to enhance tumor response to radiation therapy. However, CPA is water insoluble. A drug delivery system suitable for systemic administration of CPA is needed before CPA can be considered for clinical translation. We hypothesized that CPA solubilized in a liquid-lipid nanoparticle system (CPA-LLP) for intravenous injection would have desirable pharmacokinetic properties and increased anticancer efficacy. We further hypothesized that CPA-LLP would enhance the response of tumor cells to targeted radiotherapy delivered selectively through intratumoral injection of lutetium-177 bound to core-crosslinked polymeric micelles (CCPM-(177)Lu). We tested the combination therapy in 4T1 murine breast cancer and Miapaca-2 human pancreatic adenocarcinoma models. The results showed that CPA-LLP had higher antitumor cytotoxicity than free CPA (IC50 values [mean±SEM]: 2.7±0.2μM vs. 11.3±1.2μM against 4T1 cells; 1.8±0.2 vs. 17.1±1.26μM against Miapaca-2 cells; p<0.0001). In both cell lines, CPA-LLP resulted in significantly lower clonogenicity than free CPA (p<0.05). Moreover, in both cell lines, CPA-LLP significantly enhanced the cell response to CCPM-(177)Lu radiotherapy as measured by clonogenic assay (p<0.05). In 4T1 and Miapaca-2 mouse xenograft models, the combination of CPA-LLP and CCPM-(177)Lu delayed tumor growth more than either monotherapy did alone. In the 4T1 tumor model, tumor size at 16days after treatment was significantly smaller with the combination therapy than with all the other treatments. In the Miapaca-2 model, the combination therapy resulted in the highest rate of mouse survival and prevented tumor relapse. In conclusion, the combination of CPA-LLP and CCPM-(177)Lu was an effective strategy for treating breast and pancreatic cancer and deserves further investigation.
Collapse
Affiliation(s)
- Jian You
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Chunhui Wu
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Fada Guan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Richard Wu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Dong Liang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
242
|
Li H, Da LJ, Fan WD, Long XH, Zhang XQ. Transcription factor glioma-associated oncogene homolog 1 is required for transforming growth factor-β1-induced epithelial-mesenchymal transition of non-small cell lung cancer cells. Mol Med Rep 2015; 11:3259-68. [PMID: 25586417 PMCID: PMC4368139 DOI: 10.3892/mmr.2015.3150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells depolarize and acquire a mesenchymal phenotype, and is a common early step in the process of metastasis. Patients with lung cancer frequently already have distant metastases when they are diagnosed, highlighting the requirement for early and effective interventions to control metastatic disease. Transforming growth factor-β1 (TGF-β1) is able to induce EMT, however the molecular mechanism of this remains unclear. In the current study, TGF-β1 was reported to induce EMT and promote the migration of non-small cell lung cancer (NSCLC) cells. A notable observation was that EMT induction was accompanied by the upregulation of human glioma-associated oncogene homolog 1 (Gli1) mRNA and protein levels. Furthermore, Gli1 levels were depleted by small interfering RNA, and the Gli1 inhibitor GANT 61 attenuated the TGF-β1-mediated induction of EMT and cell migration. The results of the current study suggest that Gli1 regulates TGF-β1-induced EMT, which may provide a novel therapeutic target to inhibit metastasis in patients with NSCLC.
Collapse
Affiliation(s)
- Hua Li
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Li-Jun Da
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wei-Dong Fan
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiao-Hong Long
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xian-Quan Zhang
- Department of Oncology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
243
|
Yoh K, Prywes R. Pathway Regulation of p63, a Director of Epithelial Cell Fate. Front Endocrinol (Lausanne) 2015; 6:51. [PMID: 25972840 PMCID: PMC4412127 DOI: 10.3389/fendo.2015.00051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023] Open
Abstract
The p53-related gene p63 is required for epithelial cell establishment and its expression is often altered in tumor cells. Great strides have been made in understanding the pathways and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR pathways. We discuss here the multiple signaling pathways that control p63 expression as well as transcription factors and post-transcriptional mechanisms that regulate p63 levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has evolved to carefully control epithelial cell differentiation and fate.
Collapse
Affiliation(s)
- Kathryn Yoh
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, NY, USA
- *Correspondence: Ron Prywes, Department of Biological Sciences, Columbia University, Fairchild 813A, MC2420, 1212 Amsterdam Avenue, New York, NY 10027, USA,
| |
Collapse
|
244
|
Farrokhpour H, Pakatchian V, Hajipour A, Abyar F, Najafi Chermahini A, Fakhari F. Protein–ligand interaction study of signal transducer smoothened protein with different drugs: molecular docking and QM/MM calculations. RSC Adv 2015. [DOI: 10.1039/c5ra08609d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A part of signal transducer smoothened (SMO) protein including antitumor agent LY2940680. The site of this antitumor was considered for the docking of 716 ligands.
Collapse
Affiliation(s)
| | | | | | - Fatemeh Abyar
- Chemistry Department
- Isfahan University of Technology
- Isfahan
- Iran
| | | | | |
Collapse
|
245
|
Sun C, Li Y, Shi A, Zhang J, Li Y, Zhao M, Zhang L, Zheng H, Meng Y, Ding H, Song H. Synthesis and evaluation of novel N-3-benzimidazolephenylbisamide derivatives for antiproliferative and Hedgehog pathway inhibitory activity. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00092k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
7m, as a novel Hedgehog inhibitor, interacted closely with the smoothened receptor at the co-crystallized ligand (taledegib) site.
Collapse
|
246
|
Larcher F, Espada J, Díaz-Ley B, Jaén P, Juarranz A, Quintanilla M. New Experimental Models of Skin Homeostasis and Diseases. ACTAS DERMO-SIFILIOGRAFICAS 2015. [DOI: 10.1016/j.adengl.2014.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
247
|
Shiro T, Fukaya T, Tobe M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur J Med Chem 2014; 97:397-408. [PMID: 25532473 DOI: 10.1016/j.ejmech.2014.12.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Among all heterocycles, the heterocycle-fused quinolinone scaffold is one of the privileged structures in drug discovery as heterocycle-fused quinolinone derivatives exhibit various biological activities allowing them to act as anti-inflammatory, anticancer, antidiabetic, and antipsychotic agents. This wide spectrum of biological activity has attracted a great deal of attention in the field of medicinal chemistry. In this review, we provide a comprehensive description of the biological and pharmacological properties of various heterocycle-fused quinolinone scaffolds and discuss the synthetic methods of some of their derivatives.
Collapse
Affiliation(s)
- Tomoya Shiro
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan
| | - Takayuki Fukaya
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan
| | - Masanori Tobe
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Enoki 33-94, Suita, Osaka 564-0053, Japan.
| |
Collapse
|
248
|
Won KY, Kim GY, Lim SJ, Sung JY, Kim YW, Park YK, Lee J, Choi HS. Autophagy is related to the hedgehog signaling pathway in human gastric adenocarcinoma: prognostic significance of Beclin-1 and Gli2 expression in human gastric adenocarcinoma. Pathol Res Pract 2014; 211:308-15. [PMID: 25512258 DOI: 10.1016/j.prp.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/14/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022]
Abstract
Beclin-1 induces autophagy, which is known to be involved in many physiopathological processes such as cell development, aging, stress response, immune response and cancer. Several studies showed that Beclin-1 expression is associated with several prognostic factors of gastric carcinomas. Recently, the connection between autophagy and the hedgehog (HH) signaling pathway has been studied. Here, we investigated the relationship between the autophagy and hedgehog (HH) signaling pathways in gastric adenocarcinoma. We evaluated Beclin-1 and Gli2 expression in 108 gastric adenocarcinoma tissues via immunohistochemical analysis, using a tissue microarray, in relation to survival and other prognostic factors. Our results show that increased Beclin-1 expression is correlated with favorable clinicopathological variables including histologic grade, tumor size, primary tumor (T) stage, lymph node metastasis, lymphatic invasion, neural invasion, and tumor recurrence. Furthermore, increased Gli-2 expression was correlated with several favorable clinicopathological variables including primary tumor (T) stage, lymphatic invasion, and tumor recurrence. Increased Beclin-1 expression was significantly correlated with increased Gli2. Univariate analyses for disease-free survival and overall survival revealed that the higher Beclin-1 and Gli2 expression group had a more favorable prognosis compared with the lower Beclin-1 and Gli2 expression group. Our results suggest that progressively increased Beclin-1 and Gli2 expression contributes to the inhibition of tumor growth and metastasis in gastric adenocarcinoma and Beclin-1 acts as a tumor suppressor by regulating the HH signaling pathway through Gli2 expression in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Kyu Yeoun Won
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Gou Young Kim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea.
| | - Sung-Jig Lim
- Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Youn Wha Kim
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Koo Park
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Juhie Lee
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Seung Choi
- Department of Pathology, Graduate School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
249
|
Yang K, Fu LW. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: A review. Crit Rev Oncol Hematol 2014; 93:277-92. [PMID: 25500000 DOI: 10.1016/j.critrevonc.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/30/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022] Open
Abstract
BCR-ABL caused by the translocation of t(9,22) with elevated tyrosine-kinase activity could induce leukemia in mice, which established BCR-ABL as the molecular pathogenic event in CML (Chronic myeloid leukemia). In recent years, a variety of tyrosine kinase inhibitors (TKIs) targeting at BCR-ABL specifically and effectively have been developed, which has fundamentally promoted the treatment of CML. However, the efficacy of TKIs was limited by its resistance induced by the development of kinase domain mutations and other mechanisms illustrated. In this review, we summarized BCR-ABL inhibitors approved by Food and Drug Administration (FAD), with the same concerns focus on the resistant mechanisms of BCR-ABL inhibitors and therapeutic resistant strategies.
Collapse
Affiliation(s)
- Ke Yang
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li-wu Fu
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
250
|
Meng D, Chen Y, Zhao Y, Wang J, Yun D, Yang S, Chen J, Chen H, Lu D. Expression and prognostic significance of TCTN1 in human glioblastoma. J Transl Med 2014; 12:288. [PMID: 25304031 PMCID: PMC4198629 DOI: 10.1186/s12967-014-0288-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/03/2014] [Indexed: 11/26/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and lethal intracranial malignancy in adults, with dismal prognosis despite multimodal therapies. Tectonic family member 1 (TCTN1) is a protein involved in a diverse range of developmental processes, yet its functions in GBM remain unclear. This study aims to investigate expression profile, prognostic value and effects of TCTN1 gene in GBM. Methods Protein levels of TCTN1 were assessed by immunohistochemical staining using a tissue microarray constructed by a Chinese cohort of GBM patients (n = 110), and its mRNA expression was also detected in a subset of this cohort. Kaplan-Meier analysis and Cox regression were performed to estimate the prognostic significance of TCTN1. Similar analyses were also conducted in another two independent cohorts: The Cancer Genome Atlas (TCGA) cohort (n = 528) and the Repository for Molecular Brain Neoplasia Data (REMBRANDT) cohort (n = 228). For the TCGA cohort, the relationships between TCTN1 expression, clinical outcome, molecular subtypes and genetic alterations were also analysed. Furthermore, proliferation of TCTN1 overexpressed or silenced GBM cells was determined by CCK-8 assays. Results As discovered in three independent cohorts, both mRNA and protein levels of TCTN1 expression were markedly elevated in human GBMs, and higher TCTN1 expression served as an independent prognostic factor predicting poorer prognosis of GBM patients. Additionally, in the TCGA cohort, TCTN1 expression was dramatically decreased in patients within the proneural subtype compared to other subtypes, and significantly influenced by the status of several genetic aberrations such as CDKN2A/B deletion, EGFR amplification, PTEN deletion and TP53 mutation. The prognostic value of TCTN1 was more pronounced in proneural and mesenchymal subtypes, and was also affected by several genetic alterations particularly PTEN deletion. Furthermore, overexpression of TCTN1 significantly promoted proliferation of GBM cells, while its depletion evidently hampered cell growth. Conclusions TCTN1 is elevated in human GBMs and predicts poor clinical outcome for GBM patients, which is associated with molecular subtypes and genetic features of GBMs. Additionally, TCTN1 expression impacts GBM cell proliferation. Our results suggest for the first time that TCTN1 may serve as a novel prognostic factor and a potential therapeutic target for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0288-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, No, 2005 Songhu Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|